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Abstract

Recent breakthroughs in large language modeling have facilitated rigorous exploration of1

their application in diverse tasks related to tabular data modeling, such as prediction, tabu-2

lar data synthesis, question answering, and table understanding. Each task presents unique3

challenges and opportunities. However, there is currently a lack of comprehensive review4

that summarizes and compares the key techniques, metrics, datasets, models, and optimiza-5

tion approaches in this research domain. This survey aims to address this gap by consolidat-6

ing recent progress in these areas, offering a thorough survey and taxonomy of the datasets,7

metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territo-8

ries, and gaps in the existing literature, while providing some insights for future research9

directions in this vital and rapidly evolving field. It also provides relevant code and datasets10

references. Through this comprehensive review, we hope to provide interested readers with11

pertinent references and insightful perspectives, empowering them with the necessary tools12

and knowledge to effectively navigate and address the prevailing challenges in the field.13

1 Introduction14

Large language models (LLMs) are deep learning models trained on extensive data, endowing them with15

versatile problem-solving capabilities that extend far beyond the realm of natural language processing (NLP)16

tasks (Fu & Khot, 2022). Recent research has revealed emergent abilities of LLMs, such as improved17

performance on few-shot prompted tasks (Wei et al., 2022b). The remarkable performance of LLMs have18

incited interest in both academia and industry, raising beliefs that they could serve as the foundation19

for Artificial General Intelligence (AGI) of this era (Chang et al., 2024; Zhao et al., 2023b; Wei et al.,20

2022b). A noteworthy example is ChatGPT, designed specifically for engaging in human conversation, that21

demonstrates the ability to comprehend and generate human language text (Liu et al., 2023g).22

Before LLMs, researchers have been investigating ways to integrate tabular data with neural network for23

NLP and data management tasks (Badaro et al., 2023). Today, researchers are keen to investigate the24

abilities of LLMs when working with tabular data for various tasks, such as prediction, table understanding,25

quantitative reasoning, and data generation (Hegselmann et al., 2023; Sui et al., 2023c; Borisov et al., 2023a).26

Tabular data stands as one of the pervasive and essential data formats in machine learning (ML), with27

widespread applications across diverse domains such as finance, medicine, business, agriculture, education,28

and other sectors that heavily rely on relational databases (Sahakyan et al., 2021; Rundo et al., 2019;29

Hernandez et al., 2022; Umer et al., 2019; Luan & Tsai, 2021). Tabular data, commonly known as structured30

data, refers to data organized into rows and columns, where each column represents a specific feature. In31

this section, we first introduce the characteristics of tabular data, then provide a brief review of traditional,32

deep-learning and LLM methods tailored for this area. At last, we articulate the contribution of the paper33

and provide a layout of the following sections.34

1.1 Characteristics of tabular data35

This subsection discusses the unique characteristics and challenges posed by tabular data:36
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1. Heterogeneity: Tabular data can contain different feature types: categorical, numerical, binary,37

and textual. Therefore, features can range from being dense numerical features to sparse or high-38

cardinality categorical features (Borisov et al., 2022).39

2. Sparsity: Real-world applications, such as clinical trials, epidemiological research, fraud detection,40

etc., often deal with imbalanced class labels and missing values, which results in long-tailed distri-41

bution in the training samples (Sauber-Cole & Khoshgoftaar, 2022).42

3. Dependency on pre-processing: Data pre-processing is crucial and application-dependent when work-43

ing with tabular data. For numerical values, common techniques include data normalization or44

scaling, categorical value encoding, missing value imputation, and outlier removal. For categorical45

values, common techniques include label encoding or one-hot encoding. Improper pre-processing46

may lead to information loss, sparse matrix, and introduce multi-collinearity (e.g. with one-hot47

encoding) or synthetic ordering (e.g. with ordinal encoding) (Borisov et al., 2023a).48

4. Context-based interconnection: In tabular data, features can be correlated. For example, age,49

education, and alcohol consumption from a demographic table are interconnected: it is hard to get50

a doctoral degree at a young age, and there is a minimum legal drinking age. Including correlated51

regressors in regressions lead to biased coefficients, hence, a modeler must be aware of such intricacies52

(Liu et al., 2023d).53

5. Order invariant: In tabular data, examples can be sorted. However, as opposed to text-based and54

image-based data that is intrinsically tied to the position of the word/token or pixel in the text55

or image, tabular examples are relatively order-invariant. Therefore, position-based methodologies56

(e.g., spatial correlation, impeding inductive bias, convolutional neural networks (CNN)) are less57

applicable for tabular data modeling (Borisov et al., 2022).58

6. Lack of prior knowledge: In image or audio data, there is often prior knowledge about the spatial or59

temporal structure of the data, which can be leveraged by the model during training. However, in60

tabular data, such prior knowledge is often lacking, making it challenging for the model to understand61

the inherent relationships between features (Borisov et al., 2022; 2023a).62

1.2 Traditional and deep learning in tabular data63

Traditional tree-based ensemble methods such as gradient-boosted decision trees (GBDT) remain the state-64

of-the-art (SOTA) for predictions on tabular data (Borisov et al., 2022; Gorishniy et al., 2021)). In boosting65

ensemble methods, base learners are learned sequentially to reduce previous learner’s error until no significant66

improvement are made, making it relatively stable and accurate than a single learner (Chen & Guestrin,67

2016). Traditional tree-based models are known for its high performance, efficiency in training, ease of68

tuning, and ease of interpretation. However, they have limitations compared to deep learning models: 1.69

Tree-based models can be sensitive to feature engineering especially with categorical features while deep70

learning can learn representation implicitly during training (Goodfellow et al., 2016). 2. Tree-based models71

are not naturally suited for processing sequential data, such as time series while deep learning models72

such as Recurrent Neural Networks (RNNs) and transformers excel in handling sequential dependencies.73

3. Tree-based models sometimes struggle to generalize to unseen data particularly if the training data is74

not representative of the entire distribution, while deep learning methods may generalize better to diverse75

datasets with their ability to learn intricate representations (Goodfellow et al., 2016).76

In the recent years, many works have delved into using deep learning for tabular data modeling. The77

methodologies can be broadly grouped into the following categories: 1. Data transformation. These models78

either strive to convert heterogenous tabular input into homogenous data more suitable to neural networks,79

like an image, on which CNN-like mechanism can be applied (SuperTML (Sun et al., 2019), IGTD (Zhu80

et al., 2021b), 1D-CNN (Kiranyaz et al., 2019)), or methods focusing on combining feature transformation81

with deep neural networks (Wide&Deep (Cheng et al., 2016; Guo & Berkhahn, 2016), DeepFM (Guo et al.,82

2017), DNN2LR (Liu et al., 2021)). 2. Differentiable trees. Inspired by the performance of ensembled trees,83

this line of methods seeks to make trees differentiable by smoothing the decision function (NODE (Popov84
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et al., 2019), SDTR (Luo et al., 2021), Net-DNF (Katzir et al., 2020)). Another subcategory of methods85

combine tree-based models with deep neural networks, thus can maintain tree’s capabilities on handling86

sparse categorical features (DeepGBM (Ke et al., 2019a)), borrow prior structural knowledge from the tree87

(TabNN (Ke et al., 2019b)), or exploit topological information by converting structured data into a directed88

graph (BGNN (Ivanov & Prokhorenkova, 2021). 3. Attention-based methods. These models incorporate89

attention mechanisms for feature selection and reasoning (TabNet (Arik & Pfister, 2020)), feature encoding90

(TransTab (Wang & Sun, 2022), TabTransformer (Huang et al., 2020)), feature interaction modeling (ARM-91

net (Cai et al., 2021)), or aiding intrasample information sharing (SAINT (Somepalli et al., 2021), NPT92

(Kossen et al., 2022)). 4. Regularization methods. The importance of features varies in tabular data,93

in contrast to image or text data. Thus, this line of research seeks to design an optimal and dynamic94

regularization mechanism to adjust the sensitivity of the model to certain inputs (e.g. RLN (Shavitt & Segal,95

2018), Regularization Cocktails (Kadra et al., 2021). In spite of rigorous attempts in applying deep learning96

to tabular data modeling, GBDT algorithms, including XGBoost, LightGBM, and CatBoost (Prokhorenkova97

et al., 2019), still outperform deep-learning methods in most datasets with additional benefits in fast training98

time, high interpretability, and easy optimization (Shwartz-Ziv & Armon, 2022; Gorishniy et al., 2021;99

Grinsztajn et al., 2022). Deep learning models, however, may have their advantages over traditional methods100

in some circumstances, for example, when facing very large datasets, or when the data is primarily comprised101

of categorical features (Borisov et al., 2022).102

Another important task for tabular data modeling is data synthesis. Abilities to synthesize real and high-103

quality data is essential for model development. Data generation is used for augmentation when the data104

is sparse (Onishi & Meguro, 2023), imputing missing values (Jolicoeur-Martineau et al., 2023), and class105

rebalancing in imbalanced data (Sauber-Cole & Khoshgoftaar, 2022). Traditional methods for synthetic data106

generation are mostly based on Copulas (Patki et al., 2016; Li et al., 2020) and Bayesian networks (Zhang107

et al., 2017) while recent advancement in generative models such as Variational Autoencoders (VAEs) (Ma108

et al., 2020; Darabi & Elor, 2021; Vardhan & Kok, 2020; Liu et al., 2023d)), generative adversarial networks109

(GANs) (Park et al., 2018; Choi et al., 2018; Baowaly et al., 2019; Xu et al., 2019), diffusion (Kotelnikov110

et al., 2022; Xu et al., 2023; Kim et al., 2022b;a; Lee et al., 2023; Zhang et al., 2023c), and LLMs, opened111

up many new opportunities. These deep learning approaches have demonstrated superior performance over112

classical methods such as Bayesian networks ((Xu et al., 2019)).113

Table question answering (QA) is a natural language research problem from tabular data. Many earlier114

methods fine-tune BERT (Devlin et al., 2019) to become table encoders for table-related tasks, like TAPAS115

(Herzig et al., 2020), TABERT (Yin et al., 2020b), TURL (Deng et al., 2022a), TUTA (Wang et al., 2021)116

and TABBIE (Iida et al., 2021). For example, TAPAS extended BERT’s masked language model objective117

to structured data by incorporating additional embeddings designed to capture tabular structure. It also118

integrates two classification layers to facilitate the selection of cells and predict the corresponding aggrega-119

tion operator. A particular table QA task, Text2SQL, involves translating natural language question into120

structured query language (SQL). Earlier research conducted semantic parsing through hand-crafted features121

and grammar rules (Pasupat & Liang, 2015b). Semantic parsing is also used when the table is not coming122

from non-database tables such as web tables, spreadsheet tables, and others (Jin et al., 2022). Seq2SQL123

is a sequence-to-sequence deep neural network using reinforcement-learning to generate conditions of query124

on WikiSQL task (Zhong et al., 2017a). Some methodologies are sketch-based, wherein a natural language125

question is translated into a sketch. Subsequently, programming language techniques such as type-directed126

sketch completion and automatic repair are utilized in an iterative manner to refine the initial sketch, ulti-127

mately producing the final query (e.g. SQLizer (Yaghmazadeh et al., 2017)). Another example is SQLNet128

(Xu et al., 2017) which uses column attention mechanism to synthesize the query based on a dependency129

graph-dependent sketch. A derivative of SQLNet is TYPESQL (Yu et al., 2018a) which is also a sketch-130

based and slot-filling method entails extracting essential features to populate their respective slots. Unlike131

the previous supervised end-to-end models, TableQuery is a NL2SQL model pretrained on QA on free text132

that obviates the necessity of loading the entire dataset into memory and serializing databases.133
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Figure 1: Tabular data characteristics and machine learning models for tabular data prediction, data syn-
thesis and question answering before LLMs. JQ-TODO:please standardize the task naming in Figure1 and
Figure2... e.g., QA vs. table understanding... just stick with one name is better

1.3 Overview of large language models (LLMs)134

A language model (LM) is a probabilistic model that predicts the generative likelihood of future or missing135

tokens in a word sequence. Zhao et al. (2023b) thoroughly reviewed the development of LMs, and charac-136

terized the it into four different stages: The first stage is Statistical Language Models (SLM), which137

learns the probability of word occurrence in an example sequence from previous words (e.g. N-Gram) based138

on Markov assumption (Saul & Pereira, 1997). Although a more accurate prediction can be achieved by139

increasing the context window, SML is limited by the curse of high dimensionality and high demand for com-140

putation power (Bengio et al., 2000). Next, Neural Language Models (NLM) utilize neural networks141

(e.g. Recurrent neural networks (RNN)) as a probabilistic classifier (Kim et al., 2016). In addition to learn142

the probabilistic function for word sequence, a key advantage of NLM is that they can learn the distributed143

representation (i.e. word embedding) of each word so that similar words are mapped close to each other in144

the embedding space (e.g. Word2Vec), making the model generalize well to unseen sequences that are not145

in the training data and help alleviate the curse of dimensionality (Bengio et al., 2000). Later, rather than146

learning a static word embedding, context-aware representation learning was introduced by pretraining the147

model on large-scale unannotated corpora using bidirectional LSTM that takes context into consideration148

(e.g., ELMo (Peters et al., 2018a)), which shows significant performance boost in various natural language149

processing (NLP) tasks (Wang et al., 2022a; Peters et al., 2018b). Along this line, several other Pretrained150

Language Models (PLM) were proposed utilizing a transformer architecture with self-attention mecha-151

nisms including BERT and GPT2 (Ding et al., 2023). The pre-training and fine-tuning paradigm, closely152

related to transfer learning, allows the model to gain general syntactic and semantic understanding of the153

text corpus and then be trained on task-specific objectives to adapt to various tasks. The final and most154

recent stage of LM is the Large Language Models (LLMs), and will be the focus of this paper. Motivated155

by the observation that scaling the data and model size usually leads to improved performance, researchers156

sought to test the boundaries of PLM’s performance of a larger size, such as text-to-text transfer transform-157

ers (T5) (Raffel et al., 2023), GPT-3 (Brown et al., 2020), etc. Intriguingly, some advanced abilities emerge158

as a result. These large-sized PLMs (i.e. LLMs) show unprecedentedly powerful capabilities (also called159

emergent abilities) that go beyond traditional language modeling and start to gain capability to solve more160

general and complex tasks which was not seen in PLM. Formally, we define a LLM as follows:161

Definition 1 (Large Language Model). A large language model (LLM) M , parameterized by θ, is a162

Transformer-based model with an architecture that can be autoregressive, autoencoding, or encoder-decoder.163

It has been trained on a large corpus comprising hundreds of millions to trillions of tokens. LLMs encompass164

pre-trained models and for our survey, refers to models that have at least 1 billion parameters.165
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Figure 2: Development of language models and their applications in tabular data modeling.

Several key emergent abilities of LLMs are critical for data understanding and modeling including in-context166

learning, instruction following, and multi-step reasoning. In-context learning refers to designing167

large auto-regressive language models that generate responses on unseen task without gradient update,168

only learning through a natural language task description and a few in-context examples provided in the169

prompt. The GPT3 model (Brown et al., 2020) with 175 billion parameters presented an impressive in-170

context learning ability that was not seen in smaller models. LLMs have also demonstrated the ability171

to complete new tasks by following only the instructions of the task descriptions (also known as zero-shot172

prompts). Some papers also fine-tuned LLMs on a variety of tasks presented as instructions (Thoppilan173

et al., 2022). However, instruction-tuning is reported to work best only for larger-size models (Wei et al.,174

2022a; Chung et al., 2022). Solving complex tasks involving multiple steps have been challenging for LLMs.175

By including intermediate reasoning steps, prompting strategies such as chain-of-thought (CoT) has been176

shown to help unlock the LLM ability to tackle complex arithmetic, commonsense, and symbolic reasoning177

tasks (Wei et al., 2023). These new abilities of LLMs lay the groundwork for exploring their integration into178

intricate tasks extending beyond traditional NLP applications across diverse data types.179

1.3.1 Applications of LLMs in tabular data180

Despite the impressive capabilities of LM in addressing NLP tasks, its utilization for tabular data learning has181

been constrained by differences in the inherent data structure. Some research efforts have sought to utilize182

the generic semantic knowledge contained in PLM, predominantly BERT-based models, for modeling tabular183

data (Figure 2). This involves employing PLM to learn contextual representation with semantic information184

taking header information into account (Chen et al., 2020b). The typical approach includes transforming185

tabular data into text through serialization (detailed explanation in Section 2) and employing a masked-186

language-modeling (MLM) approach for fine-tuning the PLM, similar to that in BERT (PTab, CT-BERT,187

TABERT (Liu et al., 2022a; Ye et al., 2023a; Yin et al., 2020a). In addition to being able to incorporate188

semantic knowledge from column names, converting heterogenous tabular data into textual representation189

enables PLMs to accept inputs from diverse tables, thus enabling cross-table training. Also, due to the lack190

of locality property of tabular data, models need to exhibit permutation invariance of feature columns (Ye191

et al., 2023a). In this fashion, TABERT was proposed as a PLM trained on both natural language sentence192

and structured data (Yin et al., 2020a), PTab demonstrated the importance of cross-table training for an193

enhanced representation learning (Liu et al., 2022a), CT-BERT employs masked table modeling (MTM)194

and contrastive learning for cross-table pretraining that outperformed tree-based models (Ye et al., 2023a).195

However, previous research primarily focuses on using LM for representation learning, which is quite limited.196
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1.3.2 Opportunities for LLMs in tabular data modeling197

Many studies today explore the potential of using LLMs for various tabular data tasks, ranging from predic-198

tion, data generation, to data understanding (further divided into question answering and data reasoning).199

This exploration is driven by LLMs’ unique capabilities such as in-context learning, instruction following,200

and step-wise reasoning. The opportunities for applying LLMs to tabular data modeling are as follows:201

1. Deep learning methods often exhibit suboptimal performance on datasets they were not initially202

trained on, making transfer learning using the pre-training and fine-tuning paradigm highly promis-203

ing (Shwartz-Ziv & Armon, 2022).204

2. The transformation of tabular data into LLM-readable natural language addresses the curse of205

dimensionality associated with one-hot encoding of high-dimensional categorical data during tabular206

preprocessing.207

3. The emergent capabilities, such as step-by-step reasoning through CoT, have transformed LM from208

language modeling to a more general task-solving tool. Research is needed to test the limit of LLM’s209

emergent abilities on tabular data modeling.210

In the remainder of the article, we provide a comprehensive review of recent advancements in modeling211

tabular data using LLMs. In Section 2, we introduce key techniques related to the adaptation of tabular212

data for LLMs. Subsequently, we cover the applications of LLMs in prediction tasks (Section 3), data213

augmentation and enrichment tasks (Section 4), and question answering/table understanding tasks (Section214

5). Finally, Section 6 discusses limitations and future directions, while Section 7 concludes.215

1.4 Contribution216

The key contributions of this work are as follows:217

1. A formal break down of key techniques for LLMs’ applications on tabular data We218

split the application of LLM in tabular data to tabular data prediction, tabular data synthesis,219

tabular data question answering and table understanding. We further extract key techniques that220

can apply to all applications. We organize these key techniques in a taxonomy that researchers and221

practitioners can leverage to describe their methods, find relevant techniques and understand the222

difference between these techniques. We further breakdown each technique to subsections so that223

researchers can easily find relevant benchmark techniques and properly categorize their proposed224

techniques.225

2. A survey and taxonomy of metrics for LLMs’ applications on tabular data. For each226

application, we categorize and discuss a wide range of metrics that can be used to evaluate the227

performance of that application. For each application, we documented the metric of all relevant228

methods, and we identify benefits/limitations of each class of metrics to capture application’s per-229

formance. We also provide recommended metrics when necessary.230

3. A survey and taxonomy of datasets for LLMs’ applications on tabular data. For each ap-231

plication, we identify datasets that are commonly used for benchmark. For table understanding and232

question answering, we further categorize datasets by their downstream applications: Question An-233

swering, Natural Language Generation, Classification, Natural Language Inference and Text2SQL.234

We further provided recommended datasets based on tasks and their GitHub link. Practitioners and235

researchers can look at the section and find relevant dataset easily.236

4. A survey and taxonomy of techniques for LLMs’ applications on tabular data. For each237

application, we break down an extensive range of tabular data modeling methods by steps. For238

example, tabular data prediction can be breakdown by pre-processing (modifying model inputs),239

target augmentation (modifying the outputs), fine-tuning (fine-tuning the model). We construct240

granular subcategories at each stage to draw similarities and trends between classes of methods,241
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Method Description Example Papers that investigated this
DFLoader Python code where a dictio-

nary is loaded as a Pandas
dataframe

pd.DataFrame({
name:[‘helen’], age:[47] })

Singha et al. (2023)

JSON Row number as indexes, with
each row represented as a
dictionary of keys (column
names) and values

{“0”: {“name”: “helen”, “age”:
“47”}}

Singha et al. (2023); Sui et al. (2023b)

Data Ma-
trix

Dataframe as a list of lists,
where the firm item is the col-
umn header

[[‘’,‘name’,‘age’]
[0, ‘helen’, 47]]

Singha et al. (2023)

Markdown Rows are line-separated,
columns are separated by “|”
1

| | name | age |
|:–-|:–––––|–––-:|
|0 |helen | 47|

Singha et al. (2023); Liu et al. (2023e);
Zhang et al. (2023d); Ye et al. (2023b);
Zhao et al. (2023d); Sui et al. (2023b)

X-
Separated

Rows are line-separated,
columns are separated by “,”,
“\t”, “:”, etc.

, name, age
0, helen, 47

Singha et al. (2023); Narayan et al.
(2022)

Attribute-
Value Pairs

Concatenation of paired
columns and cells {c : v}

name:helen ; age:47 Wang et al. (2023c)

HTML HTML element for tabular
data

<table><thead><tr><th></th>
<th>name</th><th>age</th></tr>
</thead><tbody><tr><th>0</th>
<td>helen</td><td>47</td></tr>
</tbody></table>

Singha et al. (2023); Sui et al. (2023c;b)

Sentences Rows are converted into sen-
tences using templates

name is helen, age is 47 Yu et al. (2023); Hegselmann et al.
(2023); Gong et al. (2020)

Table 1: Text-based serialization methods.

and with illustrated examples of main techniques. Practitioners and researchers can look at the242

section and understand the difference of each technique. We only recommend benchmark methods243

and provide GitHub link of these techniques for reference and benchmark.244

5. An overview of key open problems and challenges that future work should address.245

We challenge future research to solve bias problem in tabular data modeling, mitigate hallucina-246

tion, find better representations of numerical data, improve capacity, form standard benchmark,247

improve model interpretability, create an integrated workflow, design better fine-tuning strategies248

and improve the performance of downstream applications.249

2 Key techniques for LLMs’ applications on tabular data250

While conducting our survey, we noticed a few common components in modeling tabular data with LLMs251

across tasks. We discuss common techniques, like serialization, table manipulations, prompt engineering, and252

building end-to-end systems in this section. Fine-tuning LLMs is also popular, but tend to be application-253

specific, so we leave discussions about it to Sections 3 and 5.254

2.1 Serialization255

Since LLMs are sequence-to-sequence models, in order to feed tabular data as inputs into an LLM, we have256

to convert the structured tabular data into a text format (Sui et al., 2023b; Jaitly et al., 2023).257

Text-based Table 1 describes the common text-based serialization methods in the literature. A straight-258

forward way would be to directly input a programming language readable data structure (E.g. Pandas259

DataFrame Loader for Python, line-separated JSON-file format, Data Matrix represented by a list of lists,260

HTML code reflecting tables, etc). Alternatively, the table could be converted into X-separated values, where261

X could be any reasonable delimiter like comma or tab. Some papers convert the tables into human-readable262

sentences using templates based on the column headers and cell values. The most common approach based263

on our survey is the Markdown format.264
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Embedding-based Many papers also employ table encoders, which were fine-tuned from PLMs, to encode265

tabular data into numerical representations as the input for LLMs. There are multiple table encoders, built266

on BERT (Devlin et al., 2019) for table-related task, like TAPAS (Herzig et al., 2020), TABERT (Yin et al.,267

2020b), TURL (Deng et al., 2022a), TUTA (Wang et al., 2021), TABBIE (Iida et al., 2021) and UTP (Chen268

et al., 2023a). For LLMs with >1B parameters, there are UniTabPT (Sarkar & Lausen, 2023) with 3B269

parameters (based on T5 and Flan-T5 models)), TableGPT (Gong et al., 2020) with 1.5B parameters (based270

on GPT2), and TableGPT2 (Zha et al., 2023) with 7B parameters (based on Phoenix (Chen et al., 2023b)).271

Graph-based & Tree-based A possible, but less commonly explored, serialization method involves con-272

verting a table to a graph or tree data structure. However, when working with sequence-to-sequence models,273

these structures must still be converted back to text. For Zhao et al. (2023a), after converting the table into274

a tree, each cell’s hierarchical structure, position information, and content was represented as a tuple and275

fed into GPT3.5.276

Comparisons Research has shown that LLM performance is sensitive to the input tabular formats. Singha277

et al. (2023) found that DFLoader and JSON formats are better for fact-finding and table transformation278

tasks. Meanwhile, Sui et al. (2023a) found that HTML or XML table formats are better understood by279

GPT models over tabular QA and FV tasks. However, they require increased token consumption. Likewise,280

Sui et al. (2023b) also found markup languages, specifically HTML, outperformed X-separated formats for281

GPT3.5 and GPT4. Their hypothesis is that the GPT models were trained on a significant amount of web282

data and thus, probably exposed the LLMs to more HTML and XML formats when interpreting tables.283

Apart from manual templates, Hegselmann et al. (2023) also used LLMs (Fine-tuned BLOOM on ToTTo284

(Parikh et al., 2020b), T0++ (Sanh et al., 2022), GPT-3 (Ouyang et al., 2022)) to generate descriptions of285

a table as sentences, blurring the line between a text-based and embedding-based serialization methodology.286

However, for the few-shot classification task, they find that traditional list and text templates outperformed287

the LLM-based serialization method. Amongst LLMs, the more complex and larger the LLM, the better the288

performance (GPT-3 has 175B, T0 11B, and fine-tuned BLOOM model 0.56B parameters). A key reason289

why the LLMs are worse off at serializing tables to sentences is due to the tendency for LLMs to hallucinate:290

LLMs respond with unrelated expressions, adding new data, or return unfaithful features.291

2.2 Table Manipulations292

One important characteristic of tabular data is its heterogeneity in structure and content. They oftentimes293

come in large size with different dimensions encompassing various feature types. In order for LLMs to ingest294

tabular data efficiently, it is important to compact tables to fit context lengths, for better performance and295

reduced costs.296

Compacting tables to fit context lengths, for better performance and reduced costs For smaller297

tables, it might be possible to include the whole table within a prompt. However, for larger tables, there are298

three challenges:299

Firstly, some models have short context lengths (E.g. Flan-UL2 (Tay et al., 2023b) supports 2048 tokens,300

Llama 2 (Touvron et al., 2023b) supports 4096 context tokens) and even models that support large context301

lengths might still be insufficient if the table is over say 200K rows (Claude 2.1 supports up to 200K tokens).302

Secondly, even if the table could fit the context length, most LLMs are inefficient in dealing with long303

sentences due to the quadratic complexity of self-attention (Sui et al., 2023b; Tay et al., 2023a; Vaswani304

et al., 2017). When dealing with long contexts, performance of LLMs significantly degrades when models305

must access relevant information in the middle of long contexts, even for explicitly long-context models (Liu306

et al., 2023b). For tabular data, Cheng et al. (2023); Sui et al. (2023c) highlights that noisy information307

becomes an issue in large tables for LMs. Chen (2023) found that for table sizes beyond 1000 tokens, GPT-3’s308

performance degrades to random guesses.309

Thirdly, longer prompts incur higher costs, especially for applications built upon LLM APIs.310

2Same name, different group of authors.
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To address these issues, Herzig et al. (2020); Liu et al. (2022c) proposed naive methods to truncate the input311

based on a maximum sequence length. Sui et al. (2023b) introduced predefined certain constraints to meet312

the LLM call request. Another strategy is to do search and retrieval of only highly relevant tables, rows,313

columns or cells which we will discuss later in Section 5.314

Additional information about tables for better performance Apart from the table, some papers315

explored including table schemas and statistics as part of the prompt. Sui et al. (2023c) explored including316

additional information about the tables: Information like “ dimension, measure, semantic field type" help the317

LLM achieve higher accuracy across all six datasets explored. “statistics features” improved performance for318

tasks and datasets that include a higher proportion of statistical cell contents, like FEVEROUS (Aly et al.,319

2021). Meanwhile, “document references” and “term explanations” add context and semantic meaning to320

the tables. “Table size” had minimal improvements, while “header hierarchy” added unnecessary complexity,321

and hurt performance.322

Robustness of LLM performance to table manipulations Liu et al. (2023e) critically analyzed the323

robustness of GPT3.5 across structural perturbations in tables (transpose and shuffle). They find that LLMs324

suffer from structural bias in the interpretation of table orientations, and when tasked to transpose the table,325

LLMs performs miserably ( 50% accuracy). However, LLMs can identify if the first row or first column is326

the header (94-97% accuracy). Zhao et al. (2023e) investigated the effects of SOTA Table QA models on327

manipulations on the table header, table content and natural language question (phrasing).3 They find328

that all examined Table QA models (TaPas, TableFormer, TaPEX, OmniTab, GPT3) are not robust under329

adversarial attacks.330

2.3 Prompt Engineering331

A prompt is an input text that is fed into an LLM. Designing an effective prompt is a non-trivial task, and332

many research topics have branched out from prompt engineering alone. In this subsection, we cover the333

popular techniques in prompt engineering, and how researchers have used them for tasks involving tables.334

Prompt format The simplest format is concatenating task description with the serialized table as string.335

An LLM would then attempt to perform the task described and return a text-based answer. Clearly-defined336

and well-formatted task descriptions are reported to be effective prompts (Marvin et al., 2023). Some other337

strategies to improve performance are described in the next few paragraphs. Sui et al. (2023b) recommended338

that external information (such as questions and statements) should be placed before the tables in prompts339

for better performance.340

In-context learning As one of the emergent abilities of LLMs (see 1.3), in-context learning refers to341

incorporate similar examples to help the LLMs understand the desired output. Sui et al. (2023b) observed342

significant performance drops performance, of overall accuracy decrease of 30.38% on all tasks, when changing343

their prompts from a 1-shot to a 0-shot setting. In terms of choosing appropriate examples, Narayan et al.344

(2022) found their manually curated examples to outperform randomly selected examples by an average of345

14.7 F1 points. For Chen (2023), increasing from 1-shot to 2-shot can often benefit the model, however,346

further increases did not lead to more performance gain.347

Chain-of-Thought and Self-consistency Chain-of-Thought (CoT) (Wei et al., 2022c) induces LLMs to348

decompose a task by performing step-by-step thinking, resulting in better reasoning. Program-of-Thoughts349

(Chen et al., 2022) guides the LLMs using code-related comments like “Let’s write a program step-by-step...”.350

Zhao et al. (2023d) explored CoT and PoT strategies for the numerical QA task. Yang et al. (2023) prompt351

the LLMs with one shot CoT demonstration example to generate a reasoning and answer. Subsequently,352

3For table headers, they explored synonym and abbreviation replacement perturbations. For table content, they explored
five perturbations: (1) row shuffling, (2) column shuffling, (3) extending column names content into semantically equivalent
expressions, (4) masking correlated columns (E.g. “Ranking” and “Total Points” can be inferred from one another), and (5)
introducing new columns that are derived from existing columns. For the question itself, they perturbed questions at the
word-level or sentence-level.
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they included the reasoning texts, indicated by special “<CoT>” token, as part of inputs to fine-tune smaller353

models to generate the final answer.354

Self-consistency (SC) (Wang et al., 2023b) leverages the intuition that a complex reasoning problem typically355

admits multiple different ways of thinking leading to its unique correct answer. SC samples a diverse set356

of reasoning paths from an LLM, then selects the most consistent answer by marginalizing out the sampled357

reasoning paths. Inspired by these strategies, Zhao et al. (2023a); Ye et al. (2023b) experimented with358

multi-turn dialogue strategies, where they decompose the original question into sub-tasks or sub-questions359

to guide the LLM’s reasoning. Sui et al. (2023c) instructed the LLM to “identify critical values and ranges360

of the last table related to the statement” to obtain additional information that were fed to the final LLM,361

obtaining increased scores for five datasets. Liu et al. (2023e) also investigated strategies around SC, along362

with self-evaluation, which guides the LLM to choose between the two reasoning approaches based on the363

question’s nature and each answer’s clarity. Deng et al. (2022b) did consensus voting across a sample a set364

of candidate sequences, then selected final response by ensembling the derived response based on plurality365

voting.366

Chen (2023) investigated the effects of both CoT and SC on QA and FV tasks. When investigating the367

explainability of LLM’s predictions, Dinh et al. (2022) experimented with a multi-turn approach of asking368

GPT3 to explain its own prediction from the previous round, and guided the explanation response using369

CoT by adding the line “Let’s think logically. This is because”.370

Retrieval-augmented generation (RAG) Retrieval-augmented generation (RAG) relies on the intu-371

ition that the LLMs are general models, but can be guided to a domain-specific answer if the user includes the372

relevant context within the prompts. By incorporating tables as part of the prompts, most papers described373

in this survey can be attributed as RAG systems. A particular trait challenge in RAG is to extract the most374

relevant information out of a large pool of data to better inform the LLMs. This challenge overlaps slightly375

with the strategies about table sampling mentioned earlier under Section 2.2. Apart from the aforementioned376

methods, Sundar & Heck (2023) designed a dual-encoder-based Dense Table Retrieval (DTR) model to rank377

cells of the table to the relevance of the query. The ranked knowledge sources are incorporated within the378

prompt, and led to top ROUGE scores.379

Role-play Another popular prompt engineering technique is role-play, which refers to including descrip-380

tions in the prompt about the person the LLM should portray as it completes a task. For example, Zhao381

et al. (2023a) experimented with the prompt “Suppose you are an expert in statistical analysis.”.382

2.4 End-to-end systems383

Since LLMs can generate any text-based output, apart from generating human-readable responses, it could384

also generate code readable by other programs. Abraham et al. (2022) designed a model that converts385

natural language queries to structured queries, which can be run against a database or a spreadsheet. Liu386

et al. (2023e) designed a system where the LLM could interact with Python to execute commands, process387

data, and scrutinize results (within a Pandas DataFrame), iteratively over a maximum of five iterations.388

Zhang et al. (2023d) demonstrated that we can obtain errors from the SQL tool to be fed back to the389

LLMs. By implementing this iterative process of calling LLMs, they improved the success rate of the SQL390

query generation. Finally, Liu et al. (2023c) proposes a no-code data analytics platform that uses LLMs391

to generate data summaries, including generating pertinent questions required for analysis, and queries into392

the data parser. A survey by Zhang et al. (2023g) covers further concepts about natural language interfaces393

for tabular data querying and visualization, diving deeper into recent advancements in Text-to-SQL and394

Text-to-Vis domains.395

3 LLMs for predictions396

Several studies endeavor to leverage LLMs for prediction task from tabular data. This section will delve into397

the existing methodologies and advancements pertaining to two categories of tabular data: standard feature-398

based tabular data and time series data. Time series prediction is different from normal feature-based tabular399
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data since the predictive power heavily rely on pastime series numbers. For each category, we divide it to400

different steps which includes preprocessing, fine-tuning and target augmentation. Preprocessing explains401

how different prediction methods generate input to the language model. Preprocessing includes serialization,402

table manipulation and prompt engineering. Target augmentation maps the textual output from LLMs to403

a target label for prediction tasks. At the end, we will briefly touch on domain specific prediction methods404

using LLMs.405

3.1 Dataset406

For task specific fine-tuning, most datasets for prediction task are chosen from UCI ML, OpenML or a combo407

of 9 datasets created by Manikandan et al. (2023). We put all details in Table 2. Using the combo of 9408

datasets is recommended 4 since it contains larger size dataset and more diverse feature set compared to409

OpenML and UCI ML. For general finetuning, existed methods choose Kaggle API5 as it has 169 datasets410

and Datasets are very diverse.411

Dataset Dataset Number Papers that used this dataset
OpenML 11 Dinh et al. (2022); Manikandan et al. (2023)
Kaggle API 169 Hegselmann et al. (2023); Wang et al. (2023a); Zhang et al. (2023a)
Combo 9 Hegselmann et al. (2023); Wang et al. (2023a); Zhang et al. (2023a)
UCI ML 20 Manikandan et al. (2023); Slack & Singh (2023)
DDX 10 Slack & Singh (2023)

Table 2: Combo is the combination of the following dataset in the form of dataset name (number of rows,
number of features): Bank (45,211 rows, 16 feats), Blood (748, 4), California (20,640, 8), Car (1,728, 8),
Creditg (1,000, 20), Income (48,842, 14), and Jungle (44,819, 6), Diabetes (768, 8) and Heart (918, 11).

3.2 Tabular prediction412

Algorithm Type Method Resource Metric Used Model
TabletSlack & Singh (2023) Tabular No Finetune Low F1 GPTJ/Tk-Instruct/Flan T5
SummaryBoostManikandan et al. (2023) Tabular No Finetune High RMSE GPT3
LIFTDinh et al. (2022) Tabular Finetune High MAE/RMSE GPT3/GPTJ
TabLLMHegselmann et al. (2023) Tabular Finetune High AUC GPT3/T0
UnipredictWang et al. (2023a) Tabular Finetune Low ACC GPT2
GTLZhang et al. (2023a) Tabular Finetune Low ACC LLaMA
SerializeLLMJaitly et al. (2023) Tabular Finetune High AUC T0
PromptCastXue & Salim (2022) Time Series Finetune High MAE/ RMSE/ Missing Rate T5/Bigbird/LED
ZeroTSGruver et al. (2023) Time Series No Finetune Low MAE/ Scale MAE/ CRPS GPT3/LLAMA2
TESTSun et al. (2023a) Time Series Finetune High ACC/ RMSE Bert/ GPT2/ ChatGLM/ LLaMa
TimeLLMJin et al. (2023a) Time Series Finetune High SMAPE/ MSAE/ OWA LLAMA7B/ GPT2
MediTabWang et al. (2023c) Medical Finetune High PRAUC/AUCROC BioBert/GPT3.5/UnifiedQA-v2-T5
CTRLLi et al. (2023) Finance Finetune High AUC/LogLoss Roberta/ChatGLM
FinPTYin et al. (2023) CTR Finetune High F1 Score FlanT5/ChatGPT/GPT4

Table 3: Prediction methods. Resource is high if it has to finetune a model with size ≥ 1B even if it is
PEFT. Used Model include all models used in the paper which includes serialization, preprocessing and
model finetuning. ACC stands for accuracy. AUC stands for Area under the ROC Curve. MAE stands for
mean absolute error. RMSE stands for root-mean-square error. F1 score is calculated from the precision
and recall of the test, where the precision is the number of true positive results divided by the number of all
samples predicted to be positive, including those not identified correctly, and the recall is the number of true
positive results divided by the number of all samples that should have been identified as positive. CRPS is
continous ranked probability score. We will introduce other metrics in relevant sections.

Preprocessing Serialization in prediction task is mostly Text-based in section 2.1. Table manipulation413

includes statistics and metadata of datasets in section 2.2. Prompt engineering includes task specific cues414

and relevant samples in section 2.1. We give an illustration of different preprocessing methods in Table 4415

4Here is the GitHub repository to get the data https://Github.com/clinicalml/TabLLM/tree/main/datasets
5Here is the website to get the pretrained data https://Github.com/Kaggle/kaggle-api
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As one of the earliest endeavors, LIFT (Dinh et al., 2022) tried a few different serialization methods, such416

as feature and value as a natural sentence such as "The column name is Value" or a bunch of equations,417

such as col1 = val1, col2 = val2, .... The former is shown to achieve higher prediction accuracy, especially in418

low-dimensional tasks. The same conclusion was also found by TabLLM (Hegselmann et al., 2023) where419

they evaluated 9 different serialization methods. They found that a textual enumeration of all features -420

’The column name is Value’, performs the best. They also added a description for classification problem. For421

medical prediction, they mimic the thinking process of medical professional as prompt engineering. They422

found out that LLM actually make use for column name and their relationships in few shot learning settings.423

In a subsequent study, TABLET (Slack & Singh, 2023) included naturally occurring instructions along424

with examples for serialization. In this case, where the task is for medical condition prediction, naturally425

occurring instructions are from consumer-friendly sources, such as government health website or technical426

reference such as Merck Manual. It includes instructions, examples, and test data point. They found that427

these instructions significantly enhance zero-shot F1 performance. However, LLMs still ignore instructions428

sometimes, leading to prediction failures. Along this fashion, more studies tested a more complex serialization429

and prompt engineering method rather than simple concatenation of feature and value for serialization. The430

schema-based prompt engineering usually includes background information of the dataset, a task description,431

a summary, and example data points. Summary Boosting(Manikandan et al., 2023) serializes data and432

metadata into text prompts for summary generation. This includes categorizing numerical features and433

using a representative dataset subset selected via weighted stratified sampling based on language embeddings.434

Serilize-LM (Jaitly et al., 2023) introduces 3 novel serialization techniques which boosts LLM performance435

in domain specific datasets. They included related features into one sentence to make the prompt more436

descriptive and easier to understand for LLM. Take car classification as an example, attributes like make,437

color and body type are now combined into a single richer sentence. It leverages covariance to identify most438

relevant features and either label them critical or adding a sentence to explain the most important features.439

Finally, they converted tabular data into LaTeX code format. This LaTeX representation of the table was440

then used as the input for fine-tuning our LLM by just passing a row representation preceded by hline441

tag without any headers. UniPredict (Wang et al., 2023a) reformats meta data by consolidating arbitrary442

input M to a description of the target and the semantic descriptions of features. Feature serialization443

follows a "column name is value" format, .... The objective is to minimize the difference between the output444

sequence generated by the adapted LLM function and the reference output sequence generated from target445

augmentation (represented by serialize target). Generative Tabular Learning (GTL) was proposed by (Zhang446

et al., 2023a) which includes two parts: 1) the first part specifies the task background and description with447

optionally some examples as in-context examples(Prompt Engineering); 2) the second part describes feature448

meanings and values of the current instance to be inferred(Serialization); For researchers and practitioners, we449

recommend to benchmark LIFT, TABLET and TabLLM for new preprocessing method since their methods450

are representative and clearly documented. The code is available. 6
451

Some other methods leverage an LLM to rewrite the serialization or do the prompt engineering.452

TabLLM (Hegselmann et al., 2023) showed that LLM is not good for serialization because it is not faithful453

and may hallucinate. Summary Boosting(Manikandan et al., 2023) uses GPT3 to convert metadata to data454

description and generate summary for a subset of datasets in each sample round. TABLET (Slack & Singh,455

2023) fits a simple model such as one layer rule set morel or prototype with 10 most important features on the456

task’s full training data. It then serializes the logic into text using a template and revise the templates using457

GPT3. Based on their experiments, generated instructions do not significantly improve the performance.458

Thus, unless the serialization requires summarizing the long input, it is not recommended to use LLM to459

rewrite serialization.460

Target Augmentation LLMs can solve complex task through text generation, however, the output is not461

always controllable (Dinh et al., 2022). As a result, mapping the textual output from LLMs to a target label462

for prediction tasks is essential. We call it target augmentation. A straightforward but labor-intensive way463

is manual labeling as used by Serilize-LM (Jaitly et al., 2023). LIFT (Dinh et al., 2022) employs ### and464

@@@ for question-answer separation and end of generation, respectively, placing answers in between. To465

mitigate invalid inferences, LIFT conducts five inference attempts, defaulting to the training set’s average466

6Here is the Github repo for TABLET https://Github.com/dylan-slack/Tablet, TabLLM https://Github.com/
clinicalml/TabLLM and LIFT https://Github.com/UW-Madison-Lee-Lab/LanguageInterfacedFineTuning

12

https://Github.com/dylan-slack/Tablet
https://Github.com/clinicalml/TabLLM
https://Github.com/clinicalml/TabLLM
https://Github.com/UW-Madison-Lee-Lab/LanguageInterfacedFineTuning


Under review as submission to TMLR

value if all fail. TabLLM (Hegselmann et al., 2023) uses verbalizer (Cui et al., 2022) to map the answer to a467

valid class. UniPredict (Wang et al., 2023a) has the most complicated target augmentation. They transform468

the target label into a set of probabilities for each class via a function called “augment”. Formally, for469

target T in an arbitrary dataset D, they define a function augment(T ) = C, P , where C are new categories470

of targets with semantic meaning and P are the assigned probabilities to each category. They extend471

the target into categorical one-hot encoding and then use an external predictor to create the calibrated472

probability distributions. This replaces the 0/1 one-hot encoding while maintaining the final prediction473

outcome. Formally, given the target classes t ∈ 0, ..., |C| and target probabilities p ∈ P , they define a474

function serialize target(t, p) that serializes target classes and probabilities into a sequence formatted as475

“class t1 : p1, t2 : p2, . . . ” We give an example for each method in 5 While customized target augmentation476

could be useful in some cases, the simple Verbalizer is recommended for its convenience to implement and477

can assign the probability of the output.478

Inference Only Prediction Some work uses LLMs directly for prediction without fine-tuning, we refer these479

approaches inference only prediction. TABLET (Slack & Singh, 2023) utilizes models like Tk-Instruct (Wang480

et al., 2022b) 11b, Flan-T5 (Chung et al., 2022) 11b, GPT-J (Black et al., 2022) 6b, and ChatGPT to inference481

the model, but find out that a KNN approach with feature weights from XGBoost surpasses Flan-T5 11b in482

performance using similar examples and instructions. Summary Boosting (Manikandan et al., 2023) creates483

multiple input through serialization step. The AdaBoost algorithm then creates an ensemble of summary-484

based weak learners. While non-fine-tuned LLMs struggle with continuous attributes, summary boosting is485

effective with smaller datasets. Furthermore, its performance is enhanced using GPT-generated descriptions486

by leveraging existing model knowledge, underscoring the potential of LLMs in new domains with limited487

data. However, it does not perform well when there are many continuous variables. For any new LLM488

based prediction method without any fine-tuning, we suggest to benchmark LIFT and TABLET. LIFT is489

the first LLM based method for inference only prediction. TABLET shows significantly better performance490

compared to LIFT. Both methods have code available.491

Fine-tuning For studies involving fine-tuning, they typically employ one of two distinct approaches. The492

first involves training a LLM model on large datasets to learn fundamental features before adapting it to493

specific prediction tasks. The second takes a pre-trained LLM and further training it on a smaller, specific494

prediction dataset to specialize its knowledge and improve its performance on the prediction. LIFT (Dinh495

et al., 2022) fine-tunes pretrained language models like GPT-3 and GPT-J using Low-Rank Adaptation496

(LoRA) on training set. They found that LLM with general pretraining could improve the performance.497

However, the performance of this method does not surpass in context learning result. TabLLM (Hegselmann498

et al., 2023) uses T0 model (Sanh et al., 2021) and t few (?) for fine-tuning. TabLLM has demonstrated499

remarkable few-shot learning capabilities outperforming traditional deep-learning methods and gradient-500

boosted trees. TabLLM’s efficacy is highlighted by its ability to leverage the extensive knowledge encoded501

in pre-trained LLMs, requiring minimal labeled data. However, the sample efficiency of TabLLM is highly502

task-dependent. Jaitly et al. (2023) uses T0 (Sanh et al., 2021). It is trained using Intrinsic Attention-based503

Prompt Tuning (IA3) (Liu et al., 2022b). However, this method only works for few short learning, worse504

than baseline when number of shots more or equal to 128. T0 model (Sanh et al., 2021) is commonly used505

as base model for tabular prediction fine-tuning.506

UniPredict (Wang et al., 2023a) trains a single LLM (GPT2) on an aggregation of 169 tabular datasets with507

diverse targets and observe advantage over existed methods. This model does not require fine-tuning LLM on508

specific datasets. Model accuracy and ranking is better than XGBoost when the number of samples is small.509

The model with target augmentation performs noticeably better than the model without augmentation. It510

does not perform well when there are too many columns or fewer representative features. TabFMs (Zhang511

et al., 2023a) fine-tunes LLaMA to predict next token. we are left with 115 tabular datasets. To balance the512

number of instances across different datasets, we randomly sample up to 2,048 instances from each tabular513

dataset for GTL. They employed GTL which significantly improves LLaMA in most zero-shot scenarios.514

Based on the current evidence, we believe that fine-tuning on large number of datasets could further improve515

the performance. However, both UniPredict and GTL have not released their code yet.516

Metric We suggest to report AUC for classification prediction and RMSE for regression since they are517

mostly common used in the literature 3518
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Methodology Method Example
Feature name + Feature
Value + Predicted Feature
Name

Dinh et al. (2022); Hegsel-
mann et al. (2023)

Car Brand is Land Rover. Year is 2017.
Repair claim is

Task Background + Fea-
ture meaning + Feature
Value + Predicted Feature
meaning

Zhang et al. (2023a) The task is about fraud repair claim
prediction. The brand of car is Land
Rover. The produce year is 2017. The
repair claim of the car is

Dataset Summary + LLM
Processed Feature + Task

Manikandan et al. (2023) Larger car is always more expensive.
This is a 2017 Land Rover. Therefore,
this car repair claim is (Fraudulent or
Not Fraudulent):

Latex Format of features
value + Task

Jaitly et al. (2023) \hline Land Rover & 2017 ... Is this car
repair claim fraudulent? Yes or No?

Expert Task Understand-
ing + Label + Task

Slack & Singh (2023) Identify if car repair claim is fraudulent.
Older car is more likely to have fraudu-
lent repair claim. Features Car Brand:
Land Rover Year: 2017. Answer with
one of the following: Yes | No

Dataset description +
Feature meaning + Fea-
ture Value + Task

Wang et al. (2023a) The dataset is about fraud repair claim.
Car Brand is the brand of car. Year is
the age when the car is produced. The
features are: Car Brand is Land Rover.
Year is 2017. Predict if this car repair
claim fraudulent by Yes for fraudulent,
No for not fraudulent

Table 4: Method and Example for different preprocessing in general prediction. The example is to predict
if a car repair claim fraudulent or not.

3.3 Time Series Forecasting519

Compared to prediction on feature-based tabular data with numerical and categorical features, time series520

prediction pays more attention to numerical features and temporal relations. Thus, serialization and target521

augmentation are more relevant to how to best represent numerical features. Many papers have claimed that522

they use LLM for time series. However, most of these papers use LLM that is smaller than 1B. We will not523

discuss these methods here. Please refer to (Jin et al., 2023b) for a complete introduction of these methods.524

Preprocessing PromptCast (Xue & Salim, 2022) uses input time series data as it is and convert it to a525

test format with minimal description of the task and convert target as a sentence to be the output. Ze-526

roTS (Gruver et al., 2023) claims that the number is not encoded well in original LLM encoding method.527

Thus, it encodes numbers by breaking them down by a few digits or by each single digit for GPT-3 and528

LLaMA, respectively. It uses spaces and commas for separation and omitting decimal points. Time LLM (Jin529

et al., 2023a) involves patching time series into embeddings and integrating them with word embeddings to530

create a comprehensive input. This input is complemented by dataset context, task instructions, and input531

statistics as a prefix. TEST (Sun et al., 2023a) introduces an embedding layer tailored for LLMs, using532

exponentially dilated causal convolution networks for time series processing. The embedding is generated533

through contrastive learning with unique positive pairs and aligning text and time series tokens using sim-534

ilarity measures. Serialization involves two QA templates, treating multivariate time series as univariate535

series for sequential template filling.536

Target Augmentation In terms of output mapping, ZeroTS (Gruver et al., 2023) involves drawing multiple537

samples and using statistical methods or quantiles for point estimates or ranges. For Time-LLM (Jin et al.,538
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2023a), the output processing is done through flatten and linear projection. The target augmentation method539

of ZeroTS is easy to implement 7 while TimeLLM’s code is not available.540

Inference Only Prediction Similar to feature-based tabular prediction, researchers explored LLMs’ per-541

formance for time series forecasting without fine-tuning. ZeroTS (Gruver et al., 2023) examines the use542

of LLMs like GPT-3 (Brown et al., 2020) and LLaMA-70B Touvron et al. (2023a) directly for time series543

forecasting. It evaluates models using mean absolute error (MAE), Scale MAE, and continuous ranked prob-544

ability score (CRPS), noting LLMs’ preference for simple rule-based completions and their tendency towards545

repetition and capturing trends. The study notes LLMs’ ability to capture time series data distributions546

and handle missing data without special treatment. However, this approach is constrained by window size547

and arithmetic ability, preventing it from further improvement.548

Fine-tuning Fine-tuning the model for time series prediction is more commonly seen in current research.549

PromptCast (Xue & Salim, 2022) tried the method on inference only prediction or fine-tuning on task550

specific datasets. It shows that larger model always perform better. Time LLM (Jin et al., 2023a) presents551

a novel approach to time series forecasting by fine-tuning LLMs like LLaMa Touvron et al. (2023a) and552

GPT-2 (Brown et al., 2020). Time-LLM is evaluated using metrics symmetric mean absolute percentage553

error (SMAPE), mean absolute scaled error (MSAE), and overall weighted average (OWA). It demonstrates554

notable performance in few-shot learning scenarios, where only 5 percent or 10 percent of the data are555

used. This innovative technique underscores the versatility of LLMs in handling complex forecasting tasks.556

For TEST (Sun et al., 2023a), soft prompts are used for fine-tuning. The paper evaluates models like Bert,557

GPT-2 (Brown et al., 2020), ChatGLM (Zeng et al., 2023), and LLaMa Touvron et al. (2023a), using metrics558

like classification accuracy and RMSE. However, the result shows that this method is not as efficient and559

accurate as training a small task-oriented model. In general, currently LLaMa is the most commonly used560

model and soft prompt seems to be a suitable approach for fine-tuning.561

Metric MAE is the most common metric. Continuous Ranked Probability Score (CRPS) as it captures562

distributional qualities, allowing for comparison of models that generate samples without likelihoods. CRPS563

is considered an improvement over MAE as it does not ignore the structures in data like correlations be-564

tween time steps. Symmetric Mean Absolute Percentage Error (SMAPE) measures the accuracy based on565

percentage errors, Mean Absolute Scaled Error (MASE) is a scale-independent error metric normalized by566

the in-sample mean absolute error of a naive benchmark model, and Overall Weighted Average (OWA) is567

a combined metric that averages the ranks of SMAPE and MASE to compare the performance of different568

methods. Despite the introduction of new metrics, MAE and RMSE are mostly common used in the litera-569

ture. We still recommend using MAE and RMSE as they are simple to implement and easy to benchmark.570

Method Used Paper Example
Adding Special Token be-
fore and after the answer

Dinh et al. (2022) ### {Category} @@@

Verbalizer Hegselmann et al. (2023) Output -> {category1: probability1, .}
Specific Prefix Manikandan et al. (2023);

Slack & Singh (2023)
Please answer with category 1, category 2, ...

Predict probability and
recalibrate

Wang et al. (2023a) {category1: probability1} => Calibrated
by XGBoost

Table 5: Target Augmentation method, used papers and examples

3.4 Application of Prediction using LLM571

Medical Prediction It was found that PTL such as DeBERTa has been shown perform better than XGBoost572

in electronic health record (EHR) prediction tasks (McMaster et al., 2023). For preprocessing, Meditab573

Wang et al. (2023c) utilizes GPT-3.5 Brown et al. (2020) to convert tabular data into textual format, with574

a focus on extracting key values. Subsequently, it employs techniques such as linearization, prompting, and575

sanity checks to ensure accuracy and mitigate errors. For fine-tuning, the system further leverages multitask576

7The code is in https://Github.com/ngruver/llmtime
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learning on domain-specific datasets, generates pseudo-labels for additional data, and refines them using577

data Shapley scores. Pretraining on the refined dataset is followed by fine-tuning using the original data.578

The resulting model supports both zero-shot and few-shot learning for new datasets. GPT-3.5 accessed579

via OpenAI’s API facilitates data consolidation and augmentation, while UnifiedQA-v2-T5 Khashabi et al.580

(2022) is employed for sanity checks. Additionally, Meditab utilizes a pretrained BioBert classifier Lee581

et al. (2019). The system undergoes thorough evaluation across supervised, few-shot, and zero-shot learning582

scenarios within the medical domain, demonstrating superior performance compared to gradient boosting583

methods and existing LLM-based approaches. However, it may have limited applicability beyond the medical584

domain. We recommend exploring the provided code8 for tabular prediction tasks specifically in the medical585

domain. On top AUCROC, they also use precision recall curve (PRAUC) for evaluation. PRAUC is useful586

in imbalanced datasets which are always the case for medical data.587

Financial Prediction FinPT (Yin et al., 2023) presents an LLM based approach to financial risk prediction.588

The method involves filling tabular financial data into a pre-defined template, prompting LLMs like ChatGPT589

and GPT-4 to generate natural-language customer profiles. These profiles are then used to fine-tune large590

foundation models such as BERT (Devlin et al., 2019), employing the models’ official tokenizers. The process591

enhances the ability of these models to predict financial risks, with Flan-T5 emerging as the most effective592

backbone model in this context, particularly across eight datasets. For financial data, we suggest to use 9
593

and benchmark against FinPT10.594

Recommendation Prediction CTRL (Li et al., 2023) proposes a novel method for Click Through Rate595

(CTR) prediction by converting tabular data into text using human-designed prompts, making it understand-596

able for language models. The model treats tabular data and generated textual data as separate modalities,597

feeding them into a collaborative CTR model and a pre-trained language model such as ChatGLM (Zeng598

et al., 2023), respectively. CTRL employs a two-stage training process: the first stage involves cross-modal599

contrastive learning for fine-grained knowledge alignment, while the second stage focuses on fine-tuning a600

lightweight collaborative model for downstream tasks. The approach outperforms all the SOTA baselines601

including semantic and collaborative models over three datasets by a significant margin, showing superior602

prediction capabilities and proving the effectiveness of the paradigm of combining collaborative and semantic603

signals. However, the code for this method is not available. They use LogLoss and AUC to evaluate the604

method. For LogLoss, A lower bound of 0 for Logloss indicates that the two distributions are perfectly605

matched, and a smaller value indicates a better performance.606

4 LLMs for tabular data synthesis607

In this section, we focus on the pivotal role of data synthesis. The escalating demand for nuanced datasets608

prompts the exploration of novel methodologies leveraging LLMs to augment tabular data. This section609

scrutinizes methodologies illuminating the transformative potential of conjoining LLMs and tabular data for610

data synthesis.611

Used LLM Fine-tuned or not Serialization Metric
GReaT (Borisov et al., 2023b) GPT2/DistilGPT2 Fine-tuned Sentences DCR, MLE
REaLTabFormer (Solatorio & Dupriez, 2023) GPT2 Fine-tuned DCR, MLE
TAPTAP (Zhang et al., 2023e) GPT2/DistilGPT2 Fine-tuned Sentences DCR, MLE
TabuLa (Zhao et al., 2023f) DistilGPT2 Fine-tuned X-Separated MLE
CLLM (Seedat et al., 2023) GPT4 Non Fine-tuned X-Separated MLE

TabMT (Gulati & Roysdon, 2023) Masked Transformers
-24layer Fine-tuned "[Value]" MLE

Table 6: Data synthesis methods. “DCR” stands for Distance to the Closest Record and “MLE” stands for
Machine Learning Efficiency.

8Available at https://Github.com/RyanWangZf/MediTab.
9The dataset is in https://huggingface.co/datasets/yuweiyin/FinBench

10The code is in https://Github.com/YuweiYin/FinPT
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4.1 Methodologies612

Borisov et al. (2023b) proposed GReaT11 (Generation of Realistic Tabular data) to generate synthetic613

samples with original tabular data characteristics. The GReaT data pipeline involves a textual encoding614

step transforming tabular data into meaningful text using the sentences serialization methods as shown in615

Table 1, followed by fine-tuning GPT-2 or GPT-2 distill models. Additionally, a feature order permutation616

step precedes the use of obtained sentences for LLM fine-tuning.617

REaLTabFormer (Solatorio & Dupriez, 2023) extends GReaT by generating synthetic non-relational and618

relational tabular data. It uses an autoregressive GPT-2 model to generate a parent table and a sequence-619

to-sequence model conditioned on the parent table for the relational dataset. The model implements target620

masking to prevent data copying and introduces statistical methods to detect overfitting. It demonstrates621

superior performance in capturing relational structures and achieves state-of-the-art results in predictive622

tasks without needing fine-tuning.623

Following the similar paradigm, Zhang et al. (2023e) proposed the TAPTAP12 (Table Pretraining for Tab-624

ular Prediction) which incorporates several enhancements. The method involves pre-fine-tuning the GPT2625

on 450 Kaggle/UCI/OpenML tables, generating label columns using a machine learning model. Claimed626

improvements include a revised numerical encoding scheme and the use of external models like GBDT for627

pseudo-label generation, deviating from conventional language model-based approaches. However, the work628

lacks a comparison with diffusion-based models like TabDDPM, and the numerical encoding scheme im-629

provement as highlighted in (Gruver et al., 2023) depends on the model used. In a related work (Wang630

et al., 2023a), a similar approach is employed for generating pseudo-labels, where the labels are represented631

as probability vectors.632

TabuLa (Zhao et al., 2023f) addresses long training times of LLMs by advocating for a randomly initialized633

model as the starting point and shows the potential for continuous refinement through iterative fine-tuning634

on successive tabular data tasks 13. It introduces a token sequence compression method and a middle padding635

strategy to simplify training data representation and enhance performance, achieving a significant reduction636

in training time while maintaining or improving synthetic data quality.637

Seedat et al. (2023) introduces Curated LLM, a framework that leverages learning dynamics and two novel638

curation metrics, namely confidence and uncertainty. These metrics are employed to filter out undesirable639

generated samples during the training process of a classifier, aiming to produce high-quality synthetic data.640

Specifically, both metrics are calculated for each sample, utilizing the classifier trained on these samples.641

Additionally, CLLM distinguishes itself by not requiring any fine-tuning of LLMs, specifically utilizing the642

GPT-4.643

TabMT (Gulati & Roysdon, 2023) employs a masked transformer-based architecture. The design allows644

efficient handling of various data types and supports missing data imputation. It leverages a masking mech-645

anism to enhance privacy and data utility, ensuring a balance between data realism and privacy preservation.646

TabMT’s architecture is scalable, making it suitable for diverse datasets and demonstrating improved per-647

formance in synthetic data generation tasks.648

4.2 Evaluation649

As outlined in Zhang et al. (2023c), the evaluation of synthetic data quality can be approached from four650

different dimensions: 1) Low-order statistics – column-wise density and pair-wise column correlation,651

estimating individual column density and the relational dynamics between pairs of columns, 2) High-order652

metrics – the calculation of α-precision and β-recall scores that measure the overall fidelity and diversity653

of synthetic data, 3) privacy preservation – DCR score, representing the median Distance to the Closest654

Record (DCR), to evaluate the privacy level of the original data, and 4) Performance on downstream655

tasks – like machine learning efficiency (MLE) and missing value imputation. MLE is to compare the656

testing accuracy on real data when trained on synthetically generated tabular datasets. Additionally, the657

11The code is in https://github.com/kathrinse/be_great
12The code is in https://github.com/ZhangTP1996/TapTap
13The code is in https://github.com/zhao-zilong/Tabula
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Figure 3: General data generation pipeline

quality of data generation can be assessed through its performance in the task of missing value imputation,658

which focuses on the replenishment of incomplete features/labels using available partial column data.659

5 LLMs for question answering and table understanding660

In this section, we cover datasets, trends and methods explored by researchers for question answering (QA),661

fact verification (FV) and table reasoning tasks. There are many papers working on database manipulation,662

management and integration (Lobo et al., 2023; Fernandez et al., 2023; Narayan et al., 2022; Zhang et al.,663

2023b), which also include instructions and tabular inputs to LLMs. However, they are not typically referred664

to as a QA task, and will not be covered by this paper.665

5.1 Dataset666

Table 7 outlines some of the popular datasets and benchmark in the literature working on tabular QA tasks.667

Table QA For table QA datasets, we recommend to benchmark FetaQA (Nan et al., 2022) over WikiTable-668

Question (Pasupat & Liang, 2015a). Unlike WikiTableQuestions, which focuses on evaluating a QA system’s669

ability to understand queries and retrieve short-form answers from tabular data, FeTaQA introduces ele-670

ments that require deeper reasoning and integration of information. This includes generating free-form text671

answers that involve the retrieval, inference, and integration of multiple discontinuous facts from structured672

knowledge sources like tables. This requires the model generated long, informative, and free-form answers.673

NQ-TABLES Herzig et al. (2021) is larger than previously mentioned table. Its advantage lies in its emphasis674

on open-domain questions, which can be answered using structured table data. The code is in footnote 14.675

Table and Conversation QA For QA task that involved both conversation and tables, we recommend676

to use HybriDialogue (Nakamura et al., 2022). HybriDialogue includes conversations grounded on both677

Wikipedia text and tables. This addresses a significant challenge in current dialogue systems: conversing on678

topics with information distributed across different modalities, specifically text and tables. The dataset is679

in footnote. 15
680

14The dataset for NQ-Tables is in https://github.com/google-research-datasets/natural-questions. The dataset for
WikiTableQuestions is in https://ppasupat.github.io/WikiTableQuestions/. The dataset for FetaQA is in https://github.
com/Yale-LILY/FeTaQA.

15The dataset is in https://github.com/entitize/HybridDialogue
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Dataset # Ta-
bles

Task Type Input Output Data
Source

Papers Working on It

FetaQA Nan et al.
(2022)

10330 QA Table Ques-
tion

Answer Wikipedia Ye et al. (2023b); Chen
(2023); Sarkar & Lausen
(2023); Zhao et al. (2023c)

WikiTableQuestion
Pasupat & Liang
(2015a)

2108 QA Table Ques-
tion

Answer Wikipedia Ye et al. (2023b); Chen
(2023); Yin et al. (2020b);
Jiang et al. (2023)

NQ-TABLES
Herzig et al. (2021)

169898 QA Question,
Table

Answer Synthetic Chen et al. (2023a); Zhao
et al. (2023c)

HybriDialogue
Nakamura et al.
(2022)

13000 QA Conversation,
Table, Refer-
ence

Answer Wikipedia ?Sundar & Heck (2023);
Zhang et al. (2023f); Zhao
et al. (2023c)

TAT-QA Zhu et al.
(2021a)

2757 QA Question,
Table

Answer Financial re-
port

Zhu et al. (2021a); Zhao
et al. (2023c)

HiTAB Cheng et al.
(2022)

3597 QA/NLG Question,
Table

Answer Statistical
Report and
Wikipedia

Zhao et al. (2023a); Zhang
et al. (2023f)

ToTTo Parikh et al.
(2020a)

120000 NLG Table Sentence Wikipedia Sarkar & Lausen (2023);
Zhang et al. (2023f)

FEVEROUS Aly
et al. (2021)

28800 Classification Claim, Table Label Wikipedia Chen (2023); Sui et al.
(2023c); Zhang et al.
(2023f)

Dresden Web Ta-
bles Eberius et al.
(2015)

125M Classification Table Label Common
Crawl

Sarkar & Lausen (2023);
Jin et al. (2023c)

InfoTabs Gupta
et al. (2020)

2540 NLI Table , Hy-
pothesis

Label Wikipedia Akhtar et al. (2023); Yang
et al. (2023)

TabFactChen et al.
(2020a)

16573 NLI Table, State-
ment

Label Wikipedia Zhang et al. (2023f); Jiang
et al. (2023)

TAPEX Liu et al.
(2022c)

1500 Text2SQL SQL, Table Answer Synthetic Sarkar & Lausen (2023);
Yang et al. (2023)

Spider Yu et al.
(2018b)

1020 Text2SQL Table, Ques-
tion

SQL Human an-
notation

Yin et al. (2020b); Jiang
et al. (2023)

WIKISQLZhong
et al. (2017b)

24241 Text2SQL Table, Ques-
tion

SQL,
An-
swer

Human An-
notated

Chen et al. (2023a); Abra-
ham et al. (2022); Zhang
et al. (2023f); Jiang et al.
(2023)

Table 7: Overview of Various Datasets and Related Work for LLMs for tabular QA data. We only select
datasets that have been used by more than one relevant method in this table.

Table Classification We recommend to benchmark FEVEROUS Aly et al. (2021) if the tasks involve fact681

verification using both unstructural text and structured tables. We recommend to benchmark Dresden Web682

Tables (Eberius et al., 2015) for tasks requiring the classification of web table layouts, particularly useful in683

data extraction and web content analysis where table structures are crucial. The dataset is in footnote. 16
684

Text2SQL If you want to create a SQL executor, you can use TAPEX (Liu et al., 2022c) and WIK-685

ISQL (Zhong et al., 2017b) which contains both tables , SQL query and answer. If you want to test ability686

to write a SQL query, you can use Spider (Yu et al., 2018b)17, Magellan Das et al. or WIKISQL (Zhong687

et al., 2017b). Overall WIKISQL is preferable since it is large in size and has been benchmarked by many688

existed methods such as (Chen et al., 2023a; Abraham et al., 2022; Zhang et al., 2023f; Jiang et al., 2023) .689

The dataset is in footnote 18.690

16The dataset for FEVEROUS is in https://fever.ai/dataset/feverous.html. The dataset for Dresden Web Tables is in
https://ppasupat.github.io/WikiTableQuestions/.

17Leaderboard for Spider: https://yale-lily.github.io/spider
18The dataset for TAPEX is in https://github.com/microsoft/Table-Pretraining/tree/main/data_generator. The

dataset for spider is in https://drive.usercontent.google.com/download?id=1iRDVHLr4mX2wQKSgA9J8Pire73Jahh0m&export=
download&authuser=0. The dataset for WIKISQL is in https://github.com/salesforce/WikiSQL.
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Table NLG ToTTo Parikh et al. (2020a) aims to create natural yet faithful descriptions to the source691

table. It is rich in size and can be used to benchmark table conditional text generation task. HiTAB (Cheng692

et al., 2022) allows for more standardized and comparable evaluation across different NLG models and tasks,693

potentially leading to more reliable and consistent benchmarking in the field. The dataset is in footnote. 19.694

Table NLI InfoTabs (Gupta et al., 2020) uses Wikipedia infoboxes and is designed to facilitate understanding695

of semi-structured tabulated text, which involves comprehending both text fragments and their implicit rela-696

tionships. InfoTabs is particularly useful for studying complex, multi-faceted reasoning over semi-structured,697

multi-domain, and heterogeneous data. TabFactChen et al. (2020a) consists of human-annotated natural698

language statements about Wikipedia tables. It requires linguistic reasoning and symbolic reasoning to get699

right answer. The dataset is in footnote. 20.700

Domain Specific For airline industry specific table question answer, we recommend to use AIT-QA (Katsis701

et al., 2022). It highlights the unique challenges posed by domain-specific tables, such as complex layouts,702

hierarchical headers, and specialized terminology. For syntax description, we recommend to use TranX (Yin703

& Neubig, 2018). It uses an abstract syntax description language for the target representations, enabling704

high accuracy and generalizability across different types of meaning representations. For finance related705

table question answer, we recommend to use TAT-QA Zhu et al. (2021a). This dataset demands numerical706

reasoning for answer inference, involving operations like addition, subtraction, and comparison. Thus, TAT-707

QA can be used for complex task benchmark. The dataset is in footnote. 21.708

Pretraining For pretraining on large datasets for table understanding, we recommend to use TaBERT (Yin709

et al., 2020c) and TAPAS (Herzig et al., 2020). Dataset in Tapas has 6.2 million tables and is useful for710

semantic parsing. TAPAS has 26 million tables and their associated english contexts. It can help model gain711

better understanding in both textual and table. The dataset is in footnote. 22.712

5.2 General ability of LLMs in QA713

Table 8 outlines the papers that investigated the effectiveness of LLMs on QA and reasoning, and the models714

explored. The most popular LLM used today is GPT3.5 and GPT4. Although these GPT models were not715

specifically optimized for table-based tasks, many of these papers found them to be competent in performing716

complex table reasoning tasks, especially when combined with prompt engineering tricks like CoT. In this717

section, we summarize the general findings of LLMs in QA tasks and highlight models that have reported to718

work well.719

Numerical QA A niche QA task involves answering questions that require mathematical reasoning. An720

example query could be “What is the average payment volume per transaction for American Express?”721

Many real-world QA applications (E.g. working with financial documents, annual reports, etc.) involve such722

mathematical reasoning tasks. So far, Akhtar et al. (2023) conclude that LLMs like FlanT5 and GPT3.5723

perform better than other models on various numerical reasoning tasks. On the DOCMATH-EVAL Zhao724

et al. (2023d) dataset, GPT-4 with CoT significantly outperforms other LLMs, while open-source LLMs725

(LLaMa-2, Vicuna, Mistral, Starcoder, MPT, Qwen, AquilaChat2, etc.) lag behind.726

Text2SQL Liu et al. (2023c) designed a question matcher that identifies three keyword types: 1) column727

name-related terms, 2) restriction-related phrases (e.g. "top ten"), and 3) algorithm or module keywords.728

Once these keywords are identified, the module begins to merge the specific restrictions associated with each729

column into a unified combination, which is then matched with an SQL algorithm or module indicated by the730

third type of keyword. Zhang et al. (2023d) opted for a more straightforward approach of tasking LLaMa-2731

to generate an SQL statement based on a question and table schema. Sun et al. (2023b) finetuned PaLM-2732

19The dataset for ToTTo is in https://github.com/google-research-datasets/ToTTo. The dataset for HiTAB is in https:
//github.com/microsoft/HiTab

20The dataset for InfoTabs is in https://infotabs.github.io/. The dataset for TabFact is in https://tabfact.github.io/
21The dataset for AIT-QA is in https://github.com/IBM/AITQA. The dataset for TranX is in https://github.com/pcyin/

tranX. The dataset for TAT-QA is in https://github.com/NExTplusplus/TAT-QA
22The dataset for TaBERT is in https://github.com/facebookresearch/TaBERT. The dataset for TAPAS is in https:

//github.com/google-research/tapas
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Paper Task Models Explored
DOCMATH-EVAL (Zhao et al., 2023d) NumQA GPT4, GPT3.5, WizardLM, Llama-2 7, 13, 70B,

CodeLlama 34B, Baichuan, Qwen, WizardMath, Vi-
cuna, Mistral, etc.

Akhtar et al. (2023) NumQA TAPAS, DeBERTa, TAPEX, NT5, LUNA, PASTA,
ReasTAP, FlanT5, GPT3.5, PaLM

TableGPT (Gong et al., 2020) NumQA GPT2
DATER (Ye et al., 2023b) QA GPT3 Codex
PACIFIC (Deng et al., 2022b) QA T5, CodeT5
Chen (2023) QA GPT3
cTBLS (Sundar & Heck, 2023) QA Custom: Dense Table Retrieval based on RoBERTa

+ Coarse State Tracking + Response based on
GPT3.5

GPT4Table (Sui et al., 2023b) QA GPT-3.5, GPT-4
Zhao et al. (2023a) QA GPT-3.5
Liu et al. (2023e) QA GPT3.5
TableGPT (Zha et al., 2023) QA Phoenix-7B
TAP4LLM (Sui et al., 2023c) QA Instruct GPT3.5, GPT4
UniTabPT (Sarkar & Lausen, 2023) QA T5
Yu et al. (2023) Multi-modal QA Custom: Retrieval trained on contrastive loss, Rank

by softmax, Generation built on T5
TableLlama (Zhang et al., 2023f) QA Custom: TableLlama
DIVKNOWQA Zhao et al. (2023c) QA GPT3.5, DSP, ReAct
Jiang et al. (2023) QA GPT3.5, ChatGPT3.5
Liu et al. (2023c) QA & Text2SQL Vicuna, GPT4
Gao et al. (2023) Text2SQL GPT4
Pourreza & Rafiei (2023) Text2SQL GPT4
Dong et al. (2023) Text2SQL ChatGPT3.5
Zhang et al. (2023d) Text2SQL LLaMA2 70b
Abraham et al. (2022) Text2SQL Custom: Table Selector + Known & Unknown Fields

Extractor + AggFn Classifier

Table 8: Overview of Papers and Models for LLMs for tabular QA tasks. We only include papers that
work with models of >1B parameters. Models that are described as “Custom” indicates papers that fine-
tuned specific portions of their pipeline for the task, whereas the other papers focus more on non-finetuning
methods like prompt engineering. NumQA: Numerical QA.

on the Text2SQL task, achieving considerable performance on Spider. The top scoring models for the Spider733

today are Dong et al. (2023); Gao et al. (2023); Pourreza & Rafiei (2023), all building off OpenAI’s GPT734

models. SQL generation is popular in the industry, with many open-source fine-tuned models available.23.735

Impact of model size on performance Chen (2023) found that size does matter: On WebTableQues-736

tions, when comparing the 6.7B vs. 175B GPT-3 model, the smaller model achieved only half the scores of737

the larger one. On TabFact, they found that smaller models (<=6.7B) obtained almost random accuracy.738

Finetuning or No finetuning? Based on our survey, there is minimal work in the tabular QA space that739

finetunes LLMs (>70B parameters). This might be due to the general ability of LLMs (GPT3.5, GPT4) to740

perform many QA tasks without finetuning. For SQL generation on Spider, DIN-SQL Pourreza & Rafiei741

(2023) and DAIL-SQL are inference-based techniques using GPT4, and surpassed previous fine-tuned smaller742

models. The papers that finetune on QA based off smaller LLMs, are not the focus of this paper, and was743

mentioned previously in Section 2.1 under embeddings-based serialization. Instead, most papers working on744

tabular QA based on LLMs focus on the aspects of prompt engineering, search and retrieval, and end-to-end745

pipelines (user interfaces), which we describe further in the next section.746

23https://huggingface.co/NumbersStation
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5.3 Key components in QA747

In the simplest QA architecture, an LLM takes in an input prompt (query and serialized table)24, and748

returns an answer. In more involved architectures, the system might be connected to external databases749

or programs. Most of the times, the knowledge base might not fit in the context length or memory of the750

LLM. Therefore, unique challenges to tabular QA for LLMs include: query intent disambiguation, search751

and retrieval, output types and format, and multi-turn settings where iterative calls between programs are752

needed. We describe these components further in this section.753

5.3.1 Query intent disambiguation754

Zha et al. (2023) introduced the concept of Chain-of-command (CoC), that translates user inputs into755

a sequence of intermediate command operations. For example, an LLM needs to first check if the task756

requires retrieval, mathematical reasoning, table manipulations, and/or the questions cannot be answered757

if the instructions are too vague. They constructed a dataset of command chain instructions to fine-tune758

LLMs to generate these commands. Deng et al. (2022b) proposed the QA task be split into three subtasks:759

Clarification Need Prediction (CNP) to determine whether to ask a question for clarifying the uncertainty;760

Clarification Question Generation (CQG) to generate a clarification question as the response, if CNP detects761

the need for clarification; and Conversational Question Answering (CQA) to directly produce the answer as762

the response if it is not required for clarification. They trained a UniPCQA model which unifies all subtasks763

in QA through multi-task learning.764

5.3.2 Search and retrieval765

The ability to accurately search and retrieve information from specific positions within structured data is766

crucial for LLMs. There are two types of search and retrieval use-cases: (1) to find the information (table,767

column, row, cell) relevant to the question, and (2) to obtain additional information and examples.768

For main table Zhao et al. (2023d) observed that better performance of a retriever module (that returns769

the top-n most relevant documents) consistently enhances the final accuracy of LLMs in numerical QA. Sui770

et al. (2023c) explored multiple table sampling methods (of rows and columns) and table packing (based771

on a token-limit parameter). The best technique was the query-based sampling, which retrieves rows with772

the highest semantic similarity to the question, surpassing methods involving no sampling, or clustering,773

random, even sampling, or content snapshots. Dong et al. (2023) used ChatGPT to rank tables based on774

their relevance to the question using SC: they generate ten sets of retrieval results, each set containing the775

top four tables, then selecting the set that appears most frequently among the ten sets. To further filter776

the columns, all columns are ranked by relevance to the question by specifying that ChatGPT match the777

column names against with the question words or the foreign key should be placed ahead to assist in more778

accurate recall results. Similarly, SC method is used. cTBLS Sundar & Heck (2023) designed a three-779

step architecture to retrieve and generate dialogue responses grounded on retrieved tabular information.780

In the first step, a dual-encoder-based Dense Table Retrieval (DTR) model, initialized from RoBERTa781

Liu et al. (2019), identifies the most relevant table for the query. In the second step, a Coarse System782

State Tracking system, trained using triplet loss, is used to rank cells. Finally, GPT-3.5 is prompted to783

generate a natural language response to a follow-up query conditioned on cells of the table ranked by their784

relevance to the query as obtained from the coarse state tracker. The prompt includes the dialogue history,785

ranked knowledge sources, and the query to be answered. Their method produced more coherent responses786

than previous methods, suggesting that improvements in table retrieval, knowledge retrieval, and response787

generation lead to better downstream performance. Zhao et al. (2023d) used OpenAI’s Ada Embedding4788

and Contriever (Izacard et al., 2022) as the dense retriever along with BM25 (Robertson et al., 1995) as the789

sparse retriever. These retrievers help to extract the top-n most related textual and tabular evidence from790

the source document, which were then provided as the input context to answer the question.791

24For the scope of our paper, we do not consider images, videos and audio inputs.
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For additional information Some papers explore techniques to curate samples for in-context learning.792

Gao et al. (2023) explored the a few methods: (1) random: randomly selecting k examples; (2) question793

similarity selection: choosing k examples based on semantic similarity with question Q, based on a predefined794

distance metric (E.g. Euclidean or negative cosine similarity) of the question and example embedding, and795

kNN algorithm to select k closest examples from Q; (3) masked question similarity selection: similar to796

(2), but beforehand masking domain-specific information (the table names, column names and values) in797

the question; (4) query similarity selection: select k examples similar to target SQL query s∗, which relies798

on another model to generate SQL query s′ based on the target question and database, and so s′ is an799

approximation for s∗. Output queries are encoded into binary discrete syntax vectors. Narayan et al. (2022)800

explored manually curated and random example selection.801

5.3.3 Multi-turn tasks802

Some papers design pipelines that call LLMs iteratively. We categorize the use-cases for doing so into three803

buckets: (1) to decompose a challenging task into manageable sub-tasks, (2) to update the model outputs804

based on new user inputs, and (3) to work-around specific constraints or to resolve errors.805

Intermediate, sub-tasks This section overlaps with concepts around CoT and SC discussed earlier in806

Section 2.3. In a nutshell, since the reasoning task might be complex, LLMs might require guidance to807

decompose the task into manageable sub-tasks. For example, to improve downstream tabular reasoning, Sui808

et al. (2023b) proposed a two-step self-augmented prompting approach: first using prompts to ask the LLM809

to generate additional knowledge (intermediate output) about the table, then incorporating the response810

into the second prompt to request the final answer for a downstream task. Ye et al. (2023b) also guided811

the LLM to decompose a huge table into a small table, and to convert a complex question into simpler sub-812

questions for text reasoning. Their strategy achieved significantly better results than competitive baselines813

for table-based reasoning, outperforms human performance for the first time on the TabFact dataset. For814

Liu et al. (2023e), in encouraging symbolic CoT reasoning pathways, they allowed the model to interact815

with a Python shell that could execute commands, process data, and scrutinize results, particularly within816

a pandas dataframe, limited to a maximum of five iterative steps.817

Dialogue-based applications In various applications where the users are interacting with the LLMs,818

like in chatbots, the pipeline must allow for LLMs to be called iteratively. Some dialogue-based Text2SQL819

datasets to consider are the SParC (Yu et al., 2019b) and CoSQL (Yu et al., 2019a) datasets. For SParC,820

the authors designed subsequent follow-up questions based on Spider (Yu et al., 2018b).821

Working around constraints or error de-bugging Zhao et al. (2023a) used multi-turn prompts to822

work around cases where the tables exceed the API input limit. In other cases, especially if the generated823

LLM output is code, an iterative process of feeding errors back to the LLM can help the LLM generate824

correct code. Zhang et al. (2023d) did so to improve SQL query generation.825

5.3.4 Output evaluation and format826

If the QA output is a number or category, F1 or Accuracy evaluation metrics are common. If evaluating827

open-ended responses, apart from using typical measures for like ROUGE and BLEU, some papers also828

hire annotators to evaluate the Informativeness, Coherence and Fluency of the LLM responses Zhang et al.829

(2023g). When connected to programs like Python, Power BI, etc, LLMs’ outputs are not limited to text830

and code. For example, creating visualizations from text and table inputs are a popular task too Zhang831

et al. (2023g); Zha et al. (2023).832

6 Limitations and future directions833

LLMs has already been used in many tabular data applications, such as predictions, data synthesis, question834

answering and table understanding. Here we outline some practical limitations and considerations for future835

research.836
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Bias and fairness LLMs tend to inherit social biases from their training data, which significantly impact837

their fairness in tabular prediction and question answering tasks. Liu et al. (2023f) uses GPT3.5 and do838

few-shot learning to evaluate the fairness of tabular prediction on in context learning. The research concludes839

that LLMs tend to inherit social biases from their training data, which significantly impact their fairness840

in tabular prediction tasks. The fairness metric gap between different subgroups is still larger than that in841

traditional machine learning model. Additionally, the research further reveals that flipping the labels of the842

in-context examples significantly narrows the gap in fairness metrics across different subgroups, but comes843

at the expected cost of a reduction in predictive performance. The inherent bias of LLM is hard to mitigate844

through prompt (Hegselmann et al., 2023). Thus, a promising approach has proposed to mitigate bias is845

through pre-processing (Shah et al., 2020) or optimization (Bassi et al., 2024).846

Hallucination LLMs have the risk of producing content that is inconsistent with the real-world facts or847

the user inputs (Huang et al., 2023). Hallucination raises concerns over the reliability and usefulness of848

LLMs in the real-world applications. For example, when working with patient records and medical data,849

hallucinations have critical consequences. Akhtar et al. (2023) found that hallucination led to performance850

drops in reasoning for LLMs. To address these issues, Wang et al. (2023c) incorporated an audit module851

that utilizes LLMs to perform self-check and self-correction. They generated pseudo-labels, then used a data852

audit module which filters the data based on data Shapley scores, leading to a smaller but cleaner dataset.853

Secondly, they also removed any cells with False values, which removes the chances of the LLMs making false854

inference on these invalid values. Finally, they performed a sanity check via LLM’s reflection: They queried855

the LLM with the input template “What is the {column}? {x}” to check if the answer matches the original856

values. If the answers do not match, the descriptions are corrected by re-prompting the LLM. However, this857

method is far from efficient. Better methods to deal with hallucination could make LLMs’ application in858

tabular data modeling more practical.859

Numerical representation It was revealed that LLM in house embedding is not suitable for representing860

intrinsic relations in numerical features (Gruver et al., 2023), so specific embedding is needed. Tokeniza-861

tion significantly impacts pattern formation and operations in language models. Traditional methods like862

Byte Pair Encoding (BPE) used in GPT-3 often split numbers into non-aligned tokens (e.g., 42235630 into863

[422, 35, 630]), complicating arithmetic. Newer models like LLaMA tokenize each digit separately. Both864

approaches make LLM difficult to understand the whole number. Also, based on Spathis & Kawsar (2023),865

the tokenization of integers lacks a coherent decimal representation, leading to a fragmented approach where866

even basic mathematical operations require memorization rather than algorithmic processing. The devel-867

opment of new tokenizers, like those used in LLaMA (Touvron et al., 2023b), which outperformed GPT-4868

in arithmetic tasks, involves rethinking tokenizer design to handle mixed textual and numerical data more869

effectively, such as by splitting each digit into individual tokens for consistent number tokenization (Gruver870

et al., 2023). This method has shown promise in improving the understanding of symbolic and numerical871

data. However, it hugely increases the dimension of the input which makes the method not practical for872

large datasets and many features.873

Categorical representation Tabular dataset very often contains an excessive number of columns, which874

can lead to serialized input strings surpassing the context limit of the language model and increased cost.875

This is problematic as it results in parts of the data being pruned, thereby negatively impacting the model’s876

performance. sample/truncate. Additionally, there are issues with poorly represented categorical feature,877

such as nonsensical characters, which the model struggles to process and understand effectively. Another878

concern is inadequate or ambiguous Metadata, characterized by unclear or meaningless column names and879

metadata, leading to confusion in the model’s interpretation of inputs. Better categorical features encoding880

is needed to solve these problems.881

Standard benchmark LLMs for tabular data could greatly benefit from standardized benchmark datasets882

to enable fair and transparent comparisons between models. In this survey, we strive to summarize commonly883

used datasets/metrics and provide recommendations for dataset selection to researchers and practitioners.884

However, the heterogeneity in tasks and datasets remains a significant challenge, hindering fair comparisons885

of model performance. Therefore, there is a pressing need for more standardized and unified datasets to886

bridge this gap effectively.887
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Model interpretability Like many deep learning algorithms, output from LLM suffers from a lack of888

interpretability. Only a few systems expose a justification of their model output such as TabLLM Hegselmann889

et al. (2023). One direction is to use the Shapley to derive interpretations. Shapley has been used to evaluate890

the prompt for LLM (Liu et al., 2023a). It could also be useful to understand how each feature influence the891

result. For instance, in prediction for diseases, providing explanation is crucial. In this case, a basic Shapley892

explanations would be able to show all features that led to the final decision. Future research is needed to893

explore the mechanisms for LLM’s emerging capabilities for tabular data understanding.894

Easy to use Currently, most relevant models require fine-tuning or data serialization, which could make895

these models hard to access. Some pretrained model such as Wang et al. (2023c); ? could make people easy896

to use. It would be much easier to access if we can integrate these models with auto data prepossessing and897

serialization to existed platform such as Hugging Face.898

Fine-tuning strategy design Designing appropriate tasks and learning strategies for LLMs is crucial.899

While LLMs demonstrate emergent abilities such as in-context learning, instruction following, and step-by-900

step reasoning, these capabilities may not be fully evident in certain tasks, depending on the model used.901

Also, LLMs are sensitive to various serialization and prompt engineering methods, which is the primary902

way to adapt LLM to unseen tasks. Thus, researchers and practitioners need to carefully design tasks and903

learning strategies tailored to specific models in order to achieve an optimal performance.904

Model grafting The performance of LLM for tabular data modeling could be improved through model905

grafting. Model grafting involves mapping non-text data into the same token embedding space as text using906

specialized encoders, as exemplified by the HeLM model (Belyaeva et al., 2023), which integrates spirogram907

sequences and demographic data with text tokens. This approach is efficient and allows integration with high-908

performing models from various domains but adds complexity due to its non-end-to-end training nature and909

results in communication between components that is not human-readable. This approach could be adapted910

to LLM for tabular data to improve the encoding of non-text data.911

7 Conclusion912

This survey represents the first comprehensive investigation into the utilization of LLMs for modeling het-913

erogeneous tabular data across various tasks, including prediction, data synthesis, question answering and914

table understanding. We delve into the essential steps required for tabular data to be ingested by LLM,915

covering serialization, table manipulation, and prompt engineering. Additionally, we systematically compare916

datasets, methodologies, metrics and models for each task, emphasizing the principal challenges and recent917

advancements in understanding, inferring, and generating tabular data. We provide recommendations for918

dataset and model selection tailored to specific tasks, aimed at aiding both ML researchers and practitioners919

in selecting appropriate solutions for tabular data modeling using different LLMs. Moreover, we examine920

the limitations of current approaches, such as susceptibility to hallucination, fairness concerns, data pre-921

processing intricacies, and result interpretability challenges. In light of these limitations, we discuss future922

directions that warrant further exploration in future research endeavors.923

With the rapid development of LLMs and their impressive emergent capabilities, there is a growing demand924

for new ideas and research to explore their potential in modeling structured data for a variety of tasks.925

Through this comprehensive review, we hope it can provide interested readers with pertinent references and926

insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and927

address the prevailing challenges in the field.928
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