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ABSTRACT

Graph neural networks (GNNs) using local message passing were recently shown
to inherit the intrinsic limitations of local algorithms in solving combinatorial
graph optimization problems such as finding shortest distances (Loukas, 2020). To
address this issue, Awasthi et al. (2022) proposed architectures based on Bourgain’s
(1985) seminal work on Hilbert space embeddings. These architectures enhance
local message passing in GNNs with a single global computation, yielding a
local-global algorithm. This paper focuses on the average-case analysis of more
general local-global algorithms for finding shortest distances (of which GNN+
is a particular case). Our primary contribution is a theoretical analysis of these
algorithms on Erdős-Rényi (ER) random graphs. We prove that, on random graphs,
these algorithms have lower distortion of shortest distances for most pairs of nodes
w.h.p. while requiring a lower embedding dimension. Inspired by Awasthi et al.
(2022), and to automate local computations and improve computational efficiency
in practical scenarios, we further propose a modification to these algorithms that
incorporates GNNs in the local computation phase. Empirical results on ER
graphs and benchmark graph datasets demonstrate the enhanced performance of
the GNN-augmented algorithm over the traditional approach.

1 INTRODUCTION

Finding shortest paths on networks is an important combinatorial optimization problem arising in
many practical applications, such as transportation networks Fu et al. (2006) and integrated circuit
design Cong et al. (1998). Unlike other optimization problems on graphs, exact solutions for shortest
paths can be found using classical algorithms such as Dijkstra’s algorithm in polynomial time.
Moreover, advancements in indexing techniques have made exact shortest-path distance queries
highly efficient, with solutions capable of handling large-scale graphs and providing microsecond-
level query times in certain settings (Akiba et al., 2013; Hayashi et al., 2016; Ouyang et al., 2018;
Farhan et al., 2018).

However, not all scenarios allow for such efficient indexing. For example, dynamic networks
with frequently updated edge weights or applications requiring real-time computation on resource-
constrained devices may not benefit from precomputed indexes. In such cases, approximate methods
are particularly valuable due to their adaptability and lower computational overhead. This has
motivated the exploration of machine learning approaches to shortest path finding, particularly those
employing graph neural networks (GNNs).

Despite their promise in combinatorial optimization (Lemos et al., 2019; Cappart et al., 2023; Li et al.,
2018; 2023; Veličković et al., 2019; Zhang et al., 2023), GNN-based approaches face significant
challenges in the shortest path problem. Local message-passing algorithms like GNNs are constrained
by impossibility results (Loukas, 2020; Sarma et al., 2012), requiring prohibitively large embedding
dimensions or numbers of convolutions to achieve even a constant-factor approximation of distances
in the worst-case. A promising direction to address these limitations is the combination of local
message-passing and global methods, which can provide a better tradeoff between efficiency and
accuracy. For example, Awasthi et al. (2022) propose GNN+, a two-part architecture where GNNs
compute local path distances, and a global fully connected layer combines their outputs (Awasthi
et al., 2022). Fundamentally, such approaches are inspired by Bourgain’s seminal result on metric
space embeddings into Hilbert spaces (Bourgain, 1985), which quantifies the error incurred when
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approximating shortest path distances with sums or differences of local embeddings. Bourgain’s
theorem also prescribes minimum sketch sizes for the class of local-global algorithms that includes
GNN+.

While these algorithms show strong empirical performance, their theoretical underpinnings remain
sparse. Existing results, including those of Bourgain (Bourgain, 1985), Matoušek (Matoušek, 1996),
and Das Sarma et al. (Sarma et al., 2012), are worst-case guarantees. Empirical evidence suggests
these worst-case bounds can be overly pessimistic for typical graphs, highlighting the need for
theoretical guarantees tailored to average-case graphs.

Theoretical contributions. This paper focuses on the theoretical analysis of local-global algorithms
inspired by Bourgain’s embedding theorem on Erdös–Rényi (ER) random graphs. ER graphs are a
foundational model in the random graphs literature, offering insights into average-case scenarios for
combinatorial optimization problems. They are also commonly used in benchmarking GNN models,
as in GraphWorld (Palowitch et al., 2022).

Interestingly, Bourgain also showed that random graphs are difficult to embed in Euclidean space
while preserving distances (Bourgain, 1985, Section 3). For networks of size n, random graphs
require an embedding dimension of O(log n) for a O(log n/ log log n)-factor approximation, close
to the worst-case guarantee of O(log n). Studying the performance of local-global algorithms on
random graphs for constant-factor approximations further motivates our work.

Our main contribution is theoretical: we show that local-global algorithms provide (1− ε)-factor
lower bounds and (1 + ε)-factor upper bounds for the shortest distances for most pairs of nodes with
high probability. The proof leverages branching process approximations developed in the random
graph literature (van der Hofstad, 2017; 2024).

In the worst-case setting, (Sarma et al., 2010), (Matoušek, 1996), and (Awasthi et al., 2022) showed
that local-global algorithms can achieve a (2c − 1)-factor upper bound and a 1

2c−1 -factor lower
bound with an embedding dimension of Ω(n1/c log n) for c > 1. Our results on ER graphs requires
an embedding dimension of Ω

(
n1/c log n 1/c

2 log 2

)
for a tighter

(
2− 1

c

)
-factor upper bound and

Ω
(
n1/c log n 1−1/c

2 log 2

)
for a tighter 1

c -factor lower bound, achieving improved embedding dimension
requirements for most node pairs in random graphs.

Methodological and empirical contributions. Building on GNN+, we enhance the local-global
shortest distance algorithm inspired by Bourgain’s theorem by incorporating a GNN to compute local
embeddings. In the local step, the GNN is trained to compute shortest path distances from a random
subset of nodes S to all other nodes in the graph. The local embedding of each node is calculated as
d(u, Si) = mins∈Si

d(u, s). In the global step, the distance between nodes u and v is lower bounded
by maxi |d(u, Si)− d(v, Si)|.
The use of GNNs in the local step is motivated by their demonstrated alignment with dynamic
programming (DP). DP underlies many reasoning tasks, including shortest paths which can be solved
using the Bellman-Ford algorithm. Recent works have shown that GNNs align well with DP, meaning
their computation structures naturally reflect the algorithmic processes of tasks like shortest path
computation, which improves learning efficiency and generalization (Xu et al., 2019b, Theorem 3.6).
In (Dudzik and Veličković, 2022), this alignment has been theoretically quantified, suggesting that
GNN architectures are particularly well-suited for reasoning tasks where DP plays a central role.

Our empirical results on ER graphs and benchmark datasets demonstrate that the GNN-augmented
algorithm improves over the traditional BFS-based approach. Notably, we show that GNNs trained
on small ER graphs can transfer effectively to downstream shortest path computation on real-world
social networks. This underscores the importance of analyzing graph algorithms in the context of
random graphs to inform their practical applications.

Notation. We consider undirected, unweighted and connected graphs G = (V,E) where V ,
|V | = n, is the set of nodes and E ⊆ V × V , |E| = m, is the set of edges. We define the one-hop
neighborhood of node u as N(u) = {v ∈ V | (u, v) ∈ E}. We often use the Bachmann–Landau
asymptotic notation o(1), O(1), ω(1),Ω(1),Θ(1) etc. For a discrete set X , |X| denotes its cardinality.
Given a sequence of probability measures (Pn)n≥1, a sequence of events (En)n≥1 is said to hold
with high probability (w.h.p.) if limn→∞ Pn(En) = 1. For a sequence of random variables (Xn)n≥1,
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Xn
P−→ c means that Xn converges to c in probability. We write statements such as Xn = f(n)o(1)

w.h.p. to abbreviate that logXn/ log f(n)
P−→ 0. Also, we write Xn = O(1) w.h.p. to mean that

P(Xn ≥ K)→ 0 for a sufficiently large K.

2 SHORTEST PATH PROBLEMS AND LOCAL-GLOBAL ALGORITHMS

Given graph G = (V,E) and a pair of nodes u, v ∈ V , the shortest path problem consists of finding
the path with the smallest number of edges between u and v, and the number of edges in this path, or
the shortest path distance between u and v, denoted d(u, v). This is one of the most fundamental
combinatorial optimization problems on graphs.

The classical algorithm for finding graph shortest paths is Dijkstra’s algorithm. Starting from a source
node u, Dijkstra’s algorithm returns the exact shortest paths between u and every other node v ∈ V
along with the corresponding distances d(u, v) via breadth-first search (BFS). It proceeds as follows:

(0) Initialize d(u, v) =∞ for all v ∈ V . Set s = u and ∆ = 1.
(1) From s, visit s’s neighbors v ∈ N(s) and assign them distance d(u, v) = min(d(u, v),∆).
(2) Mark s as visited and update ∆ = ∆+ 1.
(3) Select the unvisited node with smallest distance to u, say t, and set s = t.
(4) Repeat (1)–(3) until convergence.

Using naive data structures to store nodes’ visited statuses and current distances, the complexity of
Dijsktra’s algorithm is O(n2). This can be improved to O(m+ n log n) by using more efficient data
structures like heaps Schrijver (2012), but is still prohibitive for large graphs.

2.1 LOWER AND UPPER BOUNDS ON SHORTEST PATH DISTANCE

While computing exact shortest path distances is expensive, we can afford to compute local paths.
At a high level, local-global algorithms leverage this idea as follows. First, they sample a number
of seed nodes that are stored in a set S. Then, for each node in V , they compute the shortest path
distance to the nodes in S. This is the so-called local step, as in practice the shortest paths between
v ∈ V and s ∈ S can be computed via BFS from S.

Local step: Sample seed nodes s ∈ S. Compute exact d(s, v) for all s ∈ S, v ∈ V . (1)

Using the triangle inequality, the distances between the nodes in S and V can be used to approximate
d(u, v) for any u, v ∈ V . in two ways.

Lower bound (LB). Let u, v ∈ V , and s ∈ S. By the triangle inequality, we have d(u, s) ≤
d(u, v) + d(v, s), hence d(u, v) can be lower bounded as

|d(u, s)− d(v, s)| ≤ d(u, v)

since d(u, s) and d(v, s) are known from (1). For arbitrary s, this approximation is however very
coarse. Therefore, in practice we search over all s ∈ S and find the one that maximizes the left-
hand-side. More formally, we can formulate this as follows. Given the exact distances d(u, si) for all
u ∈ V and si ∈ S for i = 1, 2, .., |S|, construct an embedding vector

xu = [d(u, s1) . . . d(u, s|S|)] (2)

for each u ∈ V . Then, the best lower bound on d(u, v) is given by ∥xu−xv∥∞. This is the so-called
global step, as the infinity norm requires taking the maximum over all vector entries.

Global step for LB: Compute d̂(u, v) = ∥xu − xv∥∞ for all u, v ∈ V . (3)

Upper bound (UB). To find an upper bound d(u, v), we can once again use the triangle inequality as

d(u, v) ≤ d(u, s) + d(s, v).

Similarly to what we did for the lower bound, we want to pick the seed s for which this upper bound
is the tightest. Using the same embeddings xu from (2), the global step is then

Global step for UB: Compute d̃(u, v) = min
i
[xu + xv]i for all u, v ∈ V . (4)
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2.2 LOWER AND UPPER BOUND DISTORTIONS, AND AN ALGORITHM THAT ACHIEVES THEM

The pseudoalgorithms defined by the local and global steps in (1),(3), (4) are only useful if we can
derive guarantees on their approximation ability. For the LB, these can be obtained from Bourgain’s
classical embedding theorem, which characterizes the distortion incurred by optimal embeddings of
metric spaces onto R|S| equipped with the ℓ∞ norm. For the UB, similar guarantees were derived in
(Sarma et al., 2010).

Theorem 2.1 (LB distortion, adapted from Matoušek (1996),Awasthi et al. (2022)). Let G be a graph
with n ≥ 3 nodes. Let c > 1. If D = Ω(n1/c log n), then there exist node embeddings x∗

u ∈ RD,
u ∈ V , for which d̂(u, v) = ∥x∗

u − x∗
v∥∞ satisfies

d(u, v)

2c− 1
≤ d̂(u, v) ≤ d(u, v). (5)

Theorem 2.2 (UB distortion, Sarma et al. (2010)). Let G be a graph with n ≥ 3 nodes. Let
c > 1. If D = Ω(n1/c log n), then there exist node embeddings x∗

u ∈ RD, u ∈ V , for which
d̃(u, v) = mini[x

∗
u + x∗

v]i satisfies

d(u, v) ≤ d̃(u, v) ≤ (2c− 1)d(u, v). (6)

In order for (5) and (6) to hold, we need the embeddings x∗
u to be optimal. Yet, there is no guarantee

that this is the case for the embeddings xu in (2).

One way to ensure good embeddings is to control how we sample the seeds. Sarma et al. (2010)
proposed a method for doing so that we describe in Algorithm 1. This method consists of first
sampling r + 1 seed sets S0, S1, . . . , Sr of various sizes. Instead of recording distances of u to
every node in every set Si, the embeddings only keep track of the minimum distance to the set, i.e.,
[xu]i = mins∈Si d(u, s).

Algorithm 1: Local-Global Algorithm (adapted from Sarma et al. (2010))
Input: Graph G = (V,E), |V | = n. Number of seed sets r + 1. Seed sets sizes |Si|.
Output: Shortest path approximations d̂(u, v), d̃(u, v) for all u, v ∈ V .
for i = 0, 1, . . . , r ; /* Local step */
do

Si ← {s1, . . . , s|Si| ∼ Uniform(V )} ;
for u = 1, . . . , n do

[xu]i = mins∈Si
Dijkstra(s, u)

[σu]i = argmins∈Si
Dijkstra(s, u)

end
end
for u = 1, . . . , n ; /* Global step */
do

for v = 1, . . . , n do
d̂(u, v) = ∥xu − xv∥∞ ; /* Lower bound */

d̃(u, v) = mini[(xu + xv)⊙ 1(σu = σv)]i ; /* Upper bound */
end

end

For the LB, smaller seed set sizes are beneficial as, for k1 + k2 < 1 with k1 < k2, we must find at
least one seed set with a seed in the ball of radius k1d(u, v) centered at u, and no seeds in the ball of
radius k2d(u, v) centered at v. Hence, having a range of seed set sizes helps.

For the UB, this strategy ensures a seed falls at the intersection of the ⌈d(u,v)2 ⌉-hop neighborhoods
of nodes u and v w.h.p. In this case, an auxiliary vector σu is also defined to store the index of the
closest node to u in the set Si, i.e., [σu]i = argmins∈Si

d(u, s). This method is described in detail in
Algorithm 11.

11(·) denotes the elementwise Boolean function.
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It can be shown that if r = ⌊log n⌋, the |Si| are exponential in i, and the local step of Algorithm 1
is run for R = Θ(n1/c) rounds—yielding a total embedding size of Θ(n1/c log n)—, the resulting
shortest path distance approximations satisfy Theorems 2.1 and 2.2 with high probability for any
graph. In the following, we show that the distortion and the embedding dimension can both be
improved for random graphs.

3 LOWER AND UPPER BOUND DISTORTIONS ON SPARSE ERDŐS-RÉNYI
GRAPHS

In this section, we will state and prove our main results concerning performance of Algorithm 1 on
a sparse Erdős-Rényi Graph. An Erdős-Rényi random graph ERn

(
λ
n

)
generates a random graph

on n nodes, and each edge {i, j} is included in the graph with probability λ
n , independently. Thus,

ERn

(
λ
n

)
is a distribution over the space of all graphs on n nodes. We write G ∼ ERn

(
λ
n

)
to

abbreviate that G is distributed as ERn

(
λ
n

)
. Let C(i) be the i-th largest connected component in

an Erdős-Rényi random graph. A well-known result in the theory of random graphs (cf. (van der
Hofstad, 2017, Theorems 4.4, 4.8, and Corollary 4.13)) is the existence of a unique giant component
in an Erdős-Rényi random graph, which states the following:

Theorem 3.1 (van der Hofstad (2017)). Let G ∼ ERn

(
λ
n

)
and C(i) be as defined above. If λ < 1,

then C(1)

n = O
(
logn
n

)
w.h.p. On the other hand, if λ > 1, then C(1)

n

P−→ ζ for some ζ > 0 and
C(2)

n = O
(
logn
n

)
w.h.p.

Throughout, we will consider a fixed λ > 1, since otherwise P(u1, u2 lie in the same component)→
0 as n→∞, for any u1, u2.

3.1 LOWER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the lower bound d̂(u, v) in Algorithm 1.

Theorem 3.2. Let G ∼ ERn

(
λ
n

)
and let u1, u2 be two nodes chosen independently and uniformly at

random with replacement (the choice of u1, u2 is also independent of G). Fix ε ∈ (0, 1). Let d̂(u1, u2)
be the output of Algorithm 1 for the lower bound on the shortest distance d(u1, u2) after R = ω(n1−ε)
runs of the local step, with |Si| = 2i for i = 0, 1, .., r and r = ⌊log n ε

2 log 2⌋, yielding node embedding

dimension D = Ω
(
n1−ε log n ε

2 log 2

)
. Then, with high probability, d̂(u1, u2) ≥ (1 − ε)d(u1, u2),

i.e., d̂(u1, u2) provides a (1− ε)-approximation of d(u1, u2).

Idea of the proof. Let Nk(u) denote the set of nodes with graph distance at most k from u and
∂Nk(u) denote the set of nodes with graph distance exactly k from u. The first part of the proof
relies on local neighborhood expansions of Erdős-Rényi random graphs. In particular, the boundaries
of the k-th neighborhoods of u1, u2 grow exponentially as λk. This is a consequence of the following
intermediate result.

Lemma 3.3. Let G, u1, and u2 be as in Theorem 3.2. Let L = κ0 logλ n with κ0 ∈ (0, 1
2 ) and

ε > 0 be sufficiently small. Let Ab1,b2 be the event that |∂NL(ui)| = bi for i = 1, 2 where bi ∈
(n−ελL, nελL). Fix κ ∈ (0, 1−κ0), and let En be the good event that |∂Nki

(ui)| ∈ (n−ελki , nελki)
for all ki ≤ (κ+κ0) logλ n and i = 1, 2. Then, there exists δ > 0 such that P(En | Ab1,b2) ≥ 1−n−δ

for all sufficiently large n.

Proof. See Appendix B.

To find the (1−ε)-factor lower bound for d̂(u1, u2) when u1, u2 are in the same connected component,
we consider two disjoint balls centered at u1 and u2 with radii differing by a factor of 1− ε. If there
exists a seed set that contains at least one point in the ball of smaller radius and is disjoint from the
ball of larger radius, then d̂(u1, u2) returned by Algorithm 1 is lower bounded by the larger radius
minus the smaller radius. The complete proof of Theorem 3.2 can be found in Appendix A.
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3.2 UPPER BOUND DISTORTION

On ER graphs, we obtain the following distortion result for the upper bound d̃(u, v) in Algorithm 1.

Theorem 3.4. Let G, u1, and u2 be as in Theorem 3.2. Fix ε ∈ (0, 1). Let d̃(u1, u2) be the output
of Algorithm 1 for the upper bound on the shortest distance d(u1, u2) after R = ω(n1−ε) runs of
the local step, with |Si| = 2i for i = 0, 1, .., r and r = ⌊log n 1−ε

2 log 2⌋, yielding node embedding

dimension D = Ω
(
n1−ε log n 1−ε

2 log 2

)
. Then, with high probability, d̃(u1, u2) ≤ (1 + ε)d(u1, u2),

i.e., d̃(u1, u2) provides a (1 + ε)-approximation of d(u1, u2).

Figure 1: Schematics depicting the computation of the upper bound (left) and lower bound (right).
Yellow nodes are the source and target, red nodes are seeds in a seed set S, and gray nodes are
arbitrary nodes. Left: To achieve the upper bound in Theorem 3.4, only one seed can be at the union
of the balls around u and v, and it must lie at the intersection. The need for lying at the intersection
is clear; that gives us our shortest path approximation. Having only one seed come from the union
ensures the algorithm will output at most d̃(u, v) = d(u, S)+d(v, S) ≤ (1+ ε)d(u, v) w.h.p. Right:
The balls around u and v are disjoint and we consider k1 ≥ k2 + 1− ε. To achieve the lower bound
in Theorem 3.2, at least one seed must lie on the ball around v, and no seed can lie on the ball around
u. This guarantees at least d̂(u, v) = d(u, S)− d(v, S) ≥ (1− ε)d(u, v) w.h.p.

Idea of the proof. Let Nk(u) denote the set of nodes with graph distance at most k from u. The
fact that the boundaries of the k-th neighborhoods of u1, u2 grow exponentially as λk (Lemma 3.3)
allows us to show that |Nk(u1) ∪Nk(u2)| grow as λk and |Nk(u1) ∩Nk(u2)| grow as λ2k

n . This is
formalized in the following proposition.
Proposition 3.5. Let G, u1, and u2 be as in Theorem 3.2. Let ε > 0 be sufficiently small. For any
κ0 logλ n ≤ k ≤ (κ + κ0) logλ n with κ0 ∈ (0, 1

2 ) and κ ∈ (0, 1 − κ0), the following holds with
high probability, conditionally on u1, u2 being in the same connected component:

|Nk(u1) ∩Nk(u2)| ∈
(
n−ελ

2k

n
, nε
(λ2k

n
+ 1
))

and |Nk(u1) ∪Nk(u2)| ∈
(
n−ελk, nελk).

Proof. See Appendix D.

Lemma 3.6. Let ε > 0 be sufficiently small and let L = κ0 logλ n with κ0 ∈ (0, 1
2 ). Let An denote

the event that n−ελL ≤ |∂NL(ui)| ≤ nελL for i = 1, 2 and Bn denote the event that u1 and u2 are
in the same connected component. Then P(An \Bn)→ 0 and P(Bn \An)→ 0 as n→∞.

Proof. See Appendix E.

Given these growth rates, the main idea is to show that, with high probability, there exists a seed set
Si such that it has exactly one seed in Nk(u1) ∪Nk(u2) that also lies in Nk(u1) ∩Nk(u2), where
k = 1

2 (1 + ε)d(u1, u2). Thus, with high probability, the output d̃(u, v) of Algorithm 1 is at most
sum of distances from u1 to Si and u2 to Si. Due to the choice of k, the output is therefore at most
(1 + ε)d(u1, u2). The complete proof of Theorem 3.4 can be found in Appendix C.
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4 A GNN-BASED ALGORITHM AND EXPERIMENTAL RESULTS

We propose to modify Algorithm 1 by implementing the local step with a GNN. GNNs are deep
convolutional architectures tailored to graph data Scarselli et al. (2008); Kipf and Welling (2017);
Defferrard et al. (2016); Ruiz et al. (2021). Specifically, we focus on node data that we represent as
matrices X ∈ Rn×d. Each row of X corresponds to a node u ∈ V and each column to a different
signal or feature. A GNN layer operates on this type of data via two operations: a graph convolution
and a pointwise nonlinearity. Explicitly, let Xℓ−1 ∈ Rn×dℓ−1 be the input to layer ℓ (or equivalently
the output of layer ℓ− 1). The ℓth layer is given by

Xℓ = σ

(
K−1∑
k=0

AkXℓ−1Wℓ,k

)
(7)

where A ∈ Rn×n is the graph adjacency, Wℓ,k ∈ Rdℓ−1×dℓ are learnable parameters and σ is a
pointwise nonlinear activation function such as the ReLU or sigmoid. A GNN stacks L such layers,
the first layer input X0 being the input data X and the last layer output XL the output data Y. To be
concise, we represent the entire GNN as a map Y = Φ(X,A;W) whereW = {Wℓ,k}ℓ,k groups
the learnable parameters across all layers.

An important property GNNs inherit from graph convolutions is locality. More specifically, the
operations involved in each GNN layer can be implemented locally at each node via one-hop
information exchanges with their neighbors. To see this, consider a one-dimensional signal x ∈ Rn.
The operation z = Ax is local in the sense that

[z]u = [Ax]u =
∑
v∈V

[A]uv[x]v =
∑

v∈N(u)

[A]uv[x]v

where N(u) is the neighborhood of node u. Similarly, zk = Akx can be implemented locally in R
rounds by unrolling zk = Azk−1. The nonlinearity σ is pointwise and hence also local.

Leveraging the locality property of GNNs, we replace the local step of Algorithm 1 by a GNN
forward pass. Instead of calculating the embeddings xu via BFS, we propose to learn them using a
GNN.
Remark 4.1. The motivation for using GNNs in the local step is threefold. First, once the GNN
is trained, the sketch computations become automated. Second, by using GNNs we can save
computations as, if L < log n, GNN inference is cheaper than BFS on ER graphs. Third, we can
leverage the GNN transferability property Ruiz et al. (2020; 2023) to transfer the learned model to
graphs of different sizes associated with the same graph model.

4.1 EXPERIMENT 1: LEARNING THE GNN

In order to train the GNN, we proceed as follows. We sample a training set of ER graphs of size n and
generate random input signals X ∈ Rn×r satisfying 1T

nX1r = r and 1T
nX = 1T

r . I.e., each column
corresponds to a seed and one-hot encodes which node is a seed for a given graph. The outputs have
the same dimensions as the inputs, Y ∈ Rn×r, and correspond to the shortest path distances between
nodes u ∈ V and seeds s ∈ S, i.e., [Y]us = d(u, s).

Before testing our algorithm, we assess the ability of the learned GNNs to compute end-to-end
shortest paths. For this experiment, we consider n = 50, two values of λ, and set the GNN depth
to ⌈logλ n⌉. The results of this experiment are shown in Figure 2, where we plot the actual shortest
path distance versus the shortest path distances predicted by four different GNN architectures (GCN
Kipf and Welling (2017), GraphSAGE Hamilton et al. (2017), GAT Veličković et al. (2018), and
GIN Xu et al. (2019a)). We observe that the GNN predictions saturate in both plots, signaling the
inability of the GNN to predict longer distances even when their depth is higher than the expected
path length of logλ n. As expected, GNNs are not suitable for computing end-to-end shortest path
distances, especially on sparser graphs (λ = 4), which tend to exhibit longer shortest paths.
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Figure 2: Raw outputs of ⌊
√
n⌋-64-32-16-⌊

√
n⌋ GNNs that are trained on ERs ∼ ERn(λ/n) with

λ ∈ {4, 5} to predict shortest path distances end-to-end. Evaluation data are ERs from the same
model.

4.2 EXPERIMENT 2: COMPARISON WITH ALGORITHM 1

Next, we evaluate the difference between the lower bound achieved using the GNN-based algorithm,
and the lower bound from Algorithm 1. Only lower bounds are compared to ensure a fair comparison,
as the upper bound computation requires storing additional information—-the index of the closest
seed in a seed set to each node.

For this experiment, we consider a range of values of n. We limit the GNN depth to L≪ logλn and
tune L and other parameters via cross-validation; see Appendix F for details. We also allow for R
rounds of the local step, i.e., we sample r + 1 seed sets as defined in Algorithm 1 in R rounds, and
save all R(r + 1) distances to use in the global step.

The results of this experiment are shown in Figure 3 for λ = 4 and λ = 5. The GNN lower bound is
worse than the vanilla lower bound on the λ = 4 graph, though it leads to a substantial improvement
on the λ = 5 graph for all values of R. While both values of λ correspond to the supercritical regime
(λ > 1), there are a few factors explaining the difference in these two cases. As we could see from
Figure 2, the GNN learns much worse local embeddings in the λ = 4 case, even for a small 50-node
graph. Furthermore, for large values of n the graph is almost surely connected when λ = 5, but not
when λ = 4. This is an important distinction which can also be observed from the worsening of
the GNN-based algorithm performance at n ≈ 100 for λ = 4 (note that for n < 100, 4 > log4 n).
Finally, the GNN-based algorithm is faster than Algorithm 1, especially on large graphs, which is
expected as exact local sketch computations via Dijkstra’s algorithm scale poorly with the graph size.

(a) (b) (c)

Figure 3: (a)-(b) Performance of BFS-based embeddings vs. GNN-based embeddings with GNNs
trained on ERs∼ ERn(λ/n) for λ ∈ {4, 5}. (c) Time required to generate all node-to-seed distances
in ERs with n nodes by NetworkX’s highly optimized BFS as compared with our widest and deepest
GNNs. All GCN-, GraphSage-, GAT-, and GIN-based algorithms are represented by the same color
and line style for the same R, and the deviations between them are insignificant.
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4.3 EXPERIMENT 3: TRANSFERABILITY

In our last experiment, we examine whether we can transfer GNNs learned on small graphs to compute
local embeddings on larger networks, and use these embeddings for downstream approximation of
shortest paths on these larger networks. This is motivated by theoretical and empirical work Ruiz
et al. (2020; 2023) showing that GNNs are transferable in the sense that their outputs converge on
convergent graph sequences, which in turn implies that they can be trained on smaller graphs and
transferred to larger (but similar) graphs.

Figure 4: Error rates on (a) test ERs ∼ ERn′(λ/n′), (b) GENSEC company network with 14,113
nodes, (c) Arxiv HEP-TH collaboration network with 28,281 nodes, (d) GENSEC artist network with
41,618 nodes, (e) ER-AVGDEG10-100K-L2 labeled network with 99,997 nodes, and (f) Brightkite
social network with 56,739 nodes by BFS-based embeddings vs. GNN-based embeddings using
GNNs trained on ERs ∼ ERn(λ/n) for λ = 5. See the Appendix for further details and more
transferability results on real-world networks.

Here, we focus on the λ = 5 case and train a sequence of eight GNNs on graphs ranging from
n = 25 to n = 3200 nodes. Then, we use these GNNs to compute shortest path distances using our
GNN-based algorithm on an ER graph with same λ and graph size of n′ = 12800 nodes (additional
experiment details are provided in Appendix F). Figure 4 (a) shows the MSE achieved in each
instance with respect to the true shortest path distances as a function of the training graph size,
with the flat dashed lines representing the MSE achieved by Algorithm 1 on the n′-node graph. We
observe a steady decrease of the MSE as n increases, and that the GNN-based algorithm matches the
performance of Algorithm 1 when the GNN is trained on graphs of n = 100 nodes—which is 128
times smaller than the target n′-node graph.

We also examine the transferability of the same set of GNNs to seventeen real-world networks with
sizes ranging from 3,892 to 99,997 nodes and average degrees between 4.19 and 26.77. In certain
scenarios, random graphs can be used to model social networks Newman and Watts (1999). Therefore,
we hypothesize that GNNs trained on ER graphs should produce good quality embeddings for these
networks. The results on five of the seventeen networks are shown in Figure 4 (b-f), where we once
again observe MSE improvement with the training graph size and that the GNN-based algorithm
outperforms Algorithm 1 even when the embeddings are learned on much smaller graphs. The results
on the remaining twelve real-world networks are provided in the Appendix.
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5 CONCLUSION

We introduce an average-case analysis of algorithms combining local and global computations for
solving shortest distance problems on ER graphs, complementing Bourgain’s worst-case result. In
particular, our theoretical analysis demonstrates that on ER graphs these algorithms can achieve
a (1 − ε)-factor lower bound and a (1 + ϵ)-factor upper bound of shortest distances with high
probability. Additionally, we propose a modification to Bourgain’s algorithm, which incorporates
GNNs in the local computation phase to further enhance practical performance. Empirical results on
both ER graphs and benchmark datasets demonstrate the superior performance of the GNN-augmented
approach.

Limitations and future work. Our analysis focuses on Erdös–Rényi (ER) random graphs, which
provided a simplified framework to develop theoretical tools and insights for local-global algorithms.
These methods are broadly applicable to graphs with local expansion properties, such as inhomo-
geneous random graphs, and extending our analysis to such models is a key direction for future
work. However, for other important graph classes in shortest path problems, such as planar graphs,
our techniques are unlikely to apply. Addressing these cases will require the development of new
methods, which is an interesting direction for future work.
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A PROOF OF THEOREM 3.2

We show that, for any ε ∈ (0, 1), d̂(u1, u2) ≥ (1 − ε) logλ n w.h.p. Let Sij be the i-the seed
set having size 2i in the j-th round. Let k1 = ε1 logλ n and k2 = (1 − ε) logλ n + k1, where
ε1 ∈

(
0, ε

2

)
(to be chosen later) (we let ε1 < ε

2 so that an argument identical to (16) would
yield that Nk1(u1) ∩ Nk2(u2) = ∅ w.h.p., conditionally on u1, u2 being in the same connected
component). Define Zij to be the event that Sij ∩ Nk1(u1) ̸= ∅ but Sij ∩ Nk1(u2) = ∅. Note
that, if Zij happens for some i ≤ r, j ≤ R, then d(u1, Sij) ≤ k1 and d(u2, Sij) ≥ k2, and
consequently, d̂(u1, u2) ≥ (1− δ) logλ n. Thus, denoting Z = ∪i≤r,j≤RZij , it suffices to prove that
P(Z | G, u1, u2)1{u1 ↔ u2}

P−→ 1, where u1 ↔ u2 stands for u1, u2 being in the same connected
component. Let C(i) be the set of nodes in the i-th largest connected component of G and C(i) be
the number of nodes in C(i). Note that, P(u1 ↔ u2, but u1, u2 /∈ C(1) | G) = 1

n2

∑
i≥2 |C(i)|2 ≤

C(2)

n

P−→ 0. Therefore, P({u1 ↔ u2} △ {u1, u2 ∈ C(1)})
P−→ 0, where △ denotes the symmetric

difference between sets. Thus, it suffices to show that P(Z | G, u1, u2)1{u1, u2 ∈ C(1)}
P−→ 1 (or

equivalently P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)}
P−→ 0).

The fact that P(Ac ∩B) = P(B)− P(A ∩B) implies, for each i, j,

P(Sij ∩Nk1
(u1) ̸= ∅, Sij ∩Nk2

(u2) = ∅ | G, u1, u2)

=

(
1− |Nk2

(u2)|
n

)2i

−
(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)2i

.

Therefore,

P(Zc | G, u1, u2) =

( r∏
i=0

(
1−

(
1− |Nk2

(u2)|
n

)2i

+

(
1− |Nk1

(u1)|+ |Nk2
(u2)|

n

)2i))R

≤ exp

(
−R

r∑
i=0

((
1− |Nk2(u2)|

n

)2i

−
(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)2i))

= exp

(
−R

r∑
i=0

|Nk1(u1)|
n

2i−1∑
j=0

(
1− |Nk2(u2)|

n

)2i−1−j(
1− |Nk1(u1)|+ |Nk2(u2)|

n

)j)

where the first "≤" uses 1 − x ≤ exp(−x). By Lemma 3.3, |Nk1
(u1)| = no(1) λnε1−1

λ−1 ≤
no(1) λnε1+1−ε−1

λ−1 = |Nk1
(u1)| = w.h.p. Then with high probability,

P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)} ≤ exp

(
−R
|Nk1

(u1)|
n

r∑
i=0

2i
(
1− 2

|Nk2
(u2)|
n

)2i)

≤ exp

(
−Rnε1−1+o(1)

r−1∑
i=0

2i
(
1− 2λ

λ− 1
nε1−ε+o(1)

) 2r

r i)

= exp

−Rnε1−1+o(1)

2r
(
1− 2λ

λ−1n
ε1−ε+o(1)

)2r

− 1

2

(
1− 2λ

λ−1n
ε1−ε+o(1)

) 2r

r

− 1

 .
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Since 1 ≥
(
1 − 2λ

λ−1n
ε1−ε+o(1)

) 2r

r

≥
(
1 − 2λ

λ−1n
ε1−ε+o(1)

)2r

≥
(
1 −

2λ
λ−1n

ε1−ε+o(1)

)2
log n ε

2 log 2

→ 1 as n→∞, with high probability,

P(Zc | G, u1, u2)1{u1, u2 ∈ C(1)} ≤ exp
(
−Rnε1−1+o(1)c2r

)
(with c ∈ (0, 1))

< exp
(
−Rnε1−1+o(1)c2logn ε

2 log 2−1
)
= exp

(
−Rc

2
nε1−1+ ε

2+o(1)
)

Choosing ε1 = ε
2 − o(1), R = ω(n1−ε) is sufficient for the final bound to tend to 0.

B PROOF OF LEMMA 3.3

The proof is adapted from (van der Hofstad, 2024, Section 2.6.4). Since we need an exponential
bound on the probability and L is growing with n, the proof does not follow from van der Hofstad
(2024).

We start by proving that there exists a γ ∈ (0, 1) and δ′ > 0 such that for all sufficiently large n,

|Nk(ui)| ≤ nγ , for all k ≤ (κ+ κ0) logλ n and i = 1, 2, (8)

with probability at least 1 − n−δ′ . Indeed, for any r ≥ 1 and node u, |∂Nr(u)| =∑
i∈∂Nr−1(u)

∑
j /∈Nr−1(u)

Iij , where Iij is the indicator random variable for the edge {i, j} be-
ing present. Therefore, E[|∂Nr(u)|] ≤ λE[|∂Nr−1(u)|]. Proceeding inductively, we have that
E[|∂Nr(u)|] ≤ λr and consequently, E[|Nr(u)|] ≤ λr+1−1

λ−1 = O(λr). Since κ0 + κ < 1, we can
apply Markov’s inequality to conclude that |Nk(ui)| ≤ nγ with probability 1− n−δ′ for some fixed
δ′ > 0 and for any fixed k ≤ (κ+ κ0) logλ n. Moreover, since |Nk(ui)| ≤ |Nk+1(ui)| for all k, we
can conclude (8).

Next, fix ε > 0 sufficiently small and suppose that δn = n−κ0/4. Define the event

Ek,(1) :=
{
b1[λ(1− δn)(1− n−(1−γ)))]k ≤ |∂NL+k(u1)| ≤ b1[λ(1 + δn)]

k
}

We will upper bound P(Eck,(1) | ∩k−1
l=0 El,(1),Ab1,b2). Again, using |∂NL+k(u1)| =∑

i∈∂NL+k−1(u1)

∑
j /∈NL+k−1(u1)

Iij , we have that

En := E[|∂NL+k(u1)| | NL+k−1(u1),Ab1,b2 ] = |∂NL+k−1(u1)|(n− |NL+k−1(u1)|)
λ

n
. (9)

Using (8), it follows that, with probability at least 1− n−δ′ ,

λ|∂NL+k−1(u1)|(1− n−(1−γ)) ≤ En ≤ λ|∂NL+k−1(u1)|. (10)

Conditionally on ∩k−1
l=0 El and Ab1,b2 , with probability at least 1− n−δ′ ,

b1λ
k(1− δn)

k−1(1− n−(1−γ))k ≤ En ≤ b1λ
k(1 + δn)

k−1. (11)

Using Standard concentration inequalities for sums of Bernoulli random variables (Janson et al.,
2000, Theorem 2.8 and Corollary 2.3, (2.9)), we conclude that

P(Eck,(1) | ∩k−1
l=0 El,(1),Ab1,b2)

= P(|∂NL+k(u1)− En| > δnEn | ∩k−1
l=0 El,Ab1,b2)

≤ 2e−
δ2n
3 ×En + n−δ′ ≤ n−δ′/2.

Therefore, P(∩k≤κ0 logλ nEk | Ab1,b2) ≥ 1−n−δ for all sufficiently large n, for some δ > 0. Finally,
the proof follows by noting that (1− δn)

k = (1−n−κ0/4)k → 1 and (1−n−(1−γ))k → 1 uniformly
over k ≤ κ log n. An identical argument can be repeated for neighborhoods of u2. In the latter case,
we need to additionally condition on the L+k neighborhood of u1. With probability at least 1−n−δ′ ,
this will result in exploration of at most nγ many nodes due to (8), and therefore, the asymptotics
above also hold for neighborhoods of u2. We skip redoing the proof for the neighborhoods of u2

here.
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C PROOF OF THEOREM 3.4

Let k = 1
2 (1 + ε) logλ n, where ε ∈ (0, 1). For each fixed i = 0, 1, . . . , r and j = 1, 2, . . . , R,

let Sij be the seed set of size 2i sampled in round j and Dij be the event that Sij has exactly
one seed in Nk(u1) ∩ Nk(u2) and no other seeds in Nk(u1) ∪ Nk(u2). Let D = ∪Rj=1 ∪ri=0 Dij

and so Dc = ∩Rj=1 ∩ri=0 Dc
ij . On the event D, the seeds in the intersection will be one of the

common seeds for computing the shortest distance according to Algorithm 1, and in that case,
d̃(u1, u2) ≤ (1 + ε) logλ n. Applying (van der Hofstad, 2024, Theorem 2.36), conditionally on
u1, u2 to be in the same connected component, d(u1, u2)/ logλ n

P−→ 1. Therefore, on D, d̃(u1, u2)
provides a (1 + ε)-approximation of d(u1, u2). Thus it suffices to show that limn→∞ P(D) = 1.

We will show that P(Dc | G)
P−→ 0, and consequently limn→∞ P(D) = 1 by the dominated

convergence theorem. Since the choice of seeds in Si’s are independent conditionally on G, with
high probability,

P(Dc | G) =

R∏
i=1

r∏
i=0

(
1− |Nk(u1) ∩Nk(u2)|

n

(
1− |Nk(u1) ∪Nk(u2)|

n

)|Sij |−1
)

≤ exp

(
−R

r∑
i=0

|Nk(u1) ∩Nk(u2)|
n

(
1− |Nk(u1) ∪Nk(u2)|

n

)2i−1
)

≤ exp

(
−R |Nk(u1) ∩Nk(u2)|

n

r∑
i=0

(
1− |Nk(u1) ∪Nk(u2)|

n

)2i
)

≤ exp

(
−R |Nk(u1) ∩Nk(u2)|

n

r−1∑
i=0

(
1− |Nk(u1) ∪Nk(u2)|

n

) 2r

r i
)

≤ exp

−R |Nk(u1) ∩Nk(u2)|
n

1−
(
1− |Nk(u1)∪Nk(u2)|

n

)2r
1−

(
1− |Nk(u1)∪Nk(u2)|

n

) 2r

r



= exp

−Rnε−1+o(1)
1−

(
1− n

ε
2−

1
2+o(1)

)2r
1−

(
1− n

ε
2−

1
2+o(1)

) 2r

r



where the first "≤" uses 1−x ≤ exp(−x) for x ≥ 0 and the second "=" follows from Proposition 3.5.

Since 0 ≤
(
1− n

ε
2−

1
2+o(1)

)2r
≤
(
1− n

ε
2−

1
2+o(1)

) 2r

r

< exp

(
−n ε

2−
1
2+o(1) 1

2
2
log n 1−ε

2 log 2

logn 1−ε
2 log 2

)
→ 0

as n→∞, R = ω(n1−ε) is sufficient for the final bound to tend to 0.

D PROOF OF PROPOSITION 3.5

Fix ε > 0 (sufficiently small) and recall all the notation from Lemmas 3.3 ,3.6. Let Fk1,k2 be
the minimum sigma-algebra with respect to which the random variables (∂Nj(u1) : j ≤ k1),
(∂Nj(u2) : j ≤ k2) and the event An are measurable. Let En be as defined in Lemma 3.3. Then,
using Lemmas 3.3 and 3.6, we have limn→∞ P(En | Bn) = limn→∞ P(En | An) = 1. First, we
prove the following: Fix any κ0 logλ n ≤ k1, k2 ≤ (κ+ κ0) logλ n such that k1 + k2 ≥ logλ n+3ε.
Then, for all sufficiently large n,

P
(
|∂Nk1

(u1) ∩ ∂Nk2
(u2)| ∈

(
n−2ε(1− δn)

λk1+k2

n
, n2ε(1 + δn)

λk1+k2

n

) ∣∣∣∣ An

)
≥ 1− n−γ1 ,

(12)

for some γ1 = γ1(ε) > 0, γ2 = γ2(ε) > 0, and δn ≤ n−c for some c > 0. The choice of
δn, γ1, γ2 will become clear below. Let Iij be the indicator random variable for the edge {i, j} being
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present. Observe that i ∈ ∂Nk1
(u1) ∩ ∂Nk2

(u2) if and only if i ∈ ∂Nk1
(u1), i /∈ Nk2−1(u2)

and there exists j ∈ ∂Nk2−1(u2) such that Iij = 1. Therefore, |∂Nk1
(u1) ∩ ∂Nk2

(u2)| =∑
i∈∂Nk1

(u1)\Nk2−1(u2)

∑
j∈∂Nk2−1(u2)

Iij . Thus,

E[|∂Nk1(u1) ∩ ∂Nk2(u2)| | Fk1,k2−1]

=

(
|∂Nk1

(u1)| −
∑

j≤k2−1

|∂Nk1
(u1) ∩ ∂Nj(u2)|

)
× |∂Nk2−1(u2)| ×

λ

n
.

(13)

On the event En, |∂Nk1
(u1)| ∈ (n−ελk1 , nελk1) and |∂Nk2−1(u2)| ∈ (n−ελk2−1, nελk2−1), and

by Lemma 3.3, P(En | An) ≥ 1 − n−δ. Next, for any j ≤ k2, (13) yields that E[|∂Nk1
(u1) ∩

∂Nj−1(u2)| | Fk1,j−1] ≤ nελk1+j/n ≤ λk1n−γ2/(7k2), where γ2 < 1− κ− κ0 − ε (note that γ2
can be chosen to be positive for sufficiently small ε). Applying (Janson et al., 2000, Theorem 2.8 and
Corollary 2.4), we have

P(|∂Nk1
(u1) ∩ ∂Nj(u2)| > λk1n−γ2/(7k2) | Fk1,j−1) ≤ e−λk1n−γ2/k2 ≤ e−nδ′

, (14)

for some δ′ > 0. Since the right hand side is deterministic function of n, the bound in (14) holds
conditioned on An as well. Thus, (13) yields, for all sufficiently large n, with probability at least
1− n−δ/2,

E[|∂Nk1(u1) ∩ ∂Nk2(u2)| | Fk1,k2−1] ∈
((

1− δn
2

)
n−2ελ

k1+k2

n
,
(
1 +

δn
2

)
n2ελ

k1+k2

n

)
,

where δn = o(n−γ2).

When k1 + k2 ≥ logλ n+3ε, E[|∂Nk1
(u1)∩ ∂Nk2

(u2)| | Fk1,k2−1] ≥ nε/2. In that case, standard
concentration inequalities for sums of independent Bernoulli random variables (Janson et al., 2000,
Theorem 2.8 and Corollary 2.3, (2.9)) shows that |∂Nk1

(u1) ∩ ∂Nk2
(u2)| concentrates around its

expectation conditionally on Fk1,k2−1, which proves (12).

Next, let k1, k2 be such that k1+k2 < logλ n+3ε. Then, (13) shows that, E[|∂Nk1
(u1)∩∂Nk2

(u2)| |
Fk1,k2−1]1En

≤ n6ε for all sufficiently large n. Again, an application of (Janson et al., 2000,
Theorem 2.8 and Corollary 2.4) yields

P(|∂Nk1
(u1) ∩ ∂Nk2

(u2)| > n7ε | An) ≤ e−n7ε

+ n−δ. (15)

Finally, combining (12) and (15), we conclude that, for all sufficiently large n, with probability at
least 1− 3(logλ n)

2n−min{γ1,δ}/3,

|Nk(u1) ∩Nk(u2)|

=
∑

k1,k2≤k
k1+k2≥logλ n+3ε

|∂Nk1(u1) ∩ ∂Nk2(u2)|+
∑

k1,k2≤k
k1+k2<logλ n+3ε

|∂Nk1(u1) ∩ ∂Nk2(u2)|

≤ n3ελ
2k

n
+ n8ε ≤ n8ε

(λ2k

n
+ 1
)
,

(16)

and

|Nk(u1) ∩Nk(u2)| ≥
∑

k1,k2≤k
k1+k2≥logλ n+3ε

|∂Nk1
(u1) ∩ ∂Nk2

(u2)| ≥ n−3ελ
2k

n
,

for all sufficiently large n. This concludes the proof for the asymptotics of Nk(u1) ∩Nk(u2).

For part 2, note that |Nk(ui)| =
∑

ki≤k |∂Nki
(ui)|, and on the event En, we have that |∂Nki

(ui)| ∈
(n−ελki , nελki) for all ki ≤ k and i = 1, 2. Now, λ2k/n ≤ λkn1−κ−κ0 and κ+ κ0 < 1. Therefore,
conditionally on An, with high probability,

|Nk(u1) ∪Nk(u2)| = |Nk(u1)|+ |Nk(u2)| − |Nk(u1) ∩Nk(u2)| ∈ (n−2ελk, n2ελk).

Thus the proof follows.
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E PROOF OF LEMMA 3.6

If An occurs but Bn does not then |C(2)| ≥ nκ0−ε, which occurs with probability tending to zero,
since |C(2)| = O(log n) w.h.p. On the other hand, if Bn occurs and An does not occur, then there
exists i such that either |∂NL(ui)| > nκ0+ε or 0 < |∂NL(ui)| < nκ0−ε. To bound the probabilities
of these events, consider a branching process with progeny distribution being Poisson(λ), and let Xl

be the number of children at generation l. We first claim that, for any κ0 ∈ (0, 1
2 ) and L = κ0 logλ n,

lim
n→∞

P(|∂NL(ui)| = XL) = 1. (17)

Indeed, this is a consequence of (Bordenave, 2016, Lemma 3.13). Next, classical theory of branching
processes shows that, on the event of survival, the growth rate of a branching process is exponential.
More precisely, (Tanny, 1977, Theorem 5.5 (iii)) together with (Athreya and Ney, 1972, Theorem 2
on Page 8), it follows that

lim
L→∞

P
(
L(1− ε) ≤ logλ XL ≤ L(1 + ε),XL > 0

)
= 1

Therefore, limL→∞ P
(
nκ0(1−ε) ≤ XL ≤ nκ0(1+ε),XL > 0

)
= 1. Since κ0 − ε < κ0(1 − ε) and

κ0 + ε > κ0(1 + ε),

lim
L→∞

P
(
nκ0−ε ≤ XL ≤ nκ0+ε,XL > 0

)
= 1 (18)

Combining (17) and (18), it follows that

P(Bn \An) ≤
∑
i=1,2

P(0 < |∂NL(ui)| < nκ0−ε or |∂NL(ui)| > nκ0+ε)→ 0.

F EXPERIMENT DETAILS

In our experiments, we train GNNs to learn to compute the shortest path distances from every seed to
every node in sparse, undirected, and unweighted connected random graphs. Using the trained GNNs,
we generate node embeddings as in local step of Algorithm 1. Finally, we evaluate the performance
of the embeddings in shortest path approximations and test the model’s transferability.

To construct the GNNs, we consider four standard GNN architectures (GCN, GraphSage, GAT, and
GIN) with sum aggregation, dropout and ReLU between the convolutions, and ReLU activation
function. For each GNN architecture, we experiment with nine models that differ in widths and
depths of their hidden layers. The first and the last GNN layers both consist of ⌊

√
n⌋ nodes, which

correspond to ⌊
√
n⌋ seeds inputted into the GNNs. The widths and depths of the hidden layers are as

follows:

• Depth-6 GNNs: 128-64-32-16, 64-32-16-8, 32-16-8-4

• Depth-5 GNNs: 128-64-32, 64-32-16, 32-16-8

• Depth-4 GNNs: 128-64, 64-32, 32-16

We train our GNNs on ERs ∼ ERn(λ/n). To ensure that the graph are sparse and each has a
giant component with high probability, it is necessary to have 1 < λ ≪ n. We thus evaluate
λ ∈ {3, 4, 5, 6} with n ∈ {25, 50, 100, 200, 400, 800, 1600, 3200}. We treat each graph as a batch
of nodes and have train-validation-test size of 200-50-50 batches. The training occurs in 1000 epochs
with early stopping patience of 100 epochs, mean squared error (MSE) loss, Adam optimizer with a
learning rate of 0.01 and weight decay of 0.0001, and a cyclic-cosine learning rate scheduler with
cyclical learning rate between 0.001 and 0.1 for 10 iterations in the increasing half in combination
with the default cosine annealing learning rate for a maximum of 20 iterations.

All experiments were run using PyTorch Geometric Fey and Lenssen (2019) on a Lambda Vector 1
machine with an AMD Ryzen Threadripper PRO 5955WX CPU (16 cores), 128 GB RAM, and two
NVIDIA GeForce RTX 4090 GPUs (without parallel training).

The code can be found at https://github.com/ruiz-lab/shortest-path.
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G MORE EXPERIMENTAL RESULTS

We present additional experimental results that provide deeper insights into the GNNs and the
GNN-augmented algorithm for computing shortest distances.

G.1 EXPERIMENT 1

We consider the graph model ERn(λ/n) which generates graphs that are more likely to be less
sparse (λ = 3) or more sparse (λ = 6) than those described in Section 4. Figure 5 shows that, using
the same GNN, the prediction curve remains consistent over the same actual distance range. Once
the GNN predictions enter the saturated region, they remain saturated even for larger actual distances
in less sparse graphs.

Figure 5: Raw outputs of ⌊
√
n⌋-64-32-16-⌊

√
n⌋ GNNs that are trained on ERs ∼ ERn(λ/n) with

λ ∈ {3, 6} to predict shortest path distances end-to-end. Evaluation data are ERs from the same
model.

G.2 EXPERIMENT 2

As seen earlier, the GNN prediction curve is similar for λ = 3 and λ = 4 under the graph model
ERn(λ/n), with more distances in graphs from ERn(3/n) falling into the saturated region than
those in graphs from ERn(4/n) (as they are likely more sparse).

Figure 6: Performance of BFS-based embeddings vs. GNN-based embeddings with GNNs trained on
ERs ∼ ERn(λ/n) for λ ∈ {3, 6}.

Since GNN-based embeddings on graphs from ERn(4/n) were not as effective as BFS-based em-
beddings in estimating shortest-path distances with the local-global algorithm, it is not surprising that
GNN-based embeddings on graphs from ERn(3/n) also perform worse than BFS-based embeddings
in terms of MSE, as shown in Figure 6. On the other hand, since graphs from ERn(6/n) are more
likely to have distances falling in the predictable region of the GNN compared to graphs from
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ERn(5/n), and the GNN-based embeddings on graphs from ERn(5/n) perform better than BFS-
based embeddings in estimating shortest-path distances with the local-global algorithm, GNN-based
embeddings on graphs from ERn(6/n) also result in lower MSE than BFS-based embeddings.

G.3 EXPERIMENT 3

We repeat Experiment 3 in Section 4 with λ = 6, where ERn(λ/n) generates graphs that are more
likely to be less sparse. The resulting MSE curves are consistent with those in Section 4 that the MSE
decreases as the training graph size increases and GNNs outperform BFS when the training graph
size exceeds 100.

Figure 7: Error rates on test ERs ∼ ERn′(λ/n′) (a), a GENSEC social network with 14,113 nodes
(b), and a Arxiv collaboration network with 28,281 nodes (c) by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ∼ ERn(λ/n) for λ = 6.

Finally, we present additional transferability results of the local-global algorithm using BFS-based
and GNN-based embeddings on a larger set of real benchmark graphs, where the GNNs are trained
on ERn(λ/n) with λ = 5.

Table 1: Details on the largest connected component of selected real networks.
Name Category # of Nodes # of Edges

1 GEMSEC-Athletes Rozemberczki et al. (2019b) Social Network 13,866 86,858
2 GEMSEC-Public Figures Rozemberczki et al. (2019b) Social Network 11,565 67,114
3 GENSEC-Politician Rozemberczki et al. (2019b) Social Network 5,908 41,729
4 GENSEC-Company Rozemberczki et al. (2019b) Social Network 14,113 52,310
5 GENSEC-TV Shows Rozemberczki et al. (2019b) Social Network 3,892 17,262
6 Twitch-EN Rozemberczki et al. (2019a) Social Network 7,126 35,324
7 Deezer Europe Social Network Rozemberczki and Sarkar (2020) Social Network 28,281 92,752
8 LastFM Asia Social Network Rozemberczki and Sarkar (2020) Social Network 7,624 27,806
9 Arxiv COND-MAT Leskovec et al. (2007) Collaboration Network 21,364 91,315

10 Arxiv GR-QC Leskovec et al. (2007) Collaboration Network 4,158 13,425
11 Arxiv HEP-PH Leskovec et al. (2007) Collaboration Network 11,204 117,634
12 Arxiv HEP-TH Leskovec et al. (2007) Collaboration Network 8,638 24,817
13 Oregon Autonomous System 1 Leskovec et al. (2005) Autonomous System 11,174 23,409
14 Oregon Autonomous System 2 Leskovec et al. (2005) Autonomous System 11,461 32,730
15 GENSEC-Artist Rozemberczki et al. (2019b) Social Network 41,618 557,133
16 ER-AVGDEG10-100K-L2 Rossi and Ahmed (2015) Labeled Network 99,997 499,359
17 Brightkite Rossi and Ahmed (2015) Social Network 56,739 212,945
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Figure 8: Additional transferability results on real networks by BFS-based embeddings vs. GNN-
based embeddings using GNNs trained on ERs ∼ ERn(λ/n) for λ = 5. Legend is the same as in
Figure G.3.
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