
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOCAL-GLOBAL SHORTEST PATH ALGORITHMS ON
RANDOM GRAPHS, ENHANCED WITH GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) using local message passing were recently shown
to inherit the intrinsic limitations of local algorithms in solving combinatorial
graph optimization problems such as finding shortest distances (Loukas, 2020). To
address this issue, Awasthi et al. (2022) proposed architectures based on Bourgain’s
(1985) seminal work on Hilbert space embeddings. These architectures enhance
local message passing in GNNs with a single global computation, yielding a
local-global algorithm. This paper focuses on the average-case analysis of more
general local-global algorithms for finding shortest distances (of which GNN+
is a particular case). Our primary contribution is a theoretical analysis of these
algorithms on Erdős-Rényi (ER) random graphs. We prove that, on random graphs,
these algorithms have lower distortion of shortest distances for most pairs of nodes
w.h.p. while requiring a lower embedding dimension. Inspired by Awasthi et al.
(2022), and to automate local computations and improve computational efficiency
in practical scenarios, we further propose a modification to these algorithms that
incorporates GNNs in the local computation phase. Empirical results on ER
graphs and benchmark graph datasets demonstrate the enhanced performance of
the GNN-augmented algorithm over the traditional approach.

1 INTRODUCTION

Finding shortest paths on networks is an important combinatorial optimization problem arising in
many practical applications, such as transportation networks Fu et al. (2006) and integrated circuit
design Cong et al. (1998). Unlike other optimization problems on graphs, exact solutions for shortest
paths can be found using classical algorithms such as Dijkstra’s algorithm in polynomial time.
Moreover, advancements in indexing techniques have made exact shortest-path distance queries
highly efficient, with solutions capable of handling large-scale graphs and providing microsecond-
level query times in certain settings (Akiba et al., 2013; Hayashi et al., 2016; Ouyang et al., 2018;
Farhan et al., 2018).

However, not all scenarios allow for such efficient indexing. For example, dynamic networks
with frequently updated edge weights or applications requiring real-time computation on resource-
constrained devices may not benefit from precomputed indexes. In such cases, approximate methods
are particularly valuable due to their adaptability and lower computational overhead. This has
motivated the exploration of machine learning approaches to shortest path finding, particularly those
employing graph neural networks (GNNs).

Despite their promise in combinatorial optimization (Lemos et al., 2019; Cappart et al., 2023; Li et al.,
2018; 2023; Veličković et al., 2019; Zhang et al., 2023), GNN-based approaches face significant
challenges in the shortest path problem. Local message-passing algorithms like GNNs are constrained
by impossibility results (Loukas, 2020; Sarma et al., 2012), requiring prohibitively large embedding
dimensions or numbers of convolutions to achieve even a constant-factor approximation of distances
in the worst-case. A promising direction to address these limitations is the combination of local
message-passing and global methods, which can provide a better tradeoff between efficiency and
accuracy. For example, Awasthi et al. (2022) propose GNN+, a two-part architecture where GNNs
compute local path distances, and a global fully connected layer combines their outputs (Awasthi
et al., 2022). Fundamentally, such approaches are inspired by Bourgain’s seminal result on metric
space embeddings into Hilbert spaces (Bourgain, 1985), which quantifies the error incurred when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

approximating shortest path distances with sums or differences of local embeddings. Bourgain’s
theorem also prescribes minimum sketch sizes for the class of local-global algorithms that includes
GNN+.

While these algorithms show strong empirical performance, their theoretical underpinnings remain
sparse. Existing results, including those of Bourgain (Bourgain, 1985), Matoušek (Matoušek, 1996),
and Das Sarma et al. (Sarma et al., 2012), are worst-case guarantees. Empirical evidence suggests
these worst-case bounds can be overly pessimistic for typical graphs, highlighting the need for
theoretical guarantees tailored to average-case graphs.

Theoretical contributions. This paper focuses on the theoretical analysis of local-global algorithms
inspired by Bourgain’s embedding theorem on Erdös–Rényi (ER) random graphs. ER graphs are a
foundational model in the random graphs literature, offering insights into average-case scenarios for
combinatorial optimization problems. They are also commonly used in benchmarking GNN models,
as in GraphWorld (Palowitch et al., 2022).

Interestingly, Bourgain also showed that random graphs are difficult to embed in Euclidean space
while preserving distances (Bourgain, 1985, Section 3). For networks of size n, random graphs
require an embedding dimension of O(log n) for a O(log n/ log log n)-factor approximation, close
to the worst-case guarantee of O(log n). Studying the performance of local-global algorithms on
random graphs for constant-factor approximations further motivates our work.

Our main contribution is theoretical: we show that local-global algorithms provide (1− ε)-factor
lower bounds and (1 + ε)-factor upper bounds for the shortest distances for most pairs of nodes with
high probability. The proof leverages branching process approximations developed in the random
graph literature (van der Hofstad, 2017; 2024).

In the worst-case setting, (Sarma et al., 2010), (Matoušek, 1996), and (Awasthi et al., 2022) showed
that local-global algorithms can achieve a (2c − 1)-factor upper bound and a 1

2c−1 -factor lower
bound with an embedding dimension of Ω(n1/c log n) for c > 1. Our results on ER graphs requires
an embedding dimension of Ω

(
n1/c log n 1/c

2 log 2

)
for a tighter

(
2− 1

c

)
-factor upper bound and

Ω
(
n1/c log n 1−1/c

2 log 2

)
for a tighter 1

c -factor lower bound, achieving improved embedding dimension
requirements for most node pairs in random graphs.

Methodological and empirical contributions. Building on GNN+, we enhance the local-global
shortest distance algorithm inspired by Bourgain’s theorem by incorporating a GNN to compute local
embeddings. In the local step, the GNN is trained to compute shortest path distances from a random
subset of nodes S to all other nodes in the graph. The local embedding of each node is calculated as
d(u, Si) = mins∈Si

d(u, s). In the global step, the distance between nodes u and v is lower bounded
by maxi |d(u, Si)− d(v, Si)|.
The use of GNNs in the local step is motivated by their demonstrated alignment with dynamic
programming (DP). DP underlies many reasoning tasks, including shortest paths which can be solved
using the Bellman-Ford algorithm. Recent works have shown that GNNs align well with DP, meaning
their computation structures naturally reflect the algorithmic processes of tasks like shortest path
computation, which improves learning efficiency and generalization (Xu et al., 2019b, Theorem 3.6).
In (Dudzik and Veličković, 2022), this alignment has been theoretically quantified, suggesting that
GNN architectures are particularly well-suited for reasoning tasks where DP plays a central role.

Our empirical results on ER graphs and benchmark datasets demonstrate that the GNN-augmented
algorithm improves over the traditional BFS-based approach. Notably, we show that GNNs trained
on small ER graphs can transfer effectively to downstream shortest path computation on real-world
social networks. This underscores the importance of analyzing graph algorithms in the context of
random graphs to inform their practical applications.

Notation. We consider undirected, unweighted and connected graphs G = (V,E) where V ,
|V | = n, is the set of nodes and E ⊆ V × V , |E| = m, is the set of edges. We define the one-hop
neighborhood of node u as N(u) = {v ∈ V | (u, v) ∈ E}. We often use the Bachmann–Landau
asymptotic notation o(1), O(1), ω(1),Ω(1),Θ(1) etc. For a discrete set X , |X| denotes its cardinality.
Given a sequence of probability measures (Pn)n≥1, a sequence of events (En)n≥1 is said to hold
with high probability (w.h.p.) if limn→∞ Pn(En) = 1. For a sequence of random variables (Xn)n≥1,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Xn
P−→ c means that Xn converges to c in probability. We write statements such as Xn = f(n)o(1)

w.h.p. to abbreviate that logXn/ log f(n)
P−→ 0. Also, we write Xn = O(1) w.h.p. to mean that

P(Xn ≥ K)→ 0 for a sufficiently large K.

2 SHORTEST PATH PROBLEMS AND LOCAL-GLOBAL ALGORITHMS

Given graph G = (V,E) and a pair of nodes u, v ∈ V , the shortest path problem consists of finding
the path with the smallest number of edges between u and v, and the number of edges in this path, or
the shortest path distance between u and v, denoted d(u, v). This is one of the most fundamental
combinatorial optimization problems on graphs.

The classical algorithm for finding graph shortest paths is Dijkstra’s algorithm. Starting from a source
node u, Dijkstra’s algorithm returns the exact shortest paths between u and every other node v ∈ V
along with the corresponding distances d(u, v) via breadth-first search (BFS). It proceeds as follows:

(0) Initialize d(u, v) =∞ for all v ∈ V . Set s = u and ∆ = 1.
(1) From s, visit s’s neighbors v ∈ N(s) and assign them distance d(u, v) = min(d(u, v),∆).
(2) Mark s as visited and update ∆ = ∆+ 1.
(3) Select the unvisited node with smallest distance to u, say t, and set s = t.
(4) Repeat (1)–(3) until convergence.

Using naive data structures to store nodes’ visited statuses and current distances, the complexity of
Dijsktra’s algorithm is O(n2). This can be improved to O(m+ n log n) by using more efficient data
structures like heaps Schrijver (2012), but is still prohibitive for large graphs.

2.1 LOWER AND UPPER BOUNDS ON SHORTEST PATH DISTANCE

While computing exact shortest path distances is expensive, we can afford to compute local paths.
At a high level, local-global algorithms leverage this idea as follows. First, they sample a number
of seed nodes that are stored in a set S. Then, for each node in V , they compute the shortest path
distance to the nodes in S. This is the so-called local step, as in practice the shortest paths between
v ∈ V and s ∈ S can be computed via BFS from S.

Local step: Sample seed nodes s ∈ S. Compute exact d(s, v) for all s ∈ S, v ∈ V . (1)

Using the triangle inequality, the distances between the nodes in S and V can be used to approximate
d(u, v) for any u, v ∈ V . in two ways.

Lower bound (LB). Let u, v ∈ V , and s ∈ S. By the triangle inequality, we have d(u, s) ≤
d(u, v) + d(v, s), hence d(u, v) can be lower bounded as

|d(u, s)− d(v, s)| ≤ d(u, v)

since d(u, s) and d(v, s) are known from (1). For arbitrary s, this approximation is however very
coarse. Therefore, in practice we search over all s ∈ S and find the one that maximizes the left-
hand-side. More formally, we can formulate this as follows. Given the exact distances d(u, si) for all
u ∈ V and si ∈ S for i = 1, 2, .., |S|, construct an embedding vector

xu = [d(u, s1) . . . d(u, s|S|)] (2)

for each u ∈ V . Then, the best lower bound on d(u, v) is given by ∥xu−xv∥∞. This is the so-called
global step, as the infinity norm requires taking the maximum over all vector entries.

Global step for LB: Compute d̂(u, v) = ∥xu − xv∥∞ for all u, v ∈ V . (3)

Upper bound (UB). To find an upper bound d(u, v), we can once again use the triangle inequality as

d(u, v) ≤ d(u, s) + d(s, v).

Similarly to what we did for the lower bound, we want to pick the seed s for which this upper bound
is the tightest. Using the same embeddings xu from (2), the global step is then

Global step for UB: Compute d̃(u, v) = min
i
[xu + xv]i for all u, v ∈ V . (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 LOWER AND UPPER BOUND DISTORTIONS, AND AN ALGORITHM THAT ACHIEVES THEM

The pseudoalgorithms defined by the local and global steps in (1),(3), (4) are only useful if we can
derive guarantees on their approximation ability. For the LB, these can be obtained from Bourgain’s
classical embedding theorem, which characterizes the distortion incurred by optimal embeddings of
metric spaces onto R|S| equipped with the ℓ∞ norm. For the UB, similar guarantees were derived in
(Sarma et al., 2010).

Theorem 2.1 (LB distortion, adapted from Matoušek (1996),Awasthi et al. (2022)). Let G be a graph
with n ≥ 3 nodes. Let c > 1. If D = Ω(n1/c log n), then there exist node embeddings x∗

u ∈ RD,
u ∈ V , for which d̂(u, v) = ∥x∗

u − x∗
v∥∞ satisfies

d(u, v)

2c− 1
≤ d̂(u, v) ≤ d(u, v). (5)

Theorem 2.2 (UB distortion, Sarma et al. (2010)). Let G be a graph with n ≥ 3 nodes. Let
c > 1. If D = Ω(n1/c log n), then there exist node embeddings x∗

u ∈ RD, u ∈ V , for which
d̃(u, v) = mini[x

∗
u + x∗

v]i satisfies

d(u, v) ≤ d̃(u, v) ≤ (2c− 1)d(u, v). (6)

In order for (5) and (6) to hold, we need the embeddings x∗
u to be optimal. Yet, there is no guarantee

that this is the case for the embeddings xu in (2).

One way to ensure good embeddings is to control how we sample the seeds. Sarma et al. (2010)
proposed a method for doing so that we describe in Algorithm 1. This method consists of first
sampling r + 1 seed sets S0, S1, . . . , Sr of various sizes. Instead of recording distances of u to
every node in every set Si, the embeddings only keep track of the minimum distance to the set, i.e.,
[xu]i = mins∈Si d(u, s).

Algorithm 1: Local-Global Algorithm (adapted from Sarma et al. (2010))
Input: Graph G = (V,E), |V | = n. Number of seed sets r + 1. Seed sets sizes |Si|.
Output: Shortest path approximations d̂(u, v), d̃(u, v) for all u, v ∈ V .
for i = 0, 1, . . . , r ; /* Local step */
do

Si ← {s1, . . . , s|Si| ∼ Uniform(V)} ;
for u = 1, . . . , n do

[xu]i = mins∈Si
Dijkstra(s, u)

[σu]i = argmins∈Si
Dijkstra(s, u)

end
end
for u = 1, . . . , n ; /* Global step */
do

for v = 1, . . . , n do
d̂(u, v) = ∥xu − xv∥∞ ; /* Lower bound */

d̃(u, v) = mini[(xu + xv)⊙ 1(σu = σv)]i ; /* Upper bound */
end

end

For the LB, smaller seed set sizes are beneficial as, for k1 + k2 < 1 with k1 < k2, we must find at
least one seed set with a seed in the ball of radius k1d(u, v) centered at u, and no seeds in the ball of
radius k2d(u, v) centered at v. Hence, having a range of seed set sizes helps.

For the UB, this strategy ensures a seed falls at the intersection of the ⌈d(u,v)2 ⌉-hop neighborhoods
of nodes u and v w.h.p. In this case, an auxiliary vector σu is also defined to store the index of the
closest node to u in the set Si, i.e., [σu]i = argmins∈Si

d(u, s). This method is described in detail in
Algorithm 11.

11(·) denotes the elementwise Boolean function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It can be shown that if r = ⌊log n⌋, the |Si| are exponential in i, and the local step of Algorithm 1
is run for R = Θ(n1/c) rounds—yielding a total embedding size of Θ(n1/c log n)—, the resulting
shortest path distance approximations satisfy Theorems 2.1 and 2.2 with high probability for any
graph. In the following, we show that the distortion and the embedding dimension can both be
improved for random graphs.

3 LOWER AND UPPER BOUND DISTORTIONS ON SPARSE ERDŐS-RÉNYI
GRAPHS

In this section, we will state and prove our main results concerning performance of Algorithm 1 on
a sparse Erdős-Rényi Graph. An Erdős-Rényi random graph ERn

(
λ
n

)
generates a random graph

on n nodes, and each edge {i, j} is included in the graph with probability λ
n , independently. Thus,

ERn

(
λ
n

)
is a distribution over the space of all graphs on n nodes. We write G ∼ ERn

(
λ
n

)
to

abbreviate that G is distributed as ERn

(
λ
n

)
. Let C(i) be the i-th largest connected component in

an Erdős-Rényi random graph. A well-known result in the theory of random graphs (cf. (van der
Hofstad, 2017, Theorems 4.4, 4.8, and Corollary 4.13)) is the existence of a unique giant component
in an Erdős-Rényi random graph, which states the following:

Theorem 3.1 (van der Hofstad (2017)). Let G ∼ ERn

(
λ
n

)
and C(i) be as defined above. If λ < 1,

then C(1)

n = O
(
logn
n

)
w.h.p. On the other hand, if λ > 1, then C(1)

n

P−→ ζ for some ζ > 0 and
C(2)

n = O
(
logn
n

)
w.h.p.

Throughout, we will consider a fixed λ > 1, since otherwise P(u1, u2 lie in the same component)→
0 as n→∞, for any u1, u2.

3.1 LOWER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the lower bound d̂(u, v) in Algorithm 1.

Theorem 3.2. Let G ∼ ERn

(
λ
n

)
and let u1, u2 be two nodes chosen independently and uniformly at

random with replacement (the choice of u1, u2 is also independent of G). Fix ε ∈ (0, 1). Let d̂(u1, u2)
be the output of Algorithm 1 for the lower bound on the shortest distance d(u1, u2) after R = ω(n1−ε)
runs of the local step, with |Si| = 2i for i = 0, 1, .., r and r = ⌊log n ε

2 log 2⌋, yielding node embedding

dimension D = Ω
(
n1−ε log n ε

2 log 2

)
. Then, with high probability, d̂(u1, u2) ≥ (1 − ε)d(u1, u2),

i.e., d̂(u1, u2) provides a (1− ε)-approximation of d(u1, u2).

Idea of the proof. Let Nk(u) denote the set of nodes with graph distance at most k from u and
∂Nk(u) denote the set of nodes with graph distance exactly k from u. The first part of the proof
relies on local neighborhood expansions of Erdős-Rényi random graphs. In particular, the boundaries
of the k-th neighborhoods of u1, u2 grow exponentially as λk. This is a consequence of the following
intermediate result.

Lemma 3.3. Let G, u1, and u2 be as in Theorem 3.2. Let L = κ0 logλ n with κ0 ∈ (0, 1
2) and

ε > 0 be sufficiently small. Let Ab1,b2 be the event that |∂NL(ui)| = bi for i = 1, 2 where bi ∈
(n−ελL, nελL). Fix κ ∈ (0, 1−κ0), and let En be the good event that |∂Nki

(ui)| ∈ (n−ελki , nελki)
for all ki ≤ (κ+κ0) logλ n and i = 1, 2. Then, there exists δ > 0 such that P(En | Ab1,b2) ≥ 1−n−δ

for all sufficiently large n.

Proof. See Appendix B.

To find the (1−ε)-factor lower bound for d̂(u1, u2) when u1, u2 are in the same connected component,
we consider two disjoint balls centered at u1 and u2 with radii differing by a factor of 1− ε. If there
exists a seed set that contains at least one point in the ball of smaller radius and is disjoint from the
ball of larger radius, then d̂(u1, u2) returned by Algorithm 1 is lower bounded by the larger radius
minus the smaller radius. The complete proof of Theorem 3.2 can be found in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 UPPER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the upper bound d̃(u, v) in Algorithm 1.

Theorem 3.4. Let G, u1, and u2 be as in Theorem 3.2. Fix ε ∈ (0, 1). Let d̃(u1, u2) be the output
of Algorithm 1 for the upper bound on the shortest distance d(u1, u2) after R = ω(n1−ε) runs of
the local step, with |Si| = 2i for i = 0, 1, .., r and r = ⌊log n 1−ε

2 log 2⌋, yielding node embedding

dimension D = Ω
(
n1−ε log n 1−ε

2 log 2

)
. Then, with high probability, d̃(u1, u2) ≤ (1 + ε)d(u1, u2),

i.e., d̃(u1, u2) provides a (1 + ε)-approximation of d(u1, u2).

Figure 1: Schematics depicting the computation of the upper bound (left) and lower bound (right).
Yellow nodes are the source and target, red nodes are seeds in a seed set S, and gray nodes are
arbitrary nodes. Left: To achieve the upper bound in Theorem 3.4, only one seed can be at the union
of the balls around u and v, and it must lie at the intersection. The need for lying at the intersection
is clear; that gives us our shortest path approximation. Having only one seed come from the union
ensures the algorithm will output at most d̃(u, v) = d(u, S)+d(v, S) ≤ (1+ ε)d(u, v) w.h.p. Right:
The balls around u and v are disjoint and we consider k1 ≥ k2 + 1− ε. To achieve the lower bound
in Theorem 3.2, at least one seed must lie on the ball around v, and no seed can lie on the ball around
u. This guarantees at least d̂(u, v) = d(u, S)− d(v, S) ≥ (1− ε)d(u, v) w.h.p.

Idea of the proof. Let Nk(u) denote the set of nodes with graph distance at most k from u. The
fact that the boundaries of the k-th neighborhoods of u1, u2 grow exponentially as λk (Lemma 3.3)
allows us to show that |Nk(u1) ∪Nk(u2)| grow as λk and |Nk(u1) ∩Nk(u2)| grow as λ2k

n . This is
formalized in the following proposition.
Proposition 3.5. Let G, u1, and u2 be as in Theorem 3.2. Let ε > 0 be sufficiently small. For any
κ0 logλ n ≤ k ≤ (κ + κ0) logλ n with κ0 ∈ (0, 1

2) and κ ∈ (0, 1 − κ0), the following holds with
high probability, conditionally on u1, u2 being in the same connected component:

|Nk(u1) ∩Nk(u2)| ∈
(
n−ελ

2k

n
, nε
(λ2k

n
+ 1
))

and |Nk(u1) ∪Nk(u2)| ∈
(
n−ελk, nελk).

Proof. See Appendix D.

Lemma 3.6. Let ε > 0 be sufficiently small and let L = κ0 logλ n with κ0 ∈ (0, 1
2). Let An denote

the event that n−ελL ≤ |∂NL(ui)| ≤ nελL for i = 1, 2 and Bn denote the event that u1 and u2 are
in the same connected component. Then P(An \Bn)→ 0 and P(Bn \An)→ 0 as n→∞.

Proof. See Appendix E.

Given these growth rates, the main idea is to show that, with high probability, there exists a seed set
Si such that it has exactly one seed in Nk(u1) ∪Nk(u2) that also lies in Nk(u1) ∩Nk(u2), where
k = 1

2 (1 + ε)d(u1, u2). Thus, with high probability, the output d̃(u, v) of Algorithm 1 is at most
sum of distances from u1 to Si and u2 to Si. Due to the choice of k, the output is therefore at most
(1 + ε)d(u1, u2). The complete proof of Theorem 3.4 can be found in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 A GNN-BASED ALGORITHM AND EXPERIMENTAL RESULTS

We propose to modify Algorithm 1 by implementing the local step with a GNN. GNNs are deep
convolutional architectures tailored to graph data Scarselli et al. (2008); Kipf and Welling (2017);
Defferrard et al. (2016); Ruiz et al. (2021). Specifically, we focus on node data that we represent as
matrices X ∈ Rn×d. Each row of X corresponds to a node u ∈ V and each column to a different
signal or feature. A GNN layer operates on this type of data via two operations: a graph convolution
and a pointwise nonlinearity. Explicitly, let Xℓ−1 ∈ Rn×dℓ−1 be the input to layer ℓ (or equivalently
the output of layer ℓ− 1). The ℓth layer is given by

Xℓ = σ

(
K−1∑
k=0

AkXℓ−1Wℓ,k

)
(7)

where A ∈ Rn×n is the graph adjacency, Wℓ,k ∈ Rdℓ−1×dℓ are learnable parameters and σ is a
pointwise nonlinear activation function such as the ReLU or sigmoid. A GNN stacks L such layers,
the first layer input X0 being the input data X and the last layer output XL the output data Y. To be
concise, we represent the entire GNN as a map Y = Φ(X,A;W) whereW = {Wℓ,k}ℓ,k groups
the learnable parameters across all layers.

An important property GNNs inherit from graph convolutions is locality. More specifically, the
operations involved in each GNN layer can be implemented locally at each node via one-hop
information exchanges with their neighbors. To see this, consider a one-dimensional signal x ∈ Rn.
The operation z = Ax is local in the sense that

[z]u = [Ax]u =
∑
v∈V

[A]uv[x]v =
∑

v∈N(u)

[A]uv[x]v

where N(u) is the neighborhood of node u. Similarly, zk = Akx can be implemented locally in R
rounds by unrolling zk = Azk−1. The nonlinearity σ is pointwise and hence also local.

Leveraging the locality property of GNNs, we replace the local step of Algorithm 1 by a GNN
forward pass. Instead of calculating the embeddings xu via BFS, we propose to learn them using a
GNN.
Remark 4.1. The motivation for using GNNs in the local step is threefold. First, once the GNN
is trained, the sketch computations become automated. Second, by using GNNs we can save
computations as, if L < log n, GNN inference is cheaper than BFS on ER graphs. Third, we can
leverage the GNN transferability property Ruiz et al. (2020; 2023) to transfer the learned model to
graphs of different sizes associated with the same graph model.

4.1 EXPERIMENT 1: LEARNING THE GNN

In order to train the GNN, we proceed as follows. We sample a training set of ER graphs of size n and
generate random input signals X ∈ Rn×r satisfying 1T

nX1r = r and 1T
nX = 1T

r . I.e., each column
corresponds to a seed and one-hot encodes which node is a seed for a given graph. The outputs have
the same dimensions as the inputs, Y ∈ Rn×r, and correspond to the shortest path distances between
nodes u ∈ V and seeds s ∈ S, i.e., [Y]us = d(u, s).

Before testing our algorithm, we assess the ability of the learned GNNs to compute end-to-end
shortest paths. For this experiment, we consider n = 50, two values of λ, and set the GNN depth
to ⌈logλ n⌉. The results of this experiment are shown in Figure 2, where we plot the actual shortest
path distance versus the shortest path distances predicted by four different GNN architectures (GCN
Kipf and Welling (2017), GraphSAGE Hamilton et al. (2017), GAT Veličković et al. (2018), and
GIN Xu et al. (2019a)). We observe that the GNN predictions saturate in both plots, signaling the
inability of the GNN to predict longer distances even when their depth is higher than the expected
path length of logλ n. As expected, GNNs are not suitable for computing end-to-end shortest path
distances, especially on sparser graphs (λ = 4), which tend to exhibit longer shortest paths.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Raw outputs of ⌊
√
n⌋-64-32-16-⌊

√
n⌋ GNNs that are trained on ERs ∼ ERn(λ/n) with

λ ∈ {4, 5} to predict shortest path distances end-to-end. Evaluation data are ERs from the same
model.

4.2 EXPERIMENT 2: COMPARISON WITH ALGORITHM 1

Next, we evaluate the difference between the lower bound achieved using the GNN-based algorithm,
and the lower bound from Algorithm 1. Only lower bounds are compared to ensure a fair comparison,
as the upper bound computation requires storing additional information—-the index of the closest
seed in a seed set to each node.

For this experiment, we consider a range of values of n. We limit the GNN depth to L≪ logλn and
tune L and other parameters via cross-validation; see Appendix F for details. We also allow for R
rounds of the local step, i.e., we sample r + 1 seed sets as defined in Algorithm 1 in R rounds, and
save all R(r + 1) distances to use in the global step.

The results of this experiment are shown in Figure 3 for λ = 4 and λ = 5. The GNN lower bound is
worse than the vanilla lower bound on the λ = 4 graph, though it leads to a substantial improvement
on the λ = 5 graph for all values of R. While both values of λ correspond to the supercritical regime
(λ > 1), there are a few factors explaining the difference in these two cases. As we could see from
Figure 2, the GNN learns much worse local embeddings in the λ = 4 case, even for a small 50-node
graph. Furthermore, for large values of n the graph is almost surely connected when λ = 5, but not
when λ = 4. This is an important distinction which can also be observed from the worsening of
the GNN-based algorithm performance at n ≈ 100 for λ = 4 (note that for n < 100, 4 > log4 n).
Finally, the GNN-based algorithm is faster than Algorithm 1, especially on large graphs, which is
expected as exact local sketch computations via Dijkstra’s algorithm scale poorly with the graph size.

(a) (b) (c)

Figure 3: (a)-(b) Performance of BFS-based embeddings vs. GNN-based embeddings with GNNs
trained on ERs∼ ERn(λ/n) for λ ∈ {4, 5}. (c) Time required to generate all node-to-seed distances
in ERs with n nodes by NetworkX’s highly optimized BFS as compared with our widest and deepest
GNNs. All GCN-, GraphSage-, GAT-, and GIN-based algorithms are represented by the same color
and line style for the same R, and the deviations between them are insignificant.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 EXPERIMENT 3: TRANSFERABILITY

In our last experiment, we examine whether we can transfer GNNs learned on small graphs to compute
local embeddings on larger networks, and use these embeddings for downstream approximation of
shortest paths on these larger networks. This is motivated by theoretical and empirical work Ruiz
et al. (2020; 2023) showing that GNNs are transferable in the sense that their outputs converge on
convergent graph sequences, which in turn implies that they can be trained on smaller graphs and
transferred to larger (but similar) graphs.

Figure 4: Error rates on (a) test ERs ∼ ERn′(λ/n′), (b) GENSEC company network with 14,113
nodes, (c) Arxiv HEP-TH collaboration network with 28,281 nodes, (d) GENSEC artist network with
41,618 nodes, (e) ER-AVGDEG10-100K-L2 labeled network with 99,997 nodes, and (f) Brightkite
social network with 56,739 nodes by BFS-based embeddings vs. GNN-based embeddings using
GNNs trained on ERs ∼ ERn(λ/n) for λ = 5. See the Appendix for further details and more
transferability results on real-world networks.

Here, we focus on the λ = 5 case and train a sequence of eight GNNs on graphs ranging from
n = 25 to n = 3200 nodes. Then, we use these GNNs to compute shortest path distances using our
GNN-based algorithm on an ER graph with same λ and graph size of n′ = 12800 nodes (additional
experiment details are provided in Appendix F). Figure 4 (a) shows the MSE achieved in each
instance with respect to the true shortest path distances as a function of the training graph size,
with the flat dashed lines representing the MSE achieved by Algorithm 1 on the n′-node graph. We
observe a steady decrease of the MSE as n increases, and that the GNN-based algorithm matches the
performance of Algorithm 1 when the GNN is trained on graphs of n = 100 nodes—which is 128
times smaller than the target n′-node graph.

We also examine the transferability of the same set of GNNs to seventeen real-world networks with
sizes ranging from 3,892 to 99,997 nodes and average degrees between 4.19 and 26.77. In certain
scenarios, random graphs can be used to model social networks Newman and Watts (1999). Therefore,
we hypothesize that GNNs trained on ER graphs should produce good quality embeddings for these
networks. The results on five of the seventeen networks are shown in Figure 4 (b-f), where we once
again observe MSE improvement with the training graph size and that the GNN-based algorithm
outperforms Algorithm 1 even when the embeddings are learned on much smaller graphs. The results
on the remaining twelve real-world networks are provided in the Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

We introduce an average-case analysis of algorithms combining local and global computations for
solving shortest distance problems on ER graphs, complementing Bourgain’s worst-case result. In
particular, our theoretical analysis demonstrates that on ER graphs these algorithms can achieve
a (1 − ε)-factor lower bound and a (1 + ϵ)-factor upper bound of shortest distances with high
probability. Additionally, we propose a modification to Bourgain’s algorithm, which incorporates
GNNs in the local computation phase to further enhance practical performance. Empirical results on
both ER graphs and benchmark datasets demonstrate the superior performance of the GNN-augmented
approach.

Limitations and future work. Our analysis focuses on Erdös–Rényi (ER) random graphs, which
provided a simplified framework to develop theoretical tools and insights for local-global algorithms.
These methods are broadly applicable to graphs with local expansion properties, such as inhomo-
geneous random graphs, and extending our analysis to such models is a key direction for future
work. However, for other important graph classes in shortest path problems, such as planar graphs,
our techniques are unlikely to apply. Addressing these cases will require the development of new
methods, which is an interesting direction for future work.

REFERENCES

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on large
networks by pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 349–360, 2013.

Krishna B. Athreya and Peter E. Ney. Branching Processes. Springer, Berlin, Heidelberg, 1972.

Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. Beyond GNNs: An efficient architecture
for graph problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 6019–6027, 2022.

Charles Bordenave. Lecture notes on random graphs and probabilistic combinatorial optimization.
Available at https://www.math.univ-toulouse.fr/ bordenave/coursRG.pdf, 2016.

J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of
Mathematics, 52(1):46–52, 1985. doi: 10.1007/BF02776078. URL https://doi.org/10.
1007/BF02776078.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Jason Cong, Andrew B Kahng, and Kwok-Shing Leung. Efficient algorithms for the minimum
shortest path Steiner arborescence problem with applications to VLSI physical design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(1):24–39, 1998.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. In Neural Inform. Process. Syst., Barcelona, Spain, 5-10 Dec. 2016.
NIPS Foundation.

Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. Advances
in neural information processing systems, 35:20635–20647, 2022.

Muhammad Farhan, Qing Wang, Yu Lin, and Brendan Mckay. A highly scalable labelling approach
for exact distance queries in complex networks. arXiv preprint arXiv:1812.02363, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric.
arXiv preprint arXiv:1903.02428, 2019.

Liping Fu, Dihua Sun, and Laurence R Rilett. Heuristic shortest path algorithms for transportation
applications: State of the art. Computers & Operations Research, 33(11):3324–3343, 2006.

10

https://doi.org/10.1007/BF02776078
https://doi.org/10.1007/BF02776078

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. Fully dynamic shortest-path distance
query acceleration on massive networks. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 1533–1542, 2016.

Remco van der Hofstad. Random Graphs and Complex Networks, volume I. Cambridge University
Press, Cambridge, 2017. doi: 10.1017/9781316779422. URL http://www.win.tue.nl/
{~}rhofstad/NotesRGCN.pdf.

Remco van der Hofstad. Random Graphs and Complex Networks, volume II. Cambridge University
Press, Cambridge, 2024.

Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. John Wiley & Sons, 2000.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In 5th
Int. Conf. Learning Representations, Toulon, France, 24-26 Apr. 2017. Assoc. Comput. Linguistics.

Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colouring meets deep
learning: Effective graph neural network models for combinatorial problems. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), pages 879–885. IEEE, 2019.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD ’05, page 177–187, New York, NY,
USA, 2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.
1081893. URL https://doi.org/10.1145/1081870.1081893.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Trans. Knowl. Discov. Data, 1(1):2–es, mar 2007. ISSN 1556-4681. doi:
10.1145/1217299.1217301. URL https://doi.org/10.1145/1217299.1217301.

Shouheng Li, Dongwoo Kim, and Qing Wang. Local vertex colouring graph neural networks. In
International Conference on Machine Learning, pages 19616–19637. PMLR, 2023.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=B1l2bp4YwS.

Jiří Matoušek. On the distortion required for embedding finite metric spaces into normed spaces.
Israel Journal of Mathematics, 93(1):333–344, 1996.

Mark Newman and Duncan J Watts. Scaling and percolation in the small-world network model.
Physical review E, 60(6):7332, 1999.

Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. When hierarchy meets
2-hop-labeling: Efficient shortest distance queries on road networks. In Proceedings of the 2018
International Conference on Management of Data, pages 709–724, 2018.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, page 3691–3701, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539203. URL
https://doi.org/10.1145/3534678.3539203.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL https://networkrepository.com.

11

http://www.win.tue.nl/{~}rhofstad/NotesRGCN.pdf
http://www.win.tue.nl/{~}rhofstad/NotesRGCN.pdf
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1217299.1217301
https://openreview.net/forum?id=B1l2bp4YwS
https://openreview.net/forum?id=B1l2bp4YwS
https://doi.org/10.1145/3534678.3539203
https://networkrepository.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benedek Rozemberczki and Rik Sarkar. Characteristic Functions on Graphs: Birds of a Feather,
from Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM ’20), page 1325–1334. ACM,
2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2019a.

Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. Gemsec: Graph embedding
with self clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2019, pages 65–72. ACM, 2019b.

L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon neural networks and the transferability of graph
neural networks. In 34th Neural Inform. Process. Syst., Vancouver, BC (Virtual), 6-12 Dec. 2020.
NeurIPS Foundation.

L. Ruiz, F. Gama, and A. Ribeiro. Graph neural networks: Architectures, stability and transferability.
Proc. IEEE, 109(5):660–682, 2021.

L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Transferability properties of graph neural networks. IEEE
Transactions on Signal Processing, 2023.

Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy. A sketch-based distance
oracle for web-scale graphs. In Web Search and Data Mining, 2010. URL https://api.
semanticscholar.org/CorpusID:17378629.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Panduran-
gan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed
approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012. doi: 10.1137/11085178X.
URL https://doi.org/10.1137/11085178X.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Alexander Schrijver. On the history of the shortest path problem. Documenta Mathematica, 17(1):
155–167, 2012.

David Tanny. Limit Theorems for Branching Processes in a Random Environment. The Annals of
Probability, 5(1):100 – 116, 1977. doi: 10.1214/aop/1176995894. URL https://doi.org/
10.1214/aop/1176995894.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
In Int. Conf. Learning Representations 2018, pages 1–12, Vancouver, BC, 30 Apr.-3 May 2018.
Assoc. Comput. Linguistics.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. arXiv preprint arXiv:1910.10593, 2019.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In 7th Int.
Conf. Learning Representations, pages 1–17, New Orleans, LA, 6-9 May 2019a. Assoc. Comput.
Linguistics.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019b.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023.

12

https://api.semanticscholar.org/CorpusID:17378629
https://api.semanticscholar.org/CorpusID:17378629
https://doi.org/10.1137/11085178X
https://doi.org/10.1214/aop/1176995894
https://doi.org/10.1214/aop/1176995894

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 3.2

We show that, for any ε ∈ (0, 1), d̂(u1, u2) ≥ (1 − ε) logλ n w.h.p. Let Sij be the i-the seed
set having size 2i in the j-th round. Let k1 = ε1 logλ n and k2 = (1 − ε) logλ n + k1, where
ε1 ∈

(
0, ε

2

)
(to be chosen later) (we let ε1 < ε

2 so that an argument identical to (16) would
yield that Nk1(u1) ∩ Nk2(u2) = ∅ w.h.p., conditionally on u1, u2 being in the same connected
component). Define Zij to be the event that Sij ∩ Nk1(u1) ̸= ∅ but Sij ∩ Nk1(u2) = ∅. Note
that, if Zij happens for some i ≤ r, j ≤ R, then d(u1, Sij) ≤ k1 and d(u2, Sij) ≥ k2, and
consequently, d̂(u1, u2) ≥ (1− δ) logλ n. Thus, denoting Z = ∪i≤r,j≤RZij , it suffices to prove that
P(Z | G, u1, u2)1{u1 ↔ u2}

P−→ 1, where u1 ↔ u2 stands for u1, u2 being in the same connected
component. Let C(i) be the set of nodes in the i-th largest connected component of G and C(i) be
the number of nodes in C(i). Note that, P(u1 ↔ u2, but u1, u2 /∈ C(1) | G) = 1

n2

∑
i≥2 |C(i)|2 ≤

C(2)

n

P−→ 0. Therefore, P({u1 ↔ u2} △ {u1, u2 ∈ C(1)})
P−→ 0, where △ denotes the symmetric

difference between sets. Thus, it suffices to show that P(Z | G, u1, u2)1{u1, u2 ∈ C(1)}
P−→ 1 (or

equivalently P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)}
P−→ 0).

The fact that P(Ac ∩B) = P(B)− P(A ∩B) implies, for each i, j,

P(Sij ∩Nk1
(u1) ̸= ∅, Sij ∩Nk2

(u2) = ∅ | G, u1, u2)

=

(
1− |Nk2

(u2)|
n

)2i

−
(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)2i

.

Therefore,

P(Zc | G, u1, u2) =

(r∏
i=0

(
1−

(
1− |Nk2

(u2)|
n

)2i

+

(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)2i))R

≤ exp

(
−R

r∑
i=0

((
1− |Nk2(u2)|

n

)2i

−
(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)2i))

= exp

(
−R

r∑
i=0

|Nk1(u1)|
n

2i−1∑
j=0

(
1− |Nk2(u2)|

n

)2i−1−j(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)j)

where the first "≤" uses 1 − x ≤ exp(−x). By Lemma 3.3, |Nk1
(u1)| = no(1) λnε1−1

λ−1 ≤
no(1) λnε1+1−ε−1

λ−1 = |Nk1
(u1)| = w.h.p. Then with high probability,

P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)} ≤ exp

(
−R
|Nk1

(u1)|
n

r∑
i=0

2i
(
1− 2

|Nk2
(u2)|
n

)2i)

≤ exp

(
−Rnε1−1+o(1)

r−1∑
i=0

2i
(
1− 2λ

λ− 1
nε1−ε+o(1)

) 2r

r i)

= exp

−Rnε1−1+o(1)

2r
(
1− 2λ

λ−1n
ε1−ε+o(1)

)2r

− 1

2

(
1− 2λ

λ−1n
ε1−ε+o(1)

) 2r

r

− 1

 .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Since 1 ≥
(
1 − 2λ

λ−1n
ε1−ε+o(1)

) 2r

r

≥
(
1 − 2λ

λ−1n
ε1−ε+o(1)

)2r

≥
(
1 −

2λ
λ−1n

ε1−ε+o(1)

)2
log n ε

2 log 2

→ 1 as n→∞, with high probability,

P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)} ≤ exp
(
−Rnε1−1+o(1)c2r

)
(with c ∈ (0, 1))

< exp
(
−Rnε1−1+o(1)c2logn ε

2 log 2−1
)
= exp

(
−Rc

2
nε1−1+ ε

2+o(1)
)

Choosing ε1 = ε
2 − o(1), R = ω(n1−ε) is sufficient for the final bound to tend to 0.

B PROOF OF LEMMA 3.3

The proof is adapted from (van der Hofstad, 2024, Section 2.6.4). Since we need an exponential
bound on the probability and L is growing with n, the proof does not follow from van der Hofstad
(2024).

We start by proving that there exists a γ ∈ (0, 1) and δ′ > 0 such that for all sufficiently large n,

|Nk(ui)| ≤ nγ , for all k ≤ (κ+ κ0) logλ n and i = 1, 2, (8)

with probability at least 1 − n−δ′ . Indeed, for any r ≥ 1 and node u, |∂Nr(u)| =∑
i∈∂Nr−1(u)

∑
j /∈Nr−1(u)

Iij , where Iij is the indicator random variable for the edge {i, j} be-
ing present. Therefore, E[|∂Nr(u)|] ≤ λE[|∂Nr−1(u)|]. Proceeding inductively, we have that
E[|∂Nr(u)|] ≤ λr and consequently, E[|Nr(u)|] ≤ λr+1−1

λ−1 = O(λr). Since κ0 + κ < 1, we can
apply Markov’s inequality to conclude that |Nk(ui)| ≤ nγ with probability 1− n−δ′ for some fixed
δ′ > 0 and for any fixed k ≤ (κ+ κ0) logλ n. Moreover, since |Nk(ui)| ≤ |Nk+1(ui)| for all k, we
can conclude (8).

Next, fix ε > 0 sufficiently small and suppose that δn = n−κ0/4. Define the event

Ek,(1) :=
{
b1[λ(1− δn)(1− n−(1−γ)))]k ≤ |∂NL+k(u1)| ≤ b1[λ(1 + δn)]

k
}

We will upper bound P(Eck,(1) | ∩k−1
l=0 El,(1),Ab1,b2). Again, using |∂NL+k(u1)| =∑

i∈∂NL+k−1(u1)

∑
j /∈NL+k−1(u1)

Iij , we have that

En := E[|∂NL+k(u1)| | NL+k−1(u1),Ab1,b2] = |∂NL+k−1(u1)|(n− |NL+k−1(u1)|)
λ

n
. (9)

Using (8), it follows that, with probability at least 1− n−δ′ ,

λ|∂NL+k−1(u1)|(1− n−(1−γ)) ≤ En ≤ λ|∂NL+k−1(u1)|. (10)

Conditionally on ∩k−1
l=0 El and Ab1,b2 , with probability at least 1− n−δ′ ,

b1λ
k(1− δn)

k−1(1− n−(1−γ))k ≤ En ≤ b1λ
k(1 + δn)

k−1. (11)

Using Standard concentration inequalities for sums of Bernoulli random variables (Janson et al.,
2000, Theorem 2.8 and Corollary 2.3, (2.9)), we conclude that

P(Eck,(1) | ∩k−1
l=0 El,(1),Ab1,b2)

= P(|∂NL+k(u1)− En| > δnEn | ∩k−1
l=0 El,Ab1,b2)

≤ 2e−
δ2n
3 ×En + n−δ′ ≤ n−δ′/2.

Therefore, P(∩k≤κ0 logλ nEk | Ab1,b2) ≥ 1−n−δ for all sufficiently large n, for some δ > 0. Finally,
the proof follows by noting that (1− δn)

k = (1−n−κ0/4)k → 1 and (1−n−(1−γ))k → 1 uniformly
over k ≤ κ log n. An identical argument can be repeated for neighborhoods of u2. In the latter case,
we need to additionally condition on the L+k neighborhood of u1. With probability at least 1−n−δ′ ,
this will result in exploration of at most nγ many nodes due to (8), and therefore, the asymptotics
above also hold for neighborhoods of u2. We skip redoing the proof for the neighborhoods of u2

here.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 3.4

Let k = 1
2 (1 + ε) logλ n, where ε ∈ (0, 1). For each fixed i = 0, 1, . . . , r and j = 1, 2, . . . , R,

let Sij be the seed set of size 2i sampled in round j and Dij be the event that Sij has exactly
one seed in Nk(u1) ∩ Nk(u2) and no other seeds in Nk(u1) ∪ Nk(u2). Let D = ∪Rj=1 ∪ri=0 Dij

and so Dc = ∩Rj=1 ∩ri=0 Dc
ij . On the event D, the seeds in the intersection will be one of the

common seeds for computing the shortest distance according to Algorithm 1, and in that case,
d̃(u1, u2) ≤ (1 + ε) logλ n. Applying (van der Hofstad, 2024, Theorem 2.36), conditionally on
u1, u2 to be in the same connected component, d(u1, u2)/ logλ n

P−→ 1. Therefore, on D, d̃(u1, u2)
provides a (1 + ε)-approximation of d(u1, u2). Thus it suffices to show that limn→∞ P(D) = 1.

We will show that P(Dc | G)
P−→ 0, and consequently limn→∞ P(D) = 1 by the dominated

convergence theorem. Since the choice of seeds in Si’s are independent conditionally on G, with
high probability,

P(Dc | G) =

R∏
i=1

r∏
i=0

(
1− |Nk(u1) ∩Nk(u2)|

n

(
1− |Nk(u1) ∪Nk(u2)|

n

)|Sij |−1
)

≤ exp

(
−R

r∑
i=0

|Nk(u1) ∩Nk(u2)|
n

(
1− |Nk(u1) ∪Nk(u2)|

n

)2i−1
)

≤ exp

(
−R |Nk(u1) ∩Nk(u2)|

n

r∑
i=0

(
1− |Nk(u1) ∪Nk(u2)|

n

)2i
)

≤ exp

(
−R |Nk(u1) ∩Nk(u2)|

n

r−1∑
i=0

(
1− |Nk(u1) ∪Nk(u2)|

n

) 2r

r i
)

≤ exp

−R |Nk(u1) ∩Nk(u2)|
n

1−
(
1− |Nk(u1)∪Nk(u2)|

n

)2r
1−

(
1− |Nk(u1)∪Nk(u2)|

n

) 2r

r

= exp

−Rnε−1+o(1)
1−

(
1− n

ε
2−

1
2+o(1)

)2r
1−

(
1− n

ε
2−

1
2+o(1)

) 2r

r

where the first "≤" uses 1−x ≤ exp(−x) for x ≥ 0 and the second "=" follows from Proposition 3.5.

Since 0 ≤
(
1− n

ε
2−

1
2+o(1)

)2r
≤
(
1− n

ε
2−

1
2+o(1)

) 2r

r

< exp

(
−n ε

2−
1
2+o(1) 1

2
2
log n 1−ε

2 log 2

logn 1−ε
2 log 2

)
→ 0

as n→∞, R = ω(n1−ε) is sufficient for the final bound to tend to 0.

D PROOF OF PROPOSITION 3.5

Fix ε > 0 (sufficiently small) and recall all the notation from Lemmas 3.3 ,3.6. Let Fk1,k2 be
the minimum sigma-algebra with respect to which the random variables (∂Nj(u1) : j ≤ k1),
(∂Nj(u2) : j ≤ k2) and the event An are measurable. Let En be as defined in Lemma 3.3. Then,
using Lemmas 3.3 and 3.6, we have limn→∞ P(En | Bn) = limn→∞ P(En | An) = 1. First, we
prove the following: Fix any κ0 logλ n ≤ k1, k2 ≤ (κ+ κ0) logλ n such that k1 + k2 ≥ logλ n+3ε.
Then, for all sufficiently large n,

P
(
|∂Nk1

(u1) ∩ ∂Nk2
(u2)| ∈

(
n−2ε(1− δn)

λk1+k2

n
, n2ε(1 + δn)

λk1+k2

n

) ∣∣∣∣ An

)
≥ 1− n−γ1 ,

(12)

for some γ1 = γ1(ε) > 0, γ2 = γ2(ε) > 0, and δn ≤ n−c for some c > 0. The choice of
δn, γ1, γ2 will become clear below. Let Iij be the indicator random variable for the edge {i, j} being

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

present. Observe that i ∈ ∂Nk1
(u1) ∩ ∂Nk2

(u2) if and only if i ∈ ∂Nk1
(u1), i /∈ Nk2−1(u2)

and there exists j ∈ ∂Nk2−1(u2) such that Iij = 1. Therefore, |∂Nk1
(u1) ∩ ∂Nk2

(u2)| =∑
i∈∂Nk1

(u1)\Nk2−1(u2)

∑
j∈∂Nk2−1(u2)

Iij . Thus,

E[|∂Nk1(u1) ∩ ∂Nk2(u2)| | Fk1,k2−1]

=

(
|∂Nk1

(u1)| −
∑

j≤k2−1

|∂Nk1
(u1) ∩ ∂Nj(u2)|

)
× |∂Nk2−1(u2)| ×

λ

n
.

(13)

On the event En, |∂Nk1
(u1)| ∈ (n−ελk1 , nελk1) and |∂Nk2−1(u2)| ∈ (n−ελk2−1, nελk2−1), and

by Lemma 3.3, P(En | An) ≥ 1 − n−δ. Next, for any j ≤ k2, (13) yields that E[|∂Nk1
(u1) ∩

∂Nj−1(u2)| | Fk1,j−1] ≤ nελk1+j/n ≤ λk1n−γ2/(7k2), where γ2 < 1− κ− κ0 − ε (note that γ2
can be chosen to be positive for sufficiently small ε). Applying (Janson et al., 2000, Theorem 2.8 and
Corollary 2.4), we have

P(|∂Nk1
(u1) ∩ ∂Nj(u2)| > λk1n−γ2/(7k2) | Fk1,j−1) ≤ e−λk1n−γ2/k2 ≤ e−nδ′

, (14)

for some δ′ > 0. Since the right hand side is deterministic function of n, the bound in (14) holds
conditioned on An as well. Thus, (13) yields, for all sufficiently large n, with probability at least
1− n−δ/2,

E[|∂Nk1(u1) ∩ ∂Nk2(u2)| | Fk1,k2−1] ∈
((

1− δn
2

)
n−2ελ

k1+k2

n
,
(
1 +

δn
2

)
n2ελ

k1+k2

n

)
,

where δn = o(n−γ2).

When k1 + k2 ≥ logλ n+3ε, E[|∂Nk1
(u1)∩ ∂Nk2

(u2)| | Fk1,k2−1] ≥ nε/2. In that case, standard
concentration inequalities for sums of independent Bernoulli random variables (Janson et al., 2000,
Theorem 2.8 and Corollary 2.3, (2.9)) shows that |∂Nk1

(u1) ∩ ∂Nk2
(u2)| concentrates around its

expectation conditionally on Fk1,k2−1, which proves (12).

Next, let k1, k2 be such that k1+k2 < logλ n+3ε. Then, (13) shows that, E[|∂Nk1
(u1)∩∂Nk2

(u2)| |
Fk1,k2−1]1En

≤ n6ε for all sufficiently large n. Again, an application of (Janson et al., 2000,
Theorem 2.8 and Corollary 2.4) yields

P(|∂Nk1
(u1) ∩ ∂Nk2

(u2)| > n7ε | An) ≤ e−n7ε

+ n−δ. (15)

Finally, combining (12) and (15), we conclude that, for all sufficiently large n, with probability at
least 1− 3(logλ n)

2n−min{γ1,δ}/3,

|Nk(u1) ∩Nk(u2)|

=
∑

k1,k2≤k
k1+k2≥logλ n+3ε

|∂Nk1(u1) ∩ ∂Nk2(u2)|+
∑

k1,k2≤k
k1+k2<logλ n+3ε

|∂Nk1(u1) ∩ ∂Nk2(u2)|

≤ n3ελ
2k

n
+ n8ε ≤ n8ε

(λ2k

n
+ 1
)
,

(16)

and

|Nk(u1) ∩Nk(u2)| ≥
∑

k1,k2≤k
k1+k2≥logλ n+3ε

|∂Nk1
(u1) ∩ ∂Nk2

(u2)| ≥ n−3ελ
2k

n
,

for all sufficiently large n. This concludes the proof for the asymptotics of Nk(u1) ∩Nk(u2).

For part 2, note that |Nk(ui)| =
∑

ki≤k |∂Nki
(ui)|, and on the event En, we have that |∂Nki

(ui)| ∈
(n−ελki , nελki) for all ki ≤ k and i = 1, 2. Now, λ2k/n ≤ λkn1−κ−κ0 and κ+ κ0 < 1. Therefore,
conditionally on An, with high probability,

|Nk(u1) ∪Nk(u2)| = |Nk(u1)|+ |Nk(u2)| − |Nk(u1) ∩Nk(u2)| ∈ (n−2ελk, n2ελk).

Thus the proof follows.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E PROOF OF LEMMA 3.6

If An occurs but Bn does not then |C(2)| ≥ nκ0−ε, which occurs with probability tending to zero,
since |C(2)| = O(log n) w.h.p. On the other hand, if Bn occurs and An does not occur, then there
exists i such that either |∂NL(ui)| > nκ0+ε or 0 < |∂NL(ui)| < nκ0−ε. To bound the probabilities
of these events, consider a branching process with progeny distribution being Poisson(λ), and let Xl

be the number of children at generation l. We first claim that, for any κ0 ∈ (0, 1
2) and L = κ0 logλ n,

lim
n→∞

P(|∂NL(ui)| = XL) = 1. (17)

Indeed, this is a consequence of (Bordenave, 2016, Lemma 3.13). Next, classical theory of branching
processes shows that, on the event of survival, the growth rate of a branching process is exponential.
More precisely, (Tanny, 1977, Theorem 5.5 (iii)) together with (Athreya and Ney, 1972, Theorem 2
on Page 8), it follows that

lim
L→∞

P
(
L(1− ε) ≤ logλ XL ≤ L(1 + ε),XL > 0

)
= 1

Therefore, limL→∞ P
(
nκ0(1−ε) ≤ XL ≤ nκ0(1+ε),XL > 0

)
= 1. Since κ0 − ε < κ0(1 − ε) and

κ0 + ε > κ0(1 + ε),

lim
L→∞

P
(
nκ0−ε ≤ XL ≤ nκ0+ε,XL > 0

)
= 1 (18)

Combining (17) and (18), it follows that

P(Bn \An) ≤
∑
i=1,2

P(0 < |∂NL(ui)| < nκ0−ε or |∂NL(ui)| > nκ0+ε)→ 0.

F EXPERIMENT DETAILS

In our experiments, we train GNNs to learn to compute the shortest path distances from every seed to
every node in sparse, undirected, and unweighted connected random graphs. Using the trained GNNs,
we generate node embeddings as in local step of Algorithm 1. Finally, we evaluate the performance
of the embeddings in shortest path approximations and test the model’s transferability.

To construct the GNNs, we consider four standard GNN architectures (GCN, GraphSage, GAT, and
GIN) with sum aggregation, dropout and ReLU between the convolutions, and ReLU activation
function. For each GNN architecture, we experiment with nine models that differ in widths and
depths of their hidden layers. The first and the last GNN layers both consist of ⌊

√
n⌋ nodes, which

correspond to ⌊
√
n⌋ seeds inputted into the GNNs. The widths and depths of the hidden layers are as

follows:

• Depth-6 GNNs: 128-64-32-16, 64-32-16-8, 32-16-8-4

• Depth-5 GNNs: 128-64-32, 64-32-16, 32-16-8

• Depth-4 GNNs: 128-64, 64-32, 32-16

We train our GNNs on ERs ∼ ERn(λ/n). To ensure that the graph are sparse and each has a
giant component with high probability, it is necessary to have 1 < λ ≪ n. We thus evaluate
λ ∈ {3, 4, 5, 6} with n ∈ {25, 50, 100, 200, 400, 800, 1600, 3200}. We treat each graph as a batch
of nodes and have train-validation-test size of 200-50-50 batches. The training occurs in 1000 epochs
with early stopping patience of 100 epochs, mean squared error (MSE) loss, Adam optimizer with a
learning rate of 0.01 and weight decay of 0.0001, and a cyclic-cosine learning rate scheduler with
cyclical learning rate between 0.001 and 0.1 for 10 iterations in the increasing half in combination
with the default cosine annealing learning rate for a maximum of 20 iterations.

All experiments were run using PyTorch Geometric Fey and Lenssen (2019) on a Lambda Vector 1
machine with an AMD Ryzen Threadripper PRO 5955WX CPU (16 cores), 128 GB RAM, and two
NVIDIA GeForce RTX 4090 GPUs (without parallel training).

The code can be found at https://github.com/ruiz-lab/shortest-path.

17

https://github.com/ruiz-lab/shortest-path

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

G MORE EXPERIMENTAL RESULTS

We present additional experimental results that provide deeper insights into the GNNs and the
GNN-augmented algorithm for computing shortest distances.

G.1 EXPERIMENT 1

We consider the graph model ERn(λ/n) which generates graphs that are more likely to be less
sparse (λ = 3) or more sparse (λ = 6) than those described in Section 4. Figure 5 shows that, using
the same GNN, the prediction curve remains consistent over the same actual distance range. Once
the GNN predictions enter the saturated region, they remain saturated even for larger actual distances
in less sparse graphs.

Figure 5: Raw outputs of ⌊
√
n⌋-64-32-16-⌊

√
n⌋ GNNs that are trained on ERs ∼ ERn(λ/n) with

λ ∈ {3, 6} to predict shortest path distances end-to-end. Evaluation data are ERs from the same
model.

G.2 EXPERIMENT 2

As seen earlier, the GNN prediction curve is similar for λ = 3 and λ = 4 under the graph model
ERn(λ/n), with more distances in graphs from ERn(3/n) falling into the saturated region than
those in graphs from ERn(4/n) (as they are likely more sparse).

Figure 6: Performance of BFS-based embeddings vs. GNN-based embeddings with GNNs trained on
ERs ∼ ERn(λ/n) for λ ∈ {3, 6}.

Since GNN-based embeddings on graphs from ERn(4/n) were not as effective as BFS-based em-
beddings in estimating shortest-path distances with the local-global algorithm, it is not surprising that
GNN-based embeddings on graphs from ERn(3/n) also perform worse than BFS-based embeddings
in terms of MSE, as shown in Figure 6. On the other hand, since graphs from ERn(6/n) are more
likely to have distances falling in the predictable region of the GNN compared to graphs from

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ERn(5/n), and the GNN-based embeddings on graphs from ERn(5/n) perform better than BFS-
based embeddings in estimating shortest-path distances with the local-global algorithm, GNN-based
embeddings on graphs from ERn(6/n) also result in lower MSE than BFS-based embeddings.

G.3 EXPERIMENT 3

We repeat Experiment 3 in Section 4 with λ = 6, where ERn(λ/n) generates graphs that are more
likely to be less sparse. The resulting MSE curves are consistent with those in Section 4 that the MSE
decreases as the training graph size increases and GNNs outperform BFS when the training graph
size exceeds 100.

Figure 7: Error rates on test ERs ∼ ERn′(λ/n′) (a), a GENSEC social network with 14,113 nodes
(b), and a Arxiv collaboration network with 28,281 nodes (c) by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ∼ ERn(λ/n) for λ = 6.

Finally, we present additional transferability results of the local-global algorithm using BFS-based
and GNN-based embeddings on a larger set of real benchmark graphs, where the GNNs are trained
on ERn(λ/n) with λ = 5.

Table 1: Details on the largest connected component of selected real networks.
Name Category # of Nodes # of Edges

1 GEMSEC-Athletes Rozemberczki et al. (2019b) Social Network 13,866 86,858
2 GEMSEC-Public Figures Rozemberczki et al. (2019b) Social Network 11,565 67,114
3 GENSEC-Politician Rozemberczki et al. (2019b) Social Network 5,908 41,729
4 GENSEC-Company Rozemberczki et al. (2019b) Social Network 14,113 52,310
5 GENSEC-TV Shows Rozemberczki et al. (2019b) Social Network 3,892 17,262
6 Twitch-EN Rozemberczki et al. (2019a) Social Network 7,126 35,324
7 Deezer Europe Social Network Rozemberczki and Sarkar (2020) Social Network 28,281 92,752
8 LastFM Asia Social Network Rozemberczki and Sarkar (2020) Social Network 7,624 27,806
9 Arxiv COND-MAT Leskovec et al. (2007) Collaboration Network 21,364 91,315

10 Arxiv GR-QC Leskovec et al. (2007) Collaboration Network 4,158 13,425
11 Arxiv HEP-PH Leskovec et al. (2007) Collaboration Network 11,204 117,634
12 Arxiv HEP-TH Leskovec et al. (2007) Collaboration Network 8,638 24,817
13 Oregon Autonomous System 1 Leskovec et al. (2005) Autonomous System 11,174 23,409
14 Oregon Autonomous System 2 Leskovec et al. (2005) Autonomous System 11,461 32,730
15 GENSEC-Artist Rozemberczki et al. (2019b) Social Network 41,618 557,133
16 ER-AVGDEG10-100K-L2 Rossi and Ahmed (2015) Labeled Network 99,997 499,359
17 Brightkite Rossi and Ahmed (2015) Social Network 56,739 212,945

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Additional transferability results on real networks by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ∼ ERn(λ/n) for λ = 5. Legend is the same as in
Figure G.3.

20

	Introduction
	Shortest Path Problems and Local-Global Algorithms
	Lower and upper bounds on shortest path distance
	Lower and upper bound distortions, and an algorithm that achieves them

	Lower and Upper Bound Distortions on Sparse Erdős-Rényi Graphs
	Lower bound distortion
	Upper bound distortion

	A GNN-based Algorithm and Experimental Results
	Experiment 1: Learning the GNN
	Experiment 2: Comparison with Algorithm 1
	Experiment 3: Transferability

	Conclusion
	Proof of Theorem 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.4
	Proof of Proposition 3.5
	Proof of Lemma 3.6
	Experiment Details
	More Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3

