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ABSTRACT

Self-attention and transformers have been widely used in deep learning. Recent
efforts have been devoted to incorporating transformer blocks into different types
of neural architectures, including those with convolutions, leading to various vi-
sion transformers for computer vision tasks. In this paper, we propose a novel and
compact transformer block, Transformer with Information Bottleneck inspired To-
ken Merging, or IBTM. IBTM performs token merging in a learnable scheme. Our
IBTM is compatible with many popular and compact transformer networks, such
as MobileViT and EfficientViT, and it reduces the FLOPs and the inference time
of the vision transformers while maintaining or even improving the prediction
accuracy. In the experiments, we replace all the transformer blocks in popular vi-
sion transformers, including MobileViT, EfficientViT, ViT, and Swin, with IBTM
blocks, leading to IBTM networks with different backbones. The IBTM is moti-
vated by the reduction of the Information Bottleneck (IB), and a novel and sepa-
rable variational upper bound for the IB loss is derived. The architecture of mask
module in our IBTM blocks which generate the token merging mask is designed
to reduce the derived upper bound for the IB loss. Extensive results on image
classification and object detection evidence that IBTM renders compact and ef-
ficient vision transformers with comparable or much better prediction accuracy
than the original vision transformers. The code of IBTM is available at https:
//anonymous.4open.science/r/IBTM_Transformers-053B/.

1 INTRODUCTION

Building upon the success of Transformer in natural language processing (Vaswani et al., 2017),
vision transformers have demonstrated remarkable performance across a wide range of tasks (Yuan
et al., 2021; Dosovitskiy et al., 2021b; Liu et al., 2021; Zhu et al., 2021; Liang et al., 2021; Cai et al.,
2023). However, the achievements of vision transformers are accompanied with heavy computa-
tional costs (Dosovitskiy et al., 2021b; Touvron et al., 2021), making their deployment impractical
under resource-limited scenarios. The aforementioned limitations have spurred recent research en-
deavors aimed at developing efficient vision transformers. In this paper, we study the problem of
accelerating vision transformers by token merging.

Token merging is an effective method for reducing the FLOPs and improving the inference speed
of vision transformers (Han et al., 2015; Zhou et al., 2020; Sun et al., 2021; Kim et al., 2024; Bon-
naerens & Dambre, 2023; Bolya et al., 2023). However, most existing token merging methods (Rao
et al., 2021; Bolya et al., 2023; Kim et al., 2024; Bonnaerens & Dambre, 2023) largely sacrifice
the prediction accuracy of the original transformer networks for reduced computation costs (Bolya
et al., 2023; Kim et al., 2024). These methods (Kim et al., 2024; Bolya et al., 2023) generally fo-
cus on identifying and merging similar tokens by averaging their features. However, such merging
strategies, which are based solely on feature similarity, can potentially diminish the informative fea-
tures in the tokens that are critical to the prediction tasks. Therefore, it remains an interesting and
important question whether we can perform token merging while preserving a compelling perfor-
mance of the vision transformers after token merging. To this end, we propose a novel transformer
block, Transformer with Information Bottleneck inspired Token Merging, or IBTM, which learns
how to merge tokens while exhibiting a compelling generalization capability of the transformer with
merged tokens.

1

https://anonymous.4open.science/r/IBTM_Transformers-053B/
https://anonymous.4open.science/r/IBTM_Transformers-053B/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Motivation. Due to the fact that the FLOPs of a vision transformer largely depend on the number of
tokens in all the transformer blocks, the FLOPs of a vision transformer can be significantly reduced
by reducing the number of tokens in all the transformer blocks. Our goal is to merge the output
tokens of all the transformer blocks into fewer tokens without largely sacrificing the prediction
accuracy of the original vision transformer. However, directly merging the output tokens, even
by carefully designed methods (Kim et al., 2024; Bonnaerens & Dambre, 2023; Bolya et al., 2023),
would adversely affect the performance of the model. In this paper, we propose to maintain a
compelling prediction accuracy of a vision transformer with token merging by an informative token
merging process. In our IBTM block, the original attention output tokens of a transformer block are
merged into fewer target tokens, and every target token is an informative weighted average of the
original output tokens. All the target tokens, or merged tokens are the final attention output tokens
for the IBTM block, which are fed to an MLP to produce the output of the IBTM block as illustrated
by Figure 1.

Such a token merging process in IBTM is primarily inspired by the well-known presence of consid-
erable redundancy in the original output tokens of transformer blocks (Rao et al., 2021; Bolya et al.,
2023). As different tokens have varying importance in modeling the vision features at a particular
transformer block, it is natural to compute an informative aggregation of the original attention out-
put tokens as the final (target) attention output tokens so that more informative and more important
tokens contribute more to the merged tokens with a larger weight in the weighted average in the
aggregation process. A more detailed introduction on the Information Bottleneck (IB) is deferred to
Section A in the appendix.

Contributions. The contributions of this paper are presented as follows.

First, we present a novel and compact transformer block termed Transformer with Information Bot-
tleneck inspired Token Merging, or IBTM. Our IBTM block generates an informative token merg-
ing mask which reduces the IB loss. The IBTM blocks can be used to replace all the transformer
blocks in many popular vision transformers, rendering compact vision transformers with competi-
tive performance. The effectiveness of IBTM is evidenced by replacing all the transformer blocks
in popular vision transformers, including MobileViT (Mehta & Rastegari, 2022), EfficientViT (Cai
et al., 2023), ViT (Dosovitskiy et al., 2021b), and Swin (Liu et al., 2021), with IBTM blocks, for
image classification, object detection and instance segmentation tasks.

Second, we propose an informative token merging process for vision transformers, which can re-
duce the IB loss. As a first step, we derive a novel and separable variational upper bound for the
IB loss associated with token merging, which is I(X̃(G), X) − I(X̃(G), Y ) where I(·, ·) denotes
mutual information and G is the token merging mask in IBTM. X̃(G), X , and Y denote the random
variables representing the input features, the learned features, and the labels. We then view a trans-
former with multiple IBTM blocks as an iterative process for the reduction of the IB loss by gradient
descent, and every IBTM block simulates one-step gradient descent on the variational upper bound
for the IB loss. Inspired by this understanding, the token merging mask at the current layer is gen-
erated from the token merging mask at the previous layer and the input tokens at the current layer
by a learnable mask module, following the formula of gradient descent as in (3) in Section 3.2. As
a result, such informative token merging process generated in a network with IBTM blocks enjoys
reduced IB loss, which is evidenced in our ablation study in Section 4.2. Due to the separability of
the variational upper bound for the IB loss, a neural network with IBTM blocks can be trained in an
end-to-end manner with standard SGD.

It is worthwhile to mention that our IBTM models can be either fine-tuned from pre-trained
backbones or trained from scratch. As evidenced in Table 1, our IBTM models always outper-
form the currrent state-of-the-art token merging methods, including the fine-tuning-based method
LTMP (Bonnaerens & Dambre, 2023), when fine-tuned for the same number of epochs. We remark
that as shown in Table 2 in Section 4.2 and Table 6 in Section E.1 of the appendix, the baseline
token merging method, ToMe, and LTMP, can already reduce the IB loss. By replacing all the trans-
former blocks with our IBTM blocks, the networks with IBTM exhibit even smaller IB loss and
enjoy higher classification accuracy and less FLOPs, either trained from scratch or fine-tuned from
pre-trained models. Furthermore, as shown in Table 3 in Section B.1 of the appendix, our IBTM
models also outperform all the competing token merging methods when trained from scratch. Im-
portantly, extensive experiment results on various computer vision tasks demonstrate the compelling
performance of IBTM networks compared to the competing baselines.
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This paper is organized as follows. The related works in efficient vision transformers and compres-
sion of vision transformers by pruning or token merging are discussed in Section 2. The formulation
of IBTM is detailed in Section 3. The effectiveness of IBTM is demonstrated in Section 4 for im-
age classification, object detection and instance segmentation tasks, by replacing all the transformer
blocks of various popular vision transformers, including MobileViT (Mehta & Rastegari, 2022), Ef-
ficientViT (Cai et al., 2023), ViT (Dosovitskiy et al., 2021b), and Swin (Liu et al., 2021), with IBTM
blocks. We conclude the paper in Section 5. We use [n] to denote natural numbers between 1 and n
inclusively.

2 RELATED WORKS

2.1 EFFICIENT VISION TRANSFORMERS

Vision transformer models have recently achieved superior performance on a variety of computer
vision applications (Dosovitskiy et al., 2021c; Liu et al., 2021; Carion et al., 2020; Zhu et al., 2021;
Liang et al., 2021; Wang et al., 2022a). However, vision transformers often encounter high compu-
tational demands due to the quadratic complexity of the point-wise attention and numerous Multi-
Layer Perceptron (MLP) layers. To mitigate the challenges of high computational costs, various
strategies have been developed (Zhu et al., 2021; Yuan et al., 2021), primarily aimed at refining the
network architectures and incorporating sparse mechanisms for efficient computation. These include
the integration of convolutions into transformer networks (Mehta & Rastegari, 2022; Cai et al., 2023;
Liu et al., 2023), the use of knowledge distillation for training more efficient transformers (Graham
et al., 2021; Radosavovic et al., 2020; Gong et al., 2022), and compressing existing vision trans-
formers with methods such as pruning (Chen et al., 2021a; Yu et al., 2022a; Kong et al., 2022a).
Techniques for compressing vision transformers generally fall into three categories: (1) Channel
Pruning, which targets the elimination of superfluous heads and channels within ViT blocks (Chen
et al., 2021a; Chavan et al., 2022; Zheng et al., 2022a); (2) Block Pruning, which involves removing
redundant transformer blocks (Yu et al., 2022b;a); (3) Token Pruning and Token Merging, which
prune less important tokens and merge similar tokens in the input of transformer blocks (Rao et al.,
2021; Kong et al., 2022a; Bolya et al., 2023; Wang et al., 2022b; Wu et al., 2023; Xu et al., 2024;
Wei et al., 2023).

In this paper, we focus on learning to merge tokens guided by the information bottleneck theory
of deep learning and primarily review existing works on Token Pruning and Merging (Wang et al.,
2022b; Rao et al., 2021; Bolya et al., 2023; Bonnaerens & Dambre, 2023; Kim et al., 2024). Dy-
namicViT (Rao et al., 2021) observes that the prediction in vision transformers is only based on a
subset of the most informative tokens and proposes a hierarchical token sparsification framework
to prune redundant tokens. ToMe (Bolya et al., 2023) proposes a graph-based matching algorithm
that combines similar tokens in each vision transformer block of a pre-trained vision transformer.
LTMP (Bonnaerens & Dambre, 2023) learns threshold masking modules that dynamically determine
which tokens to merge and prune in a unified framework similar to DynamicViT. ToFu (Kim et al.,
2024) also combines token pruning and token merging. Instead of average merging similar tokens,
ToFu proposes a conventional average merging module to improve the quality of merged tokens.

2.2 RELATED WORKS ABOUT INFORMATION BOTTLENECK

Saxe et al. (2019) provides the first in-depth analysis of conventional information bottleneck (IB)
theories and deep learning to establish the connection between the nonlinearity of neural networks
and the compression phase of training. Building on the theory of IB, (Lai et al., 2021) proposes a
probabilistic attention module reducing mutual information between the input and the masked repre-
sentation while increasing mutual information between the masked representation and the task label.
Further exploring the mechanics of IB in deep learning, (Zhou et al., 2022) finds that self-attention
mechanisms can be interpreted as iterative steps in optimizing the IB objective, which explains the
advantages of self-attention in learning robust representation. Distinct from most existing methods
that implicitly incorporate the IB principle, our work adopts a direct and innovative approach. We
aim to optimize a novel and separable variational upper bound of the IB loss with a learnable to-
ken merging method. The proposed IBTM lead to compelling performance on many popular vision
transformer architecture with lower computation cost, benefiting from the learnable token merging
mechanism guided by the IB principle.
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(a) IBTM block for regular transformers,
such as ViT and Swin.
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(b) IBTM block for efficient transformers, such as MobileViT
and EfficientViT.

Figure 1: Overall framework of Information Bottleneck inspired Token Merging (IBTM)-
Transformer block for regular transformer blocks such as ViT and Swin (a), and efficient transformer
blocks such as MobileViT and EfficientViT (b).

3 FORMULATION

In this section, we first illustrate how to perform token merging using a token merging mask. We
then describe how to generate the token merging mask from a learnable mask module in a IBTM
block, as well as the training algorithm of a neural network with IBTM blocks. We derive a novel
and separable variational upper bound for the IB loss, and the token merging masks are generated to
reduce such variational upper bound for the IB loss.

3.1 INFORMATION BOTTLENECK INSPIRED TOKEN MERGING

Given the input feature tokens X ∈ RN×D where N is the number of tokens and D is the token
dimension, the IBTM block first applies the self-attention module on the input feature tokens by
Z = ATTN(X) ∈ RN×D, where ATTN(·) is the regular QKV self-attention operation (Dosovitskiy
et al., 2021a). As illustrated in Figure 1, every IBTM block has a learnable mask module that
generates the token merging mask G(ℓ) where ℓ is the index of the current layer or block. The
IBTM block merges the N tokens of Z into P tokens with P < N by multiplying Z with the token
merging mask G(ℓ) ∈ RN×P . We set P = ⌈r × N⌉, where r ∈ (0, 1) is termed the compression
ratio for IBTM, and a smaller r renders less merged tokens after token merging. The token merging
mask G(ℓ) of the ℓ-th transformer block is generated by the token merging mask G(ℓ−1) of the
previous layer and the feature tokens Z, which is motivated by reducing the IB loss and detailed in
Section 3.2. The token merging maskG(1) for the first transformer block is generated by applying an
existing learnable token merging method, LTMP (Bonnaerens & Dambre, 2023), which generates
a binarized token merging mask M ∈ [0, 1]N×P using Gumbel-Softmax with N × P learnable
parameters. After obtaining the merging mask G(ℓ), the features tokens of Z are merged into P
tokens by X̃(G(ℓ)) =

(
Z⊤G(ℓ)

)⊤ ∈ RP×D, which is then passed to the following MLP layers in
the transformer block.

In addition to merging tokens in regular transformer blocks such as ViT (Dosovitskiy et al., 2021a)
and Swin (Liu et al., 2021), the IBTM block can also be applied to efficient transformer blocks
widely applied in efficient vision transformer architectures such as MobileViT (Mehta & Rastegari,
2022) and EfficientViT (Cai et al., 2023). Regular transformer blocks obtain the output by sequen-
tially applying the attention operation and MLP on the input feature tokens. However, efficient
transformer blocks usually contain residual connections following the design of residual connec-
tions in Convolutional Neural Networks (CNNs). That is, these blocks maintain the same shapes
for the input X and the self-attention output Z and concatenate them to produce the output features
of the current transformer block. As a result, we cannot only merge the tokens of Z. Instead, our
IBTM block merges the tokens of both X and Z so that the number of merged tokens for X and
Z have is the same. To this end, we apply the same token merging mask G(ℓ) to merge both X
and Z. As a result, the compressed X and Z are of the same shape after the token merging pro-
cess and they can still be concatenated, which is illustrated in Figure 1b. In addition, transformer
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blocks in the efficient vision transformers are usually accompanied with convolution operations so
that they need to maintain the feature tokens in a three-dimensional format X ∈ RH×W×D as illus-
trated in Figure 1b. To apply our token merging method on efficient transformer blocks, we set the
number of merged tokens after token merging as P = H ′ ×W ′, where r is the compression ratio,
and H ′ = ⌈H ×

√
r⌉,W ′ = ⌈W ×

√
r⌉. Therefore, the merged tokens can still be reshaped into

three-dimensional features for later convolution operations.

3.2 GENERATING TOKEN MERGING MASK BY REDUCING VARIATIONAL UPPER BOUND
FOR THE IB LOSS

We describe how to generate the token merging mask in a IBTM block in this subsection, and the
generation of the token merging mask is inspired by reduction of the IB loss. We first introduce the
setup where the IB loss can be specified.

Given the training data {Xi, yi}ni=1 where Xi is the i-the input training feature and yi is the corre-
sponding class label. Let Zi be the the self-attention output tokens of the Xi, and X̃i(G) = (ZiG)

⊤

is the merged tokens with G being the token merging mask. We first specify how to compute the IB
loss, IB(G) = I(X̃(G), X)−I(X̃(G), Y ) which depends onG and other network parameters, X is
a random variable representing the input feature which takes values in {Xi}ni=1, X̃(G) is a random

variable representing the merged tokens which takes values in
{
X̃i(G)

}n

i=1
. Y is a random variable

representing the class label which takes values in {yi}ni=1. Let
{
C̃a

}C

a=1
and {Cb}Cb=1 be the cluster

centroid for the merged tokens and the input features, respectively, where C is the number of
classes and the merged tokens or input features with the same training label form a cluster. We also
abbreviate X̃(G) as X̃ for simplicity of the notations. Then we define the probability that X̃ belongs

to cluster C̃a as Pr
[
X̃ ∈ a

]
= 1

n

n∑
i=1

τ(X̃i, a) with τ(X̃i, a) =
exp

(
−∥X̃i−C̃a∥2

2

)
∑A

a=1 exp
(
−∥X̃i−C̃a∥2

2

) . Simi-

larly, we define the probability that Xi belongs to cluster Cb as Pr [X ∈ b] = 1
n

n∑
i=1

τ(Xi, b).

Moreover, we have the joint probabilities Pr
[
X̃ ∈ a,X ∈ b

]
= 1

n

n∑
i=1

τ(X̃i, a)τ(Xi, b)

and Pr
[
X̃ ∈ a, Y = y

]
= 1

n

n∑
i=1

τ(X̃i, a)1I{yi=y} where 1I{} is an indicator function.

As a result, we can compute the mutual information I(X̃(G), X) and I(X̃(G), Y ) by

I(X̃(G), X) =
C∑

a=1

C∑
b=1

Pr
[
X̃(G) ∈ a,X ∈ b

]
log

Pr
[
X̃(G) ∈ a,X ∈ b

]
Pr

[
X̃(G) ∈ a

]
Pr [X ∈ b]

,

I(X̃(G), Y ) =

C∑
a=1

C∑
y=1

Pr
[
X̃(G) ∈ a, Y = y

]
log

Pr
[
X̃ ∈ a, Y = y

]
Pr

[
X̃(G) ∈ a

]
Pr [Y = y]

,

and then compute the IB loss IB(G). As explained in our motivation, we aim to perform token
merging while can reduce the IB loss. However, directly optimizing the IB loss in the standard SGD
training is difficult as the IB loss is not separable. Given a variational distribution Q(X̃ ∈ a|Y = y)
for y, a ∈ [C] computed by (9) in the appendix, the following theorem gives a variational upper
bound, IBU(G), for the IB loss IB(G). IBU(G) is separable and thus compatible with SGD training
with minibatches. IBU(G) is also referred to as the IB bound in the sequel.

Theorem 3.1.

IB(G) ≤ IBU(G)− C0, (1)

where C0 is a constant only depending on the input training features {Xi}ni=1, and

IBU(G) := 1
n

n∑
i=1

C∑
a=1

C∑
b=1

τ(X̃i(G), a)τ(Xi, b) log τ(Xi, b)− 1
n

n∑
i=1

C∑
a=1

C∑
y=1

τ(X̃i(G), a)1I{yi=y} logQ(X̃ ∈ a|Y = y).
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Proposition 3.2. Suppose X̃i(G) =
(
Z⊤
i G

)⊤ ∈ RP×D with Zi ∈ RN×D being the self-attention
output tokens for the i-th training feature and G ∈ RN×P is the token merging mask where N is the
number of tokens, D is the token dimension, P is the number of merged tokens after token merging,
and X̃i(G) denotes the merged tokens. At step ℓ of gradient descent on IBU(G), we have

G(ℓ) = G(ℓ−1) − η∇GIBU(G(ℓ−1))

= G(ℓ−1) − 2η

n

n∑
i=1

C∑
a=1

Zi
S
(l−1)
ia

(γ
(l−1)
i )2

(
γ
(l−1)
i Ca − ζ

(ℓ−1)
i

)
ψi,a, ℓ ≥ 2, (2)

where S(ℓ)
ia := exp

(
−
∥∥∥X̃i(G

(ℓ))− C̃a
∥∥∥2
2

)
for i ∈ [n] and a ∈ [C], γ(ℓ)i :=

C∑
a=1

S
(ℓ)
ia , ζ(ℓ)i :=

C∑
a=1

S
(ℓ)
ia Ca for i ∈ [n], ψi,a :=

C∑
b=1

τ(Xi, b) log τ(Xi, b)−
C∑

y=1
1I{yi=y} logQ(X̃ ∈ a|Y = y).

The proofs of Theorem 3.1 and Proposition 3.2 are deferred to Section C of the appendix. Inspired
by Proposition 3.2, we can understand a transformer with token merging and multiple transformer
blocks as an iterative process which reduces IBU(G) by gradient descent, where the ℓ-th transformer
block performs one-step gradient descent on IBU(G) according to (2). The mask module of at the
ℓ-th IBTM block generates the token merging mask G(ℓ) from G(ℓ−1), the token merging mask of
the previous block, through (2). To improve the flexibility of the token merging mask, an MLP is
applied on Zi. Moreover, as IBU and ∇GIBU are separable, (2) can be performed on a minibatch
Bj ⊆ {1, . . . , n}, which is compatible with minibatch-based training with SGD for a transformer
network with IBTM blocks. In practice, the mask module of the ℓ-th IBTM block generates G(ℓ) by

G̃(ℓ) = G(ℓ−1) − 2η

n

∑
i∈Bj

C∑
a=1

Zi
S
(l−1)
ia

(γ
(l−1)
i )2

(
γ
(l−1)
i Ca − ζ

(l−1)
i

)
ψi,a, (3)

G(ℓ) = G̃(ℓ) ◦M (ℓ) (4)

where M (ℓ) ∈ [0, 1]N×P is a binarized token merging mask generated by LTMP (Bonnaerens &
Dambre, 2023) for the ℓ-th IBTM block by applying the Gumbel-Softmax operation on N × P
learnable parameters. The mask M (ℓ) in our IBTM serves as a learnable token merging mask mod-
ule. Since the update formulation in Equation (3) does not incorporate any trainable parameters, the
number of trainable parameters of an IBTM block is the same as the number of trainable parameters
in a transformer block with LTMP, which is N × P .

Algorithm 1 describes the training process of a neural network with IBTM blocks using the stan-
dard cross-entropy loss for a classification problem. It is remarked that all the MLP layers of the
mask modules in all the IBTM blocks, along with other network parameters, are updated with stan-
dard SGD. In order to generate the token merging masks for all the IBTM blocks before a new

epoch starts, we update the variational distribution Q(t) and the clusters
{
C̃(t)
a

}C

a=1
at the end of the

previous epoch.

4 EXPERIMENTAL RESULTS

In this section, IBTM-Transformers are assessed for the image classification task on the ImageNet-
1k dataset. The results in Section 4.1 indicate that IBTM outperforms existing state-of-the-art net-
works while maintaining a more compact architecture. In addition, IBTM is compared with existing
methods on token merging and shows better performance with lower computation costs. Further-
more, in Sections B.2 and B.3 of the appendix, we demonstrate that the use of IBTM-MobileViT
and IBTM-EfficientViT as feature extraction backbones leads to superior mAP and reduced FLOPs
compared to the baseline models for the tasks of object detection and semantic segmentation. In
Section 4.2, we perform ablation studies on the effects of IBTM in reducing IB loss and the IB loss
and IB bound at different layers of a IBTM network.
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Algorithm 1 Training Algorithm of IBTMs

1: Initialize the weights of the network byW = W(0) through random initialization, set ttrain which is the
number of training epochs.

2: for t← 1 to ttrain do
3: if t < twarm then
4: Perform gradient descent by a standard step of SGD without applying token merging in IBTM trans-

former blocks.
5: else
6: Update τ(X̃i, a) for all the clusters a ∈ [C] and i ∈ [n].
7: for j ← 1 to J do
8: Forward step: generate

{
G(ℓ)

}
for all the IBTM blocks by (3) using the minibatch Bj , the up-

dated
{
τ(X̃i, a)

}
i∈Bj ,a∈[C]

,
{
Q(t−1)(X̃ ∈ a|Y = y)

}
a∈[C],y∈[C]

, and
{
C̃(t−1)
a

}C

a=1
, as well

as the output of the network
9: Backward step: update the MLP layers of the mask modules in all the IBTM blocks as well as all

the other weights in the neural network by a standard step of SGD on the cross-entropy loss
10: end for
11: Compute Q(t)(X̃ ∈ a|Y = y) by Eq. (9) in the appendix, and update the cluster centroids{

C̃(t)a

}C

a=1
.

12: end if
13: end for
14: return The trained weightsW of the network

4.1 IMAGE CLASSIFICATION

Implementation details. In this section, we evaluate IBTM models for ImageNet (Russakovsky
et al., 2015) classification. We employ MobileViT-S (Mehta & Rastegari, 2022), MobileViT-
XS (Mehta & Rastegari, 2022), EfficientViT-B1 (Cai et al., 2023), ViT-S (Dosovitskiy et al., 2021a),
ViT-B (Dosovitskiy et al., 2021a), Swin-T (Liu et al., 2021), and Swin-B (Liu et al., 2021) as
backbone architectures. We substitute the conventional transformer blocks in these backbones with
IBTM blocks. All the experiments are conducted on four NVIDIA A100 GPUs with a total batch
size of 1024 images. Following prior works (Liu et al., 2021), our training incorporates popular
data augmentation methods such as RandAugment, Mixup, Cutmix, and random erasing. We set η
in Equation (2) to 1 in all the experiments. In addition, we apply a softmax operation on the token
merging mask at each layer to ensure the aggregation weights for each merged token sum to 1. In all
our experiments, we set the value of compression ratio r = 0.7 for all our IBTM models. A study
on the impact of the compression ratio r to the performance of the IBTM model is performed in
Table 7 in Section E.2 of the appendix.

We conduct the experiments of IBTM for the token merging of vision transformers under two differ-
ent training setups, which are the fine-tuning setup and the training-from-scratch setup. The exper-
iments in the fine-tuning setup are conducted following the state-of-the-art token merging method,
LTMP (Bonnaerens & Dambre, 2023). The training-from-scratch setup is designed to explore the
potential of training IBTM-Transformers from the beginning while reducing the IB loss with token
merging, and the training with different backbones follows the same training settings as the orig-
inal training process of the corresponding backbones (Mehta & Rastegari, 2022; Cai et al., 2023;
Dosovitskiy et al., 2021a; Liu et al., 2021).

4.1.1 FINE-TUNING SETUP

Our proposed IBTM can be straightforwardly applied to token merging with pre-trained models
using the fine-tuning setup as in the existing state-of-the-art token merging method, LTMP (Bon-
naerens & Dambre, 2023). In the fine-tuning setup, IBTM models are not trained from scratch,
and token merging for a pre-trained visual transformer can be performed by simply changing all the
transformer blocks of the pre-trained models to IBTM-Transformer blocks according to Section 3.1.
Following the settings in LTMP (Bonnaerens & Dambre, 2023), the token merging mask modules
are added to the original transformer blocks, and all the pre-trained weights are loaded as the ini-
tialization for the IBTM models. In the fine-tuning process, the pre-trained weights are not updated
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and only the weights in the token merging mask modules,
{
M (ℓ)

}
, are updated. We fine-tune the

IBTM models for 1, 5, 10, 25, and 50 epochs, respectively, and compare them with LTMP models
fine-tuned for the same number of epochs. Note that IBTM models and LTMP models with the same
backbones have the same number of parameters.

Methods # Params. FLOPs Inference Time Top-1 Accuracy (%)
(ms/batch) 0 1 5 10 25 50

MobileViT-XS (Mehta & Rastegari, 2022) 2.3 M 0.70 G 11.3 74.80 - - - - -
ToMe-MobileViT-XS (Bolya et al., 2023) 2.3 M 0.54 G 10.4 72.73 - - - - -
ToFu-MobileViT-XS (Kim et al., 2024) 2.3 M 0.54 G 10.7 73.32 - - - - -
LTMP-MobileViT-XS(Bonnaerens & Dambre, 2023) 2.3 M 0.56 G 10.9 - 73.91 77.69 73.98 74.05 74.18
IBTM-MobileViT-XS (Fine-tuned) 2.3 M 0.52 G 10.3 - 74.25 74.31 74.54 74.70 74.95
MobileViT-S (Mehta & Rastegari, 2022) 5.6 M 1.40 G 15.1 78.40 - - - - -
ToMe-MobileViT-S (Bolya et al., 2023) 5.6 M 1.22 G 14.2 76.72 - - - - -
ToFu-MobileViT-S (Kim et al., 2024) 5.6 M 1.22 G 14.4 77.24 - - - - -
LTMP-MobileViT-S(Bonnaerens & Dambre, 2023) 5.6 M 1.26 G 14.5 - 77.53 77.69 77.82 78.03 78.14
IBTM-MobileViT-S (Fine-tuned) 5.6 M 1.17 G 14.1 - 77.72 78.15 78.34 78.85 79.05
EfficientViT-B1 (Cai et al., 2023) 9.1 M 0.52 G 10.0 79.40 - - - - -
ToMe-EfficientViT-B1 (Bolya et al., 2023) 9.1 M 0.47 G 9.6 78.81 - - - - -
ToFuEfficientViT-B1 (Kim et al., 2024) 9.1 M 0.47 G 9.8 79.04 - - - - -
LTMP-EfficientViT-B1(Bonnaerens & Dambre, 2023) 9.1 M 0.50 G 9.8 - 79.21 79.31 79.32 79.36 79.40
IBTM-EfficientViT-B1 (Fine-tuned) 9.1 M 0.44 G 9.6 - 79.39 79.62 79.85 80.07 80.22
Swin-T (Liu et al., 2021) 29.0 M 4.50 G 20.8 81.30 - - - - -
ToMe-Swin-T (Bolya et al., 2023) 29.0 M 3.91 G 17.5 79.28 - - - - -
ToFuSwin-T (Kim et al., 2024) 29.0 M 3.91 G 17.8 79.65 - - - - -
LTMP-Swin-T (Bonnaerens & Dambre, 2023) 29.0 M 3.95 G 17.9 - 79.78 79.96 80.09 80.24 80.30
IBTM-Swin-T (Fine-tuned) 29.0 M 3.82 G 17.0 - 80.06 80.46 80.79 81.20 81.38
Swin-B (Liu et al., 2021) 88.0 M 15.4 G 33.9 83.50 - - - - -
ToMe-Swin-B (Bolya et al., 2023) 88.0 M 13.0 G 29.9 81.87 - - - - -
ToFu-Swin-B (Kim et al., 2024) 88.0 M 13.0 G 30.1 82.04 - - - - -
LTMP-Swin-B (Bonnaerens & Dambre, 2023) 88.0 M 13.2 G 30.4 - 82.24 82.39 82.45 82.51 82.55
IBTM-Swin-B (Fine-tuned) 88.0 M 12.0 G 29.6 - 82.50 82.72 82.88 83.43 83.64
ViT-S (Dosovitskiy et al., 2021a) 22.1 M 4.30 G 22.5 81.20 - - - - -
ToMe-ViT-S (Bolya et al., 2023) 22.1 M 3.82 G 18.4 80.04 - - - - -
ToFu-ViT-S (Kim et al., 2024) 22.1 M 3.82 G 18.7 80.19 - - - - -
LTMP-ViT-S (Bonnaerens & Dambre, 2023) 22.1 M 3.89 G 19.0 - 80.32 80.40 80.35 80.41 80.50
IBTM-ViT-S (Fine-tuned) 22.1 M 3.70 G 18.2 - 80.47 80.69 80.94 81.27 81.55
ViT-B (Dosovitskiy et al., 2021a) 86.5 M 17.58 G 37.2 83.74 - - - - -
ToMe-ViT-B (Bolya et al., 2023) 86.5 M 13.12 G 31.0 82.86 - - - - -
ToFu-ViT-B (Kim et al., 2024) 86.5 M 13.12 G 31.5 83.22 - - - - -
LTMP-ViT-B (Bonnaerens & Dambre, 2023) 86.5 M 13.46 G 32.7 - 83.29 83.40 83.44 83.50 83.55
IBTM-ViT-B (Fine-tuned) 86.5 M 12.85 G 30.7 - 83.35 83.57 83.76 83.91 83.96

Table 1: Performance comparison between IBTM with competing token merging baselines,
ToMe (Bolya et al., 2023), ToFu (Kim et al., 2024), and LTMP (Bonnaerens & Dambre, 2023)
in fine-tuning setup on ImageNet. Among the compared methods, ToMe and ToFu do not require
training. Both IBTM models and LTMP models are fine-tuned for 1, 5, 10, 25, and 50 epochs for
fair comparisons.

In addition, we also compare the IBTM with three token merging methods, ToMe (Bolya et al.,
2023), ToFu (Kim et al., 2024), and LTMP (Bonnaerens & Dambre, 2023), to demonstrate the
superiority of our IBTM. The results are shown in Table 1. The inference time of all the models is
also evaluated on the validation set of ImageNet-1k and reported in milliseconds (ms) per batch for
an evaluation batch size of 128 on one Nvidia A100 GPU. It can be observed that our IBTM models
under the fine-tuning setup achieve significantly better prediction accuracy with less FLOPs and
inference time compared to the LTMP models fine-tuned for the same number of training epochs.
For example, IBTM-MobileViT-S fine-tuned for 50 epochs, outperforms the LTMP-MobileViT-S,
which is also fine-tuned for 50 epochs by 0.89% in top-1 accuracy with less FLOPs and faster
inference speed.

4.1.2 TRAINING-FROM-SCRATCH SETUP

In the training-from-scratch setup, all the parameters, including the pre-trained weights and the
weights

{
M (ℓ)

}
in the token merging mask modules, of IBTM models are updated in the training

process. To train IBTM-Transformers from scratch, we utilize the AdamW optimizer with β1 = 0.9
and β2 = 0.999. The training process spans 300 epochs, starting with a warm-up phase during
which token merging is not applied in all the IBTM blocks. After the warm-up stage, we enable
token merging in all the IBTM blocks. twarm is fixed to 100 in all the experiments. We set the weight
decay at 0.01. The learning rate initially increases from 0.0002 to 0.002 over the first 10 epochs and
is subsequently reduced back to 0.0002 following a cosine decay schedule.
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The results are deferred to Table 3 in Section B.1 of the appendix. It is observed from the results
that models integrated with IBTM show reduced FLOPs and enhanced accuracy compared to their
original vision transformer counterparts. For instance, IBTM-MobileViT-S not only reduces its
FLOPs from 1.4G to 1.17G but also improves accuracy by 1.3% over the original MobileViT-S.
To further demonstrate the efficiency of the IBTM, we compare it against current state-of-the-art
weight pruning methods for efficient vision transformers, including S2ViTE (Chen et al., 2021b),
SPViT (Kong et al., 2022b), and SAViT (Zheng et al., 2022b) on EfficientViT-B1 (r224). To apply
S2ViTE, SPViT, and SAViT on EfficientViT-B1 (r224), we first run their pruning process following
the standard implementation in their papers (Chen et al., 2021b; Kong et al., 2022b; Zheng et al.,
2022b) on the ImageNet training data. After obtaining the pruned networks, we fine-tune them using
the same setting as in (Cai et al., 2023). It is observed from the results that with even lower FLOPs,
IBTM models trained from scratch consistently outperform the competing baseline methods.

4.2 ABLATION STUDY

Study on the effectiveness of IBTM in reducing IB loss. We study the effectiveness of IBTM in
reducing the IB loss and the variational upper bound of IB loss, which is the IB bound, across three
vision transformers, including MobileViT-S, MobileViT-XS, and EfficientViT (r224). We compare
the performance of the vision transformers with the baseline token merging method, ToME (Bolya
et al., 2023), LTMP (Bonnaerens & Dambre, 2023), and the corresponding IBTM-Tranformer mod-
els with all the transformer blocks replaced with the IBTM blocks. The ablation study results for
the fine-tuning setup are shown in Table 2. The ablation study results for the train-from-scratch
setup are deferred to Table 6 in Section E.1 of the appendix, respectively. The results indicate that
although ToMe and LTMP reduce the IB loss and the IB bound in both the fine-tuning setup and the
train-from-scratch setup, thereby adhering to the IB principle, which aims to enhance the correla-
tion of features with class labels while reducing their correlation with the input, IBTM can further
decrease the IB loss and IB bound. In particular, our IBTM models improve the vanilla vision trans-
formers, the ToMe models, and the LTMP models by a large margin in terms of both IB loss and
top-1 accuracy for both the fine-tuning setup and the train-from-scratch setup.

Model FLOPs Top-1 IB Bound IB Loss
0 1 10 50 0 1 10 50 0 1 10 50

MobileViT-S 1.40 G 78.40 - - - 0.05782 - - - -0.00432 - - -
ToMe-MobileViT-S 1.22 G 76.72 - - - 0.04931 - - - -0.00525 - - -
LTMP-MobileViT-S 1.26 G - 77.53 77.82 78.14 - 0.04902 0.04735 0.04542 - -0.00765 -0.00874 -0.00913
IBTM-MobileViT-S 1.17 G - 77.72 78.34 79.05 - 0.03095 0.02967 0.02683 - -0.01430 -0.01576 -0.01692
EfficientViT-B1 0.52 G 79.40 - - - 0.06014 - - - -0.00451 - - -
ToMe-EfficientViT-B1 0.47 G 78.81 - - - 0.04642 - - - -0.00732 - - -
LTMP-EfficientViT-B1 0.52 G - 79.21 79.32 79.40 - 0.04537 0.04219 0.03970 - -0.00802 -0.00916 -0.00995
IBTM-EfficientViT-B1 0.44 G - 79.39 79.62 80.22 - 0.02874 0.02703 0.02635 - -0.01585 -0.01664 -0.01704
ViT-B 17.58 G 83.74 - - - 0.05539 - - - -0.00419 - - -
ToMe-ViT-B 13.12 G 82.86 - - - 0.04583 - - - -0.00647 - - -
LTMP-ViT-B 13.46 G - 83.29 83.44 83.55 - 0.04392 0.04275 0.04086 - -0.00665 -0.00693 -0.00752
IBTM-ViT-B 12.85 G - 83.35 83.76 83.96 - 0.03732 0.03506 0.03082 - -0.01425 -0.01572 -0.01618

Table 2: Ablation study on the effects of IBTM in reducing IB loss in the fine-tuning setup. Both
LTMP models and IBTM models fine-tuned for 1, 10, 50 epochs are evaluated.

Study on the IB loss and IB bound at different layers. To study how the IB loss IB(G), and the
variational upper bound for the IB loss, IBU(G), decrease with respect to layer index ℓ of an IBTM
network, IB(G) and IBU(G) across different transformer layers for both LTMP-MobileViT-S and
IBTM-MobileViT-S trained in the fine-tuning setting are illustrated in Figure 2. Both models contain
9 transformer layers. It is observed from Figure 2 that both IB(G) and IBU(G) decrease in deeper
layers with larger layer indices of LTMP-MobileViT-S and IBTM-MobileViT-S. This observation
suggests that features in deeper layers correlate more closely with the class labels and less with
the input features, adhering to the IB principle. Moreover, IBTM-MobileViT-S reduces both IB(G)
and IBU(G) to lower levels in deeper layers compared to LTMP-MobileViT-S. These observations
evidence that the mask module in the IBTM block which generates the informative token merging
task by (3) can effectively reduce both IB(G) and IBU(G), better adhering to the IB principle than
the baseline LTMP-MobileViT-S.

Figure 3 in the appendix illustrates the training loss and the test loss during the training process
of IBTM-MobileViT-S, highlighting that the test loss of the IBTM network exhibits a more rapid
decline compared to the vanilla MobileViT-S. We also compare the training time of IBTM models
with the competing baselines for token merging in Table 8 in the appendix.
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(a) IB bound (IBU(G)) comparison between
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Figure 2: IB bound and IB loss comparison between MobileViT-S and IBTM-MobileViT-S at dif-
ferent transformer layers.

5 CONCLUSION

In this paper, we propose a novel transformer block, Transformer with Information Bottleneck in-
spired Token Merging, or IBTM. IBTM blocks perform token merging so as to render a transformer
network with less FLOPs and faster inference speed. An IBTM block generates an informative to-
ken merging mask for token merging in a learnable manner, which is inspired by the reduction of
the Information Bottleneck (IB) loss. A network with IBTM blocks can be trained from scratch or
fine-tuned from a pre-trained backbone with standard SGD, and it enjoys a reduction of IB loss and
reduced FLOPs while maintaining a compelling prediction accuracy. We demonstrate the effective-
ness of IBTM by replacing all the transformer blocks in several popular vision transformers with
IBTM blocks. Extensive experiments on various computer vision tasks demonstrate the effective-
ness of IBTM.
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A THE INFORMATION BOTTLENECK (IB) PERSPECTIVE OF THE TOKEN
MERGING

Such an idea of informative token merging can also be viewed from the perspective of Information
Bottleneck (IB). Let Z be the original attention output tokens, which are merged into the merged
tokens denoted by X̃ , and let Y be the ground truth training labels for a classification task. X̃ has
less tokens than Z. The principle of IB is to maximize the mutual information between X̃ and Y
while minimizing the mutual information between X̃ and X . That is, IB encourages the network
to learn the merged tokens more correlated with the class labels while reducing their correlation
with the input. Extensive empirical and theoretical works have evidenced that models respecting
the IB principle enjoy compelling generalization. With the informative token merging process in
IBTM, the merged tokens X̃ are the informative aggregation of the original attention output tokens
Z, so X̃ are less correlated with the training images and in this manner the IB principle is better
adhered. This is reflected in Table 2 in Section 4.2 and Table 6 in Section E.1 of the appendix,
where models for ablation study with existing token merging methods, ToMe (Bolya et al., 2023)
and LTMP (Bonnaerens & Dambre, 2023), enjoys less IB loss than the corresponding vanilla trans-
formers. This observation indicates that the IB principle is better respected by the token merging
process in ToMe and LTMP. In order to further decrease the IB loss, we propose an Information
Bottleneck (IB) inspired token merging process, where a IBTM block generates an informative to-
ken merging task which reduces the IB loss for vision transformers. For example, our model termed
“IBTM-MobileViT-S” in Table 2 in Section 4.2 and Table 6 in Section E.1 of the appendix is the
vision transformer with the IB loss reduced by replacing all the transformer blocks in MobileViT-S
with IBTM blocks so that more informative merged tokens are generated by the proposed infor-
mative token merging process. While ToMe and LTMP hurts the prediction accuracy compared to
the vanilla model, our IBTM enjoys even higher top-1 accuracy than the vanilla MobileViT-S either
trained from scratch or fine-tuned from pre-trained checkpoints, and we have the same observations
for MobileViT-XS and EfficientViT.

B MORE EXPERIMENTAL RESULTS

B.1 IMAGENET CLASSIFICATION RESULTS FOR THE TRAINING-FROM-SCRATCH SETUP

The ImageNet classification results of IBTM models trained from scratch are shown in Table 3.

B.2 OBJECT DETECTION

Implementation details. We incorporate ImageNet pre-trained models, that are IBTM-MobileViT-
XS, IBTM-MobileViT-S, and IBTM-EfficientViT, with the single-shot object detection backbone,
SSDLite (Sandler et al., 2018), to evaluate on the MS-COCO dataset (Lin et al., 2014), which com-
prises 117k training images and 5k validation images. We fine-tune all pre-trained IBTMs within
the object detection framework at a standard input resolution of 320× 320. These models undergo a
training period of 200 epochs using the AdamW optimizer, adhering to the training protocols estab-
lished in (Mehta & Rastegari, 2022). Employing a cosine learning rate scheduler, the initial learning
rate of 0.0009 is gradually reduced to 1.6e−6. For the object localization, we utilize a smooth ℓ1
loss, and for classification, cross-entropy losses are applied. The evaluation of performance on the
validation set is conducted using the mAP metric with an IoU range from 0.50 to 0.95 in increments
of 0.05.

Results. We adopt a comparative study of our IBTM Transformers against other lightweight feature
backbones within the SSDLite object detection framework. The results, as detailed in Table 4 of
the appendix, illustrate significant improvements in object detection performance when the feature
backbone is upgraded to include IBTM blocks. For example, substituting MobileViT-S with IBTM-
MobileViT-S enhances the mAP by 0.7% while concurrently reducing FLOPs by 0.3G. Additionally,
SSDLite equipped with IBTM-EfficientViT achieves a substantial performance increase of 6.9%
while maintaining the same FLOPs as MobileNetV3.
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Model # Params FLOPs Top-1
MobileViT-XS 2.3 M 0.7 G 74.8
ToMe-MobileViT-XS (Bolya et al., 2023) 2.3 M 0.54 G 72.7
ToFu-MobileViT-XS (Kim et al., 2024) 2.3 M 0.54 G 73.3
LTMP-MobileViT-XS (Bonnaerens & Dambre, 2023) 2.3 M 0.56 G 73.9
IBTM-MobileViT-XS (Ours) 2.3 M 0.52 G 75.8
Mobile-Former 9.4 M 0.2 G 76.7
EfficientFormer (Li et al., 2022) 12.3 M 1.3 G 79.2
MobileViT-S 5.6 M 1.4 G 78.4
ToMe-MobileViT-S (Bolya et al., 2023) 5.6 M 1.22 G 76.7
ToFu-MobileViT-S (Kim et al., 2024) 5.6 M 1.22 G 77.2
LTMP-MobileViT-S (Bonnaerens & Dambre, 2023) 5.6 M 1.26 G 77.5
IBTM-MobileViT-S (Ours) 5.6 M 1.17 G 79.7
EfficientViT-B1 [r224] (Cai et al., 2023) 9.1 M 0.52 G 79.4
S2ViTE-EfficientViT-B1 [r224] (Chen et al., 2021b) 8.2 M 0.47 G 79.0
SPViT-EfficientViT-B1 [r224] (Kong et al., 2022b) 9.2 M 0.49 G 79.3
SAViT-EfficientViT-B1 [r224] (Zheng et al., 2022b) 8.4 M 0.47 G 79.2
ToMe-EfficientViT-B1 [r224] (Bolya et al., 2023) 9.1 M 0.47 G 78.8
ToFu-EfficientViT-B1 [r224] (Kim et al., 2024) 9.1 M 0.47 G 79.0
LTMP-EfficientViT-B1 [r224] (Bonnaerens & Dambre, 2023) 9.1 M 0.50 G 79.2
IBTM-EfficientViT-B1 [r224] (Ours) 9.1 M 0.44 G 80.2
EfficientViT-B1 [r288] (Cai et al., 2023) 9.1 M 0.86 G 80.4
ToMe-EfficientViT-B1 [r288] (Bolya et al., 2023) 9.1 M 0.73 G 79.7
ToFu-EfficientViT-B1 [r288] (Kim et al., 2024) 9.1 M 0.73 G 79.8
LTMP-EfficientViT-B1 [r288] (Bonnaerens & Dambre, 2023) 9.1 M 0.76 G 80.0
IBTM-EfficientViT-B1 [r288] (Ours) 9.1 M 0.70 G 81.0
ViT-S/16 (Dosovitskiy et al., 2021b) 22.1 M 4.3 G 81.2
IBTM-ViT-S/16 (Ours) 22.1 M 3.7 G 81.8
ViT-B/16 (Dosovitskiy et al., 2021b) 22.1 M 4.3 G 81.2
IBTM-ViT-S/16 (Ours) 22.1 M 3.7 G 81.8
Swin-T (Liu et al., 2021) 29.0 M 4.5 G 81.3
IBTM-Swin-T (Ours) 29.0 M 3.8 G 81.8
Swin-B (Liu et al., 2021) 29.0 M 4.5 G 81.3
IBTM-Swin-B (Ours) 29.0 M 3.8 G 81.8

Table 3: Comparisons with baseline methods on ImageNet-1k validation set.

Feature backbone # Params. FLOPs mAP
MobileNetv3 (Howard et al., 2019) 4.9 M 1.4 G 22.0
MobileNetv2 (Sandler et al., 2018) 4.3 M 1.6 G 22.1
MobileNetv1 (Howard et al., 2017) 5.1 M 2.6 G 22.2
MixNet (Tan & Le, 2019) 4.5 M 2.2 G 22.3
MNASNet (Tan et al., 2019) 4.9 M 1.7 G 23.0
YoloV5-N (640×640) (Redmon & Farhadi, 2017) 1.9 M 4.5 G 28.0
Vidt (Song et al., 2022) 7.0 M 6.7 G 28.7
MobileViT-XS 2.7 M 1.7 G 24.8
IBTM-MobileViT-XS(Ours) 2.7 M 1.5 G 25.4
MobileViT-S 5.7 M 2.4 G 27.7
IBTM-MobileViT-S(Ours) 5.7 M 2.1 G 28.4
EfficientViT 9.9 M 1.5 G 28.4
IBTM-EfficientViT(Ours) 9.9 M 1.4 G 28.9

Table 4: Object detection performance with SSDLite.

B.3 INSTANCE SEGMENTATION

In this section, we assess the efficacy of IBTM when applied to instance segmentation tasks using
the COCO dataset (Lin et al., 2014). We utilize Mask R-CNN (He et al., 2017) equipped with a Fea-
ture Pyramid Network (FPN) as the segmentation head, built on the IBTM-EfficientViT-B1 feature
backbone. For comparative analysis, we include EfficientViT-B1 (Cai et al., 2023) and EViT (Liu
et al., 2023) as baseline models. Both our models and the baselines are trained on the training split
of the COCO dataset and evaluated on the validation split, adhering to the protocols established
by (Chen et al., 2019). The training duration is set to 12 epochs, consistent with the 1× schedule
described in (Chen et al., 2019). The AdamW optimizer is employed for training following the
practices of (Liu et al., 2023). We initiate the learning rate at 0.001, which is then gradually reduced
following a cosine learning rate schedule. Performance metrics reported include the mean bounding
box Average Precision (mAPb) and mean mask Average Precision (mAPm), along with bounding
box Average Precision (APb) and mask Average Precision (APm) at IoU thresholds of 0.5 and 0.75.
The findings, detailed in Table 5, demonstrate that IBTM-EfficientViT-B1 consistently enhances
segmentation performance across various thresholds.
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Methods mAPbox APb
50 APb

75 mAPm APm
50 APm

75

EViT (Liu et al., 2023) 32.8 54.4 34.5 31.0 51.2 32.2
EfficientViT-B1 (Cai et al., 2023) 33.5 55.4 34.8 31.9 52.3 32.7
IBTM-EfficientViT-B1 34.3 56.1 35.2 32.8 52.8 33.1

Table 5: Instance Segmentation Results on COCO.

C PROOFS

C.1 PROOF OF PROPOSITION 3.2

Proof. We first compute the gradient of τ(X̃i(G), a
′) with respect to X̃i(G) by

∇X̃i(G)τ(X̃i(G), a
′) =

2Sia′

C∑
a=1

Sia

(
X̃i(G)− C̃a

)
− 2Sia′

(
X̃i(G)− C̃a′

) C∑
a=1

Sia(
C∑

a=1
Sia

)2 .

Using the definitions of γi and zetai as γi :=
C∑

a=1
Sia and ζi :=

C∑
a=1

SiaCa for i ∈ [n], we have

∇X̃i(G)τ(X̃i(G), a
′) =

2Sia′

γ2i

(
γiC̃a′ − ζi

)
.

As a result, the gradient of IBU(G) with respect to G is computed as follows:

∇GIBU(G) =
1

n

n∑
i=1

C∑
a=1

C∑
b=1

Zi∇X̃i
τ(X̃i, a)τ(Xi, b) log τ(Xi, b)

− 1

n

n∑
i=1

C∑
a=1

C∑
y=1

Zi∇X̃i
τ(X̃i, a)1I{yi=y} logQ(X̃ ∈ a|Y = y)

=
1

n

n∑
i=1

C∑
a=1

Zi∇X̃i
τ(X̃i, a)ψi,a

=
2

n

n∑
i=1

C∑
a=1

Zi
Sia

γ2
i

(γiCa − ζi)ψi,a,

where ψi,a :=
C∑

b=1

τ(Xi, b) log τ(Xi, b)−
C∑

y=1
1I{yi=y} logQ(X̃ ∈ a|Y = y).

C.2 PROOF OF THEOREM 3.1

We need the following two lemmas before the proof of Theorem 3.1. It is noted that we abbreviate
X̃(G) and X̃i(G) as X̃ and X̃i in the sequel.
Lemma C.1.

I(X̃,X) ≤ 1

n

n∑
i=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b) log τ(Xi, b)−
1

n2

n∑
i=1

n∑
j=1

C∑
b=1

τ(Xi, b) log τ(Xj , b)

(5)

Lemma C.2.

I(X̃, Y ) ≥ 1

n

C∑
a=1

C∑
y=1

n∑
i=1

τ(X̃i, a)1I{yi=y} logQ(X̃ ∈ a|Y = y) (6)
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Proof of Theorem 3.1. We note that IB(W) = I(X̃,X) − I(X̃, Y ). Then IB(W) ≤ IBU(W) −
C0 follows by the upper bound for I(X̃,X) in Lemma C.1 and the lower bound for I(X̃, Y ) in

Lemma C.2. Here C0 = 1
n2

n∑
i=1

n∑
j=1

C∑
b=1

τ(Xi, b) log τ(Xj , b).

Proof of Lemma C.1. By the log sum inequality, we have

I(X̃,X)

=

C∑
a=1

C∑
b=1

Pr
[
X̃ ∈ a,X ∈ b

]
log

Pr
[
X̃ ∈ a,X ∈ b

]
Pr

[
X̃ ∈ a

]
Pr [X ∈ b]

≤ 1

n2

n∑
i=1

n∑
j=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b)
(
log

(
τ(X̃i, a)τ(Xi, b)

)
− log

(
τ(X̃i, a)τ(Xj , b)

))
=

1

n2

n∑
i=1

n∑
j=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b) log τ(Xi, b)

− 1

n2

n∑
i=1

n∑
j=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b) log τ(Xj , b)

=
1

n

n∑
i=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b) log τ(Xi, b)

− 1

n2

n∑
i=1

n∑
j=1

C∑
a=1

C∑
b=1

τ(X̃i, a)τ(Xi, b) log τ(Xj , b). (7)

Proof of Lemma C.2. Let Q(X̃|Y ) be a variational distribution. We have
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I(X̃, Y )

=

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Pr
[
X̃ ∈ a, Y = y

]
Pr

[
X̃ ∈ a

]
Pr [Y = y]

=

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Pr
[
X̃ ∈ a|Y = y

]
Q(X̃ ∈ a|Y = y)

Pr
[
X̃ ∈ a

]
Q(X̃ ∈ a|Y = y)

≥
C∑

a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Pr
[
X̃ ∈ a|Y = y

]
Q(X̃ ∈ a|Y = y)

+

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Q(X̃ ∈ a|Y = y)

Pr
[
X̃ ∈ a

]
= KL

(
P (X̃|Y )

∥∥∥Q(X̃|Y )
)

+

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Q(X̃ ∈ a|Y = y)

Pr
[
X̃ ∈ a

]
≥

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
log

Q(X̃ ∈ a|Y = y)

Pr
[
X̃ ∈ a

]
=

C∑
a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
logQ(X̃ ∈ a|Y = y) +H

(
P (X̃)

)

≥
C∑

a=1

C∑
y=1

Pr
[
X̃ ∈ a, Y = y

]
logQ(X̃ ∈ a|Y = y)

≥ 1

n

C∑
a=1

C∑
y=1

n∑
i=1

τ(X̃i, a)1I{yi=y} logQ(X̃ ∈ a|Y = y). (8)

C.3 COMPUTATION OF Q(t)(X̃|Y )

The variational distribution Q(t)(X̃|Y ) can be computed by

Q(t)(X̃ ∈ a|Y = y) = Pr
[
X̃ ∈ a|Y = y

]

=

n∑
i=1

τ(X̃i, a)1I{yi=y}

n∑
i=1

1I{yi=y}

. (9)

D IMPLEMENTATION DETAILS

D.1 COMPUTATION COST ANALYSIS OF IBTM-EFFICIENTVIT

In this section, we analyze the additional inference computation cost, the FLOPs, of the IBTM
transformer block for token merging in both regular transformers and efficient transformers as il-
lustrated in Figure 1. Let D be the dimension of input tokens and N be the number of tokens.
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The FLOPs of the token merging in an IBTM transformer block in regular vision transformers is
6CDP +3C +ND2 +NDP , where 6CDP +3C +ND2 is the FLOPs for calculating the merg-
ing mask and NDP is the cost for applying the merging mask on the input tokens. In the IBTM
transformer block of efficient vision transformers, the additional FLOPs of the token merging is
6CDP + 3C + ND2 + 2NDP , since the merging mask will be applied to both the input tokens
and the merged tokens.

E ABLATION STUDY

E.1 STUDY ON THE EFFECTS OF IBTM IN REDUCING IB LOSS FOR THE
TRAIN-FROM-SCRATCH SETUP

We also conduct an ablation study on the effects of IBTM in reducing IB loss for the train-from-
scratch setup. The results are shown in Table 6.

Model FLOPs Top-1 IB Bound IB Loss

MobileViT-S 1.40 G 78.40 0.05782 -0.00432
ToMe-MobileViT-S 1.22 G 76.72 0.04931 -0.00525
LTMP-MobileViT-S 1.26 G 78.14 0.04542 -0.00913
IBTM-MobileViT-S 1.17 G 79.68 0.02425 -0.01725
EfficientViT-B1 0.52 G 79.40 0.06014 -0.00451
ToMe-EfficientViT-B1 0.47 G 78.81 0.04642 -0.00732
LTMP-EfficientViT-B1 0.52 G 79.40 0.03970 -0.00995
IBTM-EfficientViT-B1 0.44 G 80.20 0.02689 -0.01730
ViT-B 17.58 G 83.74 0.05539 -0.00419
ToMe-ViT-B 13.12 G 82.86 0.04583 -0.00647
LTMP-ViT-B 13.46 G 83.55 0.04086 -0.00752
IBTM-ViT-B 12.85 G 83.87 0.03094 -0.01636

Table 6: Ablation Study on the effects of IBTM in reducing IB loss in the train-from-scratch setup.

E.2 STUDY ON THE IMPACT OF COMPRESSION RATIO

We also conduct an ablation study on the compression ratio of token merging on ViT-B. The in-
ference time of all the models is also evaluated on the validation set of ImageNet-1k and reported
in milliseconds (ms) per batch for an evaluation batch size of 128 on one Nvidia A100 GPU. It
is observed from the results in Table 7 that although a smaller compression ratio can result in a
slight accuracy drop, the IBTM-ViT-B with a compression ratio of 0.65 can still achieve the same
performance as the original ViT-B model.

Methods FLOPs (G) Inference Time (ms/batch) Compression Ratio r Train-from-scratch Fine-tuning
ViT-B 17.58 37.2 1.00 83.74 83.74
IBTM-ViT-B 16.55 36.5 0.95 84.43 84.32
IBTM-ViT-B 15.25 35.4 0.90 84.46 84.29
IBTM-ViT-B 14.19 34.1 0.85 84.33 84.35
IBTM-ViT-B 14.89 33.5 0.80 84.15 84.20
IBTM-ViT-B 13.49 32.8 0.75 83.95 84.05
IBTM-ViT-B 12.85 31.4 0.70 83.87 83.96
IBTM-ViT-B 11.95 29.6 0.65 83.74 83.81
IBTM-ViT-B 11.03 28.2 0.60 83.53 83.56
IBTM-ViT-B 10.15 27.4 0.55 83.07 83.14
IBTM-ViT-B 9.63 26.3 0.50 82.87 82.95
IBTM-ViT-B 8.77 25.7 0.45 83.46 83.51
IBTM-ViT-B 8.30 24.2 0.40 82.23 82.37

Table 7: Performance compression between IBTM-ViT-B with different compression ratios.

E.3 TRAINING TIME EVALUATION

We evaluate the training cost of our IBTM models and the baseline models on the training set of
ImageNet-1k. The training is performed on 4 NVIDIA A100 GPUs with an effective batch size
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of 512 images. We report the overall training time of 300 epochs. We also include the training
time of ToMe Bolya et al. (2023), ToFu (Kim et al., 2024), and LTMP (Bonnaerens & Dambre,
2023) for comparison. It is noted that ToMe, ToFu, and LTMP are applied to pre-trained models.
Therefore, the training time for ToMe, ToFu, and LTMP includes the training time of the baseline
models. In contrast, our models are trained from scratch. The training time of various models
are shown in Table 8. The training overhead of IBTMs mainly comes from the computation of{
τ(X̃i, a)

}
i∈Bj ,a∈[C]

,
{
Q(t−1)(X̃ ∈ a|Y = y)

}
a∈[C],y∈[C]

, and
{
C(t−1)
a

}C

a=1
as described in Al-

gorithm 1. It is observed from the Table 8 that the training time of IBTM models is comparable to
the training time of the competing token merging methods. In addition, IBTM largely resolves the
issue of significant prediction accuracy drops after token merging by ToMe, ToFu, and LTMP.

Methods # Params FLOPs Training Time (Hours) Top-1
MobileViT-XS 2.3 M 0.70 G 73.5 75.8
ToMe-MobileViT-XS 2.3 M 0.54 G 73.5 72.7
ToFu-MobileViT-XS 2.3 M 0.54 G 73.5 73.3
LTMP-MobileViT-XS 2.3 M 0.56 G 73.8 73.9
IBTM-MobileViT-XS 2.5 M 0.52 G 91.0 76.8
MobileViT-S 5.6 M 1.40 G 89.5 78.4
ToMe-MobileViT-S 5.6 M 1.22 G 89.5 76.7
ToFu-MobileViT-S 5.6 M 1.22 G 89.5 77.2
LTMP-MobileViT-S 5.6 M 1.17 G 90.0 77.5
IBTM-MobileViT-S 5.9 M 1.22 G 105.0 79.7
EfficientViT-B1 [r224] 9.1 M 0.52 G 73.0 79.4
ToMe-EfficientViT-B1 [r224] 9.1 M 0.47 G 73.0 78.8
ToFu-EfficientViT-B1 [r224] 9.1 M 0.47 G 73.0 79.0
LTMP-EfficientViT-B1 [r224] 9.1 M 0.50 G 73.3 79.2
IBTM-EfficientViT-B1 [r224] 9.5 M 0.44 G 91.0 80.2
EfficientViT-B1 [r288] 9.1 M 0.86 G 95.5 80.4
ToMe-EfficientViT-B1 [r288] 9.1 M 0.73 G 95.5 79.7
ToFu-EfficientViT-B1 [r288] 9.1 M 0.73 G 95.5 79.8
LTMP-EfficientViT-B1 [r288] 9.1 M 0.76 G 95.9 80.0
IBTM-EfficientViT-B1 [r288] 9.5 M 0.70 G 110.5 81.0

Table 8: Training time (minutes/epoch) comparisons between IBTMs and their baseline models.

E.4 TRAINING LOSS AND TEST LOSS OF IBTM-TRANSFOMERS

In this section, we illustrate the training loss and the test loss of IBTM-MobileViT-S. In comparison,
we also illustrate the training loss and test loss of MobileViT-S. Both models are trained for 300
epochs. The plots are shown in Figure 3. It can be observed that IBTM-MobileViT-S leads to a
lower training loss and test loss at the end of the training, which demonstrates the benefit of IBTM
in improving the performance of the vision transformers through the IB-inspired token merging.
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(a) Training loss comparison between MobileViT-
S and IBTM-MobileViT-S.
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Figure 3: Training loss and test loss comparison between MobileViT-S and IBTM-MobileViT-S.
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Figure 4: visionization of merging weights in the first IBTM block in IBTM-MobileViT-S.

E.5 VISIONIZATION RESULTS

To study the effectiveness of IBTM in selecting informative tokens during the token merging process,
we visionize the token merging masks in the first IBTM block of IBTM-MobileViT-S for selected
images from ImageNet in Figure 4. Each image is divided into 16×16 tokens. For each example, we
select only the most representative merged token that encapsulates the critical features of the objects
in the image, and the merged token is a weighted average of several self-attention output tokens
with the aggregation weights in the token merging mask. The input images are illustrated in the
first row, and the heatmaps that visionize the aggregation weights in the token merging mask for the
selected merged token are shown in the second row. The class labels for each image are presented at
the bottom of each column. The results illustrate that the mask module in the IBTM block usually
assigns higher aggregation weights to tokens covering the most representative and distinctive parts
of the objects, which are often the most informative for classifying the images. In the example of
the dhole in the first column, the IBTM block puts larger weights on the eyes and nose of the Dhole.
In the example of the hartebeest in the second column, the IBTM block puts larger weights on the
twisted horns of the hartebeest. In the example of the racing car in the third column, the IBTM block
puts larger weights on the wheel of the car. These observations demonstrate that more informative
tokens contribute more to the merged tokens with larger aggregation weights in the token merging
process of the IBTM block.
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