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ABSTRACT

Comprehensive evaluation of Large Language Models (LLMs) is an open research
problem. Existing evaluations rely on deterministic point estimates generated via
greedy decoding. However, we find that deterministic evaluations fail to capture
the whole output distribution of a model, yielding inaccurate estimations of model
capabilities. This is particularly problematic in critical contexts such as unlearning
and alignment, where precise model evaluations are crucial. To remedy this, we
introduce the first formal probabilistic evaluation framework in LLMs. Namely,
we derive novel metrics with high-probability guarantees concerning the output
distribution of a model. Our metrics are application-independent and allow prac-
titioners to make more reliable estimates about model capabilities before deploy-
ment. Through a case study focused on unlearning, we reveal that deterministic
evaluations falsely indicate successful unlearning, whereas our probabilistic eval-
uations demonstrate that most if not all of the supposedly unlearned information
remains accessible in these models. Additionally, we propose a novel unlearning
loss based on entropy optimization and adaptive temperature scaling, which sig-
nificantly improves unlearning in probabilistic settings on recent benchmarks. Our
proposed shift from point estimates to probabilistic evaluations of output distribu-
tions represents an important step toward comprehensive evaluations of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) are widely employed across various applications, from chatbots
to code generation, relying on outputs generated through probabilistic decoding methods such as
beam-search and multinominal sampling. Despite their probabilistic deployment, performance eval-
uations in LLMs predominately rely on deterministic point estimates, where outputs are generated
through greedy decoding. This raises a critical research question:

Are deterministic evaluations adequate for assessing sensitive applications
or do they fall short in capturing the risks associated with probabilistic outputs?

Current deterministic evaluation might result in a potential misalignment between evaluation and
practical usage overlooking the inherent variability in model outputs. As a result, they could fail
to account for both utility and potential risks associated with the model’s entire output distribution.
Yet, use cases like model alignment and unlearning demand precise model evaluations to mitigate
the risk of harmful usage or privacy non-compliance during deployment. As illustrated in Figure 1,
an unlearning algorithm may appear to successfully delete information in a deterministic setting yet
still leak that information with a certain probability when outputs are sampled. In many scenarios,
leakage in even a small fraction of samples – such as revealing a social security number, user pass-
words, or copyrighted information – can be as problematic as leakage in every response, making
deterministic evaluations insufficient to capture practical risks.

To address this, we evaluate the sufficiency of deterministic methods in an unlearning case study,
focusing on whether they accurately reflect risks of information leakage in real-world probabilis-
tic settings. We find that deterministic evaluations are insufficient, introduce a probabilistic view on
unlearning and propose to evaluate the LLM’s entire output distribution instead of point estimates.
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Figure 1: We propose a novel probabilistic evaluation framework as a more reliable method for
assessing LLMs capabilities. Existing evaluations are deterministic and rely on greedy decoding,
where the most likely token is selected at each step, producing only a single output per query. Since
in most practical applications LLMs generate outputs probabilistically, previous evaluation schemes
are insufficient: they overlook potential information leaks and falsely suggest successful unlearn-
ing. In contrast, in our probabilistic evaluation framework we directly consider the LLM’s output
distribution by sampling from the token probability distribution at each step to generate multiple se-
quences. In an empirical study, we show that all state-of-the-art unlearning methods leak information
under our probabilistic setting, demonstrating that current deterministic evaluations are insufficient.

Our main contributions are:
• We demonstrate that simple multinominal sampling breaks all state-of-the-art unlearning algo-

rithms that we evaluated in our experiments, retrieving most if not all of the unlearned infor-
mation. We are the first to formally model the evaluation of LLMs from a novel probabilistic
perspective and thereby capture the practical risk of information leakage more accurately than
existing approaches.

• We propose a probabilistic evaluation framework consisting of a suite of principled metrics for
comparing LLM output distributions with high-probability guarantees.

• A novel unlearning-loss based on entropy minimization and adaptive temperature scaling, sig-
nificantly improving forget quality in probabilistic settings.

2 RELATED WORK

Machine Unlearning. Machine unlearning aims to remove specific information from a model’s
weights while preserving its overall capabilities (Cao & Yang, 2015). Early works focus on classifi-
cation tasks (Guo et al., 2020; Golatkar et al., 2020; Tanno et al., 2022; Wang et al., 2023; Pawelczyk
et al., 2023). Later works consider more complex scenarios, such as unlearning in autoregressive
LLMs for text generation (Jang et al., 2022; Chen & Yang, 2023; Eldan & Russinovich, 2023; Kim
et al., 2024; Maini et al., 2024; Sheshadri et al., 2024; Li et al., 2024), which we will focus on.
Maini et al. (2024) introduced a synthetic benchmark dataset that allows for controlled learning
and unlearning of fictional information. Other works explored broader unlearning contexts, such
as removing knowledge about specific pop culture topics like Harry Potter (Eldan & Russinovich,
2023), or reducing accuracy on a benchmark related to hazardous knowledge (Li et al., 2024). Pre-
vious unlearning algorithms introduced considerable trade-offs between model capabilities and the
effectiveness of unlearning, this includes Gradient Ascent (GA), Gradient Difference (GD) (Liu
et al., 2022), Kullback-Leibler minization (KL), or preference optimization (PO) (Rafailov et al.,
2024). Zhang et al. (2024) address this by proposing Negative Preference Optimization (NPO),
which shows notable improvements in balancing model capability and unlearning quality.

Extracting data from LLMs. Prior research has demonstrated the vulnerability of Large Language
Models (LLMs) to data extraction attacks. Carlini et al. (2021) showed that private information,
such as names and phone numbers, could be retrieved from GPT-2 using only black-box access to
the model. While initial data extraction approaches required the generation of extensive candidate
sets to extract correct training samples, subsequent methods developed more targeted extraction
techniques requiring fewer model queries.

Certified machine unlearning. Beyond empirical unlearning methods, first works guarantee exact
unlearning (Bourtoule et al., 2021) and approximate unlearning leveraging differential privacy (Guo
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et al., 2020; Neel et al., 2021; Ullah et al., 2021; Chien et al., 2022; Zhang et al., 2023) and general-
ization theory (Sekhari et al., 2021). All of these methods propose adapted training techniques that
are aware of the need for later unlearning and consequently require training access. However, such
methods are not applicable in settings where models have already been trained on data that needs
to be unlearned, and are thereby particularly impracticable for LLMs. In contrast, we investigate
unlearning for LLMs after models have been trained on data that needs to be unlearned, and we
provide unlearning guarantees regarding the model’s output distribution.

3 PRELIMINARIES

Language models. We model language models as parameterized functions πθ : V ∗ → ∆|V |m−1

mapping an input sequence of arbitrary length to a distribution over output sequences of length m,
where θ are the model parameters, V denotes a vocabulary, and ∆|V |m−1 is the probability sim-
plex in R|V |m . In other words, for a fixed input sequence x ∈ V ∗, πθ(x) spans a probability
distribution over all possible output sequences V m of length m. While we are generally inter-
ested in the output distribution πθ(x), in practice we cannot directly access this distribution since
the number of possible output sequences |V |m quickly outgrows the number of atoms in the ob-
servable universe. Instead, we can only access and evaluate the language model autoregressively
πθ(y1, . . . , ym|x) =

∏m
t=1 πθ(yt|yt−1, . . . , y1, x), where πθ(yt|·) corresponds to the distribution

over the possibilities for the next token yt at time step t. This represents a challenge: Without any
further knowledge about the underlying distribution πθ(x), practically we can only learn about it via
sampling the model’s responses for a given input sequence x, Y ∼ πθ(x).

Machine unlearning. The goal of machine unlearning is to remove knowledge from a model while
preserving its overall performance. That is, given a model πθ, a forget set DFG, and a retain set
DRT , we seek an algorithm to transform the model’s parameters θ such that the response y of the
updated model πθ̃ does not answer the queries x for all (x, y) ∈ DFG of the forget set. The challenge
is that the model’s utility should remain high for queries from the retain set DRT at the same time.

Unlearning metrics. Assume we have a perfect oracle to decide if a generated text leaked informa-
tion. We model the oracle as a function h : V m → [0, 1] that quantifies how much information got
leaked, where h(s) = 0 means s does not leak information, and h(s) = 1 means complete leakage.
For example, h can be a binary and indicate if specific data from the forget set got leaked, or the
ROUGE score which measures similarity between the model’s response and a ground truth.

4 A COMPREHENSIVE EVALUATION FRAMEWORK FOR LLMS

Current evaluation schemes are insufficient to evaluate LLMs in sensitive applications since they are
based on point estimates. To remedy this, we propose a probabilistic evaluation framework. For
the sake of clarity, we introduce our framework using the application case of machine unlearning,
although our framework generalizes beyond unlearning to other domains as well. First, we properly
define four desiderata for machine unlearning that comprehensive evaluations must fulfil:

Desiderata for comprehensive machine unlearning evaluations

I: Must quantify the extent of unlearning.
II: Must be efficient to ensure feasibility in practical deployments.

III: Must accurately reflect practical leakage risks (e.g., when sampling from the model) and
must detect residual information contained in the unlearned model.

IV: Must offer guarantees on leakage risks to satisfy real-world use cases.

Desiderata I ensures that metrics quantify unlearning and not other unrelated factors. II addresses
the practicality of implementing evaluations in real-world scenarios. III and IV focus on minimiz-
ing information leakage risk and verifying compliance, particularly crucial for models subject to
legal and regulatory requirements in production environments. Guided by our desiderata for com-
prehensive machine unlearning evaluations we introduce our probabilistic evaluation framework,
proposing metrics with high-probability guarantees for final evaluations in leakage-sensitive envi-
ronments, along with a metric to help practitioners assess unlearning quality during development.
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4.1 METRICS FOR COMPREHENSIVE EVALUATIONS OF OUTPUT DISTRIBUTIONS

Computing metrics with guarantees is challenging especially for LLMs since their output distri-
butions are complex and we cannot make any assumptions about them. We propose to overcome
this challenge through (1) Monte Carlo sampling to estimate distribution properties and by (2) in-
troducing novel metrics with formal guarantees based on distribution-free, non-parametric bounds.
Specifically, our metrics are based on concentration bounds that are widely used in the literature,
e.g. in the context of probabilistic certifiable robustness (expectation-bounds (Lécuyer et al., 2019;
Cohen et al., 2019), CDF-bounds (Kumar et al., 2020), variance-bounds (Schuchardt et al., 2023)).

Let q denote an input prompt and Y ∼πθ(q) a sequence sam-
pled from the complex distribution that LLMs span over output
sequences given q. To quantify leakage in probabilistic settings,
we compute metrics on the random variable X =h(Y ), where
h quantifies leakage for a single answer Y . Specifically, we first
sample n independent realizations Y1, . . . , Yn of Y and measure
the extent of leakage Xi = h(Yi) in each realization. Finally,
we compute our probabilistic metrics M(X1, . . . , Xn), where
M can be replaced by the chosen metric that we introduce in the
following. We summarize this procedure in Algorithm 1.

Algorithm 1 Metrics computation

Require: Probabilistic metric M
1: Sample n answers from LLM πθ

Y1, . . . , Yn ∼ πθ(q)
2: Compute unlearning measure

Xi = h(Yi) for i = 1, . . . , n
3: Compute probabilistic metric

M(X1, . . . , Xn)

We now introduce four probabilistic metrics Mbin, Mgen, Mµ, Mσ , which require that one specifies
a significance level α≤ 1

2 , i.e. our metrics hold with an (arbitrarily high) probability of 1−α.

Binary case. First we consider binary unlearning metrics h : V m → {0, 1}, where h(Y )= 1
means information got leaked. Then X is a Bernoulli random variable with success probability p
corresponding to the probability of leaking information. We can upper bound p by sampling from
the model’s output distribution and by computing a Binomial confidence bound: Let Sn =

∑n
i=1 Xi

count how often information got leaked when sampling from the LLM, where n is the number of
Monte-Carlo samples. We propose to compute the following Clopper-Pearson upper confidence
bound (Clopper & Pearson, 1934) to quantify information leakage (Proof in Appendix D):

Metric 1 (Binary leakage bound). We define the unlearning metric Mbin ≜ B(1−α;Sn+1, n−Sn)
where B(q̂; a, b) is the q̂th-quantile of the beta distribution with shape parameters a and b.
Proposition 1. With high probability of at least 1 − α, metric Mbin represents an upper bound on
the probability that the next sample leaks information, p ≤ Mbin.

General case. Most applications will require more fine-grained metrics for quantifying information
leakage. Considering the general case of arbitrary unlearning metrics h : V m → [0, 1], we propose
to bound the probability Pr[X > x] that models leak more than a certain threshold x. To this end, we
bound the CDF F (x) of X with the empirical CDF Fn(x)=

1
n

∑n
i=1 1{Xi ≤ x}, which counts how

many times at most x% got leaked given n samples. This can be achieved with the Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality, which guarantees that the empirical CDF is a close approximation:

Pr (supx∈R Fn(x)− F (x) > ϵ) ≤ e−2nϵ2 for all ϵ ≥
√

ln (1/2)
−2n (Dvoretzky et al., 1956).

We introduce the following metric to quantify information leakage in general (Proof in Appendix D):
Metric 2 (General leakage bound). Given a specified percentage x ∈ [0, 1] of the information the

model should not leak, we define the metric Mgen(x) ≜ 1− Fn(x) + ϵ with ϵ =
√

ln(1/α)
2n .

Proposition 2. With high probability of at least 1−α, metric Mgen(x) upper-bounds the probability
that the next sample leaks more than x% of the information, Pr(X > x) ≤ Mgen(x) for all x∈ [0, 1].

4.2 QUANTIFYING OUTPUT DISTRIBUTIONS WITH MOMENT BOUNDS

Besides bounding the probability of leaking information, we can also quantify the quality of unlearn-
ing by bounding moments of the output distribution of LLMs. In particular, we propose metrics by
bounding moments of the random variable X = h(Y ) with high probability using CDF bounds.

Expectation bounds. First we propose to bound the expected secret leakage E[X] with high prob-
ability. Let the points (τ0, . . . , τK) partition the interval [0, 1] into K disjoint intervals, meaning
0 = τ0 ≤ τ1 ≤ . . . ≤ τK = 1. Our metrics are based on the following result (Proof in Appendix D).

4
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Proposition 3 (Anderson (1969)). We have E[X] ∈ [µ, µ] with high probability of at least 1−α for

µ = 1−
K∑
i=1

δi−1(Fn(τi) + ϵ) and µ = 1−
K−1∑
i=0

δi(Fn(τi)− ϵ)

where Fn(x) =
1
n

∑n
i=1 1{Xi ≤ x} is the empirical CDF, ϵ =

√
ln(2/α)

2n and δi = τi+1 − τi.

We can use the upper bound of Proposition 3 to define the following unlearning metric:

Metric 3 (Expectation bound). We define the metric Mµ ≜ 1−
∑K−1

i=0 δi(Fn(τi)− ϵ) that bounds
the expected leakage E[X] of information with high probability of at least 1− 2α.

Standard deviation bounds. The second moment-based metric we propose is an upper bound on
the standard deviation of X . First we compute the bounds F (x) = Fn(x)+ϵ and F (x) = Fn(x)−ϵ
on the CDF F (x) via the DKW inequality (Dvoretzky et al., 1956). We then use the bounds on the
expectation µ, µ of Proposition 3 to propose the following unlearning metric (Proof in Appendix D):

Metric 4 (Standard deviation bound). Given η0, . . . , ηM−1 we define the metric Mσ ≜ σ for

σ2 = ηM−1 − η0F (τ0) +

K−1∑
i=1

δi
[
sign(δi)F (τi) + (1− sign(δi))F (τi)

]
where δi = ηi−1 − ηi for ηi = maxκ∈{τi,τi+1},a∈{µ,µ}(κ− a)2.

Proposition 4. With high probability of at least 1 − α, metric Mσ(x) upper-bounds the standard
deviation of X ,

√
Var[X] ≤ Mσ .

4.3 METRICS FOR QUANTIFYING OUTPUT DISTRIBUTIONS DURING MODEL DEVELOPMENT

While metrics with high-probability guarantees on the output distribution of LLMs are critical for
final evaluations in leakage-sensitive environments, practitioners also require metrics that are both
efficient and easy to compute during development. To meet this need, we introduce the Expectation-
Deviation score (ED score), which combines expectation and deviation of the distribution of X into
a single metric, offering an effective measure of e.g. unlearning quality during model development:

SED({X1, . . . , Xn}) = Smean + ρ · Ssd

where Smean =
1
n

∑n
i=1 Xi is the sample mean and Ssd =

√
1
n

∑n
i=1(Xi − Smean)2 the sample

standard deviation. Here, ρ controls the trade-off between mean and standard deviation, and repre-
sents an application-dependent parameter that can be adjusted based on the application’s risk level.
In our unlearning experiments we set ρ = 2 to balance the two components.

5 DISTRIBUTION UNLEARNING USING ENTROPY OPTIMIZATION AND
ADAPTIVE TEMPERATURE SCALING

Existing unlearning methods typically focus on the greedy point estimate of a language model’s
output distribution, πθ(x), overlooking that the unlearned data may still be embedded in the broader
distribution. This presents a significant vulnerability, as unlearning methods can be circumvented
by simply sampling from the model’s full output distribution. In addition to introducing improved
metrics for evaluating unlearning success from a probabilistic perspective, we propose a novel ap-
proach that accounts for output distributions during machine unlearning itself. Our method utilizes
entropy optimization and adaptive temperature scaling, which we describe in the following:

Entropy optimization. First, our goal is to minimize the entropy of the model’s output distribution
for forget samples DFG. To this end, we define the following loss function that corresponds to the
entropy of the distribution πθ(yt|yt−1, . . . , y1, x) over the possibilities for the next token yt given
the previous tokens yt−1, . . . , y1 and the input sequence x, averaged over all tokens of the sequence:

ℓθ(x, y) =
1

m

m∑
t=1

H(πθ(yt|yt−1, . . . , y1, x))

5
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Figure 2: Entropy optimization: In this example the model (1) must unlearn the answer to the
question “Who are Harry Potter’s best friends?” while retaining the answer to the question “What
is the capital of Canada?”. While minimizing the unlearning loss (2) ensures that the model forgets
the sensitive information, our method minimizes the entropy of the model’s output distribution for
forget samples (3) and retains it on retain samples (4). This allows us to selectively reduce entropy
for unlearning-related queries while maintaining entropy on retain samples, effectively reducing the
risk of leaking sensitive information under sampling attacks without compromising diversity.

where H(q) = −
∑|V |

i=1 qi log qi is the entropy. Minimizing the expected loss EDFG
[ℓθ(x, y)] over

forget samples (x, y) ∼ DFG will force the model to output more deterministic sequences for forget
samples, which in turn will reduce the risk of leaking sensitive information.

While minimizing the entropy of the model’s output distribution for forget samples is crucial for
unlearning, it is equally important to retain the model’s output diversity for retain samples. In
practice this can be achieved by introducing an opposing loss term to slightly maximize the expected
loss EDRT

[ℓθ(x, y)] for retain samples (x, y) ∼ DRT with the objective to maintain the model’s
entropy for retain distributions. Overall, we propose the following entropy optimization loss given
a fixed positive entropy weight λf > 0 and (small) negative entropy weight λr < 0:

LEO(θ) = LUL(θ) + λfEDFG
[ℓθ(x, y)] + λrEDRT

[ℓθ(x, y)]

where LUL(θ) denotes an existing unlearning loss, for example the NPO loss (Zhang et al., 2024).
By applying a positive entropy weight λf to forget samples and a negative weight λr to retain
samples we aim to selectively reduce output diversity for unlearning-related queries while preserving
variability elsewhere (see visualization in Figure 2). Notably, our entropy optimization method is
highly modular and can be applied on top of any existing unlearning method.

Adaptive temperature scaling. As we demonstrate in our experiments, entropy optimization is
an effective method to decrease the model’s entropy for questions related to the forget set while
retaining the entropy of the output distribution for unrelated data. This allows us to additionally
adjust the temperature of the model adaptively depending on the certainty of the current genera-
tion c(x)= 1

m

∑m
t=1 p(ŷt|yt−1, . . . , y1, x), where p(ŷt|yt−1, . . . , y1, x) is the probability of the most

likely token ŷt of the distribution πθ(yt|yt−1, . . . , y1, x) over all possible tokens yt. Specifically, we
define a confidence threshold cT and set the temperature τ of the model to 0 if the average confi-
dence of the sequence c(x) is over the threshold. This further reduces the risk of information leakage
under sampling with no considerable effect on the diversity of the model outputs. Although hard
thresholding was sufficient to substantially decrease information leakage with no effect on genera-
tion diversity in our experiments, more sophisticated temperature scaling could be applied to further
increase the trade-off between diversity and information leakage in the future.

6 EXPERIMENTAL EVALUATION

In the following, we present results on two recent unlearning datasets, demonstrating that existing
deterministic evaluations are insufficient. We show that by using our probabilistic evaluation
framework (see §4), we can measure the residual information contained in a model more accurately
and that previous unlearning methods are prone to significant leakage. We address the problem of
information leakage by proposing entropy optimization with adaptive temperature scaling, which
substantially enhances unlearning performance from a distributional perspective while maintaining

6
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diversity of the output distribution and the utility of the model. In Appendix B we additionally
demonstrate that our probabilistic evaluation framework can be used beyond unlearning tasks by
applying it to alignment settings, effectively estimating the risk of an LLM generating harmful
responses. A detailed description of hyperparameters for all methods is provided in Appendix C.

Datasets and models. We use two recent unlearning benchmarks for our evaluations. We conduct
experiments on TOFU, which consists of 200 fictitious author profiles (Maini et al., 2024). These
profiles are split into a retain and forget set, where the retain set is used to maintain model capabilities
and the forget set is used for unlearning. Additionally, each profile is divided into multiple question-
answer pairs. TOFU provides three different unlearning splits where 99, 95, or 90 percent of the data
is used as retain set and the remainder as forget set. For measuring model utility after unlearning,
TOFU additionally provides the Real Authors and World Facts datasets. All TOFU experiments are
performed with the Phi-1.5 model (Li et al., 2023).

In addition to TOFU, we conduct experiments on the Llama-2-Who-is-Harry-Potter model, which
was unlearned to remove any Harry Potter-related knowledge (Eldan & Russinovich, 2023). We use
the recently proposed Harry Potter Q&A for evaluation Schwinn et al. (2024). This dataset con-
sists of pairs of questions and relevant keywords, allowing for the detection of information leakage
through keyword matching.

Baseline metrics. all experiments, we use ROUGE-L as a deterministic metric to measure informa-
tion contained in the model after unlearning. ROUGE-L computes a statistic based on the longest
common subsequence between two strings (Lin, 2004). Additionally, we use the ROUGE-L score
obtained from multiple sampled responses to compute probabilistic metrics, such as bounds, mean,
standard deviation, and the expectation-deviation (ED) score. Note that our framework (§4) can be
applied to all deterministic metrics, such as perplexity or forget quality. We chose ROUGE-L as it
directly measures information leakage with respect to a ground truth reference and is widely used
in the unlearning domain. Throughout the manuscript, we use information leakage to refer to the
magnitude of the ROUGE-L score, where a high score indicates high information leakage. We use
the model utility score as described in TOFU to measure generation quality of a given model Maini
et al. (2024). We additionally employ the self-BLEU score (Zhu et al., 2018), which computes
BLEU scores (Papineni et al., 2002) between generated samples and allows us to investigate the in-
fluence of our proposed unlearning algorithm on generation diversity. Unlearning methods. We use
Gradient Ascent (GA), Gradient Difference (GD) (Liu et al., 2022), RMU Li et al. (2024), and NPO
Zhang et al. (2024) for a diverse selection of unlearning baselines and combine NPO with entropy
optimization and adaptive temperature scaling for our approach since it is the current state-of-the-art.

6.1 IMPROVING LLM EVALUATIONS WITH PROBABILITY BOUNDS

Most existing metrics used to measure unlearning quality in LLMs already fulfill desiderata I and II,
i.e., they quantify the extent of unlearning and are efficient to compute. In the following, we discuss
how deterministic evaluations do not satisfy the remaining desiderata and are thus insufficient. To
address these limitations and satisfy the desiderata outlined earlier, we use the metrics introduced in
our probabilistic evaluation framework (§4). These metrics address desiderata III and IV, particu-
larly focusing on the risk of information leakage during sampling.

Harry Potter Q&A. Figure 3 (a) compares unlearning evaluations conducted either with (determin-
istic) greedy decoding or probabilistic sampling given the Llama-2-Who-is-Harry-Potter model (El-
dan & Russinovich, 2023) for the Harry Potter Q&A dataset. We adopt the approach of Schwinn
et al. (2024) and define information as leaked if a generated answer contains the relevant keyword
for a given question. This binary nature of leakage (either present or absent) allows us to apply our
introduced binary leakage bound (Mbin) to quantify the extent of information leakage. While deter-
ministic evaluations wrongly indicate that no information is contained in the model after unlearning,
in our experiment, simple sampling from the model’s output distribution reveals that the model still
leaks information (i.e., generates correct responses to the Harry Potter questions). Thus, the deter-
ministic evaluation violates desiderata III and IV, underestimating the leakage risk and providing
no guarantee that the model does not leak information in a deployment scenario (e.g., as a chatbot).
In contrast, our probabilistic binary leakage bound gives a more accurate estimate of the residual
information still contained in the model (III) and provides a high-probability guarantee (IV).
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Figure 3: Our results demonstrate that deterministic evaluations fail to detect residual information
still contained after unlearning, whereas our probabilistic metrics provide more comprehensive eval-
uations: (a) Binary leakage bound (Mbin) for all questions of the Harry Potter Q&A. While greedy
decoding indicates successful unlearning, our probabilistic perspective reveals that for 38% of the
questions the upper bound on the expected leakage is larger than 10%. (b-c) ROUGE-L score of
1024 generated responses from a single question of the TOFU dataset. The bold dashed line indi-
cates the ROUGE-L score of greedy decoding. The second row contains results for NPO and our
proposed unlearning algorithm for a question answer pair of the TOFU forget set. (d) General leak-
age bound (Mgen) illustrating differences in information leakage between NPO and the proposed
approach for different levels of leakage x. (e-f) Expectation bound (Mµ) on the secret leakage
E[X], and standard deviation bound (Mσ). The empirical mean and standard deviation converge
with a small number of samples in practice.

TOFU. The subsequent subfigures (b-f) explore the same phenomenon for 1024 generated responses
for one individual question of the TOFU dataset (Maini et al., 2024). In (b-c), we compare leakage
of different unlearning methods for this question for both deterministic and probabilistic evaluations.
Although the paired unlearning methods exhibit identical leakage under greedy decoding (as indi-
cated by the bold dashed line), their distributions show substantial differences. This demonstrates
that models with identical deterministic evaluation metrics can still behave differently during sam-
pling, supporting our finding that deterministic metrics alone are insufficient. In (d), we compute the
general leakage bound (Mgen) for the two methods shown in (c), which highlights that our entropy
optimization approach does not leak more information than a certain threshold, while NPO exhibits
a considerable leakage risk. In (e), we compare the sample estimate µ and its upper bound µ of the
expected leakage E[X] for different sample sizes. Subfigure (f) shows a similar comparison for the
standard deviation. The empirical estimates converge quickly with an increasing number of samples
in practice, allowing for precise and efficient estimates. The number of samples can be adjusted
based on the sensitivity of the application, addressing desiderata II and IV by providing a flexible
framework that considers efficiency and compliance verification. Similar to the Harry Potter Q&A,
our probabilistic framework reveals considerable residual information after unlearning.

We show an extended analysis on the entire TOFU dataset in Table 1. For the GA and GD un-
learning methods, the empirical mean matches the deterministic ROUGE-L score obtained from
greedy decoding, indicating that the deterministic evaluation correctly approximates leakage risk
of the model. However, we observe a considerable standard deviation for both methods, indicat-
ing substantial leakage for some samples. Our proposed ED (Expectation-Deviation) score (§4.3)
condenses the analysis of the empirical mean and standard deviation into a single value, offering a
direct estimate of the leakage risk during sampling. As such, it provides a practical alternative to
more complex evaluations using general leakage bounds (Mgen) or detailed analyses of mean (Mµ)
and standard deviation (Mσ) bounds while remaining more accurate than deterministic evaluations.
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Table 1: Comparison of deterministic and probabilistic metrics on the TOFU dataset (90/10 split).
While the deterministic metric already indicates good unlearning performance, our metrics reveal
that their distributions still encode the data.

Type Metric (↓) RMU GD GA NPO Ours

Deterministic ROUGE-L 0.70 0.33 0.32 0.22 0.20

Probabilistic ED Score 0.81 0.42 0.41 0.34 0.20
- Mean 0.60 0.32 0.31 0.21 0.20
- Std. Dev. 0.10 0.05 0.05 0.06 0.00
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Figure 4: (a) Effect of the forget entropy regularization weight λf on the standard deviation of
the leakage distribution. Stronger regularization decreases the probability to leak information. (b)
Decreasing the softmax temperature τ of the model also decreases model leakage. However, this
simultaneously results in lower output diversity of the model.

6.2 EFFECT OF ENTROPY REGULARIZATION

To mitigate the risk of information leakage during sampling, we introduce entropy optimization to
selectively decrease the model’s entropy on the forget set. This approach aims to decrease the vari-
ance of the sampling distribution, as illustrated in Figure 3 (c). Figure 4 (a) demonstrates the effects
of the forget entropy regularization parameter λf on two TOFU dataset splits (90/10 and 95/5). As
we increase the regularization strength, the diversity for unlearning-related queries approaches zero,
eliminating the risk of information leakage during sampling.

An alternative approach to reduce output diversity could consist in lowering the model’s softmax
temperature τ . As τ approaches 0, sampling converges to greedy generation. Figure 4 (b) illus-
trates the impact of temperature scaling across various forget regularization weights λf . Lowering
the temperature τ consistently reduces the standard deviation of the ROUGE-L score, indicating de-
creased output diversity. However, temperature scaling affects both unlearning-related and unrelated
tasks indiscriminately. This creates a trade-off between robust unlearning and maintaining output
diversity on general tasks. We show how output diversity can be maintained within the entropy
optimization approach in the next section.

6.3 MAINTAINING OUTPUT DIVERSITY AND MODEL UTILITY

Entropy optimization effectively reduces information leakage in our experiments. At the same time,
unlearning methods should not negatively affect other properties of the model, such as output diver-
sity, model confidence, and overall utility. We investigate these metrics using the Real Authors and
World Facts dataset, which were not used during training. Results are summarized in Figure 5.

(a) Diversity. Figure 5 (a) shows the impact of the retain entropy regularization coefficient λr on
output diversity (i.e., self-BLEU) for λf = 1. The final score is obtained by averaging scores across
all questions of the dataset and ranges from 0 (no similarity) between 1 (identical outputs). The
dashed line represents an NPO model without entropy regularization, while the blue line shows the
entropy-regularized NPO. As λr increases (becomes less negative), diversity improves, surpassing
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Figure 5: Ablation studies for our proposed entropy optimization approach. (a) Negative effects on
the diversity of generated outputs can be mitigated through a negatively weighted (λr) entropy loss.
(b) During training, the confidence of token predictions on the forget set considerably increases,
while it remains largely the same on the retain set. This allows entropy optimization to selectively
decrease information leakage while maintaining output diversity for unrelated tasks. (c) Every dot
represents a model trained with random entropy regularization parameters between 0 and 1. We
observe no relation between the magnitude of regularization and model utility in our experiments.

the baseline NPO model. This suggests that regularizing the entropy on the retain set successfully
prevents diversity degradation on datasets unrelated to the forget objective.

(b) Training confidence trajectories. Subfigure (b) illustrates the model’s confidence over training
epochs for both retain and forget sets. The solid lines represent the retain set, while the dashed
lines show the forget set. Multiple trajectories likely represent different experimental conditions or
hyperparameter settings. We observe that confidence generally increases over epochs for both sets,
with the retain set typically maintaining higher confidence. The trajectories indicate that the model
can differentiate between retain and forget information while learning.

(c) Impact on unlearning and model utility: Figure 5 (c) plots the ED score against model utility
for different data split ratios of retain and forget set of the TOFU dataset (90/10, 95/5, 99/1). Model
utility is measured using the Real-Authors and World Facts dataset of TOFU. Each point represents
a model unlearned with the NPO algorithm with random regularization parameters λ ∈ [0, 1]. In our
experiments, the impact of entropy regularization on model utility is minor, with regularized models
achieving higher utility than standard NPO in some cases. Overall, our proposed entropy regular-
ization approach can achieve a nuanced balance between unlearning robustness, output diversity,
and overall model utility. The retain entropy regularization helps maintain diversity on unseen data,
while the model successfully differentiates between retain and forget information during training.

Limitations. While our proposed probabilistic evaluation framework approach offers substantial
improvements over deterministic evaluations, it still cannot assess the entire output distribution of
LLMs holistically for any possible input. Due to computational constraints, we instead analyze the
output distribution of a given model using Monte Carlo sampling for specific inputs. Moreover, we
demonstrate the importance of accurate evaluations in a case study about unlearning. Future work
should explore further scenarios, such as model alignment or utility evaluations.

7 CONCLUSION

We introduce a probabilistic perspective on LLM evaluation and propose a novel framework to di-
rectly assess the output distribution of a model. Our proposed perspective shift from single point
estimates towards evaluating entire output distributions offers significant potential for the field of
unlearning and can be directly used for evaluating a variety of sensitive applications beyond un-
learning, such as measuring toxicity and mitigating undesired biases in model outputs. Furthermore,
our framework lays the groundwork for developing metrics for quantifying leakage in distributions
beyond text, extending to generative models in image, audio, and other modalities. Overall, our
work represents an important contribution towards comprehensive evaluations of unlearning and
alignment methods, and provides a foundation for future research in this area, such as investigating
model utility from a probabilistic perspective.
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A BROADER IMPACT

Our work highlights the limitations of current LLM evaluations being conducted in a deterministic
manner. By introducing a probabilistic evaluation framework, we enable more accurate assessments
of model behavior and potential risks. This approach could lead to improved safety and reliability in
AI systems, more effective unlearning techniques enhancing privacy protection, and better alignment
of AI models. Additionally, our methods could reveal previously unknown vulnerabilities in existing
models. Overall, this research contributes to more accurate evaluations of generative models.

B ALIGNMENT EXPERIMENTS

Probabilistic evaluations can be seamlessly applied across various contexts and only require a con-
tinuous or binary metric, which can be derived by sampling model outputs. These metrics can then
be directly integrated into our formulas to calculate the desired bounds, making the approach both
efficient and adaptable to a wide range of tasks. In the following, we apply our probabilistic eval-
uation beyond unlearning tasks to alignment, estimating the risk of an LLM generating harmful
responses. In the top row of Figure 6, we visualize the fraction of toxic answers among 1024 gener-
ated responses for a specific query from the JailbreakBench (JBB) dataset (Chao et al., 2024). This
is compared to the toxicity observed under deterministic evaluation using greedy decoding. Toxicity
scores are derived from the Harmbench toxicity classifier (Mazeika et al., 2024), which provides the
probability of an answer being rated as toxic. We conduct our evaluations on Phi-1.5 (Gunasekar
et al., 2023), Vicuna-7b-1.5 (Chiang et al., 2023), and Mistral-7b-instruct-v0.3 (Jiang et al., 2023).
The mean toxicty value for probabilistic evaluations is indicated with a bold black line. Across all
models, average toxicity measured via sampling significantly exceeds that observed through greedy
decoding. In the second row, we present the binary leakage bound for the full JBB dataset. Results
consistently show that greedy decoding underestimates model toxicity, underscoring the limitations
of deterministic evaluation in high-stakes applications such as unlearning and alignment tasks.
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Figure 6: Probabilistic evaluation results for all toxic queries of the JailbreakBench (JBB) dataset. In
the first row, the toxicity score of 1024 generated responses from a single query of the JBB dataset
is shown. The bold black line indicates the mean toxicity value of the probabilistic evaluation,
whereas the bold blue line shows the toxicity score of one greedy evaluation for the same question.
The expected toxicity value under probabilistic evaluation is consistently higher. The second row
shows the binary leakage bound (Mbin). While greedy decoding generally indicates that the models
are robust, our probabilistic perspective reveals that all models are not robust under sampling.
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C HYPERPARAMETERS

For all unlearning algorithms we use a learning rate of 1e − 5 with a cosine learning rate schedule
with warmup ratio of 0.1, batch size of 32, and weight decay of 0.01. For NPO we set βNPO =
0.05. We use 10 training epochs for all experiments as in (Maini et al., 2024). For probabilistic
evaluations we sample n = 1024 model generations for every experiment if not stated otherwise.
Probabilistic guarantees are calculated with a high-probability guarantee of α = 0.01. We set the
adaptive temperature scaling threshold cT = 0.9 for all experiments. This was done as the average
confidence of all models remained considerably below 0.9 during training. In our experiments,
adaptive temperature thresholding has a negligible effect on the diversity of the model outputs using
this threshold (see Section 6.3).

D METRIC GUARANTEE PROOFS

Note that confidence intervals have two bounds that share a significance level of α, meaning each
bound uses a significance level of α/2. Consequently, since we propose metrics based on one bound
only, our bounds can make use of the full significance level α.

Recall the definition of the Clopper-Pearson confidence interval (Clopper & Pearson, 1934):

B
(α
2
;Sn, n− Sn + 1

)
≤ p ≤ B

(
1− α

2
;Sn + 1, n− Sn

)
where B(q̂; a, b) is the q̂th-quantile of the beta distribution with shape parameters a and b. We pro-
pose an unlearning metric based on the conservative Clopper-Pearson confidence bound as follows:

Metric 1 (Binary leakage bound). We define the unlearning metric Mbin ≜ B(1−α;Sn+1, n−Sn)
where B(q̂; a, b) is the q̂th-quantile of the beta distribution with shape parameters a and b.
Proposition 1. With high probability of at least 1 − α, metric Mbin represents an upper bound on
the probability that the next sample leaks information, p ≤ Mbin.

Proof. The statement follows directly from the definition of the Clopper-Pearson confidence inter-
vals (Clopper & Pearson, 1934).

Metric 2 (General leakage bound). Given a specified percentage x ∈ [0, 1] of the information the

model should not leak, we define the metric Mgen(x) ≜ 1− Fn(x) + ϵ with ϵ =
√

ln(1/α)
2n .

Proposition 2. With high probability of at least 1− α, metric M2(x) upper-bounds the probability
that the next sample leaks more than x% of the secret, Pr(X > x) ≤ M2(x) for all x ∈ [0, 1].

Proof. The Dvoretzky-Kiefer-Wolfowitz inequality guarantees

Pr

(
sup
x∈R

Fn(x)− F (x) > ϵ

)
≤ e−2nϵ2 for all ϵ ≥

√
ln 1/2

−2n

Choosing ϵ =
√

ln(1/α)
2n for α ≤ 1

2 we have:

Pr

(
sup
x∈R

Fn(x)− F (x) > ϵ

)
≤ α

⇔Pr (Fn(x)− F (x) > ϵ) ≤ α ∀x ∈ R
⇔Pr (Fn(x)− ϵ > F (x)) ≤ α ∀x ∈ R
⇔1− Pr (Fn(x)− ϵ > F (x)) ≥ 1− α ∀x ∈ R
⇔Pr (Fn(x)− ϵ ≤ F (x)) ≥ 1− α ∀x ∈ R
⇔Pr (Fn(x)− ϵ ≤ F (x)) ≥ 1− α ∀x ∈ R
⇔Pr (1− Fn(x) + ϵ > 1− F (x)) ≥ 1− α ∀x ∈ R
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We can use the Dvoretzky-Kiefer-Wolfowitz inequality to construct a simultaneous confidence band:
p(X > x) ∈ [1− Fn(x)− ϵ, 1− Fn(x) + ϵ] ∀x ∈ R

where ϵ =
√

ln(2/α)
2n . This follows directly from the two-sided DKW inequality:

Pr[sup
x

|Fn(x)− F (x)| > ϵ] ≤ α for α = 2e−2nϵ2

Note that if in practice we have a fixed ϵ for a significance level α (for example if we have to
guarantee tight bounds), then we can exactly quantify the number of Monte Carlo samples needed:

α = 2e−nϵ2 ⇔ n = 1
ϵ2 ln

(√
1
α

)
.

Metric 3 (Expectation bound). We define the metric Mµ ≜ 1−
∑K−1

i=0 δi(Fn(τi)− ϵ) that bounds
the expected leakage E[X] of information with high probability of at least 1− 2α.
Proposition 3 (Anderson (1969)). We have E[X] ∈ [µ, µ] with high probability of at least 1−α for

µ = 1−
K∑
i=1

δi−1(Fn(τi) + ϵ) and µ = 1−
K−1∑
i=0

δi(Fn(τi)− ϵ)

where Fn(x) =
1
n

∑n
i=1 1{Xi ≤ x} is the empirical CDF, ϵ =

√
ln(2/α)

2n and δi = τi+1 − τi.

Proof. We exploit the relation between the CDF and the expectation: E[X] = 1−
∫ 1

0
F (x)dx. We

have

E[X] = 1−
∫ 1

0

F (x) dx

(1)

≤ 1−
K−1∑
i=0

(τi+1 − τi)F (τi)

(2)

≤ 1−
K−1∑
i=0

(τi+1 − τi)(Fn(τi)− ϵ)

= 1−
K−1∑
i=0

δi(Fn(τi)− ϵ)︸ ︷︷ ︸
µ

where inequality (1) holds by lower-bounding the integral with the left Riemann sum, which is a
lower bound of the integral since the CDF is monotonically increasing. The second inequality (2)
holds due to the Dvoretzky-Kiefer-Wolfowitz inequality.

The lower bound follows analogously:

E[X] = 1−
∫ 1

0

F (x) dx

(1)

≥ 1−
K∑
i=1

(τi − τi−1)F (τi)

(2)

≥ 1−
K∑
i=1

(τi − τi−1)(Fn(τi) + ϵ)

= 1−
K∑
i=1

δi−1(Fn(τi) + ϵ)︸ ︷︷ ︸
µ
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where inequality (1) holds by upper-bounding the integral with the right Riemann sum, which is an
upper bound of the integral since the CDF is monotonically increasing. The second inequality (2)
holds due to the Dvoretzky-Kiefer-Wolfowitz inequality again.

Following the variance bounds introduced in (Schuchardt et al., 2023) we propose the following
bound on the standard deviation as unlearning metric:

Metric 4 (Standard deviation bound). Given η0, . . . , ηM−1 we define the metric Mσ ≜ σ for

σ2 = ηM−1 − η0F (τ0) +

K−1∑
i=1

δi
[
sign(δi)F (τi) + (1− sign(δi))F (τi)

]
where δi = ηi−1 − ηi for ηi = maxκ∈{τi,τi+1},a∈{µ,µ}(κ− a)2.

Proposition 4. With high probability of at least 1 − α, metric Mσ(x) upper-bounds the standard
deviation of X ,

√
Var[X] ≤ Mσ .

Proof. We have Var[X] = E[(X − E[X])2] =
∫ 1

0
(x− E[X])2fX(x) dx

=

K−1∑
i=0

∫ τi+1

τi

(x− E[X])2fX(x) dx

=

K−1∑
i=0

∫ τi+1

τi

(x− E[X])2fX(x) dx

≤
K−1∑
i=0

ηi

∫ τi+1

τi

fX(x) dx for ηi = max
κ∈{τi,τi+1}
a∈{µ,µ}

(κ− a)2

=

K−1∑
i=0

ηi(F (τi+1)− F (τi))

= ηK−1 − η0F (τ0) +

K−1∑
i=1

δiF (τi) for δi = ηi−1 − ηi

≤ ηK−1 − η0F (τ0) +

K−1∑
i=1

δi
[
sign(δi)F (τi) + (1− sign(δi))F (τi)

]
︸ ︷︷ ︸

σ2

From Var[X] ≤ σ2 follows
√
Var[X] ≤ σ since the square root is monotonically increasing.
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