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ABSTRACT

Closed-source large language models deliver strong performance but have limited
downstream customizability. Semi-open models, combining both closed-source
and public layers, were introduced to improve customizability. However, parame-
ters in the closed-source layers are found vulnerable to recovery attacks. In this
paper, we explore the design of semi-open models with fewer closed-source layers,
aiming to increase customizability while ensuring resilience to recovery attacks.
We analyze the contribution of closed-source layer to the overall resilience and
theoretically prove that in a deep transformer-based model, there exists a transition
layer such that even small recovery errors in layers before this layer can lead to re-
covery failure. Building on this, we propose SCARA1, a novel approach that keeps
only a few bottom layers as closed-source. SCARA employs a fine-tuning-free
metric to estimate the maximum number of layers that can be publicly accessible
for customization. We apply it to five models (1.3B to 70B parameters) to construct
semi-open models, validating their customizability on six downstream tasks and as-
sessing their resilience against various recovery attacks on sixteen benchmarks. We
compare SCARA to baselines and observe that it generally improves downstream
customization performance and offers similar resilience with over 10 times fewer
closed-source parameters. We empirically investigate the existence of transition
layers, analyze the effectiveness of our scheme and finally discuss its limitations.

1 INTRODUCTION
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Figure 1: Semi-open vs. fully-closed model.

Vendors of Large Language Models (LLMs) have recently
launched several closed-source models with impressive
capabilities, serving diverse user needs across different sce-
narios (Minaee et al., 2024; Zhao et al., 2023). Access to
closed-source models is typically through black-box APIs,
such as GPT-4o and Claude 3.5. These APIs hide model
weights and internal structures, restricting downstream
customizability. To address this, semi-open LLMs have
emerged, offering more flexibility while still hiding certain
infrastructure details (Eiras et al., 2024; White et al., 2024).
As shown in Figure 1, these semi-open models keep some
modules closed-source but allow access to others. This
enables users to interact with closed-source modules via
embedding APIs and fine-tune the open modules (e.g., Lla-
maIndex, Haystack). These semi-open models are widely
used for tasks such as search and classification, striking a balance between flexibility and the protec-
tion of proprietary components (Khetan, 2024; Xian et al., 2024).

Although open-sourcing more parameters and structural details could enhance customizability,
Zanella-Beguelin et al. (2021) shows that semi-open LLMs with only a few closed-source parameters
are vulnerable to model recovery attacks. Recovery attackers query the closed-source module and
then train a new module that imitates its functionality. This can lead to the full replication and
theft of closed-source modules (Solaiman, 2023). Although the community has extensively studied

1Code is available at: https://github.com/OTTO-OTO/SCARA-Semi-Open

1

https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/
https://www.llamaindex.ai/h
https://www.llamaindex.ai/h
https://haystack.deepset.ai/
https://github.com/OTTO-OTO/SCARA-Semi-Open
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recovery attacks against closed-source models (Chen et al., 2023; Jiang et al., 2023b), defending
against recovery attacks in the semi-open setting is an uncharted area. Recovery attackers targeting
fully closed-source models seek to fine-tune a new model that precisely replicates the closed-source
model (Tamber et al., 2024; Dubiński et al., 2024). In contrast, attackers in semi-open settings are not
required to exactly replicate the closed-source module. Instead, they can fine-tune the closed-source
module alongside the public module to reconstruct the overall functionality. While open-sourcing
more layers enhances downstream flexibility, it also facilitates easier replication.

Beyond the closed-source amount, the specific sections concealed are vital for defending against
recovery attacks. Shen et al. (2023) suggested concealing several top layers and keeping the bottom
public. However, the benefits of hiding bottom layers (near the input) versus top layers (near the
output) are still unclear. Therefore, we examine the impact of each layer on resilience and theoretically
identify a transition layer. Any recovery error in bottom layers before this transition layer leads
to a high probability of recovery failure. In contrast, errors in later layers have limited impact.
This finding suggests that keeping the bottom layers closed-sourced offers better protection against
recovery attacks than the top layers, even when the same number of layers is hidden.

In this paper, we introduce SCARA, a selective closed-sourcing method for designing semi-open
models that balances customizability with resilience against recovery attacks. Building on our
theoretical findings, SCARA selectively hides a few bottom layers. It determines the minimal number
of closed-source layers using a recovery difficulty score, a metric that estimates recovery performance
without requiring fine-tuning. This score is based on the initial average recovery loss during the
attack. SCARA identifies the optimal closed-source strategy by selecting the layers with metric
corresponding to the worst recovery performance. Consequently, models designed by SCARA retain
most layers as publicly accessible, achieving customizability comparable to fully open-source models
while remaining resilient to recovery attacks. Our main contributions are as follows:

• We theoretically demonstrate the existence of a transition layer in LLMs. We prove that small
recovery errors in bottom decoder layers before this layer can lead to recovery failure with high
probability, whereas errors in later layers have a limited impact. (see Section 4.1)

• We introduce SCARA, a selective closed-source approach that conceals a few bottom decoder
layers to enhance customizability while maintaining resilience. Specifically, we propose a metric
that does not require fine-tuning, but correlates with the recovered performance under attacks,
enabling us to approximately find the minimal number of hidden layers. (see Section 4.2)

• We compare our approach with two baselines across five models (1.3B to 70B parameters), as-
sessing customizability on six tasks and resilience against three recovery strategies across sixteen
benchmarks in six domains. Experiments show that our method significantly improves downstream
performance while maintaining comparable resilience against recovery attacks, with over 10 times
fewer closed-source parameters than the baselines. For example, the semi-open Llama2-70B
produced by our method hides only 2.5% of the parameters but achieves a 30% higher downstream
performance score than the baselines in the Financial domain. We also observe a performance
improvement of over 40% on Mistral-7B. Additionally, our method maintains similar resilience
against recovery attacks compared to both baselines. (see Section 5.2)

• We empirically investigate the presence of transition layers and the correlation between our metric
and the recovered performance of each closesd-source combination. We conclude by analyzing the
hyper-parameter sensitivity and discuss the limitations of our approach. (see Section 5.4)

2 RELATED WORKS

Model Customization. Vendors have introduced three main strategies for model customization,
each with distinct trade-offs. First, fine-tuning APIs allow customization of fully closed-source
models (e.g., La Plateforme, Azure AI Services) while restricting access (Finlayson et al., 2024).
Second, embedding models offer richer customization by enabling users to select and modify
subsequent structures (Sarıtaş et al., 2024; Lee et al., 2024), but lack of joint pre-training may degrade
performance (Nussbaum et al., 2024) and increase vulnerability to recovery attacks (Caspari et al.,
2024; Tamber et al., 2024). Third, open-source models offer full customization flexibility yet pose
challenges to model control and usage supervision (Bommasani et al., 2022; Roumeliotis et al., 2023).
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Model Recovery Attacks. Prior attacks (Tramèr et al., 2016; Krishna et al., 2020; Dziedzic et al.,
2023a) attempt to recover the functionality of fully closed-source models through API queries.
Carlini et al. (2024) advanced these by entirely extracting the embedding projection layer and hidden
dimension size. Recently, various defenses against fully closed-source model recovery attacks
have been proposed (Jiang et al., 2024), including malicious queries detection (Shang et al., 2024),
watermarking (Zhang et al., 2021), fingerprinting (Guan et al., 2022), etc. These methods do not
directly apply to the semi-open settings with only partial model information.

Semi-Open Model. Previous studies (Lin et al., 2024; Chen et al., 2024; Qiao & Zhou, 2023) explore
opening bottom layers of models for user customization, while keeping later layers closed-sourced
to maintain vendor control. For example, Shen et al. (2023) introduced SAP, which open-sources
the first six transformer layers but limits customization options. Meanwhile, Dubiński et al. (2024);
Dziedzic et al. (2023b) proposed a semi-open approach where encoder models are offered as APIs,
allowing users to customize task-specific subsequent modules. However, (Liu et al., 2022) and Sha
et al. (2023) showed that these encoder models are still vulnerable to recovery attacks.

3 PRELIMINARIES

3.1 SECURITY THREAT: SEMI-OPEN MODEL RECOVERY

Semi-open LLMs. Let X ∈ Rn×d denote the input data matrix, where each row corresponds to
a d-dimensional feature vector representing a single token. Let f : Rn×d → Y denote a victim
model, capable of processing the feature matrix X and producing an element in the set Y as output.
Modern LLMs typically adopt a multi-layer architecture to capture complex patterns in the input
data. Specifically, f is a composition of multiple decoder layers, i.e., f(X;θ) = φL ◦ ... ◦ φ1(X).
All decoder layers φ1, ..., φL share the same architecture but each layer is equipped with distinct
parameters. The parameters of all layers are denoted by the vector θ. We consider a semi-open setting,
in line with Zanella-Beguelin et al. (2021) and Xu et al. (2021), where certain layers of the LLM are
closed-sourced while others remain public. Let the closed-sourced set I ⊆ {1, . . . , L} ≜ [L] denote
the index set of hidden layers, while its complement Ic contains the public layer indices.

Attack
Dataset

Query

Response

Semi-open Model

Recover

Functional Equivalent

Replace 
& Initialize 

Replaced
Public

Recovered

Recovered Model

Figure 2: Workflow of semi-open model recovery attack

Semi-open Model Recovery Attack. The
semi-open model recovery attack aims to repli-
cate a target language model (LLM) (Carlini
et al., 2024). Under the threat model (Shen
et al., 2023), the adversary can query the semi-
open model, access its output logits, and re-
trieve output representations from the closed-
source module. With knowledge of the closed-
source architecture but not its parameters, the
adversary fine-tunes a replacement model us-
ing these logits or representations as training labels. As shown in Figure 2, the attack begins by
constructing a dataset D through queries to the victim model and employs three attack strategies: (1)
FT-all, which fine-tunes both the replacement and open-source modules using logits; (2) FT-closed,
which fine-tunes only the replacement model using logits while keeping the open-source module fixed;
and (3) SEM (Tamber et al., 2024), which fine-tunes the replacement model using representations
without involving the open-source module. Let θFT(I,D) represent the recovered parameters under
the attack dataset D and the closed-source set I .

3.2 PROBLEM FORMULATION

In this paper, we consider the performance of a large language model within a defined distribution,
denoted as PX×Y , representing the relationship between the input matrix X and corresponding label
Y . We assume that the victim LLM f(X;θ) performs well within this distribution. Additionally, we
presume the attack set D consists of independent and identically distributed (i.i.d.) samples drawn
from PX×Y . To assess the alignment between the outputs of LLM and the ground-truth labels, we
use a scoring function, denoted as s : Y × Y → R+. For any closed-source index set I ⊆ [L], we
introduce the concept of a “Recovery Ratio” R(I). This ratio measures the extent to which the

3
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recovered model θFT(I,D) can replicate the behavior of the victim model f(X;θ), expressed as

R(I) =
E[s(f(X;θFT(I,D)), Y )]

E[s(f(X;θ), Y )]
. (1)

Here, E in the numerator reflects the expectation computed over random samples (X, Y ) drawn from
PX×Y , the random attack set D, and the random initialization of parameters within the closed-source
layers during fine-tuning. Conversely, the term E in the denominator solely considers the expectation
over random samples. With this definition, the term R([L]) denotes the recovery ratio of the recovered
model under a fully-closed approach, where [L] = {1, ..., L}. Hence, the following question arises.

Given ε > 0, what is the smallest closed-source set I for which R(I) ≤ (1 + ε)R([L])?

This question essentially asks whether it is feasible to identify a minimal closed-source index set I ,
such that, under this closed-source strategy, the resulting recovered model exhibits similarity to the
model recovered under fully-closed approach. In other words, the recovery score does not surpass
that of fully-closed approach by more than a factor of (1 + ε).

4 METHODOLOGY

(a)  Customization Performance

(b)  Recovery Performance

Figure 3: Customizability and resilience
comparison in Llama2-70B. Higher scores
indicate better customizability in Fig. (a) and
weaker resilience in Fig. (b). Details can be
found in Appendix C.1

In this section, we investigate how each layer affects
customizability and resilience against recovery attacks.
We begin with an experiment involving two semi-open
Llama2-70B models, each with either the first two (Semi-
Open-1) or the last two (Semi-Open-2) decoder layers
closed-sourced. We compare their customization perfor-
mance and recovered performance under the recovery at-
tack. Figure 3 (a) and (b) show that although two semi-
open models perform similarly on six downstream tasks,
closed-sourcing the first two layers offers significantly
greater resilience than the last two. Moreover, we com-
pare the Semi-Open-1 model to the fully-closed model and
observe that this semi-open model can achieve better cus-
tomizability and comparable resilience at the same time.
Therefore, we conjecture that, with a sufficient number of
closed-sourced layers before a certain transition layer, a
semi-open model can simultaneously achieve great cus-
tomizability on downstream tasks and strong resilience
against recovery attacks. In this section, we first present a
theoretical result showing the existence of transition layers
and then introduce our selective closed-sourcing approach.

4.1 RESILIENCE TRANSITION LAYER IN INFINITELY DEEP TRANSFORMERS

Model Overview. Let us revisit our large language model composed of L layers, denoted as
f(X;θ) = φL ◦ ... ◦ φ1(X). Recall that each row of the feature matrix X ∈ Rn×d represents a
d-dimensional vector for an input token. We treat each layer φi as a transformer layer, where each
layer processes an n× d dimensional matrix as input and outputs another n× d matrix. Thus, the
model f outputs a matrix of n rows and d columns, indicating that the large language model outputs
a feature vector for each token. Moreover, we assume that each layer contains a normalized residual
self-attention function, defined as

φi (X;Ki, Qi) = X+ softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
X, (2)

where Qi ∈ Rd×dQ and Ki ∈ Rd×dQ are projection parameter matrices for the Q and K matrices in
the transformer, respectively. Additionally,

√
dQ and the matrix norm ∥X∥ denote normalization

factors provided by the normalization layer. We consider the strategy of concealing the αL-th layer
with α ∈ [0, 1] and αL ∈ N while keeping other layers public. After the semi-open model recovery,
we assume the parameters of the recovered model in the public layers are identical to the victim

4
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model, while those in the proprietary layer deviate. Let K̂αL and Q̂αL denote the recovered weight
matrix of the proprietary layer, i.e., θFT({αL}) = {(K1, Q1), ..., (K̂αL, Q̂αL), ..., (KL, QL)}. Let
φ̂αL denote the function of the recovered proprietary layer, i.e., the αL−th layer, in the recovered
model. In this subsection, we consider the normalized output of an infinitely deep model whose
αL-th layer is closed-sourced and subjected to the attack. The output of the recovered model is

f̂∞(X) = lim
L→∞

φL ◦ ...φαL+1 ◦ φ̂αL ◦ φαL−1 ◦ ... ◦ φ1(X)

∥φL ◦ ...φαL+1 ◦ φ̂αL ◦ φαL−1 ◦ ... ◦ φ1(X)∥F
,

where ∥ · ∥F denotes the Frobenius norm of a given matrix. We consider this infinitely deep network
as our ideal model because, in real-world settings, most large-scale models are sufficiently deep.
Next, we present the following theorem to illustrate the existence of a critical value α∗ such that if
α < α∗, the recovered LLM outputs identical feature vectors for all tokens. Conversely, if α > α∗,
the output feature vectors may vary across tokens.
Theorem 1. Assume that PX×Y is defined on a countable domain X × Y with 0n×d /∈ X . Assume
that parameter matrices {Ki, Qi}i≥1 in the victim model f have uniform bounded norms, i.e.,
∥Ki∥ ≤ D and ∥Qi∥ ≤ D for some D > 0. There exists an α∗ ∈ (0, 1) depending on D such that
the following two statements are true.

(1) Let α < α⋆ and {Ki, Qi}i≥1 be any parameter matrix sequence in the victim model. Let K̂αL

and Q̂αL be the recovered parameter matrices drawn from a continuous distribution supported on
Rn×d. With probability one, for any input X ∈ X , the row vectors in the matrix f̂∞(X) are identical.

(2) Let α > α⋆. There exists a victim model with parameter matrix sequence {Ki, Qi}i≥1 such that
for any recovered parameter matrices K̂αL and Q̂αL, the row vectors in the matrix f̂∞(X) are not
entirely the same for some input feature matrix X ∈ X .

Remark 1: The proof is provided in Appendix A. This theorem demonstrates that if the recovered
parameters of the bottom layers (i.e., α < α∗) are obtained through a randomized algorithm, such
as stochastic gradient descent, with a continuous distribution supported on Rn×d, the recovery will
certainly fail, as it will produce the same feature vector for every token. In contrast, keeping the
later layers closed-sourced (i.e., α > α∗) does not maintain this property, indicating that it is more
effective to closed-source the bottom layers before the transition layer, rather than the later ones.

Remark 2: The theorem relies on the assumption that the distribution is defined over a countable
domain, X × Y , typically satisfied by inputs such as sentences or images. We show in the proof
that for each input matrix X ∈ X , there are two zero-measure sets K(X) and Q(X) such that the
recovered matrices must avoid to satisfy the theorem. Hence, the countable unions K =

⋃
X∈X K(X)

and Q =
⋃

X∈X Q(X) are also zero-measure sets, ensuring that when recovered matrices do not
belong to these sets, the conditions in the theorem are met for any input matrix X in the input space.

Theorem 1 shows that hiding bottom layers improves resilience, suggesting closed-sourcing from the
first layer may be effective. Next, we present an approach to identify the minimal set of hidden layers.

4.2 SCARA: SELECTIVE CLOSED-SOURCING APPROACH AGAINST RECOVERY ATTACK

We propose a method to approximately find the smallest bottom layer index set I that satisfies
R(I) ≤ (1 + ε)R([L]). A simple approach is to start with Il = {1, . . . , l} for each l beginning from
1, then evaluate the recovery ratio R(Il) after the attack, and identify the smallest l that meets the
inequality. This extensive fine-tuning process is time-consuming, prompting the critical question:
Can we create a fine-tuning-free metric that predicts LLM performance under semi-open model
recovery attacks? Hence, our goal is to establish a metric directly correlated with the recovery ratio.

In the recovery ratio R(I), each I has the same denominator, so our focus is on a metric related to the
numerator, specifically E[s(f(X;θFT(I,D)), Y )], which measures the average performance score of
the recovered model. This average performance score generally inversely correlates with the average
testing loss E[ℓ(f(X;θFT(I,D)), Y )], where ℓ denotes the cross-entropy loss employed by LLM.
Therefore, our goal becomes finding the l such that

E[ℓ(f(X;θFT({1, ..., l},D)), Y )] ≥ (1− ε)E[ℓ(f(X;θFT([L],D)), Y )].

However, calculating both sides of this inequality requires knowing the recovered parameters from the
fine-tuning process. To bypass this, we aim for an approximate solution. The recovered parameters

5
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are generated through gradient descent, starting from the initial parameters θ0(I), with the hidden
layers being randomly initialized. Using the Taylor Expansion, we find

E [ℓ (f(X;θFT(I,D)), Y )] = E [ℓ (f(X;θ0(I)), Y )] +O(∥θFT(I,D)− θ0(I)∥2).
Previous research (Choi et al., 2024; Bailly et al., 2022) suggests the difference ∥θFT(I,D)−θ0(I)∥2
is minor for large networks compared to the dataset size |D|. In models like a single-layer ReLU
network (Anthony et al., 1999; Zou et al., 2020), the difference ∥θFT(I,D) − θ0(I)∥2 is of order
O
(

|D|√
N

)
(Jacot et al., 2018; Wei et al., 2019), where N , the number of model parameters, which

is much larger than the dataset size in LLMs (Dubey et al., 2024; Liu et al., 2024). Hence, the first
term that does not require fine-tuning dominates, suggesting it as a viable metric for predicting the
recovery ratio. Thus, we define the first term as “Recovery Difficulty” (RD(I)) with the expression:

RD(I) = EX,Y,θ0(I) [ℓ (f(X;θ0(I), Y )] .

This score, which can be estimated using a sample average, represents the recovered performance
of the model when specific layers I are closed-sourced. A higher RD(I) suggests worse recovery
performance, indicating a lower recovery ratio R(I). Therefore, our SCARA operates in the following
way. SCARA begins by sampling evaluation data targeting general capabilities from the underlying
distribution, and then computes RD(Il) for each set of closed-sourced layers Il = {1, ..., l} for
l = 1, ..., L. SCARA stops at the smallest l∗ that satisfies RD(Il∗) ≥ (1− ε)RD([L]).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In this subsection, we introduce the experimental setups. Details can be found in Appendix B.

Models. We consider five open-source, decoder-only structured LLMs with various architec-
tures. Specifically, we select Llama2-70B-chat, Llama2-7B-chat (Touvron et al., 2023), Mistral-7B-
v0.1 (Jiang et al., 2023a), Phi-2 (Abdin et al., 2024), and Phi-1.5 (Li et al., 2023). We designate these
pre-trained models as the base models for customization and victims in semi-open model recovery
attacks.

Attack Methods. We recover models produced by different closed-source approaches using three
attack methods: FT-all, FT-closed and SEM. Following (He et al., 2021), a diverse attack set is
required for full recovery. Therefore, we merge data evenly form two general datasets, MMLU
benchmark (Hendrycks et al., 2021) and Alpaca 52k (Wang et al., 2022), resulting in a 51k combined
set. Moreover, we also construct four larger general datasets (100k–500k) to strengthen the attack.

Baselines. We compare SCARA with the other two baselines: SAP-DP and the fully-closed (Eiras
et al., 2024) approach. The SAP (Shen et al., 2023) framework keeps the first six decoder layers open
and the rest closed-source. SAP-DP extends SAP by adding Laplace noise to the model outputs, a
common strategy for model protection (Lee et al., 2018). The fully-closed approach represents the
extreme, where all layers are closed-sourced.

Implementation Details of SCARA. We apply the SCARA algorithm to identify the smallest
closed-source set I such that R(I) ≤ (1 + ε)R([L]). To calculate recovery difficulty (RD), we use
cross-entropy loss and approximate the expectation over samples distributed on the general domain
and randomly initialized closed-source parameters. This is done using a 1,500-sample evaluation
set randomly sampled from the MMLU benchmark and Alpaca 52k, with closed-source parameters
initialized via Xavier initialization and averaged over three random seeds (20, 42, 1234). For models
up to 7B parameters, we use four RTX 4090 GPUs, while for Llama2-70B, we use four A100 GPUs.
We find that ε = 0.05 yields optimal performance. For ε sensitivity, see Section 5.3.

Evaluation Benchmarks We assess customizability on six downstream tasks: Code (Zheng et al.,
2024b), Math (Yue et al., 2023), Medical (Zhang et al., 2023), Finance (Wang et al., 2023b),
Law (Guha et al., 2024), and Alignment (Meng et al., 2024). To fully evaluate recovered functionali-
ties, we focus on six capabilities domains following Llama2 report (Touvron et al., 2023). Specifically,
we assess the recovered model across sixteen benchmarks grouped into (1) Commonsense Reasoning
(Rsn.); (2) Reading Comprehension (Read.); (3) World Knowledge (Knl.); (4) Code; (5) Math; and
(6) General Ability (Gen.).
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Figure 4: Customization performance of models closed-sourced by SCARA on six downstream tasks.

Table 1: Recovery ratios on 6 functionalities under FT-all (SCARA |SAP-DP| Fully-closed). “H.E.” in Code
domain presents the benchmark “HumanEval”. More details are available in Appendix C.2.

Benchmark Llama2-70B Llama2-7B Mistral-7B Phi-2 Phi-1.5

Rsn.

PIQA 62.6|59.8|63.0 64.7|64.7|64.6 63.0|61.2|60.2 68.3|65.6|65.7 70.6|69.5|66.7
Winogrande 68.5|67.7|68.3 76.8|74.8|76.6 67.2|69.0|68.3 68.3|64.9|64.8 70.3|67.8|67.6
ARC-easy 31.9|32.8|31.3 36.3|35.5|34.9 32.3|34.7|32.0 43.2|35.3|33.9 40.5|37.8|36.1

ARC-challenge 38.5|38.1|44.2 47.8|46.6|50.9 39.7|42.6|44.5 36.8|36.6|35.3 46.1|44.4|47.5
Hellaswag 31.4|31.4|32.4 33.9|34.0|35.0 32.2|32.0|31.3 37.4|37.3|34.3 42.0|41.0|40.0

Read.

LAMBADA 0.01|0.00|0.00 0.02|0.00|0.01 0.16|0.00|0.01 1.34|0.04|0.00 1.37|0.00|0.00
BoolQ 47.2|47.1|53.9 59.5|56.0|65.0 48.3|46.8|56.7 56.7|50.3|55.8 61.7|54.9|60.8

SQuADv2-EM 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00
SQuADv2-F1 1.50|1.68|0.34 0.68|0.88|0.82 1.69|0.36|0.93 3.65|0.39|0.90 1.28|1.07|2.64

OBQA 54.5|54.5|57.1 57.4|52.5|59.2 57.7|56.8|56.3 0.00|0.00|0.02 0.04|0.00|0.00

Knl. NaturalQuestions 0.00|0.02|0.00 0.01|0.01|0.08 0.00|0.00|0.02 0.01|0.00|0.06 0.21|0.00|0.00
TriviaQA 0.00|0.02|0.00 0.00|0.00|0.03 0.00|0.00|0.01 0.01|0.00|0.01 0.01|0.00|0.00

Code MBPP&H.E. 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00

Math GSM8K 0.02|0.00|0.06 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00

Gen. MMLU 36.8|38.3|36.5 52.9|50.0|53.3 40.4|36.9|37.2 42.6|40.3|40.5 56.7|54.1|54.1
BBH 0.00|0.00|0.00 0.00|0.00|0.00 0.00|0.00|0.00 0.01|0.00|0.00 0.00|0.00|0.00

Average Recovery Ratio(↓) 21.9|21.8|22.8 25.3|24.4|25.9 22.5|22.4|22.8 23.9|22.3|22.4 26.2|25.3|25.4
Closed-source Ratio(↓) 2.50|92.5|100. 3.16|81.3|100. 3.16|81.6|100. 6.25|81.3|100. 8.33|75.0|100.

Metrics. We measure model customizability through its improvements on benchmarks. For resilience,
we calculate the “Average Recovery Ratio” (ARR) by averaging the recovery ratios across benchmarks.
A lower ARR indicates higher resilience offered by the closed-sourced set. Additionally, we define
∆ARR(I) = ARR(I)− ARR([L]) to compare the resilience between closed-sourcing set I and the
fully-closed approach. A smaller ∆ARR suggests similar resilience to the fully-closed model.

5.2 MAIN RESULTS

In this subsection, we compare SCARA with three baselines, demonstrating its superior customizabil-
ity on downstream domains while preserving similar resilience against model recovery attacks.

Customizability: SCARA vs. Baselines. We compare the customization performance of SCARA
with closed-source baselines. Results are shown in Figure 4 and detailed in Appendix B.6.

On 70B and 7B models, SCARA consistently surpasses SAP-DP and fully-closed approaches across
six domains and aligns closely with the performance of the fully-open approach, where all parameters
are accessible. For instance, in the Law domain, SCARA improves scores by 10% over SAP-DP and
fully-closed approaches on Llama2-70B, with this improvement rising to 35% on 7B models. Similar
patterns of enhanced customizability are also evident in Phi-2 model, though the improvement on the
Law domain narrows to only 1%. Furthermore, SCARA maintains performance comparable to the
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Table 2: Recovery ratios on Llama2-70B.

Strat. Method Rsn. Read. Knl. C.&M. Gen. ARR

FT-c.
SCARA 47.1 21.6 0.00 0.03 18.7 22.6
SAP-DP 46.2 19.5 0.00 0.00 19.0 21.8
F-Closed 47.8 21.2 0.00 0.08 18.5 22.8

SEM
SCARA 48.2 21.9 0.00 0.00 18.5 22.4
SAP-DP 47.1 21.1 0.00 0.00 18.3 22.3
F-Closed 47.8 21.2 0.00 0.08 18.5 22.8

Table 3: ARR of SCARA vs. attacks.

Model FT-all FT-closed SEM

Llama2-70B 21.9 22.6 22.4
Llama2-7B 25.3 24.8 25.0
Mistral-7B 22.5 22.5 22.0
Phi-2 23.9 23.7 22.1
Phi-1.5 26.2 26.9 24.7

fully-open approach, demonstrating that hiding a small portion of parameters has a small impact on
downstream customizability. More results are reported in Appendix C.3.

Resilience: SCARA vs. Baselines. We compare the resilience of SCARA with other closed-source
baselines under three recovery strategies: FT-all, FT-closed, and SEM attack. As shown in Table 1,
under FT-all attack, SCARA, SAP-DP, and fully-closed approach show similar resilience across
various architectures and domains, with ARR differences within 1.4%. For instance, on Llama2-70B,
SCARA keeps only 1.25% of parameters hidden, yet achieves an ARR of 21.9%, comparable to
SAP-DP (21.8%) and the fully-closed approach (22.8%), which keep 92.5% and 100% of parameters
closed-sourced, respectively. This pattern also extends across five architectures, indicating that our
approach effectively preserves resilience with limited parameter closed-sourced. As shown in Table 2,
SCARA achieves comparable resilience under FT-closed and SEM attacks. Under FT-closed attack,
the recovery ratio differences among the three approaches remain under 2.1% across six domains.
Similarly, under SEM attack, recovery ratios of SCARA align closely with the other approaches.
These results show that SCARA offers resilience against model recovery on par with fully-closed
approach, despite requiring fewer private parameters. More details are in Appendix C.4.

0 3 6 9 12 15 18 21 24 27 30
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20
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Hidden States Deviations

Figure 5: Amplification of error in Llama2-7B.

Table 4: SCARA vs. dataset scales.

Scale Rsn. Read. Knl. C.&M. Gen. ARR

51k 51.7 21.6 0.01 0.00 28.3 25.3
100k 51.3 21.5 0.13 0.00 29.6 25.3
200k 51.4 21.7 0.11 0.00 29.7 25.2
300k 51.6 21.7 0.11 0.00 30.5 25.5
500k 51.8 22.0 0.09 0.00 30.8 25.8

Resilience: SCARA vs. Recovery Strategies. Table 3
shows that SCARA effectively defends three recovery
attack strategies on all models. We observe that SEM,
a typical and effective attack for recovering embedding
models, does not show a significant boost in recovery
performance. This can be because SEM attackers focus
on recovering only the proprietary embedding module,
while the semi-open model recovery attackers aim at
recovering the full functionality of the entire model,
including both proprietary and public modules. The
targets of these two attackers are different since even
small errors in bottom layers can lead to significant out-
put deviations. To see this, we add small perturbations
on parameters in the first layer of Llama2-7B model
and evaluate the hidden representation deviation at the
output of each decoder layer. Figure 5 shows that the
norm of deviation increases as the layer index increases,
indicating that small errors are amplified by subsequent
layers, leading to large deviations in the final output.
Therefore, SCARA closed-sources the first several lay-
ers, effectively leveraging this amplification, making
the functionality recovery more difficult and ensuring
strong resilience against recovery attack. We report details in Appendix B.7 and C.5.

Resilience: SCARA vs. Recovery Dataset Scales. We further evaluate the resilience of SCARA
against FT-all by increasing the recovery dataset scale on Llama2-7B to determine if larger datasets
would compromise its effectiveness. More details on the attack dataset are in Appendix B.2. Table 4
shows the recovery ratio achieved by SCARA under each attack dataset. We observe that increasing
the scale of the attack dataset leads to only a mild increase in recovery ratios, indicating a limited
impact on SCARA. For instance, recovering with the 500k samples results in only a 0.5% ARR
improvement over 51k samples. This suggests that the resilience provided by SCARA cannot be
easily compromised by simply increasing the dataset scale. Details are reported in Appendix C.6.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 9 13 17 21 25 29
Closed-Sourced Set Size

−10

−5

0

5

10

∆
A

R
R

(%
)

(b) Effect of Set Size

Llama2-7B
Phi2-2.7B

10

25

40

55

70

A
C

C
(%

)

1 3 5 7 9 11 13 15
Closed-Sourced Set Placement

0

20

40

60

80

∆
A

R
R

(%
)

(a) Effect of Set Placement

Llama2-7B
Phi2-2.7B

20

35

50

65

80

A
C

C
(%

)

20M

50M

100M

160M
200M

300M

600M

0.25%

0.5%

1%

3%

7%
15%

30%

50%

100%

0%
10%
20%
30%
40%
50%

(c) Closed% vs. ∆ARR

Figure 6: (a) shows the trends in customizability and resilience changes in Llama2-7B and Phi-2 with different
placements of same-sized closed-source sets. (b) presents the patterns of customizability and resilience in
Llama2-7B and Phi-2 as the closed-source set size varies, starting from the first decoder layer. (c) depicts ∆ARR
for different closed-sourced parameter quantities and proportions in Llama2-7B. Smaller ∆ARR indicates
similar resilience to the fully-closed model, while higher ACC reflects better customizability.

5.3 ANALYSIS OF THE CUSTOMIZABILITY-RESILIENCE TRADE-OFF IN SCARA

Closed-source Module Placement vs. Trade-off. Theorem 1 demonstrates that the bottom layers
before a transition layer provide stronger resilience against model recovery attacks. However, it
remains unclear how hiding these layers might impact model customizability. To investigate this,
we designed semi-open models with closed-source layer sets of equal size using Llama2-7B and
Phi-2. These models were customized for the math domain and evaluated under FT-all recovery
attacks. Figure 6(a) shows that while the placement of the closed-source set has minimal impact on
customizability, it significantly affects resilience, consistent with Theorem 1. For Llama2-7B, the
resilience transition occurs at the eighth layer set, where ∆ARR remains close to zero for earlier sets,
indicating that hiding layers before this point ensures strong resilience. Importantly, customization
accuracy remains stable regardless of placement, further supporting the effectiveness of hiding layers
before the transition. In contrast, Phi-2 exhibits an earlier transition at the first layer set, where only
the first layer achieves a balance between customization and resilience, with subsequent sets resulting
in diminished resilience. These results suggest that placing the closed-source set before the transition
layer optimizes the trade-off between customization and resilience against recovery attacks. Further
analysis on Mistral-7B and Phi-1.5 is provided in Appendix B.8.

Closed-source Module Size vs. Trade-off. We investigate how the size of the closed-source
module impacts the trade-off between customizability and resilience to recovery attacks. Semi-open
models based on Llama2-7B and Phi-2 are created by incrementally increasing the number of hidden
layers starting from the first. These models are customized on the math domain and evaluated for
resilience under the FT-all attack, with results shown in Figure 6(b). For Llama2-7B, the results
reveal a clear transition in customizability, while resilience remains largely unaffected by module size.
Customization accuracy drops from 29% to 21% as the closed-source module grows from one to five
layers, while ∆ARR stays near zero, indicating strong resilience regardless of closed-sourced size.
Further, as shown in Figure 6(c), resilience emerges when at least 3% of parameters—equivalent to a
single decoder layer—are closed-sourced. This suggests that hiding the first layer alone provides the
best trade-off between customization and resilience.

In contrast, Phi-2 shows a different pattern: as the closed-source module size increases, customization
accuracy declines, but resilience improves significantly. This is evident from a marked decrease in
∆ARR as the module size grows from one to five layers, suggesting enhanced resilience to recovery
attacks. These findings indicate that larger models like Llama2-7B achieve an optimal balance with
fewer closed-source layers, while smaller models like Phi-2 require more layers to maintain resilience
against recovery attacks. Further analyses are provided in Appendix B.9.

5.4 DISCUSSIONS

Effectiveness of RD on large models. We assess the efficacy of the recovery difficulty (RD) in
estimating the performance of the recovered model. Specifically, we calculate the Pearson and
Spearman correlation coefficients between RD and ARR across different capability groups. As shown
in Figure 7(a), we observe a negative correlation between the recovery difficulty and average recovery
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Figure 7: (a) presents the Pearson coefficient between recovery ratio (RR) and recovery difficulty (RD) across
four models and six domains. (b) and (c) depict the link between ∆ARR and RD for Llama2-7B and OPT-350M.

ratio. For example, in Llama2-7B, the Pearson coefficient is consistently below -0.80, reaching
as low as -0.98. We observe similar phenomena in other models with varying architectures and
sizes, confirming RD as a reliable predictor of recovered model performance and the effectiveness of
SCARA. Further analysis and results of Spearman coefficients can be found in Appendix B.10.

Ineffectiveness of RD on Smaller Model. Theorem 1 and Figure 6(a) demonstrate the existence of
transition layers in deep transformers, yet their presence in shallow transformers remains unclear.
Therefore, we hide and attack same-sized layer sets in OPT-350M (Zhang et al., 2022) which contains
only 350M parameters. We set the layer set size to two and subsequently calculate ∆ARRs for each
set. As shown in Figure 7 (b) and (c), we observe the absence of transition layer in OPT, along with
notable inconsistencies between RD and ∆ARR values. Specifically in OPT-350M, the best resilience
is achieved by closed-sourcing middle layers instead of the initial ones, suggesting that bottom layers
may not offer better resilience. Therefore, SCARA fails to identify the smallest closed-sourced set in
this case, suggesting its unsuitability for smaller models. Details are in Appendix C.9.
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Figure 8: Sensitivity to ε.

Table 5: Performance of SCARA
defending adversarial attacks. ↓
indicates the smaller the better.

Approach MIA↓ AIA↓ PIA↓

Gold Std. 58.0 43.9 0.00
SCARA 72.3 85.0 26.5
SAP-DP 72.2 83.9 24.9

Sensitivity of SCARA to ε. We assess the sensitivity of SCARA to
ε by incrementally adjusting ε from 0.05 to 1 in steps of 0.05, and
calculate the ∆ARR of five recovered models. As shown in Figure 8,
we observe that SCARA exhibits low sensitivity to changes in ε.
For instance, the ∆ARRs stabilize across all models as ε increases.
This stability arises due to larger ε values requiring smaller closed-
sourced sets to satisfy R(I) ≤ (1 + ε)R([L]), thereby reducing the
need for extensive layer closed-sourced. Details are in Appendix B.4.

Limited Defense against Adversarial Attack. We compare
SCARA and SAP-DP in defending against three black-box adver-
sarial attacks on Llama2-7B. Specifically, we apply the membership
inference (Fu et al., 2023) (MIA), attribute inference (Staab et al.,
2023) (AIA), and prompt injection (Liu et al., 2023) (PIA) attacks to
the semi-open models produced by SAP-DP and SCARA. As shown
in Table 5, we observe that SAP-DP outperforms SCARA across all
three attacks, but still performs worse than the gold standard. This
is because SCARA does not introduce additional output perturba-
tion and thus provide limited defense against black-box adversarial
attacks. Details can be found in Appendix B.11.

6 CONCLUSION

In this paper, we explored finding minimal closed-sourced sets to enhance LLM customizability while
preserving their resilience against semi-open model recovery attacks. We theoretically prove that
minor errors in bottom decoder layers prior to a transition layer greatly reduce recovery attack success.
We introduced SCARA, which selectively closed-sources a small set of layers, achieving superior
customizability and comparable resilience to SAP-DP and fully-closed. We empirically investigated
the existence of customization and resilience transitions, showed the impact of closed-source size on
model resilience, analyzed the effectiveness of our approach, and finally discussed its limitations.
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A PROOF OF THEOREM 1

In this section, we prove Theorem 1. We first revisit the our model, present several important lemmas
and finally present the proof.

A.1 MODEL OVERVIEW

The recovered model f(X;θ) is structured as a sequence of L transformer layers,

f(X) = φL ◦ φL−1 ◦ ... ◦ φαL+1 ◦ φ̂αL ◦αL−1 ◦... ◦ φ1(X), (3)

where X ∈ Rn×d represents the input, interpreted as an assembly of n tokens, each possessing d
hidden dimensions. Each transformer layer, indexed by 1 ≤ i ≤ L, is represented by φi, which maps
Rn×d to Rn×d and can be defined as follows,

φi (X;Ki, Qi) =

[
In + softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)]
X, (4)

where Qi ∈ Rd×dQ , Ki ∈ Rd×dQ represent projection parameter matrices. Here, the αL-th layer is
the recovered layer and the others are the public layers. For simplicity, we use the function φ̂αL to
denote mapping of the recovered layer, i.e., φ̂αL(X) = φαL(X; K̂αL, Q̂αL).

A.2 BOUNDS ON DIFFERENT ORTHOGONAL COMPONENTS

Lemma 1. For any 1 ≤ l ≤ L, 1 ≤ p ≤ d, any X ∈ Rn×d, we have

max
v:∥v∥2=1,v⊥In

∣∣v⊤φl (X;Kl, Ql) [p]
∣∣ ≤ (1 + βD) max

v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ , (5)

where In is a column vector with dimensions n× 1 and each element is 1, X[p] is the p-th column of
the input X, φl (X;Kl, Ql) [p] is the p-th column of the l-th self-attention output, the coefficient βD

satisfies 0 < βD < 1 and it is related to the upper bound of the L2-norm of matrices Kl, Ql.

Proof. Let u =
{
ul,1 = In√

n
,ul,2, . . . ,ul,n

}
denote the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
.

Assume σl,1, σl,2, . . . , σl,n denote the eigenvalues of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
and −1 < σl,n < βD

for any l, n. Thus we have

v⊤φl (X;Kl, Ql) [p] = v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
X[p] (6a)

= v⊤

[
In + softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)]
n∑

k=1

αpkul,k (6b)

= v⊤
n∑

k=1

αpk(1 + σl,k)ul,k (6c)

≤ max
v:∥v∥2=1,v⊥In

∣∣∣∣∣
n∑

k=2

αpk(1 + σl,k)v
⊤ul,k

∣∣∣∣∣ (6d)

=

∥∥∥∥∥
n∑

k=2

αpk(1 + σl,k)ul,k

∥∥∥∥∥
2

(6e)

=

[
n∑

k=2

α2
pk(1 + σl,k)

2

]1/2
(6f)

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ , (6g)
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where

βD = max
∥Kl∥2≤D,∥Ql∥2≤D

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

< 1.

The equation equation 6c is due to ul,k are the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
. The

inequality equation 6e is because when v =
∑n

k=2 αpk(1+σl,k)ul,k

∥∑n
k=2 αpk(1+σl,k)ul,k∥

2

, we have the maximum value.

Lemma 2. For any Kl, Ql ∈ Rd×s and any X ∈ Rn×d, the following equation always holds:∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣ = 2

∣∣I⊤nX[p]
∣∣ , (7)

where X[p] is the p-th column of the input X, φi (X;Ki, Qi) [p] is the p-th column of the l-th
self-attention output.

Proof. Assume that a set of orthogonal basis for Rn is {u1,u2, . . . ,un}, where u1 = In√
n

. Then we
can rewrite X[p] as X[p] =

∑n
j=1 αpjuj , where αpj(1 ≤ p ≤ d) are the corresponding coefficients

for the p-th column of X under the orthogonal basis. Next, we calculate
∣∣I⊤n f(X)[p]

∣∣ and
∣∣I⊤nX[p]

∣∣,
respectively. Note that I⊤nuj = 0 for all j ̸= 1. Therefore, we can obtain that,

I⊤nX[p] =
√
nαp1. (8)

Then we can get ∣∣I⊤nX[p]
∣∣ = |√nαp1|. (9)

Let σi1, σi2, . . . , σin denote the eigenvalues of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
. Applying the Per-

ron–Frobenius theorem for Markov matrices Lemmens & Nussbaum (2012), we deduce that for

the matrix softmax

(
XQl(XKi)

⊤√
dQ∥X∥2

)
, there exists only one eigenvalue equal to 1, while all other

eigenvalues in absolute value are strictly less than 1. Without loss of generality, we assume σi1 = 1,
implying |σij | < 1 for j ̸= 1. Recalling the definition of φi (X;Ki, Qi) and considering the linear
operation, we can rewrite it as follows:

φi (X;Ki, Qi) [p] =

n∑
j=1

αpj (1 + σij)uj . (10)

Then we calculate the term
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣ as follows,

∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣ =

∣∣∣∣∣∣I⊤n (
n∑

j=1

αpj (1 + σij)uj

∣∣∣∣∣∣ (11a)

=
∣∣√n (αp1(1 + σi1))

∣∣ (11b)

= 2|√nαp1|, (11c)

where equation 11a is induced by substituting the equation equation 10 into
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣,
equation 11b is due to I⊤nuj = 0 for all j ̸= 1, equation 11c follows the fact that σi1 = 1 .

A.3 PROOF OF THEOREM 1

We first prove the following result. For simplicity of notations, we use f(X) [p] to denote the p-th
(1 ≤ p ≤ d) column of the the recovered model f(X), where the parameters in the αL-th layer is
replaced with the matrices K̂αL and Q̂αL. We use the function φ̂αL(X) = φαL(X; K̂αL, Q̂αL) to
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denote the mapping of the (αL)-th layer. Then we are going to show that there exists α⋆ = log2
2

1+βD

and 0 < βD < 1 makes the following equations hold.

(1) Assume α < α⋆. For any X, ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D, there exists a zero measure set K(X) and
Q(X) such that

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

= 0. (12)

(2) For any α > α⋆, there exists a sequence of matrix {Ki, Qi}i≥1 such that for any recovered matrix
KαL and QαL, we have ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D, we have,

lim
L→∞

∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=
√
2. (13)

Proof. Based on Lemma equation 1, we obtain that

max
v:∥v∥2=1,v⊥In

∣∣v⊤f (X) [p]
∣∣ ≤ (1 + β)L max

v:∥v∥2=1,v⊥In

∣∣v⊤X[p]
∣∣ . (14)

Based on Lemma equation 2, we know that∣∣I⊤n f(X)[p]
∣∣ = 2(1−α)L−1

∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]
∣∣ . (15)

We firstly prove the equation equation 12. When∣∣I⊤n f(X)[p]
∣∣ = 2(1−α)L−1

∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]
∣∣ ̸= 0, (16)

then we have∥∥∥∥ f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=

2− 2I⊤n f(X)[p]
√
n

√
(I⊤n f(X)[p])2

n + (v⊤f(X)[p])2)

1/2

(17a)

=
√
2

1− 1√
1 + n(v⊤f(X)[p])2

(I⊤n f(X)[p])2

1/2

(17b)

≤
√
2

1− 1√
1 + n(1+β)2L|v⊤X[p]|2

22[(1−α)L−1]|I⊤n φ̂αL◦φαL−1◦···◦φ1(X)[p]|2

1/2

(17c)

≤ 2
√
2n

(
1 + β

21−α

)L
∣∣v⊤X[p]

∣∣
|I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]| , (17d)

where the inequality equation 17c is based on the inequality equation 14 and equation 15. The inequal-
ity equation 17d is based on Lemma equation 3. Therefore, if α < log2

2
1+βD

and
∣∣I⊤n f(X)[p]

∣∣ ̸= 0,

then we have limL→∞

(
1+βD

21−α

)L
= 0. Now we can consider when

∣∣I⊤n f(X)[p]
∣∣ = 0. In fact,

it is easy to show that this can only happens when K̂αL and Q̂αL belong to certain sets making∣∣I⊤n f(X)[p]
∣∣ = 0, which corresponds to zero measure set K(X) and Q(X) depending on the input

X. Since the input space is countable, therefore, the union ∪X∈XK(X) and ∪X∈XQ(X) are also
zero-measure sets.

To prove equation equation 13, let K⋆, Q⋆ with ∥K⋆∥2 ≤ D, ∥Q⋆∥2 ≤ D satisfy the following
condition,

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
v

∥∥∥∥∥
2

= βD. (18)

Let v⋆ be the solver of the above optimization problem equation 18 and consider the Kl = K⋆,
Ql = Q⋆ and X⋆ = [v⋆,v⋆, · · · ,v⋆]. Clearly, v⋆ ⊥ In. Assume there exists u : ∥u⋆∥2 = 1
satisfying u⋆ ⊥ In, u⋆ ⊥ v⋆, therefore we can rewrite f(X⋆) [p] as follows,

f(X⋆) [p] =
I⊤n√
n
f(X⋆)

In√
n
+ v⋆⊤f(X⋆)v⋆ + u⋆⊤f(X⋆)u⋆. (19)
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For any 1 ≤ l ≤ L, based on Lemma equation 1, we know that∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ . (20)

Since ∣∣I⊤n f (X⋆) [p]
∣∣ = 2L

∣∣I⊤nX⋆[p]
∣∣ = |I⊤n v⋆| = 0 (21)

and ∣∣v∗⊤f (X⋆) [p]
∣∣ = (1 + βD)L

∣∣v∗⊤X⋆[p]
∣∣ ̸= 0, (22)

then we have∥∥∥∥ f(X⋆) [p]

∥f(X⋆) [p]∥2
− In√

n

∥∥∥∥
2

=

[
2− 2I⊤n f(X⋆)[p]√

n ∥f(X⋆) [p]∥2

]1/2
(23a)

=

2− 2I⊤n√
n

f(X⋆)[p]√
1
n (I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2 + (u⋆⊤f(X⋆)[p])2

1/2

(23b)

≥

2− 2I⊤n√
n

f(X⋆)[p]√
1
n (I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2

1/2

(23c)

=

2− 2

I⊤n f(X⋆)[p]√
n|v⋆⊤f(X⋆)[p]|√

1 +
|I⊤n f(X⋆)[p]|2

n|v⋆⊤f(X⋆)[p])|2


1/2

(23d)

=

2− 2

2(1−α)L−1|I⊤n φ̂αL◦φαL−1◦···◦φ1(X
⋆)[p]|√

n(1+βD)L|v⋆⊤X⋆[p]|√
1 + 22[(1−α)L−1]

n(1+βD)2L
|I⊤n φ̂αL◦φαL−1◦···◦φ1(X⋆)[p]|2

|v⋆⊤X⋆[p]|2


1/2

, (23e)

where equation equation 23b is based on equation 19, equation equation 23e is based on equa-

tion 22 and equation 15. When α > log2
2

1+βD
, we have limL→∞

(
21−α

1+βD

)L
= 0. Thus we have

limL→∞

∥∥∥ f(X⋆)[p]
∥f(X⋆[p]∥2

− In√
n

∥∥∥
2
=

√
2. This indicates that the p-th column of the output matrix f(X⋆)

is not parallel to In for any p. This further indicates that the output matrix does not have the identical
vector in each row.

A.4 TECHNICAL LEMMA

Lemma 3. For any x ∈ (0, 1), it always holds
[
1− 1√

1+x2

]1/2
≤ x.

Proof. To establish the inequality
[
1− 1√

1+x2

]1/2
≤ x, we begin by proving,

1− 1√
1 + x2

≤ x2. (24)

To demonstrate equation 24, we equivalently show

1− x2 ≤ 1√
1 + x2

. (25)

Subsequently, it suffices to verify

(1− x2)(
√
1 + x2) ≤ 1. (26)

This is equivalent to proving
(1− x2)2(1 + x2) ≤ 1. (27)

Thus, our focus shifts to demonstrating
(1− x2)(1− x4) ≤ 1. (28)

Clearly, equation 28 holds true for any x ∈ (0, 1).
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B EXPERIMENT DETAILS

B.1 MODEL DETAILS.

The foundation models we use in our experiments are selected from open-source repositories, and
Table 6 shows the basic information of the models and their sources. Specifically, we employ
Llama2-70B-chat2, Llama2-7B-chat3, and Mistral-7B-v0.14. For smaller models, we select Phi-25

and Phi-1.56. We also consider OPT model7, which has only 350 million parameters and 24 decoder
layers.

Table 6: Model Info

Model Size Decoder Layers

Llama2-70B-chat (Touvron et al., 2023) 70B 80
Llama2-7B-chat (Touvron et al., 2023) 7B 32
Mistral-7B-v0.1 (Jiang et al., 2023a) 7B 32
Phi-2 (Abdin et al., 2024) 2.7B 32
Phi-1.5 (Li et al., 2023) 1.3B 24
OPT (Zhang et al., 2022) 350M 24

B.2 RECOVERY ATTACKS.

Attack implementation details. In performing FT-all and FT-closed model recovery attacks, we
adhere to the training hyper-parameters outlined in the Llama2 report (Touvron et al., 2023), employ-
ing the AdamW optimizer with a cosine learning rate scheduler. The initial learning rate is set to
2× 10−5, with a weight decay of 0.1, a batch size of 128, and bfloat16 precision for input sequences
of 512 tokens. The LLaMA2-70B model is trained for 3 epochs with a random seed of 42, while
other models are trained for 5 epochs across three seeds: 42, 1234, and 20. Despite limiting training
to 3 epochs for the 70B model, the training loss stabilized effectively. Our implementation builds
upon the llama-recipes repository provided by META.

For SEM attacks, distinct configurations were employed for SCARA and SAP-DP. In the case of
SCARA, hidden representations from the closed-source components were collected and paired with
the input data to train a substitute model. In contrast, for SAP-DP, representations from the sixth
decoder layer and the model’s final logits were utilized to construct the training dataset. In accordance
with (Tamber et al., 2024), we applied a learning rate of 1.5e-4, a weight decay of 0.01, and a linear
learning rate scheduler with 500 warmup steps. Both training and validation batch sizes were set to
32, with MSE as the loss function. SCARA was trained for 30 epochs due to its smaller model size,
whereas SAP-DP was trained for 5 epochs.

All recovery experiments were conducted on Nvidia 4090 24G, 6000 Ada 48G, and A100 80G GPUs,
utilizing PyTorch 2.2.0 and CUDA 11.8 on Ubuntu 20.04.6 LTS.

Base 51k Recovery Dataset. We ensure dataset coverage and reliability by using a 1:1 ratio of the
MMLU auxiliary training set 8 and Alpaca dataset 9, extracting 25.5k samples from each. From the
MMLU auxiliary training data (Hendrycks et al., 2021), we sample 50%, and from Alpaca (Taori
et al., 2023), we use a step size of 2 to enhance diversity. The datasets are then formatted for model
training, applying Alpaca and MMLU prompts from Table 7.

2https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/mistralai/Mistral-7B-v0.1
5https://huggingface.co/microsoft/phi-2
6https://huggingface.co/microsoft/phi-1_5
7https://huggingface.co/facebook/opt-350m
8https://github.com/hendrycks/test
9https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json
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Table 7: Prompts for Alpaca and MMLU auxiliary training data

Dataset Prompt Type Description

Alpaca
with input

Below is an instruction that describes a task, paired with
an input that provides further context. Write a response
that appropriately completes the request.

w/o input
Below is an instruction that describes a task. Write a
response that appropriately completes the request.

MMLU

Question Answering
Below is a question with no choices. Write the correct
answer that appropriately solves the question.

Multiple Choice
The following is a multiple choice question, paired
with choices. Answer the question in the format:
“Choice:content”.

Extra Recovery Datasets. To enhance dataset diversity, the 100K, 200K, 300K, and 500K
datasets integrate additional specialized sources. As detailed in Table 8, these sources include
Baize (Xu et al., 2023) (158K English multi-turn conversations via ChatGPT’s self-chat), MathIn-
struct (Yue et al., 2023) (260K curated math instruction instances focusing on hybrid reasoning), and
OpenOrca (Mukherjee et al., 2023) (augmented FLAN collection with 1M GPT-4 completions and
3.2M GPT-3.5 completions). These enrichments are intended to support complex computational and
theoretical tasks, offering broader topic coverage.

Table 8: Composition of variously sized datasets

Raw Data Set 51k 100k 200k 300k 500k

Alpaca 25.5 50 40 50 50
MMLU auxiliary training set 25.5 50 40 100 100
Baize-MedQuAD 0 0 40 50 50
Baize-Quora 0 0 40 50 50
Baize-Stackoverflow 0 0 40 50 50
MathInstruct 0 0 4 6 20
OpenOrca 0 0 0 0 180

Validation Datasets. Table 9 outlines the composition of the validation datasets. For Validation
Dataset 1, we extracted 50% from each of the 57 MMLU validation sub-datasets, totaling 1.5K
instances, paired with Alpaca data selected using a step size of 751. This dataset is used with the 51K
and 100K training sets. For larger training sets (200K, 300K, and 500K), Validation Dataset 2 was
created by adding 400 instances from three Baize subsets, expanding the validation set to 4.0K.

Table 9: Composition of validation datasets of different sizes

Raw Data Set Validation Set Evaluation Set
Alpaca 765 765
MMLU auxiliary training set 751 751
Baize-MedQuAD 0 850
Baize-Quora 0 850
Baize-Stackoverflow 0 850

Total Length 1516 4066
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B.3 BASELINES.

In this section, we provide further details on the baselines used in our comparisons: SAP-DP and
fully-closed. These schemes represent different strategies, each with distinct trade-offs in terms of
customizability and resilience against model recovery attacks.

SAP. The Split-and-Privatize (SAP) framework (Shen et al., 2023) offers an approach to balance
between protecting model privacy and data privacy while maintaining competitive performance.
Specifically, the SAP framework keeps the bottom six encoder layers open, allowing user access and
fine-tuning while closing the deeper layers on the vendor.

SAP-DP. To further strengthen protection while maintaining competitive performance, we extend
SAP by incorporating differential privacy techniques by adding Laplace noise to perturb the logits
during the fine-tuning process (Lee et al., 2018). The Laplace Distribution with mean µ and scale b is
the distribution with probability density function:

Laplace(x|µ, b) = 1

2b
exp

(
−|x− µ|

b

)
Specifically, in SAP-DP, the noise n is sampled: n ∼ Laplace(0, 0.5) and added to the output logits
of the model to balance privacy protection and model performance.

Fully-closed. Following (Eiras et al., 2024), we use the fully-closed approach as a baseline. This
assumes the adversary has no access to internal model parameters, treating the model as a black-
box, where only output data can be collected. We slightly broaden this setup by assuming the
adversary knows the model’s architecture but no other details. Thus, recovering the fully-closed
model involves using the collected data to retrain a model with the same architecture to restore its
general functionality.

B.4 IMPLEMENTATION DETAILS OF SCARA.

Evaluation Datasets. We created a 1.5K Evaluation Set to assess model resilience under various
closed-sourcing strategies. This set includes 50% of entries from each of the 57 MMLU validation
sub-datasets (Hendrycks et al., 2021), distinct from Validation Set outlined in Table 9. Additionally,
we selected an equal number of Alpaca dataset (Taori et al., 2023), using a step size of 751, ensuring
no overlap with the Validation Set.

Hyper-parameter Sensitivity. As shown in Figure 9, we evaluate SCARA’s sensitivity to tolerance
magnitude ε, adjusting it from 0.05 to 1 in 0.05 increments while calculating the ∆ARR for six
recovered models. The results indicate that SCARA is minimally sensitive to changes in ε, with
∆ARR values stabilizing as ε increases. This stability arises from the need for a smaller closed-
sourced layer at higher ε, allowing the condition R(I) ≤ (1 + ε)R([L]) to be met with fewer layers.
Additionally, the increase in ∆ARR is smaller for larger models, suggesting that privatizing more
parameters beyond a certain point offers diminishing returns in resilience.

0.05 0.55

Magnitude (ε)

−0.8

−0.4

0.0
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∆
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R
R
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Mistral-7B

Phi2-2.7B

Phi1.5-1.3B

Figure 9: Sensitivity on ε.
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B.5 EVALUATION BENCHMARKS

Most of our evaluations are conducted using the lm-evaluation suite (Gao et al., 2023), the bigcode-
evaluation-harness platform (Ben Allal et al., 2022), and MT-Bench (Zheng et al., 2023). For specific
domains, such as finance and law, we utilize the official benchmark testing codes provided by their
respective communities, as detailed below.

Evaluation on Customizabilities. We assess the customizability of models across six domains,
as detailed in Table 10. Each domain includes specific benchmarks and metrics designed to
evaluate different aspects of the model’s performance in relation to customizability. In partic-
ular, for evaluating medical capabilities, we select two subcategories from the MMLU bench-
mark that are related to the medical domain: mmlu_anatomy and mmlu_professional_medicine.
For assessing legal reasoning, we select 10 multiple-choice and judgment-based subcategories
from Legalbench. The performance of the model in these legal tasks is measured using per-
plexity, following the prompt structure provided by Legalbench. Specifically, the selected
subcategories include: cuad_audit_rights, canada_tax_court_outcomes, definition_classification,
cuad_affiliate_license-licensee, learned_hands_business, contract_nli_survival_of_obligations, con-
tract_nli_explicit_identification, contract_nli_confidentiality_of_agreement, hearsay, and con-
tract_qa.

Table 10: Details of the Six Customizability Benchmarks

Domain Benchmark Metric n-shot Reference

Code
HumanEval Pass@1 0 Chen et al. (2021)
MBPP Pass@1 1 Austin et al. (2021)

Math GSM8K Exact Match 8 Cobbe et al. (2021)

Medical MMLU_Medical Accuracy 5 Hendrycks et al. (2021)

Finance FPB F1 0 Wang et al. (2023a)

Law LegalBench Accuracy 0 Guha et al. (2023)

Alignment MT-Bench Score (GPT-4) Zheng et al. (2023)

Evaluation on Resilience. We follow the Llama-2 report Touvron et al. (2023) to evaluate the
recovered model, including 16 benchmarks, which are categorized into 6 groups. Table 11 summarizes
the functionality benchmarks used in our experiments, along with their test methods and performance
metrics. Our model ranks choices in multiple-choice tasks and generates answers for open-ended
generation tasks.

B.6 MODEL CUSTOMIZATION

Datasets. To fine-tune the models for domain-specific tasks, we utilized several datasets tailored to
different sectors, including Code (Zheng et al., 2024b), Math (Yue et al., 2023), Medical (Zhang et al.,
2023), Finance (Wang et al., 2023b), Law (Guha et al., 2024), and Alignment (Meng et al., 2024).
Table 12 lists the customization training datasets used in the experiments. For the code domain,
we combine the datasets from CodeFeedback and CodeAlpaca. For law and finance, we merge all
training datasets from Legalbench and FinGPT respectively. These datasets are then prepared for
model training using the Alpaca prompts outlined in Table 7. Additionally, we randomly select 3,000
samples to serve as the validation dataset.

Customization Training Hyperparameters. In model customization, we use different hyperparame-
ters depending on the model size. For LLaMA2-70B, we apply QLoRA with the settings outlined in
Table 13, while for 7B models, we use LoRA. For smaller models like Phi2 and Phi-1.5, we fine-tune
all model parameters. For LLaMA2-70B, we fine-tune it as a quantized 4-bit model over 1 epoch,
starting with a learning rate of 1.5 × 10−6. For the 7B models, we train for 3 epochs, with a seed
value of 42. The training setup includes a weight decay of 0.1, a batch size of 128, a warmup ratio of
0.03, and input sequences of 512 tokens, following standard experimental practices (Hu et al., 2021).
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Table 11: Details of the Sixteen Functionality Benchmarks

Domain Benchmark Metric n-shot Reference

Commonsense Reasoning

PIQA Accuracy 0 Bisk et al. (2020)
Hellaswag Accuracy 0 Zellers et al. (2019)
Winogrande Accuracy 0 Sakaguchi et al. (2019)
ARC_easy Accuracy 0 Clark et al. (2018)
ARC_challenge Accuracy 0 Clark et al. (2018)

Reading Comprehension

OpenBookQ Accuracy 0 Mihaylov et al. (2018)
LAMBADA Accuracy 0 Paperno et al. (2016)
BoolQ Accuracy 0 Clark et al. (2019)
SQuADv2 HasAns_EM 2 Rajpurkar et al. (2018)
SQuADv2 HasAns_F1 2 Rajpurkar et al. (2018)

World Knowledge
NaturalQuestions Exact Match 5 Kwiatkowski et al. (2019)
TriviaQA Exact Match 5 Joshi et al. (2017)

Code
HumanEval Pass@1 0 Chen et al. (2021)
MBPP Pass@1 1 Austin et al. (2021)

Math GSM8K Exact Match 8 Cobbe et al. (2021)

General Ability
MMLU Accuracy 5 Hendrycks et al. (2021)
BBH Accuracy 3 Suzgun et al. (2022)

Table 12: Customization Training Datasets Composition

Domain Dataset Name Size Reference

Code CodeFeedback 156k Zheng et al. (2024a)
CodeAlpaca 20k Chaudhary (2023)

Math MathInstruction 262K Yue et al. (2023)

Medical MedMCQA 183k Zhang et al. (2023)

Law Legalbench 90k Guha et al. (2023)

Finance FinGPT 204k Wang et al. (2023a)

Alignment Ultrafeedback 62k Cui et al. (2024)

For Phi2 and Phi-1.5, we use the training hyperparameters from the LLaMA2 report. We employ the
AdamW optimizer with a cosine learning rate scheduler, starting with a learning rate of 2× 10−5, a
weight decay of 0.1, a batch size of 128, and use bfloat16 precision for 512-token input sequences.
Specifically, for alignment, we follow SimPO Meng et al. (2024) and set the preference parameters
β = 2 and γ = 1. The learning rate is 1 × 10−6 for LLaMA2-70B and 5 × 10−7 for the 7B and
smaller models. All experiments are conducted using the LLaMA-Factory on Nvidia 4090 24G, 6000
Ada 48G, and A100 80G GPUs, with PyTorch 2.2.0 and CUDA 11.8 on Ubuntu 20.04.6 LTS.

B.7 AMPLIFICATION OF SMALL RECOVERY ERROR

To investigate the amplification of minor recovery errors in the pre-transition layers, we conducted
experiments on the LLaMA2-7B model. Specifically, we added Gaussian noise, x ∼ N(0, 0.012), to
the parameters of the first decoder layer of the model. Then, we compared the representation outputs
generated by the noisy model with those from the original model. The difference between the two
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Table 13: The Hyperparameters for Customization Training.

Model Method Rank r Lora α Dropout Learning Rate Epochs Warmup R.

Llama2-70B QLoRA 96 16 0.05 1.50E-04 1 0.03
Llama2-7B LoRA 32 64 0.05 2.00E-05 3 0.03
Mistral-7B LoRA 32 64 0.05 1.00E-06 3 0.03

sets of outputs was measured using the Frobenius norm. We collected representation outputs from
layers 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30, totaling 45,000 output samples. The results showed a
significant amplification of these small errors.

B.8 RESILIENCE AND CUSTOMIZATION TRANSITIONS

For the LLaMA2-7B model, the smallest closed-source layer set identified by SCARA consists
of a single decoder layer, whereas for Phi-2, it includes two decoder layers. Consequently, for
LLaMA2-7B, we opted to closed-source each even-indexed layer, while for Phi-2, we chose to
closed-source non-overlapping pairs of layers (e.g., layers 0-1, 2-3). For each selected layer set, we
first closed-source them, then subjected the semi-open model to FT-all attacks, and subsequently
calculated the ∆ARR of the layer set to assess its resilience.

When verifying the customization transition, due to computational constraints, we validated only
every other layer set for both models (e.g., closed-source layers 0, 0-4, 0-8 . . . ). Specifically, we
applied LoRA-based customization on LLaMA2-7B in the math domain, while for Phi-2, we utilized
the full finetuning approach. The experimental hyperparameters remain consistent with those outlined
in the Appendix B.6.

We further computed the ∆ARR for each closed-source set within Mistral-7B-v0.1 and Phi-1.5. In
these models, the smallest closed-source set identified by SCARA consists of one decoder layer and
two decoder layers, respectively. Following the same experimental configuration as LLaMA2-7B
and Phi-2, we closed-sourced each even-indexed layer for Mistral-7B, and non-overlapping pairs of
layers for Phi-1.5. The complete results demonstrating the transition layers within the Mistral-7B and
Phi-1.5 model that closed two non-overlapping consecutive layers are depicted in Figure 10. Once
again, we observed a distinct presence of transition layers. Specifically, in Mistral-7B, the transition
layer appears at the 24th layer, while in Phi-1.5, it is located within the first layer set. Further results
for can be found in Appendix C.7.
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Figure 10: Resilience changes in Miatral-7B and Phi-1.5.

B.9 RESILIENCE ACROSS CLOSED SIZES

To examine the influence of Closed layer size on model resilience, we conduct experiments on
Closed-sourcing different amounts and proportions of parameters in the model’s decoder layer. We
give instructions on the detailed setting of closed-sourced models in Table 14. The module names are
all derived from the overall implementation functions of each model in the Transformers open-source
repositories in Table 6. We utilize abbreviated module names to denote specific settings.

We further computed ∆ARR by close-sourcing varying quantities and proportions of parameters
under FT-all attacks on three additional models. As shown in Figure 11 and Figure 6(b), we observed
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Table 14: Closed-sourced Sizes Setting. “*” indicates an entire decoder layer.

Llama-7B Mistral-7B Phi2-2.7B Phi1.5-1.3B

0.25% Wk Wq,Wk Wk Wk

0.50% Wq,Wk Wo,MLPup Wq,Wk Wq,Wk

1% Wq,Wk,Wv,Wo Wq,Wk,Wv,Wo Wq,Wk,Wv,Wd Wq,Wk, ,Wv

3% 0 0 0 0

7% 0-1 0-1 0-1 0-1

15% 0-4 0-4 0-3 0-3

30% 0-9 0-9 0-9 0-6

50% 0-15 0-15 0-15,Wem 0-11,Wem

Proportion

100% Fully-closed Fully-closed Fully-closed Fully-closed

20M Wk Wq,Wk Wq,Wk,Wv Wq,Wk,Wv,Wd

50M Wq,Wk,Wv Wq,Wk,Wv,Wo MLP 0

100M Wq,Wk,Wv,MLP Wq,Wk,Wv,Wo,MLP 0, Wq,Wk,Wv 0-1

160M Wq,Wk,Wv,Wo,MLP Wq,Wk,Wv,Wo,MLP 0-1 0-2

200M 0 0 0-1, Wq,Wk,Wv,Wd,MLPf1 0-3

300M 0, Wq,Wv,Wo,MLPup 0, Wq,Wv,Wo,MLPup 0-3 0-5

Quantity

600M 0-2 0-2 0-7 0-11

the same pattern as with Llama2-7B, where resilience emerges once a sufficient number of parameters
are closed-sourced. For example, on Mistral-7B, resilience occurs after closed-sourcing 100 million
parameters, which is less than a single decoder layer. Closed-sourcing fewer parameters leads to
a notable drop in resilience, with ∆ARR rising to around 40%. Beyond this threshold, resilience
stabilizes near 0% ∆ARR. This pattern holds across all models, highlighting a critical threshold
for effective closed-source. Furthermore, different architectures require varying closed-sourcing
quantities to achieve resilience, even with similar model sizes. For instance, Mistral-7B reaches
resilience by closed-sourcing 100 million parameters, Llama2-7B requires 200 million, and Phi-1.5
needs a higher rate of 7%, compared to 3% for Llama2-7B.
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Figure 11: ∆ ARR for different closed parameter quantities and proportions.

We explore how closed-sourced parameter ratio impacts the model resilience in Llama2-7B, as shown
in Figure 12. For instance, technical skills such as Math show earlier transitions, with resilience
emerging at 1% parameters closed-sourced, whereas domains such as Commonsense Reasoning
require hiding 3%. In summary, closed-sourcing a small portion of parameters can provide sufficient
resilience against model recovery, meanwhile, technical capabilities tend to be more challenging to
recover than other domains.

B.10 EFFECTIVENESS OF RECOVERY DIFFICULTY

The complete Pearson and Spearman results are presented in Table 15, revealing a negative correlation
between RS and the average recovery ratio. For example, in Llama2-7B, both Pearson and Spearman
coefficients fall below -0.77. Similar trends are seen in models with varying architectures and sizes,
confirming that RD is a reliable predictor of recovered model performance and demonstrating the
effectiveness of SCARA. Additionally, Figure 13 shows scatter plots depicting the relationship
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Figure 12: ∆RR in specific functions of Llama2-7B with varying closed-sourced parameter ratios.

between ∆ARR and Recovery Difficulty(↑)s across four models, along with the corresponding
Pearson and Spearman correlation coefficients. The Recovery Difficulty(↑)s were obtained from
Section 5.3. As illustrated in Figure 13, we observe a clear trend: an increase in ∆ARR corresponds
to a decrease in model scores across all models analyzed. This inverse relationship is consistently
supported by strong negative values for both Pearson and Spearman correlation coefficients, with the
most significant negative correlation seen in Phi2-2.7B, indicating a substantial drop in model scores
as ∆ARR increases.

Table 15: Correlation coefficients (Spearman | Pearson) between recovery ratio and recovery difficult.

Model Rsn. Read. Knl. Code & Math Gen. Avg.

Llama2-7B -0.83 | -0.97 -0.77 | -0.96 -0.83 | -0.95 -0.85 | -0.90 -0.82 | -0.93 -0.80 | -0.98
Mistral-7B -0.83 | -0.89 -0.72 | -0.91 -0.82 | -0.94 -0.78 | -0.95 -0.55 | -0.87 -0.67 | -0.92
Phi-2 -0.93 | -0.96 -0.84 | -0.96 -0.74 | -0.87 -0.84 | -0.80 -0.84 | -0.84 -0.87 | -0.95
Phi-1.5 -0.86 | -0.97 -0.78 | -0.94 -0.83 | -0.94 -0.90 | -0.80 -0.84 | -0.89 -0.80 | -0.94
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Figure 13: Correlation Analysis of ∆ARR and Recovery Difficulty Across Different Models.

B.11 ADVERSARIAL ATTACK

In this section, we provide a detailed comparison of SCARA and SAP-DP in their effectiveness against
three types of black-box adversarial attacks on the Llama2-7B model. The attacks considered include
Membership Inference Attacks (MIA), Attribute Inference Attacks (AIA), and Prompt Injection
Attacks (PIA).

Membership Inference Attack (MIA): This attack aims to determine whether a specific data point
was included in the training dataset of the model. Attackers utilize model outputs to infer membership
status, potentially exposing sensitive information about the training data (Fu et al., 2023; Chen &
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Pattabiraman, 2024). We conducted our experiment following SPV_MIA 10, which provides a robust
framework for assessing model vulnerabilities. We focus on the AUC scores for SPV-MIA against
semi-open models across Ag News datasets (Zhang et al., 2016).

Attribute Inference Attack (AIA): In this scenario, the adversary attempts to infer specific attributes
of training data based on the model’s outputs. This can lead to privacy breaches, particularly when
sensitive attributes are involved (Staab et al., 2023; Li et al., 2024). We conducted our experiments
following the methodology outlined in Staab et al. (2023) 11 and evaluated the top-3 accuracy on the
PersonalReddit (PR) Dataset.

Prompt Injection Attack (PIA): This attack manipulates input prompts to coerce the model into
producing desired outputs that may compromise the integrity or security of the system (Zhao et al.,
2024; Xu et al., 2024). In our experiment, we follow AutoDAN 12, which can automatically generate
stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.We evaluate the
effectiveness of these prompts using the keyword-based attack success rate (ASR), which measures
the presence of predefined keywords in responses generated LLMs. For gold standard, LED 13,
significantly enhances the resilience of LLMs against prompt injection attacks (PIA), reducing the
ASR to 0.

C DETAILED RESULTS

C.1 COMPARISON IN TWO SEMI-OPEN LLAMA2-70B

In this experiment, we examine two semi-open Llama2-70B models, where either the first two decoder
layers are closed-source (referred to as Semi-Open-1) or the last two decoder layers are closed-source
(referred to as Semi-Open-2). The objective is to compare their performance in terms of customization
and their resilience under the recovery attack. The results are summarized in Table 16 and Table 17.

Table 16: Customization Performance of Llama2-70B under Different Closed-Sourced Layers

Math Code Medical Law Finance Alignment
Fully Closed-sourced 53.15 24.90 53.68 79.63 37.54 7.19

Semi-Open-1 62.40 43.99 62.73 93.85 87.51 7.46
Semi-Open-2 62.53 42.36 62.72 93.91 87.90 7.46

C.2 EVALUATION RESULTS UNDER FT-ALL ATTACK

In this section, we provide a comprehensive analysis of the evaluation results, comparing SCARA
with two baseline methods: SAP-DP and a fully-closed approach. This comparison is conducted
across 16 benchmarks under the FT-all attack scenario. The detailed results for Llama2-70B are
presented in Table 18, while the results for Llama2-7B and Mistral-7B are shown in Table 19.
Additionally, the outcomes for Phi-2 and Phi-1.5 are provided in Tables 20.

C.3 CUSTOMIZATION PERFORMANCE OF MODELS

In this section, we present detailed evaluation results of the model customization performance across
six downstream tasks used in our experiments. The detailed results for Llama2-70B are presented
in Table 21, while the results for Llama2-7B and Mistral-7B are shown in Table 22 and Table 23.
Additionally, the outcomes for Phi-2 and Phi-1.5 are provided in Tables 24 and Table 25.

10https://github.com/wjfu99/MIA-LLMs
11https://github.com/eth-sri/llmprivacy
12https://github.com/SheltonLiu-N/AutoDAN
13https://github.com/ledllm/ledllm
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Table 17: Recovery Performance of Llama2-70B under Different Closed-Sourced Layers

Benchmarks Fully Closed-sourced Semi-Open-1 Semi-Open-2

Rsn.

PIQA 50.82 50.49 79.05
winogrande 51.07 51.22 72.93

arc_easy 25.17 25.63 76.30
arc_challenge 23.55 20.48 50.17

Hellaswag 26.65 25.77 79.49

Read.

lambada 0.00 0.01 57.25
BoolQ 43.30 37.92 84.95

SQuADv2_EM 0.00 0.00 1.54
SQuADv2_f1 0.23 1.01 35.59

OBQA 25.60 24.40 44.00

Knl. NQ 0.00 0.00 15.18
TriviaQA 0.00 0.00 52.67

Code mbpp 0.00 0.00 16.00
HumanEval 0.00 0.00 13.41

Math GSM8K 0.03 0.01 27.75

Gen. MMLU 23.01 23.22 63.61
BBH 0.00 0.00 49.45

Average Recovery Ratio(↓) 22.55 21.73 74.94

Table 18: Evaluation results of Llama2-70B under FT-all attack

Pre-train SCARA SAP-DP Fully-closed

Rsn.

PIQA 80.69 50.49 48.26 50.82
Winogrande 74.74 51.22 50.59 51.07
ARC-easy 80.35 25.63 26.35 25.17

ARC-challenge 53.24 20.48 20.31 23.55
Hellaswag 82.15 25.77 25.76 26.65

Read.

LAMBADA 75.07 0.01 0.00 0.00
BoolQ 86.70 37.92 37.83 43.30

SQuADv2_EM 51.23 0.00 0.00 0.00
SQuADv2_f1 67.43 1.01 1.13 0.23

OBQA 44.80 24.40 24.40 25.60

Knl. NaturalQuestions 32.38 0.00 0.00 0.00
TriviaQA 73.47 0.00 0.02 0.00

Code MBPP 24.80 0.00 0.00 0.00
HumanEval 25.00 0.00 0.00 0.00

Math GSM8K 53.15 0.01 0.00 0.03

Gen. MMLU 63.09 23.22 24.19 23.01
BBH 61.40 0.00 0.00 0.00

Average Recovery Ratio(↓) - 21.73 21.64 22.55

C.4 COMPARISON IN CLOSING BASELINES ON LLAMA2-70B

We compare the recovery resilience of SCARA with SAP-DP and Fully-closed as baselines under
FT-closed and SEM attack strategies. The evaluation results on sixteen benchmarks are shown in
Table 26.
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Table 19: Evaluation results of 7B models under FT-all attack

Llama2-7B Mistral-7B
SCARA SAP-DP Fully-closed SCARA SAP-DP Fully-closed

Rsn.

PIQA 49.56 49.56 49.47 51.63 50.22 49.35
Winogrande 50.99 49.66 50.83 49.78 51.07 50.59
ARC-easy 27.04 26.43 25.98 26.12 28.03 25.83

ARC-challenge 21.07 20.56 22.47 19.94 21.42 22.35
Hellaswag 25.56 25.69 26.39 26.10 25.97 25.39

Read.

LAMBADA 0.01 0.00 0.01 0.12 0.00 0.01
BoolQ 44.30 41.70 48.34 39.05 37.83 45.80

SQuADv2_EM 0.00 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 0.49 0.63 0.59 1.21 0.26 0.66

OBQA 25.13 23.00 25.93 25.60 25.20 25.00

Knl. NaturalQuestions 0.01 0.01 0.04 0.00 0.00 0.02
TriviaQA 0.00 0.00 0.02 0.00 0.00 0.01

Code MBPP 0.00 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.26 22.92 24.45 25.24 23.05 23.26
BBH 0.00 0.00 0.00 0.00 0.00 0.00

Average Recovery Ratio(↓) 25.03 24.16 25.62 22.41 22.28 22.68

Table 20: Evaluation results of small models under FT-all attack

Phi-2 Phi-1.5
SCARA SAP-DP Fully-closed SCARA SAP-DP Fully-closed

Rsn.

PIQA 54.17 52.01 52.07 53.43 52.61 50.44
Winogrande 51.56 48.93 48.91 51.09 49.25 49.12
ARC_easy 34.57 28.20 27.03 30.81 28.79 27.50

ARC_challenge 19.45 19.37 18.66 20.56 19.80 21.22
Hellaswag 27.61 25.32 25.26 26.27 25.66 25.05

Read.

LAMBADA 0.75 0.02 0.00 0.59 0.00 0.00

BoolQ 45.29 40.21 44.60 46.98 41.80 46.28
SQuADv2_EM 0.02 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 2.61 0.28 0.64 0.78 0.65 1.60

OBQA 24.80 26.60 25.80 26.60 28.60 26.87

Knl. NaturalQuestions 0.00 0.00 0.02 0.04 0.00 0.00
TriviaQA 0.01 0.00 0.01 0.01 0.00 0.00

Code MBPP 0.00 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.16 22.87 22.95 24.07 22.95 22.95
BBH 0.01 0.00 0.00 0.00 0.00 0.00

C.5 COMPARISON IN RECOVERY ATTACK STRATEGIES

In this section, we present detailed evaluation results of the model recovery performance of SCARA
under FT-closed and SEM attack strategies across six functionalities used in our experiments. The
detailed results under the FT-closed recovery strategy are presented in Table 27. The results under
SEM attack strategies are shown in Table 28.
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Table 21: Detailed results of Llama2-70B closed by SCARA on six downstream tasks.

Math Code Medical Law Finance Alignment
Fully-Closed 53.15 24.90 53.68 79.63 55.63 7.19

SAP-DP 61.10 36.87 54.55 83.40 65.78 7.41
SCARA 62.40 43.99 62.73 93.85 87.51 7.46

Fully-Open 64.06 44.58 63.40 94.17 88.22 7.42

Table 22: Detailed results of Llama2-7B closed by SCARA on six downstream tasks.

Math Code Medical Law Finance Alignment
Fully-Closed 20.24 13.75 36.91 51.80 38.71 6.51

SAP-DP 20.24 13.75 36.91 51.80 38.71 6.52
SCARA 28.96 21.37 46.52 90.84 81.95 6.63

Fully-Open 29.34 21.265 47.60 90.49 84.09 6.63

Table 23: Detailed results of Mistral-7B closed by SCARA on six downstream tasks.

Math Code Medical Law Finance Alignment
Fully-Closed 38.21 33.83 61.50 50.47 37.39 3.20

SAP-DP 41.47 34.44 63.08 50.37 38.10 2.47
SCARA 46.10 43.16 66.78 84.94 86.19 3.87

Fully-Open 45.26 46.08 66.47 88.13 84.91 3.78

Table 24: Detailed results of Phi-2 closed by SCARA on six downstream tasks.

Math Code Medical Law Finance Alignment
Fully-Closed 57.77 47.59 43.13 56.46 54.07 5.22

SAP-DP 58.52 46.65 43.40 56.81 54.37 5.11
SCARA 59.59 47.79 45.85 57.11 56.26 5.26

Fully-Open 59.60 48.40 45.93 57.19 56.68 5.27

Table 25: Detailed results of Phi-1.5 closed by SCARA on six downstream tasks.

Math Code Medical Law Finance Alignment
Fully-Closed 30.33 35.09 30.78 52.18 34.60 3.24

SAP-DP 30.25 35.45 32.66 51.99 34.27 3.68
SCARA 33.66 37.10 33.14 52.26 39.60 3.87

Fully-Open 34.49 37.45 33.23 52.34 39.90 3.68

C.6 COMPARISON IN RECOVERY DATASETS SCALES

To investigate the impact of attack dataset scales on the efficiency of SCARA, we conduct model
recovery attack on the Llama2-7B model using four different attack datasets of varying sizes: 100k,
200k, 300k, and 500k. The evaluation performance under different attack set scales are in Table 29

C.7 TRANSITION LAYER RESULTS.

Resilience Performance. We close same-sized layer sets with different start points, and attack them
using FT-all. Specifically, the sets consist of one layer for Llama2-7B (Table 30, Table 31), and two
layers for Phi-2 (Table 34, Table 35). We further computed the ∆ARR for each closed-source set
within Mistral-7B-v0.1 and Phi-1.5 in Appendix B.8. The results for the Mistral-7B-v0.1 model are
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Table 26: Evaluation results of Llama2-70B under FT-closed and SEM attack

FT-closed SEM
SCARA SAP-DP SCARA SAP-DP

Rsn.

PIQA 49.78 49.40 48.62 49.00
Winogrande 51.30 49.01 50.99 51.13
ARC-easy 26.43 25.59 25.33 24.55

ARC-challenge 21.41 21.42 22.01 20.93
Hellaswag 26.07 26.10 25.90 25.22

Read.

LAMBADA 0.00 0.00 0.00 0.00
BoolQ 45.09 37.83 44.95 39.80

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.98 1.01 0.59 1.00

OBQA 24.40 23.80 25.03 22.96

Knl. NaturalQuestions 0.00 0.00 0.00 0.00
TriviaQA 0.00 0.00 0.00 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 23.18 23.66 22.98 22.83
BBH 0.00 0.00 0.00 0.00

Average Recovery Ratio(↓) 22.60 21.80 22.40 22.30

Table 27: Recovery Performance of SCARA under FT-Closed attacks.

Llama2-7B Mistral-7B Phi-2 Phi-1.5

Rsn.

PIQA 49.95 49.55 54.57 52.45
Winogrande 49.88 49.68 52.33 52.41
ARC-easy 27.65 25.88 33.33 31.06

ARC-challenge 20.81 22.69 19.03 18.77
Hellaswag 26.04 25.01 27.62 26.88

Read.

LAMBADA 0.00 0.00 0.77 0.71
BoolQ 38.13 46.01 44.34 57.49

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.22 0.36 3.07 2.27

OBQA 25.70 25.12 24.40 25.20

Knl. NaturalQuestions 0.00 0.00 0.00 0.00
TriviaQA 0.00 0.00 0.01 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 24.23 23.56 23.03 24.10
BBH 0.00 0.00 0.00 0.00

Average Recovery Ratio(↓) 24.80 22.50 23.56 26.97

presented in Table 32 and Table 33. Additionally, the performance outcomes for the Phi-1.5 model
can be found in Table 36.

In all the above tables, “Pretrain” represents the model’s original performance without any layers
closed-sourced. These columns indicate the index of layers in the model that have been closed-
sourced. “*” indicates fully-closed. All evaluation scores are averages from three different seed
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Table 28: Recovery Performance of SCARA under SEM attacks.

Llama2-7B Mistral-7B Phi-2 Phi-1.5

Rsn.

PIQA 51.52 48.53 49.46 50.82
Winogrande 50.28 51.02 48.70 50.59
ARC-easy 24.83 25.83 25.93 24.62

ARC-challenge 24.99 22.35 20.65 21.08
Hellaswag 25.58 25.39 25.84 25.39

Read.

LAMBADA 0.00 0.01 0.00 0.01
BoolQ 53.30 45.80 38.41 61.07

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.77 0.66 0.00 1.35

OBQA 25.00 25.00 27.80 30.40

Knl. NaturalQuestions 0.00 0.02 0.00 0.00
TriviaQA 0.00 0.01 0.01 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 25.39 23.26 22.95 23.11
BBH 0.00 0.00 0.00 0.00

Average Recovery Ratio(↓) 25.00 22.00 22.10 24.70

Table 29: Evaluation Results of SCARA on Llama2-7B under Various Attack Set Scales.

51K 100K 200K 300K 500K

Rsn.

PIQA 49.56 49.89 49.18 49.18 49.59
Winogrande 50.99 47.99 49.49 50.20 50.20
ARC-easy 27.04 27.06 27.06 27.02 27.01

ARC-challenge 21.07 21.33 20.90 21.16 21.48
Hellaswag 25.56 26.49 26.46 26.50 26.19

Read.

LAMBADA 0.01 0.01 0.00 0.00 0.01
BoolQ 44.30 44.41 44.10 44.07 44.96

SQuADv2_EM 0.00 0.00 0.00 0.02 0.00
SQuADv2_f1 1.05 0.32 0.51 0.52 0.71

OBQA 25.13 25.00 23.80 25.20 25.60

Knl. NaturalQuestions 0.01 0.08 0.08 0.06 0.06
TriviaQA 0.00 0.02 0.01 0.03 0.01

Code MBPP 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.26 25.34 25.43 26.14 26.41
BBH 0.00 0.00 0.00 0.00 0.00

Average Recovery Ratio(↓) 25.07 25.03 24.89 25.26 25.48

tests, corresponding to the values 20, 42, and 1234, following the details of the Sixteen Functionality
Benchmarks in Appendix B.5.

Customizability Performance. We close varying numbers of layers from the start and fine-tune the
open set, and then we observe the customizability transition in models. Table 37 shows the detailed
evaluation results of Llama2-7B and Phi-2 on GSM8k benchmark.
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Table 30: Evaluation Results of Llama2-7B under Different Closed Layers (Part1)

Pretrain 0 1 2 3 4 5 6 7

Rsn.

PIQA 76.66 49.56 51.43 49.53 50.45 49.84 50.27 50.96 51.09
Hellaswag 75.45 25.56 25.75 25.88 26.16 25.91 27.20 29.39 28.89

Winogrande 66.38 50.99 50.86 50.15 49.75 49.96 50.91 51.64 51.36
ARC_easy 74.41 27.04 27.23 26.10 26.30 25.51 26.44 28.24 27.96

ARC_challenge 44.11 21.07 20.31 20.19 21.30 22.04 21.56 20.62 22.92

Read.

OpenBookQA 68.49 0.01 0.11 0.02 0.02 0.01 0.00 0.05 0.04
LAMBADA 80.67 44.30 41.22 38.36 41.43 38.08 38.14 38.40 41.55

BoolQ 59.48 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.03
SQuADv2_em 71.88 1.05 1.31 0.63 1.07 0.45 0.44 1.13 1.10
SQuADv2_f1 43.80 25.13 24.60 23.60 24.93 25.67 24.47 25.07 26.00

Knl.
NaturalQuestions 22.47 0.01 0.00 0.01 0.03 0.02 0.01 0.13 0.08

TriviaQA 57.23 0.00 0.01 0.00 0.02 0.01 0.01 0.07 0.10

Code
HumanEval 10.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 16.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 20.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 45.83 24.26 25.37 23.98 24.26 24.75 24.01 25.23 27.45

BBH 39.86 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.38

Avg. Performance Score(↓) 51.44 15.82 15.78 15.20 15.63 15.43 15.50 15.97 16.41
Average Recovery Ratio(↓) - 30.76 30.67 29.55 30.39 29.99 30.13 31.04 31.90

Recovery Difficulty(↑) - 11.11 11.27 10.87 10.31 10.83 10.33 10.90 11.11

C.8 EVALUATION RESULTS UNDER DIFFERENT CLOSED SIZE

In this section, we present a comprehensive evaluation of the model’s performance across sixteen
benchmarks utilized in our experiments. The evaluation results for LLaMA2-7B, categorized by
varying quantities and proportions of closed-source parameters, are displayed in Table 38 and
Table 39, respectively. For the Mistral-7B model, the results are summarized in Table 40 and Table 41.
Furthermore, the evaluation outcomes for the Phi-2 model can be found in Tables 42 and Table 43.
The performance results for Phi-1.5 are also included in Tables 44 and Table 45 for comparison.
For further details regarding the closed-source settings employed in our experiments, please refer to
Appendix C.8.

C.9 LIMITATION ON OPT-350M

To investigate the limitations of SCARA, we calculate the recovery ratio of each closed-source set
within the smaller model, OPT-350M (Zhang et al., 2022) with only 350M parameters. We set
the closed-source set size to 2 and subsequently calculate ∆ARRs for each closed-source set. The
detailed results are shown in Figure 46.
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Table 31: Evaluation Results of Llama2-7B under Different Closed-sourced Layers (Part2). “*”
indicates the fully closed-sourced model.

16 18 20 22 24 26 28 30 *

Rsn.

PIQA 51.47 52.99 58.22 65.83 69.60 73.45 75.46 75.99 49.47
Hellaswag 31.38 36.55 45.61 56.60 62.70 67.88 71.37 72.94 26.39

Winogrande 53.09 55.98 58.96 64.12 64.80 65.25 65.46 66.53 50.83
ARC_easy 30.58 35.35 43.85 55.92 62.56 68.36 70.85 72.60 25.98

ARC_challenge 24.26 26.85 30.97 35.38 38.17 41.41 43.00 44.17 22.47

Read.

OpenBookQA 0.28 1.58 6.79 30.88 44.58 56.23 62.33 63.11 0.01
LAMBADA 57.55 70.53 71.36 78.85 79.69 80.29 79.39 80.40 48.34

BoolQ 0.08 0.90 2.34 7.07 6.04 6.87 3.54 9.46 0.00
SQuADv2_em 2.21 13.48 21.47 35.72 36.96 39.32 37.08 42.08 0.59
SQuADv2_f1 27.33 28.20 30.47 32.13 34.93 39.27 39.93 41.53 25.93

Knl.
NaturalQuestions 0.13 0.41 1.60 2.94 4.29 2.69 7.28 11.87 0.04

TriviaQA 0.25 1.79 4.93 11.02 15.73 17.95 33.19 42.26 0.02

Code
HumanEval 0.00 0.00 0.00 0.00 0.00 3.25 8.34 10.98 0.00

MBPP 0.00 0.00 0.00 0.07 0.47 2.27 8.80 13.27 0.00

Math GSM8K 0.00 0.00 0.00 0.13 0.81 8.42 6.90 15.77 0.00

Gen.
MMLU 43.17 48.20 49.38 49.58 49.72 50.03 50.75 50.61 24.45

BBH 0.76 11.44 19.79 28.87 31.16 35.98 38.24 40.54 0.00

Avg. Performance Score(↓) 18.97 22.60 26.22 32.65 35.42 38.76 41.29 44.36 16.15
Average Recovery Ratio(↓) 36.89 43.94 50.98 63.48 68.87 75.35 80.27 86.24 31.39

Recovery Difficulty(↑) 10.42 9.49 8.86 7.12 6.14 4.72 3.40 3.06 11.19

Table 32: Evaluation Results of Mistral-7B under Different Closed-sourced Layers (Part1)

Pretrain 0 1 2 3 4 5 6 7

Rsn.

PIQA 81.99 51.63 53.20 53.63 53.47 51.56 52.61 50.71 55.15
Hellaswag 81.04 26.10 26.36 26.36 26.66 27.10 25.51 26.18 28.16

Winogrande 74.03 49.78 49.78 51.01 50.38 49.91 50.14 49.70 51.17
ARC_easy 80.77 33.03 31.96 30.71 29.66 30.25 30.35 26.44 32.38

ARC_challenge 50.26 19.94 21.27 20.45 19.60 20.05 21.36 21.25 20.73

Read.

OpenBookQA 44.40 25.60 25.20 25.20 25.47 25.87 26.33 25.07 27.20
LAMBADA 73.29 0.12 0.44 1.91 2.08 0.80 0.30 0.17 1.95

BoolQ 83.67 39.05 53.12 45.95 38.61 47.35 38.06 46.44 47.66
SQuADv2_em 64.04 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01
SQuADv2_f1 71.37 1.21 0.84 1.05 1.03 1.27 0.43 0.07 0.86

Knl.
NaturalQuestions 28.98 0.00 0.01 0.00 0.04 0.01 0.00 0.02 0.07

TriviaQA 70.79 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.16

Code
HumanEval 29.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 38.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 38.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 62.50 25.24 24.68 25.11 23.43 23.65 24.26 24.26 24.99

BBH 56.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Avg. Performance Score(↓) 60.59 15.98 16.87 16.55 15.91 16.34 15.84 15.90 17.09
Average Recovery Ratio(↓) - 26.38 27.85 27.32 26.25 26.97 26.15 26.24 28.20
Average Recovery Ratio(↓) - 11.50 11.31 11.48 10.71 10.77 11.44 11.02 10.71
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Table 33: Evaluation Results of Mistral-7B under Different Closed-sourced Layers (Part2)

16 18 20 22 24 26 28 30 *

Rsn.

PIQA 54.50 52.32 52.72 57.13 62.82 64.67 67.23 75.61 49.35
Hellaswag 29.31 29.02 29.99 33.46 46.21 52.12 52.46 67.73 25.39

Winogrande 51.20 54.17 51.07 55.75 58.59 62.41 63.09 66.33 50.59
ARC_easy 32.84 29.35 30.80 38.04 47.24 51.99 54.74 69.95 25.83

ARC_challenge 21.19 23.04 23.78 26.34 30.86 33.22 35.04 40.53 22.35

Read.

OpenBookQA 26.00 27.87 26.87 29.67 28.73 32.67 33.40 36.40 25.00
LAMBADA 2.61 0.18 1.28 4.17 21.89 29.93 24.49 48.32 0.01

BoolQ 53.98 53.60 58.79 55.76 64.10 74.72 68.48 81.30 45.80
SQuADv2_em 0.01 0.00 0.47 0.13 2.39 3.59 1.87 1.82 0.00
SQuADv2_f1 0.96 0.18 1.27 2.60 14.88 22.61 21.12 34.16 0.66

Knl.
NaturalQuestions 0.01 0.10 0.19 0.58 1.84 3.15 3.53 8.87 0.02

TriviaQA 0.03 0.01 0.61 0.62 5.14 7.51 10.32 25.44 0.01

Code
HumanEval 0.00 0.00 0.00 0.61 2.24 4.88 2.44 9.75 0.00

MBPP 0.00 0.00 0.00 2.00 4.33 8.33 0.93 13.07 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

Gen.
MMLU 24.30 25.84 29.54 24.55 34.77 40.77 40.84 50.44 23.26

BBH 0.00 0.00 0.02 0.30 7.55 18.76 21.05 30.07 0.00

Avg. Performance Score(↓) 17.47 17.39 18.08 19.51 25.51 30.08 29.47 38.83 15.78
Average Recovery Ratio(↓) 28.83 28.71 29.84 32.20 42.09 49.64 48.64 64.08 26.05
Average Recovery Ratio(↓) 11.34 11.11 10.45 10.59 10.23 10.34 9.59 8.53 11.20

Table 34: Evaluation Results of Phi-2 under Different Closed-sourced Layers (Part 1)

Pretrain 0 2 4 6 8 10 12 14

Rsn.

PIQA 79.27 54.17 72.85 73.76 75.03 76.75 78.00 78.91 77.84
Hellaswag 73.73 27.61 56.49 57.73 60.47 62.84 66.39 66.91 66.95

Winogrande 75.45 51.56 59.17 59.98 59.88 64.32 68.11 68.95 70.38
ARC_easy 79.92 34.57 72.94 73.40 73.97 76.51 78.33 78.66 78.63

ARC_challenge 52.90 19.45 41.75 39.82 44.11 45.65 47.92 49.74 48.78

Read.

OpenBookQA 51.20 25.80 35.73 37.47 40.13 42.00 44.00 45.67 44.80
LAMBADA 56.28 3.25 28.55 30.42 34.64 40.05 45.41 45.52 46.66

BoolQ 83.36 47.29 65.20 62.64 66.39 71.39 73.42 72.95 75.83
SQuADv2_em 61.30 0.02 10.49 17.63 21.94 33.94 19.54 19.15 29.14
SQuADv2_f1 71.38 2.61 37.22 40.35 45.53 59.16 48.21 50.09 54.87

Knl.
NaturalQuestions 9.58 0.00 3.60 4.97 6.13 7.55 7.95 8.10 9.25

TriviaQA 39.29 0.01 13.57 16.29 24.74 28.60 31.58 33.71 32.79

Code
HumanEval 48.78 0.00 1.42 6.50 10.98 16.66 22.76 19.51 23.17

MBPP 46.80 0.00 5.07 6.87 9.47 19.60 25.67 23.47 25.73

Math GSM8K 57.77 0.00 7.25 8.64 4.42 9.63 14.18 11.35 17.31

Gen.
MMLU 56.73 26.16 34.29 37.01 39.90 43.11 45.63 48.17 49.82

BBH 59.53 0.01 15.27 18.37 16.38 14.58 4.93 4.35 11.37

Avg. Performance Score(↓) 59.02 17.21 32.99 34.81 37.30 41.90 42.47 42.66 44.90
Average Recovery Ratio(↓) - 29.15 55.90 58.99 63.21 71.00 71.97 72.28 76.09

Recovery Difficulty(↑) - 10.07 7.07 4.95 4.09 3.63 3.31 3.31 3.11
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Table 35: Evaluation Results of Phi-2 under Different Closed-sourced Layers (Part2). “*” indicates
the fully closed-sourced model.

16 18 20 22 24 26 28 30 *

Rsn.
PIQA 77.44 77.80 77.69 76.77 76.89 77.55 78.16 78.58 52.07

Hellaswag 67.20 66.90 67.13 68.00 68.86 70.01 71.44 71.18 25.26
Winogrande 70.82 71.40 73.11 74.46 75.79 75.72 75.93 74.77 48.91
ARC_easy 78.30 77.27 77.33 76.82 78.09 77.76 79.53 79.56 27.03

ARC_challenge 49.71 48.29 48.52 48.04 49.80 50.68 53.16 52.67 18.66

Read.
OpenBookQA 46.53 46.47 45.87 45.27 46.33 45.53 46.53 48.27 20.80
LAMBADA 45.67 46.88 47.95 50.17 50.54 52.77 53.01 53.23 0.00

BoolQ 80.56 80.72 82.22 83.31 83.98 83.54 82.54 83.41 39.60
SQuADv2_em 7.88 1.30 1.69 1.31 0.15 0.23 3.54 10.03 0.56
SQuADv2_f1 40.84 34.51 34.25 35.94 35.64 36.68 39.57 44.87 0.90

Knl.
NaturalQuestions 8.90 6.09 6.40 6.79 6.86 6.85 7.20 8.37 0.02

TriviaQA 31.48 27.03 25.08 24.54 22.89 22.99 24.24 26.93 0.01

Code
HumanEval 22.56 21.34 25.41 32.52 38.01 46.14 46.54 43.90 0.00

MBPP 26.73 25.33 24.80 31.73 36.67 41.80 43.13 43.20 0.00

Math GSM8K 16.68 16.02 14.66 12.31 17.24 30.12 45.41 49.79 0.00

Gen.
MMLU 52.69 53.45 55.68 56.61 56.93 56.59 56.86 56.47 22.95

BBH 3.42 17.36 8.33 18.24 30.09 48.12 52.28 56.36 0.00

Avg. Performance Score(↓) 42.79 42.25 42.12 43.70 45.57 48.42 50.53 51.86 15.10
Average Recovery Ratio(↓) 72.51 71.58 71.38 74.04 77.22 82.04 85.63 87.87 25.59

Recovery Difficulty(↑) 3.07 3.29 3.03 3.01 2.70 2.32 1.98 2.13 11.32

Table 36: Evaluation Results of Phi-1.5 under Different Closed-sourced Layers

Pretrain 0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 *

Rsn.

PIQA 75.68 53.43 69.52 71.53 73.50 74.76 75.08 74.94 74.64 73.90 74.63 74.54 74.81 50.44

Hellaswag 62.56 26.27 46.66 50.71 52.98 54.51 55.11 56.01 56.78 57.90 58.76 59.35 58.58 25.05

Winogrande 72.69 51.09 54.91 59.22 61.75 64.85 67.95 68.88 68.98 71.25 71.19 72.87 70.66 49.12

ARC_easy 76.14 30.81 61.70 65.70 70.10 71.38 70.01 71.72 71.93 72.34 73.39 74.16 73.74 27.50

ARC_challenge 44.62 20.56 32.85 34.10 38.08 40.05 40.30 39.48 40.87 41.52 42.84 42.58 45.42 21.22

Read.

OpenBookQA 48.00 26.60 33.93 35.73 40.40 41.13 40.67 41.73 41.67 40.27 41.33 43.27 45.47 26.87

LAMBADA 44.10 0.59 17.96 26.45 29.37 33.83 33.85 36.46 37.06 37.96 39.98 41.10 40.49 0.00

BoolQ 75.05 46.98 59.12 52.42 57.41 65.68 68.52 63.47 65.12 66.52 73.91 75.17 77.0 46.28

SQuADv2_em 48.01 0.00 5.82 10.94 18.34 13.96 14.70 23.22 16.98 26.05 22.04 20.16 26.86 0.00

SQuADv2_f1 60.84 0.78 24.49 26.04 34.86 32.17 32.36 43.14 38.23 48.03 45.75 45.56 49.62 1.60

Knl.
NaturalQuestions 5.46 0.04 1.68 2.73 3.41 3.06 3.21 4.25 4.03 4.06 4.54 4.17 4.45 0.01

TriviaQA 16.94 0.01 5.70 7.77 10.85 11.03 9.11 12.11 11.84 11.86 12.02 12.11 13.19 0.01

Code
HumanEval 35.98 0.00 3.05 10.57 12.20 16.26 13.82 17.48 18.70 23.17 29.68 31.91 31.71 0.00

MBPP 35.40 0.00 2.80 7.80 10.93 17.40 16.53 16.13 16.67 22.27 27.33 28.27 28.53 0.00

Math GSM8K 30.33 0.00 0.05 0.73 0.15 0.23 0.75 0.50 2.17 4.98 9.73 17.77 23.45 0.00

Gen.
MMLU 42.44 24.07 26.56 28.77 32.51 32.87 36.09 39.42 39.72 43.23 42.51 42.82 43.66 23.95

BBH 28.80 0.00 2.07 3.97 8.38 7.37 2.81 7.79 4.12 10.63 6.94 10.34 11.45 0.00

Avg. Performance Score(↓) 47.24 16.54 26.40 29.13 32.66 34.15 34.17 36.28 35.85 38.59 39.80 40.95 42.30 15.94

Average Recovery Ratio(↓) - 35.02 55.90 61.66 69.14 72.29 72.34 76.80 75.90 81.68 84.25 86.69 89.56 33.75

Average Recovery Ratio(↓) - 10.08 7.18 4.70 3.50 2.93 2.83 2.53 2.36 2.27 2.16 2.06 2.46 9.33
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Table 37: Customization Performance under Different Closed Sets

Llama2-7B Phi-2
Closed Layers GSM8K(↑) Closed Layers GSM8K(↑)

Fully-open 29.34 Fully-open 59.60
0 28.96 0-1 59.59

0-4 21.76 0-5 58.60
0-8 21.46 0-9 58.45

0-12 20.85 0-13 55.19
0-16 20.11 0-17 56.25
0-20 21.46 0-21 54.59
0-24 21.44 0-25 55.34
0-28 18.73 0-29 54.59

Fully-Closed 20.32 Fully-Closed 57.77

Table 38: Evaluation Results of Llama2-7B under Different Closed-source Proportion

0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 77.78 77.69 67.73 49.42 49.55 50.05 49.98 49.31 49.47
Hellaswag 71.40 71.54 52.39 25.74 26.03 26.25 25.67 25.48 26.39

Winogrande 64.64 65.64 54.12 50.38 50.43 49.65 49.59 49.62 50.83
ARC_easy 74.69 75.04 53.82 26.03 26.76 26.46 26.64 26.66 25.98

ARC_challenge 43.66 43.29 26.99 20.16 21.39 19.74 21.44 21.73 22.47

Read.

OpenBookQA 63.15 63.62 33.20 0.01 0.00 0.02 0.01 0.01 0.01
LAMBADA 80.66 80.78 62.10 38.22 39.33 43.45 39.39 41.83 48.34

BoolQ 11.39 12.14 5.47 0.00 0.00 0.00 0.00 0.00 0.00
SQuADv2_em 40.24 40.74 32.65 0.78 0.20 0.24 2.09 2.13 0.59
SQuADv2_f1 40.73 40.67 30.47 22.93 23.40 25.53 24.07 23.07 25.93

Knl.
NaturalQuestions 7.83 7.89 5.61 0.00 0.01 0.02 0.01 0.00 0.04

TriviaQA 44.29 45.95 18.78 0.00 0.01 0.00 0.00 0.00 0.02

Code
HumanEval 11.39 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 15.20 15.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 13.22 13.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 45.04 45.03 30.90 24.06 24.04 25.01 23.19 23.11 24.45

BBH 37.45 37.51 17.36 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 43.69 44.01 28.98 15.16 15.36 15.67 15.42 15.47 16.15
Average Recovery Ratio(↓) 84.94 85.56 56.33 29.48 29.86 30.47 29.97 30.07 31.39

Recovery Difficulty(↑) 1.96 1.93 8.66 10.87 11.75 11.48 11.65 11.57 11.19
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Table 39: Evaluation Results of Llama2-7B under Different Closed-source Quantity

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 77.78 73.49 67.55 67.12 49.42 50.36 49.97
Hellaswag 71.40 63.47 51.67 51.27 25.74 25.70 25.78

Winogrande 64.64 57.54 53.07 52.04 50.38 49.28 50.49
ARC_easy 74.69 66.50 51.97 52.11 26.03 26.43 26.29

ARC_challenge 43.66 36.04 26.51 25.99 20.16 20.79 21.70

Read.

OpenBookQA 63.15 45.34 30.22 28.75 0.01 0.05 0.01
LAMBADA 80.66 69.47 62.28 62.59 38.22 39.03 40.80

BoolQ 11.39 2.21 4.18 7.24 0.00 0.00 0.01
SQuADv2_em 40.24 33.98 28.98 31.05 0.78 0.74 0.37
SQuADv2_f1 40.73 33.93 29.13 30.00 22.93 23.80 23.53

Knl.
NaturalQuestions 7.83 2.98 5.33 5.73 0.00 0.00 0.02

TriviaQA 44.29 15.28 13.71 17.25 0.00 0.00 0.01

Code
HumanEval 11.39 0.41 0.00 0.00 0.00 0.00 0.00

MBPP 15.20 6.87 1.00 0.80 0.00 0.00 0.00

Math GSM8K 9.00 0.10 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 45.04 36.15 28.95 29.04 24.06 23.70 23.45

BBH 37.45 28.53 14.99 16.99 0.00 0.00 0.00

Avg. Performance Score(↓) 43.44 33.66 27.62 28.12 15.16 15.29 15.44
Average Recovery Ratio(↓) 84.46 65.44 53.69 54.66 29.48 29.72 30.01

Recovery Difficulty(↑) 1.96 5.48 8.95 9.25 10.87 10.93 10.81

Table 40: Evaluation Results of Mistral-7B under Different Closed-sourced Proportion

0.25% 1% 0.5% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 77.79 74.36 52.16 53.34 52.07 52.19 50.04 50.60 49.35
Hellaswag 71.31 65.50 26.50 26.16 25.92 25.91 25.87 25.61 25.39

Winogrande 67.09 60.32 49.22 51.65 50.01 51.36 51.36 49.65 50.59
ARC_easy 74.52 69.51 29.95 30.82 29.73 30.44 28.20 27.45 25.83

ARC_challenge 42.32 38.40 20.76 20.71 21.10 20.25 22.61 22.47 22.35

Read.

OpenBookQA 42.13 34.60 25.13 25.33 26.47 26.07 25.20 25.87 25.00
LAMBADA 55.99 44.36 0.73 1.66 0.96 0.31 0.03 0.02 0.01

BoolQ 78.35 74.06 43.18 42.01 42.09 40.02 38.53 39.91 45.80
SQuADv2_em 13.91 6.97 0.00 0.01 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 41.13 33.88 1.60 0.93 1.27 0.71 0.99 0.86 0.66

Knl.
NaturalQuestions 8.46 5.82 0.03 0.00 0.02 0.03 0.00 0.00 0.02

TriviaQA 34.04 17.03 0.01 0.01 0.02 0.01 0.00 0.00 0.01

Code
HumanEval 11.99 6.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 16.93 12.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 6.32 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 44.17 37.98 23.98 24.34 25.10 23.91 23.68 24.12 23.26

BBH 35.44 27.27 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 42.46 35.87 16.08 16.29 16.16 15.95 15.68 15.68 15.78
Average Recovery Ratio(↓) 70.08 59.20 26.53 26.89 26.67 26.33 25.87 25.88 26.05

Recovery Difficulty(↑) 2.22 5.48 10.92 11.29 11.35 11.19 11.17 11.20 11.20
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Table 41: Evaluation Results of Mistral-7B under Different Closed-sourced Quantity

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 77.79 73.74 51.36 52.86 53.34 50.98 51.62
Hellaswag 71.31 65.51 26.49 27.98 26.16 26.27 26.04

Winogrande 67.09 64.51 50.06 49.51 51.65 50.17 50.85
ARC_easy 74.52 68.29 27.84 30.95 30.82 27.36 28.30

ARC_challenge 42.32 37.97 20.85 21.67 20.71 21.28 20.17

Read.

OpenBookQA 42.13 37.27 25.60 25.87 25.33 26.60 27.00
LAMBADA 55.99 47.63 1.16 4.74 1.66 0.43 0.53

BoolQ 78.35 75.00 40.17 47.05 42.01 42.05 39.03
SQuADv2_em 13.91 8.65 0.01 0.04 0.01 0.01 0.00
SQuADv2_f1 41.13 35.50 1.01 0.49 0.93 0.28 0.39

Knl.
NaturalQuestions 8.46 7.82 0.02 0.05 0.00 0.01 0.02

TriviaQA 34.04 22.89 0.02 0.19 0.01 0.01 0.01

Code
HumanEval 11.99 7.93 0.00 0.00 0.00 0.00 0.00

MBPP 16.93 11.87 0.00 0.00 0.00 0.00 0.00

Math GSM8K 6.32 2.48 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 44.17 41.28 24.22 24.44 24.34 23.78 23.33

BBH 35.44 33.43 0.00 0.40 0.00 0.00 0.00

Avg. Performance Score(↓) 42.46 37.75 15.81 16.84 16.29 15.84 15.72
Average Recovery Ratio(↓) 70.08 62.31 26.10 27.79 26.89 26.14 25.95

Recovery Difficulty(↑) 2.22 3.44 11.14 10.85 11.10 11.23 11.22

Table 42: Evaluation Results of Phi-2 under Different Closed-sourced Proportion

0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 70.40 70.71 74.64 54.43 54.17 54.75 54.37 52.39 52.07
Hellaswag 53.13 52.99 62.84 27.88 27.61 27.77 28.01 26.30 25.26

Winogrande 66.17 66.43 69.93 51.49 51.56 51.46 51.44 49.12 48.91
ARC_easy 64.62 65.33 72.55 33.39 34.57 32.00 32.18 29.97 27.03

ARC_challenge 43.26 43.86 40.67 20.82 19.45 20.00 20.56 19.88 18.66

Read.

OpenBookQA 41.80 42.67 38.87 26.87 25.80 26.33 26.53 26.07 20.80
LAMBADA 32.51 32.25 40.24 10.58 3.25 3.87 6.06 0.66 0.00

BoolQ 65.77 65.27 76.84 48.13 47.29 45.62 46.15 40.50 39.60
SQuADv2_em 0.36 9.09 3.31 0.02 0.02 0.01 0.01 0.00 0.56
SQuADv2_f1 24.81 30.83 30.47 0.45 2.61 0.57 2.52 1.67 0.90

Knl.
NaturalQuestions 5.70 5.06 1.14 0.03 0.00 0.01 0.07 0.03 0.02

TriviaQA 20.27 21.50 8.78 2.02 0.01 0.02 0.01 0.01 0.01

Code
HumanEval 22.16 26.83 17.68 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 25.07 26.40 9.73 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 29.26 31.36 2.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 41.76 42.17 43.86 30.31 26.16 25.79 24.85 24.03 22.95

BBH 18.98 21.55 9.59 3.06 0.01 0.79 0.24 0.00 0.00

Avg. Performance Score(↓) 36.83 38.49 35.48 18.20 17.21 17.00 17.24 15.92 15.10
Average Recovery Ratio(↓) 62.40 65.22 60.12 30.95 29.15 28.81 29.21 26.97 25.59

Recovery Difficulty(↑) 6.70 6.65 2.00 9.14 10.07 10.13 10.14 9.82 11.32
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Table 43: Evaluation Results of Phi-2 under Different Closed-sourced Quantity

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 73.70 70.00 53.90 54.17 53.01 54.75 54.28
Hellaswag 59.75 55.64 28.26 27.61 26.90 27.77 28.61

Winogrande 66.61 67.17 51.96 51.56 52.28 51.46 50.88
ARC_easy 70.96 67.02 35.17 34.57 31.84 32.00 31.62

ARC_challenge 48.30 42.52 21.84 19.45 20.39 20.00 20.56

Read.

OpenBookQA 45.33 41.27 26.13 25.80 25.60 26.33 26.53
LAMBADA 35.64 25.34 1.93 3.25 2.17 3.87 5.78

BoolQ 75.37 66.25 51.66 47.29 40.81 45.62 47.69
SQuADv2_em 10.62 0.10 0.14 0.02 0.02 0.01 0.00
SQuADv2_f1 38.28 22.83 1.33 2.61 1.36 0.57 1.13

Knl.
NaturalQuestions 5.44 4.51 0.06 0.00 0.02 0.01 0.05

TriviaQA 12.34 12.77 0.05 0.01 0.01 0.02 0.01

Code
HumanEval 20.94 10.98 0.00 0.00 0.00 0.00 0.00

MBPP 12.60 13.40 0.00 0.00 0.00 0.00 0.00

Math GSM8K 7.52 7.78 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 43.07 39.45 26.26 26.16 25.85 25.79 25.38

BBH 12.35 18.02 0.00 0.01 0.00 0.79 0.12

Avg. Performance Score(↓) 37.57 33.24 17.57 17.21 16.49 17.00 17.22
Average Recovery Ratio(↓) 63.67 56.32 29.77 29.15 27.93 28.81 29.17

Recovery Difficulty(↑) 2.07 7.96 9.25 9.96 10.08 10.13 10.22

Table 44: Evaluation Results of Phi-1.5 under Different Closed-sourced Proportion

0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 68.21 68.37 69.68 65.85 53.43 52.94 52.36 51.25 50.44
Hellaswag 49.05 49.18 49.30 30.72 26.27 26.74 27.02 26.10 25.05

Winogrande 63.83 64.91 61.20 58.04 51.09 51.38 50.25 50.22 49.12
ARC_easy 62.94 62.89 62.25 35.15 30.81 29.27 29.64 27.99 27.50

ARC_challenge 36.98 37.49 32.91 25.97 20.56 20.36 20.08 20.88 21.22

Read.

OpenBookQA 39.07 40.20 35.00 33.87 26.60 27.67 27.73 26.47 26.87
LAMBADA 24.71 24.99 25.36 0.11 0.59 0.78 1.15 0.06 0.00

BoolQ 59.43 59.35 63.49 41.01 46.98 51.59 46.46 44.02 46.28
SQuADv2_em 15.65 16.00 3.13 0.50 0.00 0.01 0.03 0.00 0.00
SQuADv2_f1 32.62 32.62 14.88 0.56 0.78 1.24 2.29 1.58 1.60

Knl.
NaturalQuestions 2.72 2.64 0.32 0.03 0.04 0.03 0.05 0.03 0.01

TriviaQA 8.17 7.96 5.69 0.01 0.01 0.01 0.01 0.01 0.01

Code
HumanEval 14.43 13.41 2.03 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 17.20 18.67 6.47 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 4.88 4.90 0.25 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 30.12 29.88 28.98 27.78 24.07 24.22 24.66 24.28 22.95

BBH 4.34 3.19 0.98 0.50 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 31.43 31.57 27.17 19.41 16.54 16.84 16.57 16.05 15.94
Average Recovery Ratio(↓) 66.54 66.83 57.52 41.11 35.02 35.64 35.08 33.98 33.75

Recovery Difficulty(↑) 6.18 6.15 2.76 9.28 10.08 11.19 10.54 10.23 11.26
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Table 45: Evaluation Results of Phi-1.5 under Different Closed-sourced Quantity

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 69.80 65.85 53.43 52.52 52.94 53.06 53.81
Hellaswag 49.51 25.72 30.27 26.31 26.74 27.05 26.51

Winogrande 62.56 58.04 51.09 50.83 51.38 50.57 49.99
ARC_easy 62.41 30.15 30.81 29.14 29.27 29.62 29.67

ARC_challenge 32.51 25.97 20.56 19.97 20.36 20.48 20.79

Read.

OpenBookQA 35.53 33.87 26.60 26.93 27.67 28.20 26.87
LAMBADA 28.14 0.11 0.59 0.45 0.78 1.30 0.61

BoolQ 64.77 41.01 46.98 47.33 51.59 46.09 45.59
SQuADv2_em 4.67 0.50 0.00 0.00 0.01 0.01 0.00
SQuADv2_f1 22.47 0.56 0.78 1.02 1.24 2.31 2.01

Knl.
NaturalQuestions 1.64 0.03 0.04 0.05 0.03 0.06 0.03

TriviaQA 5.93 0.01 0.01 0.01 0.01 0.02 0.01

Code
HumanEval 7.73 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 7.87 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.28 0.00 0.00 0.00 0.00 0.00 0.00

Gen.
MMLU 31.11 27.78 24.07 23.41 24.22 24.54 24.68

BBH 3.38 0.50 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 28.84 19.89 16.54 16.35 16.84 16.67 16.50
Average Recovery Ratio(↓) 61.06 41.11 35.02 34.61 35.64 35.28 34.94

Recovery Difficulty(↑) 2.81 9.28 10.26 11.65 11.19 10.87 10.49

Table 46: Evaluation Results of OPT-350M under Different Closed-sourced Layers. “*” indicates the
fully closed-sourced model.

Pretrain 0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-23 24-26 27-29 30-32 33-35 *

Rsn.

PIQA 64.69 61.40 62.50 61.11 56.46 58.47 58.94 61.86 62.59 63.13 61.93 62.67 63.11 49.53

Hellaswag 36.68 34.03 34.27 33.69 31.79 32.24 32.78 33.27 33.68 33.25 33.94 33.63 33.07 25.77

Winogrande 52.09 51.62 52.96 51.57 50.83 52.83 51.06 51.52 51.85 52.06 52.04 51.99 50.94 49.85

ARC_easy 44.02 40.46 40.66 40.07 35.41 37.50 37.81 39.91 40.70 41.12 41.19 40.84 39.92 26.53

ARC_challenge 20.82 22.27 22.61 21.25 21.39 21.25 22.01 21.36 20.25 20.48 19.88 20.99 20.28 19.82

Read.

OpenBookQA 28.00 27.60 27.47 27.40 27.40 27.27 26.20 26.47 27.67 26.80 28.67 27.67 27.13 27.47

LAMBADA 40.47 30.62 32.97 28.62 21.65 23.87 28.23 29.07 29.83 29.81 31.72 31.43 18.08 0.00

BoolQ 57.74 50.87 48.51 50.58 51.60 52.83 53.42 54.37 53.30 51.42 59.79 53.14 60.42 37.83

SQuADv2_em 11.34 6.87 7.88 4.74 4.19 0.27 0.87 2.22 3.79 3.05 4.11 4.69 2.35 0.00

SQuADv2_f1 19.35 16.27 17.00 12.00 11.72 9.04 6.92 10.11 10.90 10.08 8.88 11.47 7.30 0.01

Knl.
NaturalQuestions 1.08 1.05 0.83 0.83 0.78 0.55 0.69 0.41 1.00 0.85 0.71 0.52 0.75 0.04

TriviaQA 4.48 2.24 2.66 2.01 2.16 1.41 1.06 2.39 2.38 2.29 1.57 1.90 1.76 0.02

Code
HumanEval 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MBPP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 1.59 0.15 0.25 0.00 0.08 0.00 0.05 0.00 0.03 0.18 0.00 0.00 0.00 0.00

Gen.
MMLU 26.05 25.52 26.02 25.20 25.60 25.05 25.73 23.97 25.57 26.04 25.13 25.17 25.73 22.95

BBH 16.97 6.87 12.58 5.51 5.11 2.55 5.98 2.74 11.15 13.98 14.25 13.02 12.57 0.00

Avg. Performance Score(↓) 25.02 22.23 22.89 21.44 20.36 20.30 20.69 21.16 22.04 22.03 22.58 22.30 21.38 15.28

Average Recovery Ratio(↓) - 88.83 91.49 85.71 81.38 81.13 82.69 84.55 88.08 88.05 90.23 89.13 85.43 61.08

Recovery Difficulty(↑) - 5.92 9.32 9.04 8.60 8.83 8.73 7.17 5.82 5.18 4.65 4.92 4.15 10.89
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