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ABSTRACT

Topological data analysis (TDA) is a powerful technique for extracting complex
and valuable shape-related summaries of high-dimensional data. However, the
computational demands of classical algorithms for computing TDA are exorbi-
tant, and quickly become impractical for high-order characteristics. Quantum
computers offer the potential of achieving significant speedup for certain com-
putational problems. Indeed, TDA has been purported to be one such problem,
yet, quantum computing algorithms proposed for the problem, such as the orig-
inal Quantum TDA (QTDA) formulation by Lloyd, Garnerone and Zanardi, re-
quire currently unavailable fault-tolerance. In this study, we present NISQ-TDA,
a fully implemented end-to-end quantum machine learning algorithm needing only
a short circuit-depth, that is applicable to high-dimensional classical data, and with
provable asymptotic speedup for certain classes of problems. The algorithm nei-
ther suffers from the data-loading problem nor does it need to store the input data
on the quantum computer explicitly. The algorithm was successfully executed on
quantum computing devices, as well as on noisy quantum simulators, applied to
small datasets. Preliminary empirical results suggest that the algorithm is robust
to noise.

1 INTRODUCTION

With the advent of modern technology, the collection of information-rich, high-dimensional data
has become prevalent. These high-dimensional datasets are typically characterized by multidimen-
sional correlation structures that are difficult to uncover. Extracting and analyzing such structural
information is crucial in machine learning as well as in accelerating scientific discovery. Topolog-
ical data analysis (TDA) is a powerful unsupervised machine learning technique for the extraction
of valuable shape-related features of large datasets (Zomorodian & Carlsson, 2005; Ghrist, 2008;
Wasserman, 2018). It represents one of the few data analysis algorithms that can process high-
dimensional datasets and reduce them to a small set of local and global signature values that are
interpretable and laden with predictive and analytical value. TDA has been shown to be useful in
various scientific applications, including machine learning and artificial intelligence (AI) for the
analysis of deep neural network architectures (e.g., estimate the capacity (Guss & Salakhutdinov,
2018) and topological complexity (Naitzat et al., 2020) of neural networks); neuroscience (Giusti
et al., 2015), where topology is used to reveal intrinsic geometric structures in neural correlations;
cosmology (Cole & Shiu, 2018b), where TDA is used for detecting non-Gaussianity of the cosmic
microwave background (CMB); and genetics (Rabadán et al., 2020; Mandal et al., 2020b), for pre-
dicting phenotypes from gene co-expression or raw genomics data. Despite such progress in some
applications, the true potential of TDA has been severely limited because classical algorithms for
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TDA have proven to be computationally prohibitive, only mitigated to some extent by sampling or
by limiting calculations to low-dimensional properties.

Quantum computers represent one potential approach to address these prohibitive computational re-
quirements of TDA. The power of quantum computers lies in their ability to perform computations
in large computational (Hilbert) spaces, accessed via relatively small physical systems (Deutsch,
1985; Lloyd, 1996). With the recognition of this novel computational power in the 1980s (Feyn-
man, 1982), there has been an arduous search for algorithms that achieve significant computational
speedups over classical algorithms (Shor, 1994; Grover, 1996; Nielsen & Chuang, 2010). Such
quantum algorithms offer the potential to solve problems that can not be solved using conventional
computers. Quantum computers outperforming current classical supercomputers has been termed
quantum advantage in the literature (Bravyi et al., 2018; Arute et al., 2019; Deshpande et al., 2022;
Rinott et al., 2022). However, this has not yet been achieved for any problem of practical value.

In a seminal paper, Lloyd et al. (2016) proposed Quantum TDA (QTDA), an algorithm that achieves
an expected exponential speedup in solving an approximation of TDA. Recent works (Gyurik et al.,
2020; Cade & Crichigno, 2021; Crichigno & Kohler, 2022; Schmidhuber & Lloyd, 2022) have
studied the hardness of the approximation problem solved by QTDA, and discussed the conditions
under which the algorithm provably enjoys speedup over classical algorithms. Furthermore, this
speedup is not overshadowed by the data-loading cost (Aaronson, 2015), which plagues several
other quantum algorithms (Harrow et al., 2009; Gilyén et al., 2019), especially those related to
machine learning (Biamonte et al., 2017; Schuld et al., 2015). However, the QTDA algorithm still
requires long-lasting quantum coherence and low computational error to store and process the loaded
data. Indeed, it requires fault-tolerant quantum computing (Shor, 1996; Aaronson, 2015; Preskill,
2018), an error-corrected quantum computer needing a very large overhead in resources (number
of low-noise qubits and operations) (Arute et al., 2019; Zhao et al., 2020). Many components of
the Lloyd et al. (2016) algorithm require fault-tolerance: Grover’s search (Grover, 1996), Quantum
Phase Estimation (Nielsen & Chuang, 2010), and repeated access to the input data. However, fault-
tolerance has not yet been achieved on currently available quantum devices, and is likely several
years away from full realization (goo, 2023). Intriguingly, the qubit numbers and noise levels that are
currently realized in hardware are not classically simulatable, which raises the question of whether
some algorithm could make use of these non-fault-tolerant noisy devices (Noisy Intermediate-Scale
Quantum (NISQ) (Preskill, 2018)) for quantum advantage?

In this paper we present a quantum algorithm for solving the same problem as QTDA with an im-
proved runtime, shorter circuit depth, and without fault tolerance requirements. Our NISQ-TDA al-
gorithm solves the principal problem of TDA, estimating the Betti numbers of the given data (Ghrist,
2008). The algorithm only requires pairwise distances of the n data-points as input and outputs an
estimate for the (normalized) Betti numbers of the data, which are signature values that describe
the shape of the data. However, the calculation of these Betti numbers by current methods requires
operating on large exponential-sized matrices (details of TDA and Betti numbers are provided in
the next section). The approximation problem solved by our algorithm is believed to be intractable
classically (likely belonging to a class of problems called DQC1-hard (Morimae et al., 2014)) under
certain settings (Gyurik et al., 2020; Cade & Crichigno, 2021; Crichigno & Kohler, 2022), and in
this sense potentially enjoys super-polynomial to exponential speedup over classical algorithms for
certain classes of problems (Schmidhuber & Lloyd, 2022). We present a theoretical error analysis
for the proposed algorithm, establishing error guarantees for the estimated Betti numbers, and show
that the algorithm requires only O(n/

√
δ)-depth circuit complexity. We then present preliminary

empirical results from implementations on real hardware and quantum simulations that illustrate the
noise resiliency of our algorithm. Our presented theoretical and numerical results demonstrate that
NISQ-TDA has the potential to be the first generically useful NISQ algorithm.

2 PRELIMINARIES

We begin by introducing the key concepts of quantum computing, TDA and quantum TDA (QTDA).

Quantum computing: Quantum computing is characterized by operations on the quantum state of
n quantum bits or qubits, representing a vector in 2n dimensional complex vector (Hilbert) space.
The quantum operations or measurements correspond to multiplying the quantum state vector by
certain 2n × 2n matrices. Quantum circuits represent these operations in terms of a set of quantum
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gates operating on the qubits. The number of these gates and the depth of the circuit define the circuit
complexity of a given quantum algorithm. Quantum computers are difficult to build (preparing and
maintaining the quantum states is extremely hard) and are very noisy. Therefore, the principles of
quantum error correction were proposed to protect the quantum system from information loss and
other damages (Gottesman, 2010). A (large-scale) quantum computer with many qubits is said to be
fault-tolerant if the device is capable of such quantum error correction. However, realization of such
fault-tolerant quantum systems is likely several years away. Currently available quantum computers
are termed “Noisy Intermediate-Scale Quantum” (NISQ) (Preskill, 2018), and these devices are
prone to considerable error rates and are limited in size by the number of logical qubits available
in the system. In order to obtain results with reasonable accuracies on a NISQ device, the quantum
circuit implementing a given algorithm needs to be of short depth.

Topological data analysis: TDA represents one of the few data analysis methodologies that can
process high-dimensional datasets and reduce them to a small set of local and global signature values
that are interpretable and laden with predictive and analytical value. Given a set of n data-points
{xi}n−1

i=0 in some space together with a distance metric D, a Vietoris-Rips (Ghrist, 2008) simplicial
complex is constructed by selecting a resolution/grouping scale ε that defines the “closeness” of the
points with respect to the distance metric D, and then connecting the points that are a distance of
ε from each other (i.e., connecting points xi and xj whenever D(xi, xj) ≤ ε, forming a so-called
1-skeleton). A k-simplex is then added for every subset of k + 1 data-points that are pair-wise
connected (i.e., for every k-clique, the associated k-simplex is added).

Let Sk denote the set of k-simplices in the Vietoris–Rips complex Γ = {Sk}n−1
k=0 , with sk ∈ Sk

written as {j0, . . . , jk} where ji is the ith vertex of sk. Let Hk denote an
(

n
k+1

)
-dimensional Hilbert

space, with basis vectors corresponding to each of the possible k-simplices (all subsets of size k +
1). Further let H̃k denote the subspace of Hk spanned by the basis vectors corresponding to the
simplices in Sk, and let |sk⟩ denote the basis state corresponding to sk ∈ Sk. Then, the n-qubit
Hilbert space C2n is given by C2n ∼=

⊕n
k=0 Hk. The boundary map (operator) on k-dimensional

simplices ∂k : Hk → Hk−1 is a linear operator defined by its action on the basis states as follows:

∂k |sk⟩ =
k−1∑
l=0

(−1)l |sk−1(l)⟩ , (1)

where |sk−1(l)⟩ is the lower simplex obtained by leaving out vertex l (i.e., sk−1 has the same
vertex set as sk except without jl), and sk−1 is k − 1-dimensional, a dimension less than sk. The
factor (−1)l produces the oriented (Ghrist, 2008) sum of boundary simplices, which keeps track of
neighbouring simplices so that ∂k−1∂k |sk⟩ = 0, given that the boundary of the boundary is empty.

The boundary map ∂̃k : H̃k → H̃k−1 restricted to a given Vietoris–Rips complex Γ is given by
∂̃k = ∂kP̃k, where P̃k is the projector onto the space Sk of k simplices in Γ. The full boundary
operator on the fully connected complex (the set of all subsets of n points) is the direct sum of the k-
dimensional boundary operators, namely ∂ =

⊕
k ∂k. The k-homology group is the quotient space

Hk := ker(∂̃k)/img(∂̃k+1), representing all k-holes which are not “filled-in” by k+1 simplices and
counted once when connected by k simplices (e.g., the two holes at the ends of a tunnel count once).
Such global structures moulded by local relationships is what is meant by the “shape” of data. The
kth Betti Number βk is the dimension of this k-homology group, namely βk := dimHk.

These Betti numbers therefore count the number of holes at scale ε, as described above. By comput-
ing the Betti numbers at different scales ε, we can obtain the persistence barcodes/diagrams (Ghrist,
2008), i.e., a set of powerful interpretable topological features that account for different scales while
being robust to small perturbations and invariant to various data manipulations. These stable per-
sistence diagrams not only provide information at multiple resolutions, but they also help identify,
in an unsupervised fashion, the resolutions at which interesting structures exist. The Combinatorial
Laplacian, or Hodge Laplacian, of a given complex is defined as ∆k := ∂̃†k∂̃k + ∂̃k+1∂̃

†
k+1. From

the Hodge theorem (Friedman, 1998; Lim, 2019), we can compute the kth Betti number as

βk := dimker(∆k). (2)

Therefore, computing Betti numbers for TDA can be viewed as a rank estimation problem (i.e.,
βk = dim H̃k − rank(∆k)). Additional TDA details can be found in Appendix A.2. The problem
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of normalized Betti number estimation (BNE) is defined as (Gyurik et al., 2020): Given a set of n
points, its corresponding Vietoris–Rips complex Γ, an integer 0 ≤ k ≤ n − 1, and the parameters
(ϵ, η) ∈ (0, 1), find the value χk ∈ [0, 1] that satisfies with probability 1− η the condition∣∣∣∣χk − βk

|Sk|

∣∣∣∣ ≤ ϵ, (3)

where |Sk| is the the number of k-simplices Sk ∈ Γ or dim H̃k, the dimension of the Hilbert space
spanned by the set of k-simplices in the complex.

Quantum TDA: Lloyd et al. (2016) proposed Quantum TDA (QTDA), an algorithm for solving
an approximation of TDA in polynomial time for a class of simplicial complexes. Recent works
have shown, e.g., (Gyurik et al., 2020; Schmidhuber & Lloyd, 2022), that the problem QTDA
solves approximately is intractable classically for certain classes of complexes. The TDA problem
of computing Betti numbers exactly has been shown to be intractable for even quantum computers
as decision clique homology has been proven to be QMA1-hard (Crichigno & Kohler, 2022) for
clique complexes; and promise weighted clique homology has been shown to be QMA1-hard and
contained in QMA (King & Kohler, 2023). The approximative version that QTDA actually solves
involves a different computational class: DQC1-hard. This normalized Betti number estimation
problem has been shown to be DQC1-hard for general chain complexes (Cade & Crichigno, 2021)
and is conjectured to hold for clique complexes (Cade & Crichigno, 2021; King & Kohler, 2023).

QTDA involves two main steps, namely: (a) repeatedly constructing the simplices in the given
simplicial complex as a mixed quantum state using Grover’s search algorithm (Boyer et al., 1998);
and (b) projecting this onto the eigenspace of ∆k in order to calculate the Betti numbers of the
complex, using quantum phase estimation (QPE) (Nielsen & Chuang, 2010) (details are provided
in the Appendix A). The computational complexity is O(n5/(δk

√
ζk)) where n is the number of

data points, δk denotes the smallest nonzero eigenvalue of ∆k, and ζk is the fraction of all simplices
of order k in the given complex, resulting in significant speedup over known classical algorithms.
However, QTDA requires long-lasting quantum coherence to store the loaded data for the length of
the long-depth circuits thus requiring fault-tolerant quantum computing. In particular, Grovers and
QPE require precise phase information where any errors would accumulate multiplicatively.

3 NISQ-TDA

We now present our proposed quantum algorithm, NISQ-TDA, for estimating the (normalized) Betti
numbers of datasets (simplicial complexes) defined through vertices and edges. The algorithm in-
volves three key components, namely: (a) an efficient representation of the full boundary operator as
a sum of Pauli operators; (b) a quantum rejection sampling technique to project onto the data-defined
simplicial complex; and (c) a stochastic rank estimation method to estimate the output signature Betti
numbers. In order to calculate the Betti numbers, the first of two major tasks is to construct a quan-
tum circuit that applies the data-defined Laplacian to any input set of simplices. In our algorithm,
this involves three main sub-components.

The first is a quantum representation of the complete (not data-defined) boundary map operator
(say B), called the Fermionic boundary operator (Cade & Crichigno, 2021; Akhalwaya et al.,
2022). It acts on all possible simplices with n points and returns their corresponding boundary
simplices. The representation involves only unitary operators written as a sum of Pauli (fermionic)
operators. The Hermitian boundary operatorB is written asB =

∑n−1
i=0 ai+a

†
i ,where the ai are the

Jordan-Wigner (Jordan & Wigner, 1928) Pauli embeddings corresponding to the n-spin fermionic
annihilation operators. The implementation of this fermionic boundary operator B on a quantum
computer requires only n qubits,O(n2) gates, and anO(n)-depth circuit; see Appendix B for details.

The second sub-component, which we call Projection onto simplices, consists of constructing the
simplicial complex (Γ) corresponding to the given data by implementing the projector (PΓ) onto
Γ as qubit gates and measurements. A series of multi-qubit control-NOT gates, one for each edge
in the data, checks if the edges of the input simplices (in superposition) are actually present in the
data. The result is stored in a flag register which is then measured. Since there are

(
n
2

)
∼ O(n2)

potential edges, this seems to require O(n2) depth. Fortunately, the checks can be run in parallel
and in batches using a round-robin procedure, reusing the same flag register through the power of
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mid-circuit measurement. By repeating the entire circuit until the register measurements read the
‘all-in’ flag, the input simplices are projected onto Γ.

Given the classical encoding of the ε-close pairs, we systematically entangle the simplices with an
n/2-qubit flag register. The n/2 qubits are used to process n/2 pairs of vertices at a time in n − 1
rounds, thereby covering all

(
n
2

)
potential ε-close pairs of vertices. The projection begins by creating

a uniform superposition over all simplices (or over all k-simplices). We check n/2 pairs at a time,
for all simplices in the superposition (hence the quantum speedup). The n/2 pairs are chosen such
that the C-C-NOT (Toffoli) gates, controlling on pairs of vertex qubits targeting the flag register, are
executed in parallel. In each round, we measure the flag register and proceed only if we receive all
zeros. This collapses the simplex superposition into those simplices that have pairs which are not
missing from the adjacency graph. The procedure succeeds when repeated 1

ζk
times, where ζk is the

fraction of all possible simplices of order k that are in Γ. The ‘all-orders’ data-defined Laplacian
can thus be expressed as ∆ = PΓBPΓBPΓ.

Although this simple linear-depth circuit implementation of PΓ suggests a requirement of quantum
computers with all-to-all connectivity (as used in our experiments), we can indeed implement it on
quantum computers with only linear qubit connectivity using a sorting network approach in O(n)
depth (Beals et al., 2013; O’Gorman et al., 2019). The network uses nearest-neighbor SWAP gates
and with n layers of such ‘qubit swaps’, all

(
n
2

)
pair of qubits become nearest-neighbors at some

layer; see O’Gorman et al. (2019) for details. Moreover, if we use
(
n
2

)
ancilla qubits, one per edge,

we can measure these only once at the end of the n − 1 rounds (instead of n/2 flag registers and
n− 1 measure and resets), and if we measure all zeros, then the projection is successful.

Most importantly, the ability to write the Laplacian in terms of a circuit that does not require ac-
cessing stored quantum data is one of the key enabling innovations of NISQ-TDA. The input edge
data is not stored on the quantum computer but enters through the presence or absence of the multi-
qubit control gates of the projector. Every time the complex projection is called, the data is freshly
and accurately injected into the quantum computer. This suggests that NISQ-TDA is partially self-
correcting, and under noise presence, the last application of PΓ mitigates the noise. When noise-
levels only allow for one coherent application of PΓ, this application meaningfully represents the
data and can be used for alternate machine learning tasks.

The third sub-component, which we call Projection to a simplicial order, is the construction of
the projector (Pk) onto the k-simplex subspace. The circuit is a sequence of control-‘add one’ sub-
circuits that conditions on each vertex qubit of the simplex register and increments a log(n)-sized
count register. The operation is equivalent to implementing conditional-permutation, and can be
efficiently implemented using diagonalization (Shende et al., 2006) in the Fourier basis. Finally, the
projection is completed and fully realized as a non-unitary operation by measuring the count register.
The cost in depth is only O(log2 n). The data-defined Laplacian corresponding to simplicial order
k can thus be written as ∆k = Pk∆Pk.

The second major part of the NISQ-TDA algorithm, which we call the Stochastic Chebyshev
method, consists of using the above quantum circuit in a larger classically controlled framework,
making NISQ-TDA a hybrid quantum-classical algorithm. The classical framework is a stochas-
tic rank estimation using the Chebyshev polynomials (Ubaru & Saad, 2016; Ubaru et al., 2017).
Once we obtain the rank of the Laplacian, we have the Betti numbers βk = dim(ker(∆k)) =
|Sk| − rank(∆k), where Sk ⊆ Γ is the set of k-simplices in the given complex Γ. Stochastic rank
estimation recasts the eigen-decomposition problem into the estimation of the matrix function trace.

Assuming the smallest nonzero eigenvalue of ∆̃k = ∆k/n is greater than or equal to δ, we have

rank(∆k)
def
= trace(h(∆̃k)), where h(x) =

{
1 if x > δ
0 otherwise .

Supposing ∆̃k =
∑

i λi|ui⟩⟨ui| is the eigen-decomposition, we have h(∆̃k) =
∑

i h(λi)|ui⟩⟨ui|,
where the step function h(·) takes a value of 1 above the threshold δ > 0 and the eigenvalues of ∆̃k

are in the interval {0}∪[δ, 1]. Next, h(∆̃k) is approximated using a truncated Chebyshev polynomial
series (Trefethen, 2019) as h(∆̃k) ≈ ∑m

j=0 cjTj(∆̃k), where Tj(·) is the jth-degree Chebyshev
polynomial of the first kind and cj are the coefficients with closed-form expressions. The trace is
approximated using the stochastic trace estimation method (Hutchinson, 1990) given by trace(A) ≈
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1
nv

∑nv

l=1⟨vl|A|vl⟩, where |vl⟩, l = 1, . . . ,nv, are random vectors with zero mean and uncorrelated
coordinates. It can be shown that a set of random columns of the Hadamard matrices works well as
a choice for |vl⟩, both in theory and practice (see the supplementary material). Sampling a random
Hadamard state vector in a quantum computer can be conducted with a short-depth circuit. Given an
initial state |0⟩, we randomly flip the n qubits (by applying a NOT gate as determined by a random
n-bit binary number generated classically). Thereafter, we apply the n-qubit Hadamard gate to
produce a state corresponding to a random column of the 2n × 2n Hadamard matrix. Therefore, the
rank of ∆k can be approximately estimated as rank(∆k) ≈ 1

nv

∑nv

l=1

[∑m
j=0 cj⟨vl|Tj(∆̃k)|vl⟩

]
,

where the cj are Chebyshev coefficients for approximating the step function. Given a circuit that
block-encodes ∆̃k, we can block-encode a j-degree Chebyshev polynomial Tj(∆̃k) using the idea
of qubitization (Low & Chuang, 2019; Gilyén et al., 2019). Details are given in Appendix B.

NISQ-TDA Algorithm: We now have all the ingredients to present our NISQ-TDA algorithm:

Algorithm 1 NISQ-TDA Algorithm
Input: Pairwise distances of n data points and encoding of the ε-close pairs; parameters ϵ, δ, and
nv = O(ϵ−2); and nv n-bit random binary numbers.
Output: Betti number estimates χk, k = 0, . . . , n− 1.
for l = 1, . . . ,nv = O(ϵ−2) do

for j = 0, . . . ,m = O(log(1/ϵ)) do
1. Prepare a random Hadamard state vector |vl⟩ from |0⟩ using the l-th random number.
2. Use the circuits for Pk, PΓ, and B̃ = B/

√
n to compute

|ϕl⟩ = |0q⟩ ∆̃k |vl⟩+
∣∣∣⊥̃〉, where q = #ancilla qubits needed for projections.

3. Use qubitization to form:
∣∣∣ψ(j)

l

〉
=
∣∣0q+1

〉
Tj(∆̃k) |vl⟩+ |⊥⟩ from |ϕl⟩.

4. Compute the Chebyshev moments θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩ from
∣∣∣ψ(j)

l

〉
.

end for
For j = 0, estimate |Sk| using the average norm of the PΓPk |vl⟩.

end for
Estimate χk = 1− 1

nv

∑nv

l=1

[∑m
j=0 cjθ

(j)
l

]
.

Repeat for k = 0, . . . , n− 1.

Analyses: Our NISQ-TDA algorithm returns the estimates χk for the normalized Betti numbers
βk/|Sk|, for each order k = 0, . . . , n − 1, where |Sk| is the number of k-simplices in the given Γ.
We discuss potential scientific machine learning and AI applications of NISQ-TDA in the Appendix.
The remainder of this section focuses on theoretical analyses of our NISQ-TDA algorithm, with the
formal details and proofs provided in Appendix C. We begin with the following main result.
Theorem 1. Assume we are given the pairwise distances of any n data points and the encoding
of the corresponding ε-close pairs, together with an integer 0 ≤ k ≤ n − 1 and the parameters
(ϵ, δ, η) ∈ (0, 1). Further assume the eigenvalues of the scaled Laplacian ∆̃k are in the interval
{0} ∪ [δ, 1], and choose nv and m such that

nv = O

(
log(1/η)

ϵ2

)
and m >

log(1/ϵ)√
δ

.

Then, the Betti number estimation χk ∈ [0, 1] by NISQ-TDA, with probability at least 1−η, satisfies∣∣∣∣χk − βk
|Sk|

∣∣∣∣ ≤ ϵ.

Our analysis accounts for errors due to (a) polynomial approximation of the step function; (b)
stochastic trace estimator; and (c) also shot noise, i.e., errors in Chebyshev moments estimation
and their propagation in classical computation; for details, see Appendix C.

We next discuss the circuit and computational complexities of our proposed algorithm and show that
it is NISQ implementable under certain conditions, such as the requirement for simplices-dense com-
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plexes, which commonly occur for large resolution scale. The main quantum component of the algo-
rithm comprises the computation of θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩, for j = 0, . . . ,m ∼ O(log(1/ϵ)/

√
δ),

with nv ∼ O(ϵ−2) random Hadamard vectors. The random Hadamard state preparation requires
n single-qubit Hadamard gates in parallel and O(1) time. For a given k, constructing ∆̃k involves
implementing the boundary operator B̃ and the projectors PΓ and Pk. The operator B, involving
the sum of n Pauli operators, can be implemented using a circuit with O(n) gates. Constructing
Pk requires O(n log2 n) gates, and this succeeds for a random order k. Then, for PΓ, we need to
find all the simplices that are in the complex Γ. This is achieved using n/2 qubits in parallel and
n− 1 operations, and thus the time complexity remains O(n). The number of gates required will be
O(n2ζ̄k), where ζ̄k := min{1− ζk, ζk}. When we use the measure and reset approach (e.g. for the
first projection onto the complex), the procedure of applying the projector succeeds when repeated
1/ζk times. The projectors together require O(n2) gates, while the depth remains O(n), and the
time complexity for a projection will be O

(
n
ζk

)
(for the first projection) and O(n) when we use

O(n2) ancilla qubits for qubitization. Therefore, the total time complexity of our algorithm is

O

(
n log(1/ϵ)√

δϵ2ζk

)
.

Supposing δk is the spectral gap of ∆k and ∆̃k = ∆k

n , then δ = δk
n . The best-known classical

algorithm for Betti number estimation of order k has a time complexity of O(poly(nk)) (Gyurik
et al., 2020) or O(n1/δ log(1/ϵ)) (Apers et al., 2022). Thus, the QTDA algorithms can achieve super-
polynomial to exponential speedups over the best-known classical algorithms whenever we have:

• Simplices/Clique dense complexes – the given complex Γ is simplices/clique dense, i.e.,
ζk is large or |Sk| ∼ O(poly(n));

• O(1/poly(n)) spectral gap – the spectral gap between zero and nonzero eigenvalues of
∆k is not exponentially small, i.e., δ of ∆̃k is O(1/poly(n)) (Apers et al., 2022); and

• Large Betti number – the Betti number βk (and the ratio βk/|Sk|) needs to be large so
that a large ϵ suffices to estimate it to a reasonable precision.

A few examples for simplicial complexes that satisfy these conditions are discussed in the Appendix.
Further examples and discussions on the potential speedups for quantum TDA algorithms are pre-
sented in (Schmidhuber & Lloyd, 2022).

We wish to remark that known examples of simplicial complexes with exponentially many holes
(Betti number) are limited. An example family of graphs with exponentially many high-dimensional
holes are presented in (Fendley & Schoutens, 2005). More importantly, our algorithm still likely
achieves exponential advantage over known classical approaches in efficiently answering the ques-
tion: does the given simplicial complex have exponentially many holes or not? In that regard, our
algorithm is indeed applicable to non-handcrafted high-dimensional classical data.

From a different point of view, the Chebyshev moments capture the spectral information of ∆k

and have even more information than the Betti numbers. This therefore opens the door for these
(PΓ-corrected) noisy moments to be used directly as input features in downstream contexts such as
machine learning classification, further relieving the depth and noise requirements of NISQ-TDA.

4 EXPERIMENTAL RESULTS

With the theory promising short depths, it remains to demonstrate that NISQ-TDA is sufficiently
noise-robust for quantum advantage to be achieved for the actual depths in realizable hardware and
under realistic noise levels. Currently optimized classical TDA algorithms cannot compute all Betti
numbers for 64 generic vertices (we have empirically verified with a popular public package called
GUDHI (Maria et al., 2014)). Hence, quantum advantage could possibly be achieved when running
NISQ-TDA on 64 vertices. Such large NISQ-TDA circuits are also beyond what is simulatable
classically (Pednault et al., 2017; 2019).

We first present the actual depths needed in the form of a depth versus number of vertices plot, which
also empirically confirms that circuit depth grows linearly with the number of vertices. Figure 1
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Figure 1: Results from real hardware of Laplacian applications (using measure and reset projec-
tions): A. Circuit depth versus the number of vertices for degree m = 1 and 3; (B., C. and D.)
Histograms of the probability measurements as obtained from the hardware (right, magenta bars)
and from a simulator (left, blue bars) for three different datasets namely, an edge (2 vertices), a
square (4 vertices), and a cube (8 vertices). ϕ defines the null state, and ‘X’ denotes the probability
mass with incorrect flag readings.

shows depths for both actual quantum hardware circuits and generic all-to-all quantum simulator
circuits. For the quantum hardware, we employed the public-cloud accessible ‘H1’ 12-qubit trapped-
ion quantum computer from Quantinuum (powered by Honeywell) (Honeywell, 2022). We selected
the most conservative number of edges to cover the worst-case depth scenario. The magenta solid
points of sub-figure A correspond to Laplacian circuit depths obtained from Quantinuum’s own
native compiler, and the blue circled points correspond to those obtained from a quantum simulator.
We observe that the circuit depth for the Laplacian scales linearly with respect to the number of data
points. As discussed earlier, our algorithm can be implemented on quantum computers with linear
qubit connectivity as well, using the sorting network approach (Beals et al., 2013).

The remaining three sub-figures (B, C, D) present the histograms of the top probability measure-
ments for different numbers of vertices (2, 4, 8) for both hardware runs (right, magenta bars) and
simulation runs (left, blue bars). These measurements are the raw outputs of the quantum circuit
before being converted into expectations (where flag values play a role). The respective complexes
chosen correspond to easily understandable shapes (edge, square, cube) represented by the (green)
edges. The input simplex set corresponds to a uniform superposition over all simplices (including
not shown triangles, tetrahedrons, and all higher-order polytopes). Due to projection onto the spec-
ified complexes and interference (correctly eliminating boundaries, sending mass to the null state
ϕ), not all simplices will appear/remain after the application of the Laplacian, demonstrating that
the hardware is truly performing a coherent quantum calculation. These sub-figures clearly show
that there is agreement between hardware and noise-free simulations on which simplices receive the
top probability measurements. Three types of errors are, however, visible by the hardware: reduced
probability mass for correct simplices, some small probability mass on incorrect simplices (also not
shown are the non-top measurements), and correct simplex mass but incorrect flag readings (marked
with a red ’X’ in sub-figures B and D). Even with these errors, Figure 1 unequivocally demonstrates
that at real-world noise-levels there is sufficient coherence to reproduce the correct interference at
the depths of these circuits.

The next task would be to demonstrate that these errors, which inevitably enter, do not dramatically
disturb the downstream Betti number calculation. For this we chose complexes with large eigenvalue
gaps, and sufficiently many random vectors and shots. The Chebyshev parameters we selected
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Figure 2: Results from noisy simulations: A. Mean error surface as a function of the noise levels
in (1-qubit, 2-qubits) gates and (number of vertices n, circuit depth). B. Mean and the variance of
the Betti number estimated as a function of the number of random vectors nv with n = 8 vertices,
degree m = 5 and the noise-level: (0.001, 0.01).

are such that, in the noise-free scenario, the algorithm would calculate the Betti number almost
perfectly (i.e., with a mean error of close to zero). Thus, any Betti-number errors involving the
noisy simulations are due mainly to the quantum noise and only minimally on downstream classical
approximations. In this setup, the error that can naturally be considered tolerable is 0.5, since any
error less than 0.5 rounds to exactly the correct Betti number. In Figure 2, we present results from
extensive noisy quantum simulations of the non-qubitized version of the algorithm. The right plot
shows the mean and the variance (as error bars) of the Betti number estimated as a function of the
number of random vectors nv. We note that the mean converges to ∼ 1.84 (the true Betti number
is β0 = 2) and, most importantly, the variance reduces as we increase nv. This variance-reduction
mitigates errors due to shot noise and randomness in the trace estimation, illustrating the precision-
versus-number-of-trials benefit of NISQ-TDA. In the left figure, we present the mean error surface
plot for Betti number estimation, as a function of noise levels (chosen triples of measurement, one
and two-qubit gate errors) and number of vertices (with concomitant circuit depth). The first number
of the listed noise-level pair corresponds to the one-qubit error probability. The measurement and
the two-qubit error probabilities are both set to the second value. In the surface plot, the solid
region (for n = 2 to n = 8) corresponds to actual noisy simulations and the translucent region
(from 16 to 64 vertices) corresponds to an extrapolation of the surface for larger n, which we cannot
simulate classically (even n = 16 was not simulatable using a large classical machine with 2 GPUs).
The surface plot extrapolations provide the minimum noise-level requirements for NISQ-TDA to
successfully run on future larger NISQ devices. See Appendix D for additional results, including
preliminary results on cosmic microwave background (CMB) data.

5 CONCLUSIONS

The true potential of TDA for machine learning has been severely limited because of the compu-
tationally prohibitive requirements of classical algorithms. To address this critical issue and revive
the potential of TDA as a viable machine learning approach, we presented a new quantum algo-
rithm for Betti number estimation with comprehensive error and complexity analyses. This is one
of the first quantum machine learning algorithms with short depth and potential significant speedup
under certain assumptions. Our algorithm neither suffers from the data-loading problem nor does
it likely require fault-tolerant coherence for even mid-size datasets. The algorithm fits the hybrid
quantum-classical scheme but within a recently developed randomized-approximation framework.
The implementation and successful execution of the entire algorithm on real quantum hardware and
noisy simulations was demonstrated, illustrating noise-resiliency at realistic noise-levels. These ad-
vantages imply that this algorithm may be one of the few noise-robust quantum algorithms capable
of performing an important and useful AI task on near-term (non-fault tolerant) quantum devices,
beyond the reach of classical computation. Possible future research directions include: improve-
ments to the algorithm in order to efficiently deploy it on sparsely connected quantum devices;
achieving substantial asymptotic speedups under more general settings; and identifying interesting
domain problems for which NISQ-TDA can be employed for practical purposes.
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Vojtěch Havlı́ček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M
Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747):209–212, 2019.

Alexander Semenovich Holevo. Bounds for the quantity of information transmitted by a quantum
communication channel. Problemy Peredachi Informatsii, 9(3):3–11, 1973.

Honeywell. Quantinuum H1 series trapped-ion quantum processor powered by honeywell. , 2022.
URL https://www.quantinuum.com/products/h1.

Danijela Horak and Jürgen Jost. Spectra of combinatorial Laplace operators on simplicial com-
plexes. Advances in Mathematics, 244:303–336, 2013.

Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hart-
mut Neven, Ryan Babbush, Richard Kueng, John Preskill, et al. Quantum advantage in learning
from experiments. Science, 376(6598):1182–1186, 2022.

MF Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 19(2):433–450, 1990.
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