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ABSTRACT

The need to explain decisions made by Al systems is driven by both recent reg-
ulation and user demand. The decisions are often explainable only post hoc. In
counterfactual explanations, one may ask what constitutes the best counterfac-
tual explanation. Clearly, multiple criteria must be taken into account, although
“distance from the sample” is a key criterion. Recent methods that consider the
plausibility of a counterfactual seem to sacrifice this original objective. Here, we
present a system that provides high-likelihood explanations that are, at the same
time, close and sparse. We show that the search for the most likely explanations
satisfying many common desiderata for counterfactual explanations can be mod-
eled using Mixed-Integer Optimization (MIO). We use a Sum-Product Network
(SPN) to estimate the likelihood of a counterfactual. To achieve that, we propose
an MIO formulation of an SPN, which can be of independent interest.

1 INTRODUCTION

A better understanding of deployed AI models is needed, especially in high-risk scenarios (Dwivedi
et al., 2023). Trustworthy and explainable Al (XAI) is concerned with techniques that help peo-
ple understand, manage, and improve trust in Al models (Gunning et al., 2021; Burkart & Huber,
2021; Bodria et al., 2023). Explanations also serve an important role in debugging models to ensure
that they do not rely on spurious correlations and traces of processing correlated with labels, such
as timestamps. In a post-hoc explanation, a vendor of an Al system provides an individual user
with a personalized explanation of an individual decision made by the Al system, improving the
model’s trustworthiness (Karimi et al., 2022; Li et al., 2023). In this context, personalized explana-
tions are often called local explanations because they explain the model’s decision locally, around a
given sample, such as one person’s input. Thus, local explanations provide information relevant to
the user without revealing global information about the model, regardless of whether the model is
interpretable a priori.

Consider, for example, credit decision-making in financial services. The models utilized need to be
interpretable a priori, cf. the Equal Credit Opportunity Act in the US (ECOA) and related regulation
(European Commission, 2016a;b) in the European Union, but an individual who is denied credit may
still be interested in a personalized, local explanation. A well-known example of local explanations
is the counterfactual explanation (CE). CE answers the question “How should a sample be changed
to obtain a different result?” (Wachter et al., 2017). In the example of credit decision-making, a
denied client might ask what they should do to obtain the loan. The answer would take the form
of a CE. For example, “Had you asked for half of the loan amount, your application would have
been accepted”. As illustrated, CE can be easily understood (Byrne, 2005; Guidotti, 2022). How-
ever, their usefulness is influenced by many factors (Guidotti, 2022), including validity, similarity,
sparsity, actionability, and plausibility.

This work focuses on the plausibility of counterfactual explanations. Unfortunately, plausibility does
not have a clear definition. The definition of Guidotti (2022) suggests that CE is not an outlier and
measures it as the mean distance to the data. A Local Outlier Factor is often used (e.g., Kanamori
et al., 2020), but this method is not invariant of the data size. Alternatively, Jiang et al. (2024) define
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Table 1: Method comparison. A check mark indicates that a given method claims to possess the given fea-
ture. The star symbol (*) means that the method is model-agnostic as long as the classifier can be expressed
using MIO. Complex data means data with continuous, categorical, ordinal, and discrete contiguous values.
Exogenous property means that a method can generate unseen data samples as CEs. Regarding actionability,
C-CHVAE disregards the monotonicity of features, and DiCE claims to achieve actionability through diversity
without any data-specific constraints in place. All methods require validity and optimize some notion of simi-
larity.

Method Plausibility ~ Sparsity ~ Actionability ~Complex data Model-agnostic ~Exogenous
PROPLACE (Jiang et al., 2024) v v
C-CHVAE (Pawelczyk et al., 2020) v only immut. v

FACE (Poyiadzi et al., 2020) v v v v

DiCE (Mothilal et al., 2020) v v v
PlaCE (Artelt & Hammer, 2020) v v v
DACE (Kanamori et al., 2020) v v v v v
LiCE (Proposed method) v v v v vE v

a “plausible region” as a convex hull of k£ nearest neighbors of the factual. However, this region can
still contain outliers.

Many other methods consider estimating the likelihood of CEs as a proxy for plausibility. This ap-
proach aligns with the definition of CE not being an outlier since outliers will have a low likelihood.
One such approach uses (Conditional) Variational Auto-Encoders (Jordan et al., 1998; Pawelczyk
et al., 2020) in likelihood estimation. This approach does not provide a good way to handle categor-
ical inputs and does not provide an efficient way to compute the exact likelihood of a CE. Plausible
CE (P1aCE) proposed in (Artelt & Hammer, 2020) uses Gaussian mixture models in the framework
of convex optimization to maximize likelihood in CE generation. Its limitations are the inability to
handle categorical features and non-linear classifiers. Another common way to estimate likelihood
is Kernel Density Estimation (KDE), which shares the inability to handle categorical features well.
KDE is utilized by, e.g., FACE (Poyiadzi et al., 2020), which can also return CEs only from the
training set.

Our Contribution We propose Likely Counterfactual Explanations (LiCE) method, which op-
timizes plausibility in combination with other desiderata (see Table 1). LiCE uses Sum-Product
Networks (SPNs) of Poon & Domingos (2011), which are state-of-the-art tractable models to es-
timate likelihood. They naturally handle categorical features. This work combines the tradition
of tractable probabilistic models with mixed-integer formulations by formulating the former in the
latter.

In particular, we propose:

* A mixed-integer formulation of a trained Sum-Product Network estimating log-likelihood.

* Sum-Product Network as a measure of plausibility of CE, which allows the integration of
plausibility directly into the MIO formulation.

* LiCE method for the generation of CEs. An MIO model that can be constrained by or
optimized with respect to the most common desiderata regarding CE generation.

The advantage of our approach can be illustrated with an example from the German Credit dataset
(Hofmann, 1994). See Figure 1, where CEs produced by several methods considering the diversity
or plausibility of CE are compared against the factual (white cross) in the plane, where the horizontal
axis represents the amount of credit and where the vertical axis is the duration.

For example, C-CHVAE (Pawelczyk et al., 2020) and FACE (Poyiadzi et al., 2020) suggest approx-
imately halving the credit amount. The most plausible explanation produced by DiCE (Mothilal
et al., 2020) suggests decreasing the credit amount by almost a third while reducing the duration of
the loan to a single year. VAE and PROPLACE (Jiang et al., 2024) suggest decreasing the credit
amount even further to below 3000. In contrast, MIO finds a counterfactual with the sought credit
amount and suggests decreasing the loan duration by only two months. Because the visualization is
a 2-dimensional projection, some changes are not visualized. LiCE changes only one “hidden” fea-
ture (installment rate as a percentage of disposable income). Additionally, all other methods change
at least six features (except MIO, which changes two), showing poor sparsity.
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Figure 1: The heatmap shows the marginalized log-likelihood distribution of the German Credit dataset into
a 2-dimensional space of Credit amount and Duration features, with extremely low values clipped to —35
for visual clarity. The factual (white cross) and CEs are also projected to the two dimensions. The factual
is classified as being denied. Most CE methods choose distant points, sometimes with poor likelihood. The
proposed method (LiCE) strikes a balance between likelihood and proximity.

This example illustrates the issue of considering plausibility exclusively. High plausibility should
ensure that the counterfactual is not an outlier, i.e., it is “realizable” by the client. However, this can
lead to non-sparse, distant CEs, which are nonetheless difficult to realize.

Notation used Throughout the paper, we consider a classification problem in which the dataset
D is a set of 2-tuples (x,y) € D. Each input vector x € X C R¥ consists of P features and is
taken from the input space X that can be smaller than P-dimensional real space (e.g., can contain
categorical values). x; is the value of the j-th feature of the sample x. We have C classes and
describe the set of classes [C] = {1,...,C}. y € [C] is the true class of the sample x. Finally,
we have a classifier h(x) = ¢ € [C] that predicts the class ¢ for the sample x. More details on the
notation are given in the Appendix A.

2 PREREQUISITES

2.1 COUNTERFACTUAL EXPLANATIONS

We define a counterfactual explanation in accordance with previous works as x’ € X such that
h(x) # h(x’) and the distance between x’ and x is in some sense minimal (Guidotti, 2022; Wachter
et al., 2017). We refer to x as factual and x’ as counterfactual or CE. As mentioned above, there are
many desiderata regarding the properties of CEs. Following Guidotti (2022), the common desiderata
in which we are interested are:

e Validity. x' should be classified differently than x
e Similarity. x' should be similar (close) to x

* Sparsity. x" should change only a few features compared to x, i.e., minimize ||x" — x||o

* Actionability. A counterfactual should not change features that cannot be changed (im-
mutability). This includes the monotonicity of some features, e.g., age can only increase.

* Plausibility. CEs should have a high likelihood (be plausible) with respect to the distri-
bution that has generated the dataset D. This is sometimes interpreted as not being an
outlier.

Guidotti (2022) describes also other desiderata, which we discuss in Appendix B.1
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2.2 MIXED-INTEGER OPTIMIZATION

Mixed-Integer Optimization (MIO, (Wolsey, 2020)) is a powerful framework for modeling and solv-
ing optimization problems, where some decision variables take values from a discrete set while
others are continuously valued. Non-trivially, the problem is in NP (Papadimitriou, 1981) and
is NP-Hard, in general. There has been fascinating progress in the field in the past half-century
(Bixby, 2012). State-of-the-art solvers based on the branch-and-bound-and-cut approach can often
find global, certified optima for instances with millions of binary variables within hours, while there
are pathological instances on under a thousand variables whose global optima are still unknown.
Naturally, MIO is widely used in those areas of machine learning where both discrete and contin-
uous decision variables need to be optimized jointly (e.g., Huchette et al., 2023). We use the more
general abbreviation MIO, though we consider only mixed-integer /inear formulations.

A crucial advance has been the mixed polytope formulation of Russell (2019), which neatly com-
bines categorical and continuous values. A feature j takes a continuous value from the range [L;, U]
or one of the K; distinct categorical values. This is useful for modeling data with missing values,
especially when there is a description of why the value is missing (Russell, 2019). To model the
mixed polytope (Russell, 2019) of a counterfactual for the feature j, we create a one-hot encoding
for K; discrete values into binary variables d; ;, and a continuous variable c; with a binary indicator
variable aljcont equal to 1 when the feature takes a continuous value. In summary:

K;

D djk+dfrt =1 (1)
k=1

¢j = Fd o™ — 1 + u; )
0 <l; < (Fj—Ly)dgo 3)
0 < uy < (U; — Fy)do™ 4)
Ao dj g € {0,1} Vk € (K}, 5)

where I is either the original value x; or the median value of continuous data of the mixed feature
g if the factual z; has one of the categorical values instead. Constraint (2) fixes the value of c; using
two non-negative variables, [; and u;, representing the decrease and increase in the continuous
value, respectively. This construction facilitates the computation of the absolute difference from the
factual. Since we minimize their (weighted) sum, at least one of them will always equal 0 (Russell,
2019).

2.3  SuM-PRODUCT NETWORKS

Probabilistic circuits (PCs) (Choi et al., 2020) are tractable probabilistic models (or rather, computa-
tional graphs) that support exact probabilistic inference and marginalization in time linear w.r.t. their
representation size. Probabilistic circuits are defined by a tuple (G, ¢, ), where G = (V, £) is a Di-

rected Acyclic Graph (DAG) defining the computation model, a scope function ¢ : V — 2[F] defines
a subset of features over which the node defines its distribution, and a set of parameters 6. The root
node n"°°" (a node without parents) has the scope function equal to all features, i.e., 1)(n*°°") = [P].
To simplify the notation, we define a function pred(n), giving a set of children (predecessors) of an
inner node n and denote x,,) the features of x within the scope of n.

An important subclass of PCs is Sum-Product Networks (SPNs), which restrict PCs such that the
inner (non-leaf) nodes are either sum nodes (V*) or product nodes (V'1).

Leaf node n* € YV = {n|pred(n) = 0} within SPNs takes a value O, from a (tractable)
distribution over its scope 1 (n") parametrized by 0,,1..

Product node n™ € V™ performs a product of probability distributions defined by its children
Onn (a:w(n)) = H Oa (Q?w(a)). (6)
a€pred(n'l)

The scope of product nodes must satisfy decomposability, meaning that the scopes of its children
are disjoint, i.e., (N, e prea(nmr) ¥(a) = 0, but complete U, eqony ¥(a) = $(n™).

4
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Sum node n* € V> has its value defined as

OnZ (xw(ﬂ)) = Z Wq,n= - Oa(l‘w(a))v (7)

a€pred(n®)

where weights w, ,= > 0 and ZaEpred(nZ) W, s = 1. The value of a sum node is thus a mixture

of distributions defined by its children. The scope of each sum node must satisfy completeness
(smoothness), i.e., it must hold that 1)(a;) = ¥(az) Vay,as € pred(n®).

3 RELATED WORK

Pioneering work on counterfactual explanations (under the name “optimal action extraction”) by Cui
et al. (2015) considered classifiers based on additive tree models and extracted an optimal plan to
change a given input to a desired class at a minimum cost using MIO. In parallel, similar approaches
have been developed under the banner of “actionable recourse” (Ustun et al., 2019) or “algorith-
mic recourse” (Karimi et al., 2022; 2021). Developing upon this, Karimi et al. (2021) distinguish
between contrasting explanations and consequential explanations, where actions are modeled ex-
plicitly in a causal model. We use the term counterfactual explanations (CEs), popularized by, e.g.,
Wachter et al. (2017).

There is a plethora of work on the search for CEs, as recently surveyed (e.g., Karimi et al., 2022;
Burkart & Huber, 2021; Guidotti, 2022; Bodria et al., 2023). Below, we focus on methods with
objectives related to the plausibility of CEs.

DACE (Kanamori et al., 2020) utilizes an MIO formulation, minimizing a combination of /;-norm
based Mahalanobis’ distance and 1-Local Outlier Factor (1-LOF) for plausibility. The use of 1-LOF
requires the use of O(|D|) variables and O(|D|?) constraints. We improve on DACE by formulating
the SPN as MIO to compute the likelihood. The number of variables and constraints does not depend
on the dataset size but rather on the size of the SPN. Moreover, our flexible formulation allows us to
maximize plausibility or constrain the CE not to be an outlier, similar to DACE. PROPLACE (Jiang
et al., 2024) is also an MIO-based method for finding robust CEs within a “plausible region”. The
region is constructed as a convex hull of the factual and its (robust) nearest neighbors. The neighbors
can, however, be outliers if a factual is not in a dense region of the data. Therefore, this approach is
not faithful to the plausibility definition we use (Section 2.1). FACE (Poyiadzi et al., 2020) selects
a CE from the training set D, rather than generating it from X. It works by navigating a graph of
samples x € D, where an edge exists between two samples if they are close or by connecting k-
nearest neighbors. It further requires that a sample has density (evaluated by KDE) above a certain
threshold. This approach is limited by the inability to generate exogenous CEs, which is not the case
for our method.

Similarly to LiCE, some works estimate the data distribution via a probabilistic model, such as
Variational Auto-Encoder (VAE, Mahajan et al. (2020)). C-CHVAE (Pawelczyk et al., 2020) uses
a Conditional VAE to search for plausible (they use the term faithful) CEs without the need of a
metric in the original space. However, VAE provide only a lower bound on likelihood and it is non-
trivial to formulate within MIO, therefore, the solution lacks any guarantees on optimality. PlaCE
(Artelt & Hammer, 2020) uses a Gaussian Mixture Model (GMM) to represent the data distribution.
Their formulation approximates a GMM by a quadratic term and uses a general convex optimiza-
tion solver. However, GMMs cannot handle categorical features, which are frequent in datasets of
interest. LiCE uses SPNs, probabilistic models that are tractable, naturally handle categorical fea-
tures, and can have linear MIO formulation. SPNs are a strict generalization of GMMs (Aden-Ali
& Ashtiani, 2020). We refer to Appendix G.3 for further discussion on using SPNs.

4 MIXED-INTEGER FORMULATION OF SPN

Our contribution is built on a novel formulation of likelihood estimates provided by a Sum-Product
Network (SPN) in Mixed-Integer Optimization (MIO). Eventually, this makes it possible to utilize
the estimate to ensure plausible counterfactuals generated using MIO. Specifically, we propose an
MIO formulation for a log space variant of a fitted SPN (Poon & Domingos, 2011) with fixed
parameters. We perform all computations in log space because it enables the approximation of
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both sum and product nodes by linear constraints. In addition, it makes optimization less prone to
numerical instabilities.

Let us introduce the MIO formulation following the definition of SPN in Section 2.3:

Leaf nodes In any SPN, the leaves are represented by probability distributions over a single fea-
ture. In the case of discrete random variables, we can utilize the indicator d; j, that feature j has
value k in the one-hot encoding. In the case of continuous random variables, we can utilize his-
togram approximations, that is, piecewise linear functions, whose mixed-integer formulations have
been studied in considerable detail (cf. Huchette & Vielma, 2023). We suggest and utilize an alter-
native formulation of a histogram described in Section C.2.

Product nodes In any SPN, each node n combines the outputs o,, a € pred(n) of its predeces-
sors. Consider now a product node n € V', with output defined as a product of predecessor outputs.
Since we consider all computations in log space, this translates to

On = Z 0o VneVW 3

a€pred(n)

Sum nodes A sum node n € V¥ is defined as a weighted sum of predecessor a outputs. In log
space, the sum would translate t0 0, = 108 >, ¢ red(n) Wa,n €XP(0q), Which we cannot easily for-
mulate as a linear expression. Considering wq exp(0,) = exp(o, +1og w,,m), we can approximate
log >~ exp(z) by max z. Specifically, let z, = o, + log w,_, and we bound

max 2z, = loge max 2
aEpre(i((n) “ & Xp(aEpre(i((n) a)
<log Y  exp(z) =0}

a€pred(n)

< log <|pred(n)| eXp(aelgigji(n) Za)> = log(|pred(n)|) + aegigj((n) “a-

In other words, the approximate value o,, of a sum node n can be bound by the true value o}, as

oy, —log(lpred(n)|) <o, = max z, <o},
a€pred(n)
meaning that our approximation is a lower bound of the true o}, and the error in the estimate is at the
most logarithm of the number of predecessors. If we wanted an upper bound, we could easily add
log(|pred(n)|) to the value o,,. To formulate the max function, we can linearize it by introducing
slack binary indicators m, ,, € {0, 1} for each predecessor a of sum node n

on < 0g +1ogwe n + Mg.n - T#L Vn € V¥ Va € pred(n) 9)
Z Man = [pred(n)] —1 Vn € Y= (10)
acpred(n)

where TV is a big enough “big-M” constant (Wolsey, 2020). Constraint (10) ensures that constraint
(9) is tight (0, < z,) for a single predecessor a for which m, = 0. Since we maximize the
likelihood, the value of o,, will be equal to max, z,.

5 LIKELY COUNTERFACTUAL EXPLANATIONS

As our main contribution, we present a novel formulation for Likely Counterfactual Explanations
(LiCE), which finds plausible CEs (with high likelihood) while satisfying common desiderata. Since
the optimization problem is written as MIO, the solution (CE) satisfies all constraints and is globally
optimal. Throughout the section, we assume that all continuous values are normalized to the range
[0,1].

We now describe how we formulate the input encoding, classification model, and various desiderata
as MIO constraints. The potential of MIO to formulate similar constraints is well discussed in the
literature (e.g., Russell, 2019; Kanamori et al., 2020; Mohammadi et al., 2021; Jiang et al., 2024),
although the discussion rarely contains concrete formulations (Parmentier & Vidal, 2021). We dis-
cuss MIO formulations of the desiderata specific for the mixed polytope input encoding (Russell,
2019) in Section B.3.
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Input encoding To encode the input vector, we utilize the mixed polytope formulation (Russell,
2019), as explained in Egs. 1-5 on page 4. The mixed polytope encoding works for purely continu-
ous values by setting K; = 0. For fully categorical features, one must disregard the variable d jcont
as explained in more detail in Section C.1.

The input to the classification model (and to the SPN) is then a set of all variables c; and d; ;, (but
not djc‘mt) concatenated into a single vector. With some abuse of the notation, we denote this vector
x’. When there is no risk of confusion, we denote the space of encoded inputs as X" and the number
of features after encoding as P.

Model formulation We encode the classification model using the OMLT library (Ceccon et al.,
2022) which simplifies the formulation of various ML models, although we focus on Neural Net-
works. Linear combinations in layers are modeled directly, while ReLUs are modeled using big-M
formulations, though other formulations are possible (Fischetti & Jo, 2018).

Validity Let h™" : X — Z be the neural network model h(-) without activation at the output
layer. Let h'™(x’) be the result obtained from the model implementation. Assuming that we
have a binary classification task (C' = 2), a neural network typically has a single output neuron
(Z = R). A sample x is classified based on whether the raw output is above or below 0, i.e., h(x) =
1{h™¥(x) > 0}. Thus, depending on whether the factual is classified as 0 or 1, we set

R (x') > 7 or K™V (x') < -7, (11)

respectively, where 7 > 0 is a margin that can be set to ensure a higher certainty of the decision,
improving the reliability of the CE. We present further formulations of the validity for C' > 2 in
Appendix B.3.1.

Similarity and Sparsity To ensure similarity of the counterfactual, we follow Wachter et al.
(2017) and Russell (2019) and use the somewhat non-standard ||-||; map norm, weighed by inverse
Median Absolute Deviation (MAD)

P

l1%l1,MaD = Z

Jj=1

Lj

MAD;

(12)

MAD; = median ep (|z; — median(x .yep(z;)|) -

This metric also improves sparsity and adds scale invariance that is robust to outliers (Russell, 2019).

Actionability We call a CE actionable if it satisfies monotonicity and immutability constraints.
For immutability, the constraint is simply x; = xg for each immutable feature j. We can also
set the input value as a parameter instead of a variable, omitting the feature encoding. Modeling
monotonicity, i.e., that a given value cannot decrease/increase, is done using a single inequality for
continuous features, e.g., [; = 0 for a non-decreasing feature. For ordinal values, we fix to zero all
one-hot dimensions representing smaller ordinal values, for non-decreasing features. Similarly, we
can enforce basic causality constraints. Details are provided in Appendix B.3.3.

Plausibility As explained in Section 4, fixed SPN fitted on the data allows us to estimate likelihood
within MIO formulation. Negative likelihood can be added to the minimization objective with some
multiplicative coefficient o > 0. Alternatively, the likelihood can be used in constraints to force all
generated CEs to have likelihood above a certain threshold 55PN, Such constraint is simply

Oproot > 65PN (13)

where 65PN is a hyperparameter of our method, and o,,ro0: is the likelihood estimated by the SPN.
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Table 2: Approximation quality of the SPN. The first row shows the mean likelihood of CEs, evaluated by the
SPN. The second row is the mean output of the MIO formulation of the same SPN. The third row shows the
mean difference.

GMSC Adult Credit
True SPN output —25.62+4.42 —18.104+3.77 —29.05+ 3.32
MIO formulation output (0,r00t)  —25.71 +4.47 —18.62 £3.97 —29.28 + 3.39
SPN approximation error 0.09 £0.35 0.52 £0.45 0.22 £0.23

Full LiCE model In summary, our method optimizes the following problem:

arg lmhéll (14 u)Tveort 4 (d — d™e)TyPm — o . 0, o0 (14)

7u7

s.t. mixed polytope conditions (1-5) hold
ML classifier constraints hold
validity constraints (e.g., 11) hold
SPN constraints (8—10) hold
plausibility constraint (13) holds
data-specific desiderata (e.g., actionability) constraints hold,

where « is a parameter of LiCE, weighing the influence of log-likelihood in the objective, 1, u and d
represent the vectors obtained by concatenation of the parameters in Eqs. 1-5. The vector d°t is the
vector of binary variables of the encoded factual x. v°° and v represent weights for continuous
and binary variables, respectively. The weights for feature j are 1/MAD; and thus Eq. 14 (when
o = 0) correspond to Eq. 12. Details about data-specific constraints are in Section E.1.

6 EXPERIMENTS

We first train a basic feed-forward Neural Network (NN) classifier with 2 hidden layers with ReL.U
activations. One could easily use one of the variety of ML models that can be formulated using
MIO, including linear models, (gradient-boosted) trees, forests, or graph neural networks.

Secondly, we train an SPN to model the likelihood on the same training dataset. We include the class
y of a sample x in the training since we have prior knowledge of the counterfactual class. SPNs have
a variety of training methods (Xia et al., 2023), of which we use a variant of LearnSPN (Gens &
Domingos, 2013) implemented in the SPFlow library (Molina et al., 2019).

Data We tested on the Give Me Some Credit (GMSC) dataset (Fusion & Cukierski, 2011), the
Adult dataset (Becker & Kohavi, 1996) and the German Credit (referred to as Credit) dataset (Hof-
mann, 1994). We dropped some outlier data and some less informative features (details in Appendix
D) and performed all experiments in a 5-fold cross-validation setting.

LiCE variants The main proposed model directly reflects the formulation (14). We compare two
variants, one with a lower-bound on the log-likelihood (65FN) at the median log-likelihood value
of training samples, similar to Artelt & Hammer (2020). We also set « = 0, to minimize purely
the distance to factual. We refer to this as LiCE (median). The other variant, LiCE (optimize), is
the opposite, i.e., we optimize a combination of distance and likelihood with o« = 0.1 and relax the
plausibility constraint (Eq. 13). MIO represents our method without the SPN model directly formu-
lated. We use all constraints described in Section 5, without the plausibility and SPN constraints.
We use the SPN post hoc to select the most likely explanation.

MIO and LiCE are implemented using the open-source Pyomo modeling library (Bynum et al.,
2021) that allows for the simple use of (almost) any MIO solver. We use the Gurobi solver (Gurobi
Optimization, LLC, 2024). We solve each formulation for up to 2 minutes, after which we recover
(up to) 10 best solutions. The entire implementation, together with the data, is available at https:
//github.com/Epanemu/LiCE.
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Table 3: The proportion of factual instances for which a given method generated a valid or actionable counter-
factual. Actionable CEs satisfy the immutability and monotonicity of relevant features (see Section 2.1).

GMSC (Fusion & Cukierski, 2011)  Adult (Becker & Kohavi, 1996) Credit (Hofmann, 1994)

Method Valid Actionable Valid Actionable Valid Actionable
DiCE 100.0% 100.0% 99.8% 56.2% 98.4% 3.4%
VAE 1.4% 0.2% 75.4% 10.2% 27.2% 0.0%
C-CHVAE 98.6% 21.6% 16.8% 8.6% 11.0% 8.8%
FACE (¢) 98.6% 13.2% 62.0% 19.6% 27.2% 10.0%
FACE (knn) 98.6% 16.2% 79.4% 28.4% 27.2% 8.8%
PROPLACE 98.6% 6.6% 79.4% 6.6% 27.2% 11.8%
. MIO 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
5 LiCE (optimize) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
° LiCE (median) 55.6% 55.6% 91.2% 91.2% 100.0% 100.0%

Table 4: Mean negative log-likelihood (NLL), |-||1,map distance, and the number of changed features, measured
on valid generated counterfactuals, with information about standard deviation. The log-likelihood is estimated
by the SPN. The number of valid counterfactuals generated by a given method varies (see Table 3), so the direct
comparison between methods is non-trivial. The (+spn) means that the given method generates 10 CEs from
which we choose the likeliest valid counterfactual using the SPN. For all measures, a lower value is better.

GMSC (Fusion & Cukierski, 2011) Adult (Becker & Kohavi, 1996) Credit (Hofmann, 1994)
Method NLL | Similarity |  Sparsity | NLL | Similarity |  Sparsity | NLL | Similarity | Sparsity |
DiCE (+spn) 30.5 £3.7 20.7 £5.2 6.4+1.0 20.5 +£3.0 23.5+9.9 4.6 £1.7 516 £179  28.1+£7.9 8.7+2.2
VAE (+spn) 23.1+12.6 154 +44 9.1 £0.8 17.143.0 33.3£109 55415 49.0+17.8 288 +7.8 10.9+1.8
C-CHVAE 24.9 +2.4 174 +£4.7 9.0 £0.0 17.9 £3.2 8.6 £6.3 3.0 £1.0 34.0 £6.5 13.5 £4.9 7.6 £1.0
FACE (¢) 30.0 £9.0 14.8 +£3.8 8.5 +1.1 16.1 £3.0 14.6 +£8.4 37412 464175  18.146.2 7.0+1.2
FACE (knn) 29.5 +£8.2 14.6 £3.8 8.4+1.1 15.6 £3.1 14.1 £8.0 3.7+1.2 444 +£178 18.5+6.2 7.1+£1.3

PROPLACE 27.3 £5.7 121 £3.1 74+1.1 17.6 £3.3 22.0 8.0 4.8+1.2 4124170 24.5+6.3 8.7+1.3

MIO (+spn) 278+64 59+1.8 2.2+08 17.9+3.7 5.7+ 3.6 22409 476+£182 4.4+£27 22£10
LiCE (optim.) 256+44 59+18 26+1.1 181+£38 55+3.6 2.0+1.0 29.1+33 44+£27 21£10
LiCE (median) 18.1+2.6 106+35 44+11 129+1.0 97+6.5 29+13 298%3.1 4.4+27 20+1.1

ours

Compared methods We compare our methods to the C-CHVAE (Pawelczyk et al., 2020), FACE
(Poyiadzi et al., 2020) and PROPLACE (Jiang et al., 2024) methods described in Section 3. We
use the implementations of FACE and C-CHVAE provided in the CARLA library (Pawelczyk et al.,
2021). We run FACE in two variants, connecting samples within a given distance (e) or by nearest
neighbors (knn). For PROPLACE, we use the official implementation (Jiang et al., 2024). We omit
PIaCE and DACE since their implementation does not support CE generation for Neural Networks.

In addition to those, we also compare to DiCE (Mothilal et al., 2020), a well-known method that
focuses on generating a diverse set of counterfactuals. VAE is a method using a Variational Auto-
Encoder. It is an implementation available in version 0.4 of the DiCE library based on the work of
Mabhajan et al. (2020). For DiCE and VAE, we select the most likely CE out of 10 generated CEs.

If a CE method requires any prior training, we use the default hyperparameters (or some reasonable
values, details in Appendix E.2) and train it on the same training set. If a given method can take into
account actionability constraints, we enforce them.

Experimental settings For all experiments, we assume that the SPN and NN are fitted and fixed.
We generate CEs for 100 factuals using each method for each fold, summing up to 500 factuals per
dataset. The factuals are randomly selected from both classes. Methods that can output more CEs
(MIO, LiCE, DiCE, VAE) are set to find at most 10 CEs, and we select valid CE with the highest
likelihood (evaluated by the SPN) post-hoc. Further details on hyperparameters and experiment
configurations are provided in Section E.

Results To assess the quality of the MIO approximation of the SPN, we compare the CE likelihood
computed by the MIO solver and the true value computed by SPN in Table 2. The worst approxi-
mation error is at 0.52 on average, which is just 2.85%. We find this surprisingly tight. Moreover,
considering the differences between methods (cf. Table 4), this is acceptable.

The comparison of the CE methods is non-trivial since the factuals for which a given method suc-
cessfully returned a valid counterfactual are not the same for all methods. See Table 3 for details
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on the success rate of the presented methods. For LiCE (median), the lower rates are caused by a
failure to create a counterfactual candidate in time. For other methods, it is also a failure to follow
the validity/actionability criteria, especially for the case where a valid CE exists but an actionable
does not. Overall, these results show that MIO-based methods have a high success rate unless the
constraints are too tight. Methods unconstrained by the likelihood, i.e., MIO and LiCE (optimize),
have a 100% success rate. For our methods, all generated CEs are guaranteed to be both valid and
actionable.

We now compare CE methods on plausibility, similarity, and sparsity measured by negative log-
likelihood (evaluated by the SPN), ||-| 1,MaD, and by the number of modified features, respectively,
see Table 4. The results are difficult to interpret, since not every method produced a valid CE for
each factual. However, MIO and LiCE have success rates among the highest (cf. Table 3) and still
perform best not only with regards to likelihood but also in terms of similarity and sparsity. Results
on a subset of factuals for which each method generated a valid CE paint a similar picture, see
Table 11 in Appendix F.2.

The plausibility results of LiCE (median), evaluated by the SPN, seem to be dominant. Part of
the improvement could be explained by the method finishing in time mostly on easier instances.
Interestingly, the optimizing variant of LiCE achieves a better mean objective value on Adult and
GMSC than the median variant, despite the median version’s objective function not accounting for
the NLL. This is in part because LiCE (optimize) has a bigger feasible space, allowing it to generate
closer CEs with a likelihood worse than the median of the training set. The fact that LiCE (optimize)
beats MIO on Adult in similarity (which MIO directly optimizes) is counterintuitive. It is caused by
choosing the most likely CE out of a set of 10. This set includes local optima that are farther from
the factual, but might have a higher likelihood.

Although for some datasets, the plausibility results are comparable between multiple methods, the
similarity and sparsity remain dominated by our methods. We must also point out that merely adding
the SPN as a post-hoc evaluation to some existing method (e.g., DiCE) performs significantly worse.
Further comparisons and discussion of the results are in Appendices F and G.

Limitations Our method shares the limitations of all MIO methods with respect to scalability and
computational complexity. The additional SPN formulation leads to some computational overhead,
especially when using the likelihood threshold, as exemplified in the results on the GMSC dataset
in Table 3.

Our method relies on an SPN to evaluate likelihood, i.e., plausibility. One may question the capa-
bility of an SPN to accurately model the data distribution. We empirically show a strong correlation
between the SPN likelihood and the true probability in Section G.4. Furthermore, in Appendix E.5,
we use synthetic data to show that the true probability of CEs generated by LiCE is comparable to
the probability of CEs generated by other well-performing methods.

7 DISCUSSION AND CONCLUSIONS

We have presented a comprehensive method for generating counterfactual explanations called LiCE.
In Section 5, we show that our method satisfies the most common desiderata—namely validity, simi-
larity, sparsity, actionability and, most importantly, plausibility.

Our method shows promising performance at the intersection of plausibility, similarity, and spar-
sity. It also reliably generates high-quality, valid, and actionable CEs. However, time concerns are
relevant once the full SPN is formulated within the model.

In future work, the limitations of using MIO could be addressed by approximation algorithms. Ad-
ditionally, other SPN-based models could be considered to estimate plausibility. Last but not least,
the MIO formulation of a Sum-Product Network can be of independent interest.
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A  NOTATION

Generally, the notation follows these rules:

* Capital letters typically refer to amounts of something, as in classes, features, bins, etc.
Exceptions are U, L, and F', which are taken from the original work (Russell, 2019).

* Caligraphic capital letters denote sets or continuous spaces.

* Small Latin letters are used as indices, variables, or parameters of the MIP formulation.
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Table 5: General functions used

General function symbols

|-| Absolute value (if scalar) or size of the set
-] Set of integers, [N] = {1,2,...,N}
1{-} Equal 1 if input is true, O otherwise
II-llo €0 norm, number of non-zero elements
2lP1 Set of all subsets of [P]

Table 6: Symbols used as indices

Indices

Index of features, typically j € [P]

Index of counterfactuals within a set Cy, typically m € [M]

A node of the SPN, n € V

Index of bins of a histogram in a leaf node (n), typically ¢ € [B,]
A predecessor node (of node n) in the SPN, usually a € pred(n)
A class (k € [C]) or categorical value (k € [K]) index

Index of the feature that is changed as an effect of causal relation R

/\
o T NS\?/Q

* Small Greek letters refer to hyperparameters of the LiCE formulation or parameters of the
SPN (scope v, parameters 6).

Subscript is used to specify the position of a scalar value in a matrix or a vector. When in
parentheses, it specifies the index of a vector within a set.

Superscript letters refer to a specification of a symbol with otherwise intuitively similar
meaning. Except for R”, where P has the standard meaning of P-dimensional.

* A hat () symbol above an element means that the element is the output of the Neural
Network A(-).

A prime (") symbol as a superscript of an element means that the element is a part of (or
the output of) the counterfactual.

* In bold font are only vectors. When we work with a scalar value, the symbol is in regular
font.

The specific meanings of symbols used in the article are shown in Tables 5 to 9. The symbols are
divided into groups.
* Functions non-specific to our task (Table 5)
¢ Used indices (Table 6)
LiCE (hyper)parameters that can be tuned (Table 7)
* Classification task and SPN symbols (Table 8)

MIO formulation parameters and variables (Table 9)

B CE DESIDERATA

B.1 OTHER DESIDERATA FOR CES
We present more desiderata by Guidotti (2022) that we consider.

* Diversity. Each X/(m) € Cx should be as different as possible from any other CE in the

set, ideally by proposing changes in different features. For example, one CE recommends
increasing the income; another one should recommend decreasing the loan amount instead.
An important example of a CE library aiming for diversity is DiCE (Mothilal et al., 2020).
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Table 7: Input parameters into the LiCE formulation

LiCE (hyper)parameters

7 The minimal difference between counterfactual class (A" (x’);/) and factual class
(™% (x")5) NN output value. Alternatively, for binary classification, it is the require-
ment for a minimal absolute value of the NN output before sigmoid activation (h™% (x)).

p Limit for the relative difference of values of the objective function within the set of
closest counterfactuals Cy.

a  Weight of negative log-likelihood in the objective function

€; Minimal change in continuous value c¢; of j-th feature. The absolute difference between

T

and z; is either O, or at least ;.

55PN Lower bound on the estimated value of likelihood of the generated counterfactual.
Table 8: Symbols of the classification task, CE search, and SPNs
Classification task symbols
P Number of features
C  Number of classes
D The dataset, set of 2-tuples (x,y) € D
X Input space X C R
x A (factual) sample x € X
x; A j-th feature of sample x
y  Ground truth of sample x, y € [C]
h(-) Classifier we are explaining b : X — [C]
9  Classifier-predicted class h(x) = g € [C]
h*@¥(.) NN classifier output without activation h**V : X — Z
Z  Output space of the NN classifier, without sigmoid/softmax activation
Counterfactual generation symbols
[Ill,Map  Counterfactual distance function (see Eq. 12)
Cx  Set of generated counterfactuals for factual x
M Number of sought counterfactuals, M > |Cy|
x’  Counterfactual explanation of x, x’ € Cy
x'*  Optimal (closest) counterfactual
x’(m) m-th counterfactual explanation of factual x
x; A value of j-th feature of the counterfactual
y" Predicted class of the counterfactual (can be a parameter of LiCE)
Sum Product Network symbols
V  Set of nodes of the SPN
VL Set of leaf nodes
V= Set of sum nodes
VT Set of product nodes
pred(-) Function returning children (predecessors) of a node
¥(-)  Scope function mapping nodes to their input features ¢ : V — 2[P]
6  Parameters of the SPN
O,, Output value of anode n € V
w,,,  Weight of output value of predecessor node a in computing the value of sum node n.
n'°°"  Root node, its value is the value of the SPN

16



Published as a conference paper at ICLR 2025

Table 9: Used variables and parameters in the MIO formulation

MIO formulation variables

l;  Decrease in continuous value of j-th feature.
1 Concatenated vector of all /;.
u; Increase in continuous value of j-th feature.
u  Concatenated vector of all u;.
¢;j  Continuous value of j-th CE feature.
djr  1iff 2 takes k-th categorical value k € Kj;.
d  All variables d; ;, concatenated into a vector.
alj"o’“t 1 iff x; takes continuous value c;.
hra¥(.),  Value of h™¥, corresponding to class & € [C].
gr  1iff class k € [C] has higher h™" value than the factual class.
s;  1ifft j-the feature changed, i.e., z; # x;
r 1 iff causal relation R is activated, i.e., cause is satisfied and effect is enforced.
bni Liff x’; does not belong to the i-th bin (i € [By]), assuming j-th feature corresponds
to node n, i.e., t(n) = {j}.
on  Estimated output value of SPN node n € V.
Man Binary slack indicator for sum node n € V* equal to 0 if output of predecessor a
constrains output of n tightly.
MIO formulation parameters
L; Lower bound on continuous values of j-th feature. In our implementation, equal to 0.
U; Upper bound on continuous values of j-th feature. In our implementation, equal to 1.
I Default continuous value of j-th feature, equal to the value of the factual x;, if it has
continuous value. Otherwise equal to the median.
K; Number of categorical values of j-th feature.
f;  Equal to x;, if it has categorical value. If x; is continuous, f; is removed, and so are
all constraints containing it.
S Maximal number of feature value changes of x’ compared to x. Sparsity limit.
R Example causal relation: if j-th feature increases, e-th feature must decrease.
B,, Number of bins in the histogram of leaf node n.
tn,i Threshold between ¢ — 1-th and i-th bin in histogram of leaf node n
Gn,i Likelihood value of i-th bin of node n.
vPin Vector of respective ||||1 map weights for binary one-hot encodings.
veont  Vector of respective ||-||1 map weights for continuous values.
dfact  One-hot encoded vector of factual categorical values corresponding to d.
TLL A “big-M” constant for sum node n, used for slack in the computation of max.
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In MIO, this is usually achieved by adding constraints and resolving the formulation (Rus-
sell, 2019; Mohammadi et al., 2021).

* Causality. Given that we know some causal relationships between the features, the gen-
erated CEs should follow them. For example, if x’ contains a decrease in the total loan
amount, the number of payments or their amount should also decrease.

B.2 OUR APPROACH TO THESE DESIDERATA

Causality Like actionability, causality depends on prior knowledge of the data. In causality, the
constraints are in the form of implications (Mahajan et al., 2020). We describe a way to model
causal constraints where if one value changes in a certain direction, then another feature must change
accordingly. Details are provided in Section B.3.3.

Diversity and Robustness The diversity of CEs generated by MIO is discussed in the literature
(Russell, 2019; Mohammadi et al., 2021). Although their approach can be applied to our model
too, here we simply generate a set of top-)M counterfactuals closest to the global optimum. We
can optionally limit the maximal distance relative to the optimal CE; see Section B.3.5. Regarding
the robustness of the counterfactuals, Artelt et al. (2021) show that finding plausible CEs indirectly
improves the robustness. Thus, we do not add any further constraints to the model despite this being
a viable option (e.g., Maragno et al., 2024; Jiang et al., 2024).

B.3 MIO FORMULATIONS OF DESIDERATA

The following MIO formulations of the desiderata are novel in that we came up with them, and,
to the best of our knowledge, they were not formalized before. They are not too complex, but we
formulate them for completeness.

B.3.1 VALIDITY
For C' > 2 classes, the raw output has C' dimensions (Z = Rc), and the classifier assigns the class
equal to the index of the highest value, i.e., h(x) = arg maxyc[c) h™" (x). Let 4 be the desired
counterfactual class. The validity constraint, given that we specify the counterfactual class prior, is
then

hraw(x/)g/ — hraw(xl>k >T1 Vke [C} \ {:lj/} (15)

Note that we can also implement a version where we do not care about the counterfactual class ¢’ in
advance by the following

\/

gr =1 = h"™(X)p = ")y =7 Vk € [C]\ {5}
gr =0 = W), — (X <7 VE € [C]\ {7}

ngl

ke[C\{g}

I /\

(16)

v

9

where = can be seen either as an indicator constraint or as an implication (Williams, 2013), g
is equal to 1 if and only if class k has a higher value than the factual class 3 in the raw output. The
sum then ensures that at least one other class has a higher value.

A wide variety of constraints ensuring validity are possible. For example, we can ensure that the
factual class has the lowest score by setting » kelC)\{g} Ik = C — 1, or we could enforce a custom
order of classes.
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B.3.2 SPARSITY

To constrain the sparsity further, we can set an upper bound .S on the number of features changed

ZSJSS
J

s;>1~— dj’fj Vj e [P]
sj = djn vj e [P], vk e [K]\ {/;} a7
5j2lj+uj' VJE[P]
sj €{0,1} Vi€ [P,

where we use the binary value s; that equals 1 if the j-th feature changed, the f; is the categorical
value of attribute j of the factual (if applicable).

Neither LiCE nor MIO use this constraint.
B.3.3 CAUSALITY

Consider the following example of a causal relation R. If feature j increases its value, another
feature e must decrease. For continuous ranges, this is formulated as

r>u; — 1

le > 7ee (18)
Ue <1 —1

r € {0,1},

where €, is a minimal change in the value of feature e and r equals 1 if the relation R is active. In the
case when the features are ordinal, we can assume that their values are just variables representing
categorical one-hot encoding, ordered by indices and use:

K,
r> Z d;

k=f;+1
fe

r S Z de,k:
k=1

r € {0,1},

where f; is the categorical value of the factual in feature j. Naturally, one can see that we can
use any combination of increasing/decreasing values in continuous and categorical feature spaces.
With these formulations, we can also model monotone values, such as age or education. We simply
replace the variable r by 1.

19)

One can formulate any directed graph composed of these causal relations by decomposing it into
pairwise relations, one per edge. This way, we can encode commonly used Structural Causal Models
that utilize directed graphs to express causality.

B.3.4 COMPLEX DATA

We use the umbrella term “Complex data” for tabular data with non-real continuous values. This
includes categorical (e.g., race), binary (e.g., migrant status), ordinal (e.g., education), and discrete
contiguous (e.g., number of children) values.

For binary, we use a simple 0-1 encoding; categorical data is encoded into one-hot vectors; and
discrete features are discretized by fixing their value to an integer variable within the formulation.
Since we normalize all values to the [0, 1] range, we introduce a proxy integer variable z;:

(Fj — 1 + u;) = scalej + shift; = z;
zj € /

For ordinal variables, we use the same encoding as categorical values, with the addition of the one-
hot encoding being sorted by value rank to allow for the causality/monotonicity to be enforced.
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B.3.5 DIVERSITY

Instead of a single counterfactual, the solver returns (up to) M counterfactuals closest to the global
optimum, optionally within some distance range. This range is defined in terms of the objective
function, which is the distance of a counterfactual in our case. In other words, we search for a set
Cyx = {le), - ’XE M)} of counterfactuals that have a similar distance to the factual.

Let x™* be the closest CE satisfying all other constraints; we can set a parameter p that represents
the relative distance of all CEs to the x* leading to the generation of set

Cx = {x" | [Ix =x'|l1map < (1+p) - [[x = x*[l1,MaD}-

Nevertheless, we disregard the relative distance parameter and search for the M closest CEs. Later,
we sift through the set C of top-M counterfactuals, looking for the most likely CEs. Here, one could
perform any filtering.

C OTHER MIO FORMULATIONS

C.1 MIXED POLYTOPE FORMULATION CORRECTION

For purely categorical features, the original mixed polytope (Russell, 2019) implementation contains
an issue. The first categorical value (represented by zero) is mapped to the continuous variable. This
seems to work fine for the logarithmic regression (Russell, 2019), but it failed on non-monotone
neural networks, leading to non-binary outputs. This was corrected by replacing the continuous
variable c¢; with another binary decision variable, making it a standard one-hot encoding.

C.2 SPN HISTOGRAM FORMULATION

In practice, the probability distribution of a leaf n € V" trained on data is a histogram on a single
feature 7, i.e., 1»(n) = {j}. The interval of possible values of ’; is split into B,, bins, delimited by
B,, + 1 breakpoints denoted ¢, ;, i € By, + 1].

Because modeling that a value of a variable belongs to a union of intervals is simpler than an in-
tersection, we consider variables b,, ; that equal 1 if and only if the value a:; does not belong to the

interval [t,, ;,t, ;+1). This leads to a set of constraints

b > tni — Vn € V', Vi € [B,)] (20)
bni > @y + €5 — tit Vn € VY, Vi € [B,] 20
By
> bni=Bn—1 Vn e V& (22)
=1
By
Oonp — Z(l - Bn,z) IOg q”,i vn S VL (23)
=1
l_)n,i € {0,1} Vn € V- Vi e [Bnl, (24)

where g, ; is the likelihood value in a bin ¢ and o,, is the output value of the leaf node n. ¢; is again
the minimal change in the feature j and ensures that we consider an open interval on one side. We
use the fact that all values x; (thus also ¢, ;) are in the interval [0, 1]. Eq. 20 sets b,, ; = 1 if x3 <t
and Eq. 21 sets l_)n,i = 1 for values on the other side of the bin x; > tn,it+1- Eq. 22 ensures that a
single bin is chosen and Eq. 23 sets the output value to the log value of the bin that x’ belongs to.
This implementation of bin splitting is inspired by the formulation of interval splitting in piecewise
function fitting of Goldberg et al. (2021).

We assume that the bins cover the entire space, which we can ensure by adding at most 2 bins on
both sides of the interval.
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D DATA MODIFICATIONS

We remove samples with missing values. Optionally, we also remove some outlier data or uninfor-
mative features.

GMSC We do not remove any feature in GMSC, but we keep only data with reasonable values to
avoid numerical issues within MIO. The thresholds for keeping the sample are as follows

e MonthlyIncome < 50000

* RevolvingUtilizationOfUnsecuredLines < 1

* NumberOfTime30-59DaysPastDueNotWorse < 10

* DebtRatio <2

* NumberOfOpenCreditLinesAndLoans < 40

* NumberOfTimes90DaysLate < 10

* NumberRealEstateLoansOrLines < 10

* NumberOfTime60-89DaysPastDueNotWorse < 10

* NumberOfDependents < 10
this removes around 5.5% of data after data with missing values was removed. We could combat
the same issues by taking a log of some of the features. In our “pruned” GMSC dataset, there are

113,595 samples and 10 features, none of which are categorical, 7 are discrete contiguous, and the
remaining 3 are real continuous. Further details are in the preprocessing code.

Adult In the Adult dataset, we remove 5 features

* fnlwgt which equals the estimated number of people the data sample represents in the
census, and is thus not actionable and difficult to obtain for new data, making it less useful
for predictions,

* education-num because it can be substituted by ordinal feature education,

* native-country because it is again not actionable, less informative, and also heavily
imbalanced,

* capital-gainand capital-loss because they contain few non-zero values.

It is not uncommon to remove the features we did, as some of them also have many missing values.
We remove only about 2% of the data by removing samples with missing values. We are left with
47,876 samples and 9 features, 5 of which are categorical, 1 is binary, 1 ordinal, and the remaining
2 are discrete contiguous. Further details are in the preprocessing code.

Credit We do not remove any samples or features for the Credit dataset. The dataset contains
1,000 samples and 20 features, 10 of which are categorical, 2 are binary, 1 ordinal, 5 are discrete
contiguous, and the remaining 2 are real continuous. Further details are in the preprocessing code.

All code used for the data preprocessing is in the repository https://github.com/Epanemu/
LiCE.

E EXPERIMENT SETUP

Here, we describe furhter details of our experiments.

E.1 ADDITIONAL DATA CONSTRAINTS

In addition to data type constraints described in Section D, we also constrain some features for
immutability and causality.
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GMSC

¢ Immutable: NumberOfDependents
* Monotone: age cannot decrease
* Causal: no constraints

e Immutable: race and sex
¢ Monotone: age cannot decrease and educat ion cannot decrease

e Causal: education increases =—> age increases

Credit

e Immutable: Number of people being liable to provide
maintenance for,Personal status and sex,and foreign worker

* Monotone: Age cannot decrease

e Causal: Present residence since increases =—> Age increases and Present
employment since increases =—> Age increases

E.2 HYPERPARAMETER SETUP

The entire configuration can be found in the code, but we also present (most of) it here.

Neural Network We compare methods on a neural network with four layers, first with a size
equal to the length of the encoded input, then 20 and 10 for hidden layers, and a single neuron as
output. It trained with batch size 64 for 50 epochs. We compare all methods on this neural network
architecture, trained separately five times for each training set (from the five folds).

SPN To create fewer nodes in the SPN (i.e., to not overtrain it), we set the
min_instances_slice parameter to the number of samples divided by 20.

CE methods We used default parameters for most methods. In cases when there were no default
values set, we used the following:

* DiCE: we use the gradient method of searching for CEs.

* VAE: we set the size of the model to copy the predictor model. We parametrize the hinge
loss with a margin of 0.1 and multiply the validity loss by 10 to promote validity. We use
learning rate le-3 and batch size 64. We use weight decay of le-4 and train for 20 epochs
(200 for the Credit data since the dataset is small).

* FACE: we only configure the fraction of the dataset used to search for the CE, increasing it
to 0.5 for the Credit dataset due to its size.

* C-CHVAE: we set the size of the model to copy the predictor model. For the Credit dataset,
we increase the number of training epochs to 50.

* PROPLACE: We create the retrained NN models to reflect the same architecture and train
them for 15 epochs. We set up 1 instance of PROPLACE per class and set its delta by
starting at 0.025 and decreasing by 0.005 until we are able to recover enough samples.

* LiCE + MIO: For our methods, we configure a time limit of 2 minutes for MIO solving.
These are high enough for MIO, but constrained LiCE struggles with increasing likelihood
requirements. We generate 10 closest CEs, not using the relative distance parameter. We
set the decision margin 7 = 10~* and we use one ¢; = 10~* for all features j because
they are normalized. In the SPNs, we use 7-* = 100 as a safe upper bound though this
could be computed more tightly for an individual sum node. We choose 6°FN equal to
the median (or lower quartile) of likelihood on the dataset. For LiCE (optimize), we used
a = 0.1 since features are normalized to [0, 1] and log-likelihood often takes values in the
[—100, —10] range.
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Table 10: Comparison of LiCE variants. (optimize) means that we optimize the likelihood together with the
distance, with coefficient « = 0.1. (quartile) means that we constrain the CE to have the likelihood greater or
equal to the lower quartile likelihood of training data. (median) is the same as (quartile), but we take the median
instead of the quartile. Finally, (sample) is a relaxation of the (median) variant. It constrains the CE likelihood
to be greater or equal to the likelihood of the factual sample or the median value, whichever is lower.

GMSC Adult Credit
Method NLL Similarity ~ Sparsity NLL Similarity ~ Sparsity NLL Similarity ~ Sparsity
MIO (+spn) 27.8+£6.4 59+1.8 22408 17.943.7 5743.6 22£09 47.6+£182 44427 22+£1.0

LiCE (optimize) 25.6 +4.4 59+1.8 2.6 +1.1 18.1+3.8 5.5+£3.6 2.0+1.0 29.1+3.3 44+27 21+£1.0
LiCE (quartile) 270435 5.8+1.8 19408 184435 56+38 2.0+1.0 41.1+164 4.3+2.7 1.9+£1.0
LiCE (median) 18.1 £2.6 10.6+35 44+1.1 129+1.0 9.7+6.5 29+13 29.8+3.1 44427 20=£1.1
LiCE (sample) 204438 94437 42413 144427 84456 2.7+1.2 31.3+£7.0 44427 19+11

E.3 COMPUTATIONAL RESOURCES

Most experiments ran on a personal laptop with 32GB of RAM and 16 CPUs AMD Ryzen 7 PRO
6850U, but since the proposed methods had undergone wider experimentation, their experiments
were run on an internal cluster with assigned 32GB of RAM and 16 CPUs, some AMD EPYC 7543
and some Intel Xeon Scalable Gold 6146, based on their availability.

Regarding computational time, it is non-trivial to estimate. The time varies greatly for some methods
since, for example, VAE retries generating a CE until a valid is found or a limit on tries is reached.
Most methods we compared took a few hours for the 500 samples, including the method training.
The MIO method takes, on average, a few seconds to generate an optimal counterfactual, while
LiCE often reaches the 2-minute time limit.

Considering the tests presented in this paper, we estimate 200 hours of real-time was spent gen-
erating them, meaning approximately 3,200 CPU hours. If we include all preliminary testing, the
compute time is estimated at around 20,000 CPU hours, though these are all inaccurate rough esti-
mates, given that the hours were not tracked.

F FURTHER COMPARISONS

In this section, we would like to discuss some results that could not fit into the article’s main body.

F.1 LICE VARIANTS

We tested multiple versions of using the SPN within LiCE. In Table 10, we show results for 2 more
configurations.

One, called (sample), is a relaxation of the (median) variant. It constrains the CE likelihood to
be greater or equal to the likelihood of the factual sample (i.e., the counterfactual should have, at
worst, the same likelihood as the factual) or the median value, whichever is lower. This increases
the proportion of factuals for which the method returns a CE in time, though only by 10 percentage
points at most. This suggests that the complexity might not depend on the likelihood of the factual,
thus that there might be a notable difference in likelihood landscape for the opposite classes.

The LiCE (quartile) is a weaker variant of LiCE (median), with the bound set to the first quartile
instead of the median likelihood. This is enough to obtain CEs for 100% of factuals (and in good
time, see Table 12). Its good performance w.r.t. similarity and sparsity is possibly caused by the
method returning very close CEs with a “good enough” log-likelihood.

The results show that selecting the most likely CE out of 10 local optima given by MIO is quite
strong. The two-stage setup can be quite performant. The results on similarity show that some of
the MIO CE:s are not globally optimal. This is because the SPN in the second phase selects some of
the locally optimal (i.e., globally suboptimal) CEs.
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Table 11: Results in the same format as in Table 4, but we consider only valid CEs generated for the intersection
of factuals for which all methods generated a valid CE. These results are more suitable for the comparison of
methods between each other. The VAE was omitted from the evaluation on the GMSC dataset because the
intersection of factuals would be empty if we included VAE.

GMSC (272 factuals) Adult (64 factuals) Credit (55 factuals)
Method NLL Similarity ~ Sparsity NLL Similarity ~ Sparsity NLL Similarity ~ Sparsity
DiCE (+spn) 30.6+3.5 219458 6.4+1.0 199422 23.0+9.0 43+1.5 361424 223449 7.6+£19
VAE (+spn) - - - 164425 294481 52413 46.2+£176 31.1£82 11.3+1.9
C-CHVAE 24.8+24 172446 9.0£00 1734+3.0 7.6+6.0 28+1.0 340%6.5 135+49 7.6=£1.0
FACE (¢) 30.24+9.6 148438 84411 151429 8746.2 28+1.1 4884173 182463 6.8+1.3
FACE (knn) 30.1+£94 146440 82+£12 146431 86+£59 2.7+1.1 425+£169 192+6.1 7.1+£1.3
PROPLACE 274469 123430 72+£1.1 176+3.2 1824+6.7 4.1+1.2 394+£157 25246.2 87=£13
MIO (+spn) 278480 6.2£1.7 22409 16.0+3.6 4.043.0 1.8+08 483+182 26+1.5 1.8+09

LiCE (optimize) 24.4 £5.1 6.2+1.7 2.7+11 16.2+3.5 3.7+3.1 1.7+0.8 29.2+2.7 2.6=+1.6 1.7 +0.7
LiCE (quartile) 26.3+36 6.1+1.7 1.9+0.8 169+36 3.7+3.1 1.6+0.8 450+17.8 2.5+1.5 1.6+0.8
LiCE (median) 18.1 £2.7 10.7+34 44411 12.8+1.1 70455 24+1.2 304+24 25+£1.6 1.7+0.8

F.2 VALID CES ON COMMON FACTUALS

Table 11 shows the results on the intersection of factuals for which all methods generated a valid
CE. The proposed methods show similar differences in all metrics, as in Table 4.

Notice the comparability of DiCE results on negative log-likelihood. This suggests that the two-
stage setting of generating a diverse set of CEs and then selecting the likeliest could be a viable
option. On the other hand, compared to LiCE (or MIO), there is a major difference in all measures.

F.3 TIME COMPLEXITY

Regarding the complexity of the SPN formulation, the number of variables is linearly dependent
on the size of the SPN (real-valued variables). Additionally, each leaf node requires one binary
variable for each bin of the histogram distribution. Sum nodes require one extra binary variable per
predecessor; the total number is bounded by the number of all nodes from above, but it is typically
less. The number of constraints is linearly dependent on the size of the SPN.

This is, however, difficult to translate to the algorithmic complexity of solving the MIO, which is
exponential w.r.t. size of the formulation in general.

Table 12 shows the median number of seconds required to generate (or fail to generate) a CE. We
see that there are stark differences between methods and also between datasets. For our methods
(MIO and LiCE), we constrain the maximal optimization time to 120 seconds.

LiCE seems to be comparable on Adult as well as Credit datasets. Since MIO seems to be faster,
we suggest that the main portion of the overhead is caused by solving the SPN formulation. Note
that the optimizing variant of LiCE takes a long time partly to prove optimality. A (non-optimal)
solution could likely be obtained even with a tighter time limit.

There also seems to be some computational overhead in constructing the formulation, which could
likely be partly optimized away in the implementation.

F.4 OTHER PLAUSIBILITY METRICS

We considered using Kernel Density Estimator (KDE) for the evaluation (similarly to (Artelt &
Hammer, 2020)), but the KDE is not suitable for categorical data, so we decided against it.

F.5 CE GENERATION WITH KNOWLEDGE OF THE TRUE DISTRIBUTION.
In this section, we would like to compare the CE generation methods using the true data distribution.

While this distribution is generally unknown, we construct the following experiments to evaluate our
method in such a scenario, by forming 3 synthetic datasets.
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Table 12: Median time spent on the computation of a single CE. The values above 120 in the LiCE computation
are caused by computational overhead in formulating the SPN. The time limit given to the solver was 120
seconds.

Method GMSC Adult Credit
DiCE (+spn) 25.27s  17.04s  147.35s
VAE (+spn) 0.64s 0.97s 0.63s
C-CHVAE 0.43s 0.63s 0.59s
FACE (¢) 7.88s 7.46s 5.12s
FACE (knn) 5.65s 7.41s 5.28s
PROPLACE 0.38s 0.24s  0.20s
MIO (+spn) 0.76s 1.51s 1.56s

LiCE (optimize) 132.61s 36.06s 3.06s
LiCE (quartile) 20.02s  10.61s  2.78s
LiCE (median) 124.20s  15.29s 2.98s

asia LL estimate (SPN) T True probability (BN) 1 Similarity |  Sparsity | Time [s] | % valid 1
CH-CVAE —2.46 +1.71 1.6x107' £9.8x 1072 246+247 1.314+0.72 0.744+0.54s 46.6%
FACE (knn) —2.44+1.54 1.6x1071+£9.7x 1072 2424246 1.274+0.65 0274+0.11s 46.6%
FACE (¢) —-3.75+£0.79 3.8x1072+£51x1072 7.694242 233+047 0.32+£0.09s 1.2 %
PROPLACE —3.98 +1.87 73x1072£83 %1072 4354+3.06 1.794+0.74 0.18+0.10s 46.6%
MIO (+spn) —1.53+£0.80 23x107' £6.7x1072 2894195 1.86+0.74 1.11+0.87s 100 %
LiCE (med) —1.33+0.15 24x107' +£45%x1072 3.09+251 1.94+091 0.68+0.09s 100 %
LiCE (e = 1) —1.78 £ 0.94 1.9x 1071 +£6.3x 1072 2424207 1.53+0.80 0.85+0.13s 100 %

Table 13: Comparison on the asia BN. LL stands for log-likelihood. We show the mean probability directly,
because of a few 0 probability counterfactuals.

We utilize three of the Bayesian Networks (BNs, used in Section G.4) of varying size (asia, alarm,
and win95pts), choose a target variable (dysp, BP, and Probleml, respectively) and sample a
training dataset of 10,000 samples. On this training dataset, we train an SPN and a Neural Network
model, that we then utilize to generate counterfactuals for a set of 100 factuals newly sampled from
the BN. We perform this whole setup for 5 different seeds for each BN and aggregate the results.

In the tables below (Tables 13, 14, and 15 for asia, alarm, and win95pts, respectively), we evaluate
the mean log-likelihood of generated CEs using the fitted SPN, the mean true probability, mean
distance (similarity), sparsity, and time spent generating the valid counterfactuals. Finally, we show
the percentage of factuals for which a valid counterfactual was found by a given method.

We see that LiCE methods, especially the likelihood-optimizing variant (o« = 1), perform compara-
bly to other methods even when taking into account the true distribution.

Finally, note that:

 performance improvements in terms of distance and sparsity reflect experiments on real
data;

* only MIO-based methods generate 100% of valid counterfactuals, other methods generate
55.8% CE:s at best;

* the time complexity of LiCE is on par with other methods;

» while not perfect, SPN likelihood generally correlates with the true probability (see the
discussion in Section G.4 for additional details).

Statistical significance To evaluate the statistical significance of our results, we rank the methods
using the true probability of the generated CE. To account for cases where no CE was generated, we
rank the methods that did not return a valid CE as last. We evaluate each simulated dataset (from
each BN) separately. Friedman test rejects the null hypothesis that all methods perform the same
with p values well below 10710,
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alarm LL estimate (SPN) 1 True probability (BN) 1 Similarity | Sparsity | Time [s] | % valid 1
CH-CVAE —10.07 £+ 4.69 3.1x10734+59x107% 1320+£886 3.78+2.21 0.99+0.86s 268%
FACE (knn) —9.10 + 3.92 27x1073 £5.0x 1073 1230+ 8.62 3.54+2.25 9.864+2.67s 55 %
FACE (¢) —9.76 £+ 3.48 1.4x 1072 +3.5x 1073 14.09+8.51 4.08+2.24 845+228s 414%
PROPLACE —10.90 +4.39 9.5x1074+28x 1072 16.114+10.64 4.60+2.74 0.80+0.35s 55 %
MIO (+spn) —10.91 +£5.30 29x1073+56x 1073  3.87+1.39 1.37+0.53 1.93+0.14s 100 %
LiCE (med) —7.73 £1.87 28x 1073 +53x107% 846+7.52 2544202 9.36+9.65s 100 %
LiCE (a« = 1) —9.50 £ 4.53 3.3x1073£58x 1073  4.58 +2.53 1.51+0.77 8.60+2.61s 100 %

Table 14: Comparison on the alarm BN. LL stands for log-likelihood. We show the mean probability directly,
because of a few 0 probability counterfactuals.

win95pts LL estimate (SPN) 1 True probability (BN) 1 Similarity |  Sparsity | Time [s] | % valid 1

CH-CVAE ~7.33+£2.95 32x1074+£4.6x1074 8.03+£7.77 3.90+£290 1.28+0.67s 558%
FACE (knn) —8.69 & 3.45 14x10734+22%x1073 7204545 351+190 9.64+2.76s 558%
FACE () —10.08 +3.83 6.7x1074+£1.3x 1073 9.30£550 4.39+£1.90 7.92+240s 292%
PROPLACE —8.32+£3.01 38x1074+£81x1074 7.08+£6.63 3.58+£2.63 0.47+0.14s 558%
MIO (+spn) —10.86 + 4.54 9.1x105+£1.9x107% 243+£0.71 1.70+£0.46 1.714+0.09s 100%
LiCE (med) —TTTE£1.22 52x1074+£21x 1073 7424858 347+3.15 5.194+037s 100%
LiCE (@ = 1) —9.93 £ 4.15 13x10734+60x1072 249+1.72 157+083 535+0.76s 100 %

Table 15: Comparison on the win95pts BN. LL stands for log-likelihood. We show the mean probability
directly, because of a few 0 probability counterfactuals.

The average ranks are shown in Table 16 and in Figure 2, we show plots inspired by (DemsSar, 2006,
fig. 1a), where average ranks and results of Nemenyi test are shown.

Thresholdnig variant of LiCE ranks the highest on all simulated datasets and Nemenyi test groups it
together only with MIO (+spn) on the data sampled from asia BN.

To be more generous towards competing methods, we could consider only factuals for which both
methods successfully returned a valid CE. This disadvantages LiCE variants and MIO (+SPN), be-
cause they are the only methods that always succeed in generating a valid CE. The Friedman test
also rejects the null hypothesis with p < 10710, The results of Nemenyi test are shown in Figure 3,
in a similar setup to Figure 2.

The thresholding variant of LiCE still achieves the highest rank for alarm and asia BNs. In asia BN,
LiCE performance is significantly better than competing algorithms, in alarm, LiCE is grouped with
FACE, which is an endogenous method. On win95pts, our methods rank poorly, a striking contrast
to Figure 2. The plausibility of CEs, returned by proposed methods clearly depends on the quality
of the SPN. It is possible that for such a big BN, generating 10,000 points with one of 276 possible
values is not enough to have a high-quality SPN, using the LearnSPN algorithm.

G FURTHER COMMENTS

Given the limited size of the Credit dataset, it is unsurprising to see so many failures of some
methods. There is not much data for some methods to support the training. This might be behind
the low success rate of computing a valid CE.

Regarding the other results, it is possible that the VAE method has been misconfigured for GMSC,
returning very few results.

CH-CVAE FACE (knn) FACE(¢) PROPLACE MIO (+spn) LiCE (med) LiCE (a = 1)

asia 4.853 4.858 6.165 5.370 2.057 1.911 2.786
alarm 5.419 4.196 4.694 5.004 3.500 2.233 2.954
win95pts 4.433 3.727 5.039 4.200 3.607 3.173 3.821

Table 16: Average ranks of CE methods for each simulated dataset. We rank the methods based on the true
probability, evaluated by the BN.
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Figure 2: Average ranks and results of Nemenyi test for the true probability of CEs generated for factuals
sampled using the asia Bayesian Network. When a method fails to generate a valid CE, we give it the lowest
rank. Groups of methods that are not significantly different (using the Nemenyi test with p = 0.05) are
connected. Critical difference (for p = 0.05) is shown on the upper left.
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Figure 3: Average ranks and results of Nemenyi test for the true probability of CEs generated for factuals
sampled using the Bayesian Networks. We consider only factuals where each CE method was successful.
FACE (¢) was removed from comparison on asia, because it returned a CE only for 6 factuals. Groups of
methods that are not significantly different (using the Nemenyi test with p = 0.05) are connected. Critical
difference (for p = 0.05) is shown on the upper left.
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The main disadvantage of LiCE is the time complexity of CE generation. We argue, however, that
for some use cases, the user might be willing to wait to obtain a high-quality CE. We leave this
decision to the user.

G.1 OMITTED METHODS

It is not feasible to test against all CE methods, so we looked for a selection of methods that consider
the plausibility of generated CEs. Two methods were, however, not tested for the following reasons:

* PlaCE (Artelt & Hammer, 2020) does not allow for explaining Neural Networks. It also
cannot model categorical features well.

* DACE (Kanamori et al., 2020) does not have a public implementation that would allow
for Neural Networks as models. It might also struggle with the size of datasets used here
since they are an order of magnitude larger, and DACE computes the Local Outlier Factor,
meaning that the formulation size increases linearly with the increase in the number of
samples.

G.2 POTENTIAL NEGATIVE CONSEQUENCES

Given the many CE methods for generating CEs, one must deal with the disagreement problem
(Brughmans et al., 2024), where a user could be misled by the owner of an ML model who selects
the CEs that align with their interests. We argue that our method does not severely contribute to this
problem, since it is deterministic, thus resistant to re-generation attempts to obtain a more favorable
CE. Our method also outperforms many other methods, making arguing for their use more difficult.

G.3 SUITABILITY OF SPNS FOR ESTIMATING THE PLAUSIBILITY OF CES

We believe that SPNs are well suited for the problem, because (i) they naturally model distribution
over continuous and discrete random variables; (ii) their simple formulation can be tightly approxi-
mated within MIO; (iii) and they are universal approximators (Nguyen & McLachlan, 2019).

Other options are

* Gaussian Mixture Models (GMMs) are designed only for continuous random variables.
SPNs are a strict superset to GMMs.

* Flow models are very flexible, but they model only distribution on continuous random
variables. Since they are parametrized by neural networks, they might be rather difficult
to formulate within MIO, especially considering their block nature relying on smooth non-
linear functions (exp, softplus).

* Neural auto-regressive models can model discrete and random variables, and they provide
exact likelihood. But again, they use relatively large neural networks which might need
non-linearities that are difficult to use within MIO (sigmoid, softmax).

* Auto-encoders have with respect to MIO similar advantages and disadvantages as neu-
ral auto-regressive models. Furthermore, they provide only lower-bound estimates of true
likelihood in the form of ELBO.

G.4 SPN AS A MODEL OF DATA DISTRIBUTION

Furthermore, we test the ability of an SPN to model the true data distribution empirically. We
choose 8 Bayesian Networks (BNs) to model the data-generating process. For each of them, we
generate (sample) training data, then fit an SPN to this data, and finally compare the SPN’s likelihood
estimates of test samples to their true probability, given by the BN.

More specifically, we utilize the bnlearn Python library (Taskesen, 2020) and select 7 Bayesian
Networks of varying sizes from the Bayesian Network Repository (Scutari, 2010) (namely asia,
sachs, child, water, alarm, win95pts, and andes). The eighth BN (sprinkler) is another standard BN,
available directly in the bnlearn library. See Table 17 for parameters of the used networks.
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sprinkler asia sachs child water alarm win95pts andes

Number of nodes 4 8 11 20 32 37 76 223
Number of edges 4 8 17 25 66 46 112 338
Number of parameters 9 18 178 230 10083 509 574 1157

Table 17: Size comparison of BNs used to generate the synthetic data.

sprinkler ~ asia  sachs child water alarm win95pts andes

Pearson coeff. 0.996  0.990 0.964 0.954 0.955 0.959 0.959 0.793
Kendall (7-b) coeff. 1.000  0.992 0.860 0.853 0.828 0.892 0.891 0.600
Spearman coeff. 1.000 1.000 0.972 0.966 0.961 0.978 0.977 0.788

Total variation 0.017 0.073 - - - - - -

Table 18: Evaluation of the fit by correlation coefficients for all 8 tested BNs. Total Variation was computed
only for smaller BNs, where the computation was practical. Numbers are rounded to 3 decimal digits.

To train the SPN, we sample 10,000 points using the BN and train the SPN in the same way as for
LiCE, with default parameters. Then we sample 1,000 more samples and evaluate their likelihood
using the trained SPN. We also compute their true probability from the BN and compare these pairs
of values. We perform the above process 5 times with different seeds for each BN and select the
best-performing SPN for comparison.

In Table 18, we show the correlation coefficients of the log-likelihood and log-probability computed
on the 1,000 test samples. We also show the total variation for the smaller BNs, when the value
can be computed in reasonable time. In Figure 4, we show scatter plots of the data on which the
correlation coefficients were computed. The BNs are sorted in increasing order of the number of
nodes.

The SPN performs quite well, with the exception of the biggest BN (andes), where the drop might
be explained by 10,000 samples being too few to train the SPN precisely.
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Figure 4: Visual comparison of correlation between the true probability of a sample and log-likelihood estimate
given by an SPN. Each plot shows 1,000 points sampled using the given Bayesian Network, see their names in
the titles. For numerical comparison, see Table 18.
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