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ABSTRACT

Existing methods for merging experts during model training and fine-tuning pre-
dominantly rely on Euclidean geometry, which assumes a flat parameter space.
This assumption can limit the model’s generalization ability, especially during the
pre-training phase, where the parameter manifold might exhibit more complex
curvature. Curvature-aware merging methods typically require additional infor-
mation and computational resources to approximate the Fisher Information Ma-
trix, adding memory overhead. In this paper, we introduce CAMEx (Curvature-
Aware Merging of Experts), a novel expert merging protocol that incorporates
natural gradients to account for the non-Euclidean curvature of the parameter
manifold. By leveraging natural gradients, CAMEx adapts more effectively to
the structure of the parameter space, improving alignment between model up-
dates and the manifold’s geometry. This approach enhances both pre-training and
fine-tuning, resulting in better optimization trajectories and improved generaliza-
tion without the substantial memory overhead typically associated with curvature-
aware methods. Our contributions are threefold: (1) CAMEx significantly out-
performs traditional Euclidean-based expert merging techniques across various
natural language processing tasks, leading to enhanced performance during pre-
training and fine-tuning; (2) we introduce a dynamic merging architecture that
optimizes resource utilization, achieving high performance while reducing com-
putational costs, facilitating efficient scaling of large language models; and (3) we
provide both theoretical and empirical evidence to demonstrate the efficiency of
our proposed method.

1 INTRODUCTION

Sparse Mixture of Experts (SMoE) (Jacobs et al., 1991; Shazeer et al., 2017) is currently a core
component for constructing foundation and large language models (LLMs), whose parameters count
can rise up to billions and trillions (Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019; Raffel
et al., 2020; Fedus et al., 2022; Wei et al., 2022). Nevertheless, Hoffmann et al. (2024); Kaplan et al.
(2020), recognized a scaling law that underpins the LLM’s evolution, which is larger models require
exponentially more computational resources and data to continue improving, and without sufficient
scaling in all dimensions, performance gains may plateau. Thus, identifying and implementing
efficient methodologies for the sustainable scaling of LLMs is imperative. SMoE addresses this
challenge by sparsely activating parameters of large models, which can boost model performance
with only minor losses in computational efficiency. The methodology is integrated chiefly into
feedforward layers of transformers, processing tokens by selectively activating a small number of
experts and hence trimming down the computing memory and FLOPS (Fedus et al., 2022; Lepikhin
et al., 2021).

Since its debut in Shazeer et al. (2017), SMoE has gone through numerous explorations and ad-
vancements in routing mechanism development and expert architecture design. Dai et al. (2022)
proposes a two-phase training strategy for stabilizing the gate function so that the expert’s selection
of one token does not fluctuate between different inference times. Zhou et al. (2022) changes the
perspective of the router to experts with experts choice routing, ensuring a balancing load between
experts . Chi et al. (2022) and Chen et al. (2023) address the concern of representation collapse in
SMoE by proposing cosine scoring and a fixed random initialized router, respectively. Some other
works view the routing mechanism as a reinforcement learning or optimization transport problem.
In terms of expert design orientation, Rajbhandari et al. (2022) and Dai et al. (2024) introduce the
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Figure 1: Overview of CAMEx for a causal language modeling SMoE. The experts are merged
through the router scores and the curvature-matrix M. During the merging protocol, we can gen-
erate the masks for the domain-vectors, denoted as γi, such as Ties or Dare. We follow the causal
segmenting pipeline from (Zhong et al., 2024) to achieve both memory efficiency and causal infor-
mation constraints. Note that stop gradient operator is applied for the first segment router scores.

concept of shared experts wherein each token is processed by a fixed expert and another selected
through gating, achieving two experts engagement per layer without increasing the communication
cost beyond that of top-1 gating. Muqeeth et al. (2024) proposes to merge experts by taking the
weighted mean of the expert’s parameters with respect to router scores. This methodology is then
extended in He et al. (2023), Zhong et al. (2024), and Li et al. (2024) for causal language modeling
pretraining and fine-tuning tasks.

Among existing rigorous research on SMoE, our work focuses on the experts merging lines of re-
search. Specifically, we systemically integrate natural gradient into task-specific merging protocol
for SMoE. To the best of our knowledge, the current merging protocol applied for SMoE still deems
the parameter space of the expert’s parameters as Euclidean ones. Nevertheless, it has been shown
that the space of neural network parameters brings the characteristic of the Riemannian manifold
(Amari, 1998). Therefore, it is natural for us to make an effort in such a direction for merging
experts. Although some existing works on merging models have already leveraged the Fisher Infor-
mation Matrix (Matena & Raffel, 2022; Jin et al., 2023), we find that they require large computa-
tional space and complicated steps to perform well. In contrast, our merging protocol is simple and
straightforward to implement while still taking into account the curvature of the parameters mani-
fold. We discover the superior performance of curvature-aware merging in our method compared to
the regular merging procedure applied to SMoE. Our main contributions are three-fold:

1. We introduce a novel rapid and efficient merging technique named Curvature- Aware Merging
of Experts (CAMEx) for SMoE that includes information about the curvature of the expert’s
parameters manifold.

2. We propose a new architecture based on CAMEx, which dynamicalizes the merging protocol
along with parameters reduction. Our empirical experiments prove the dominant performance
of this architecture on pre-training tasks.

3. We theoretically prove that our CAMEx obtains better alignment between experts and the
training task domain.

We empirically demonstrate that 1) our proposed merging method can add in rapidness of conver-
gence speed for pre-training and 2) when combined with other merging protocols, it can boost the
model’s performance on a variety of practical tasks, including language modeling, text classification,
question answering, and image classification.

2 CURVATURE-AWARE MERGING OF EXPERTS

This section aims to give an overview of model merging methods and their integration into SMoE
architecture. We then introduce our curvature-aware merging protocol stamping from the natural
gradient. Finally, we perform an theoretical analysis to support our proposal.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Notations and Definitions.

Symbol Description Symbol Description
T Number of tokens k Number of selected experts
N Total number of experts Ei ∈ Rd×h Weights for the ith expert
h ∈ RT×d Input tokens or hidden states G(·, ·) ∈ RT×N Gating function output
St Set of top-k experts for token ht α ∈ [0, 1] Rescalling factor

2.1 BACKGROUND: EXPERT MERGING IN SPARSE MIXTURE OF EXPERTS

It is convenient to recall the concept of SMoE and a few well-known experts merging methods for
SMoE. From this point to the rest of our paper, let us use the notations summarized in Table 1.

Sparse Mixture of Experts. A SMoE layer processes the tokens series as follows:
yt =

∑
i∈St

G(t, i) ·Eiht

G(t, ·) = softmax(Wght)

St = top-k(G(t, ·))
(1)

SMEAR. Muqeeth et al. (2024) introduces the ensemble of expert parameters through weighted
average computation with the factors are the router scores.

Task-Specific merging in SMoE. Our work will follow the scheme of task-specific merging (Ilharco
et al., 2023). In such a setting, we assume the existence of N pre-trained models parameterized by
θi each was pre-trained on a different task. We then define the task-vector for each pre-trained
model through the merged model θm as τi = θi − θm. The merging protocol will be performed
by Eqn. Merg. Under the context of SMoE, each expert learns to handle a particular subset of the
input space or specializes in a specific type of feature or pattern (Jacobs et al., 1991; Dai et al.,
2024). We believe it is more suitable to reference this technique as domain-specific merging. We,
therefore, will rename the tensors τi = Ei − Em as domain-vector. Additionally, to take the router
information into account, we will define the formulation for domain-specific merging in a SMoE
layer as follows:

Êm = Em + α

N−1∑
i=1

siτi (2)

where si denotes the score of the router for the ith expert. We want to note that with 0 < α < 1,
domain-specific merging aligns with soft merging.

2.2 BACKGROUND: OTHER MODEL MERGING METHODS

In this section, we discuss other recent and widely-adopted model merging methods outside the
context of SMoE that we will combine with our curvature-aware merging method in our experiments
in Section 3.

TIES merging. Yadav et al. (2023) improves upon task arithmetic by removing interference be-
tween the task vectors. Specifically, TIES zeros out entries in a given task vector with low magnitude
and resolves sign conflicts across different task vectors.

DARE merging. Different form TIES, DARE merging randomly zeros out the neurons like a
Dropout layer (Yu et al., 2024).

Fisher merging. Existing work on Fisher merging suffers from computational complexity since
computing and inverting the Fisher Information Matrix, especially for large neural networks, is often
intractable. Even when using approximations like diagonal or block-diagonal Fisher matrices, these
methods can still be computationally expensive and challenging to apply at scale. Furthermore, the
accuracy of Fisher approximations, such as diagonal or block-diagonal, can be problematic (Matena
& Raffel, 2022).
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2.3 GRADIENT INTERPRETATION OF MODELS MERGING

We want to emphasize the alignments between the paradigm of gradient descent and model merging.
For this, we denote θ ∈ RN , L(θ), and η as the model’s parameters, the empirical loss function, and
the learning rate, respectively. During the training process of a deep learning model, the parameters
are updated following the gradient descent formula:

θn+1 = θn + η(−∇L(θn)) (GD)

In the aspect of deep models merging, we also have an update rule in a similar manner, which is

θ̂m = θm + α

n∑
i=1

(θi − θm)︸ ︷︷ ︸
gradient-like

update direction

(Merg)

where θm denotes the merged model’s parameters, and θi denotes the parameters of the ith expert.
Here, we interpret θi as the optimal parameters of the model for a specific task or domain, and then
the update rule gives us a direction toward optimizing for all tasks.

However, it has been pointed out by Amari (1998) that the parameter space structure of deep learning
models has Riemannian characteristics. Therefore, a more natural gradient updating scheme was
proposed,

θn+1 = θn + η G(θn)(−∇L(θn))︸ ︷︷ ︸
natural gradient

(NGD)

In this formula, G(θn) ∈ RN×N denotes the Riemannian metric tensor (Amari, 1998; Amari
& Douglas, 1998), which characterizes the intrinsic curvature of a particular manifold in N -
dimensional space (Martens, 2020) or sometimes, the inversed Fisher Information Matrix. The
same ideology was introduced for merging large language models in Fisher merging (Matena &
Raffel, 2022) and Regmean (Jin et al., 2023). However, both methods suffer from the bottleneck in
the computation cost of approximating the Fisher Information. Moreover, these methods are chal-
lenging to apply in sparse layers of SMoE since they would introduce huge latency, FLOPS, and
memory for computing and storing matrices whose number of entries is proportional to a number of
expert parameters.

2.4 EXPERTS MERGING WITH CURVATURE-AWARE

In this section, for the sake of conciseness, we focus on the language modeling task; a similar
methodology can be applied to other tasks, such as classification. We introduce an efficient way to
merge experts within SMoE layers, based on the causal segmenting approach proposed by (Zhong
et al., 2024). The goal of the causal segment routing strategy is to enhance the efficiency of expert
merging operations while maintaining the autoregressive nature of language models. More details
about this algorithm can be found in Appendix C.1 and Algorithm 1. We then perform the following
merging protocols:

Êl
m = El

m + α

N−1∑
i=1

Mi · (sli ∗ τ li ) (CA-Merg)

where MI ∈ Rdindout×dindout denote the curvature matrix which performs matrix product with
the gradient-like component. The curvature of the parameters manifold will be learned through
these tensors while optimizing the empirical loss. This approach has also proven its effectiveness in
meta-learning for few-shot classification (Park & Oliva, 2019). We further explore the computing
efficiency of merging experts by proposing a novel dynamic merging formula

El+1
m = El

m +
α

N − 1

N−1∑
i=1

Mi · τ li

Êl+1
m = El+1

m + α

N−1∑
i=1

Mi · (sl+1
i ∗ τ l+1

i )

(Dynamic-Merg)

The architecture corresponding to this recurrent representation can be found in Figure 2. The ar-
chitecture contains a global expert that traverses through the SMoE layers by the updating rule in
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Figure 2: Overall architecture of different SMoE layers. The figure presents the vanilla SMoE
layer on the left, the merging expert layer in the middle, and our proposed dynamic merging SMoE
layer on the right. Our architecture reduces the number of parameters compared to the other two,
while maintaining the same number of activated neurons per layer. Importantly, despite the dynamic
merging mechanism, our architecture preserves the same number of experts at each layer as the other
SMoE architectures, ensuring comparable model capacity, i.e., the number of activated parameters
per layer.

Eqn. Dynamic-Merg. Not only will this allow a notable reduction in model size and GFLOPS, but
it also ensures the number of experts in each SMoE is the same as in the full-expert setting, where
each layer has the same number of experts. We refer to Appendix F for a step-by-step walkthrough
of key equations in CAMEx.

2.5 EFFICENCY

Parameter efficient approximation of curvature matrix. Storing and computing a curvature ma-
trix requires a whopping memory and time complexity of O(n4) and O(n4), respectively. This
is infeasible even for a simple SMoE layer, as one layer can contain many experts. To mitigate
this problem, we follow Martens & Grosse (2015) and approximate the curvature matrix using the
Kronecker product. It has been proven by Hameed et al. (2022) that we can approximate arbitrary
matrix using a finite sum of Kronecker products. For a curvature matrix Mi ∈ Rdindout×dindout , we
present the rank-1 approximation as below:

Mi ≈Min
i ⊗Mout

i (3)

with Min
i ∈ Rdin×din and Mout

i ∈ Rdout×dout . Still, this form of approximation is too large to
compute and store during training time, so we further decompose Min

i and Mout
i using Kronecker

product because of the efficient computation using tensor algebra. This form of approximation re-
duces the number of parameters added and only puts negligible memory and computational overhead
to the training process at the cost of additional O(n) memory complexity and O(n2.5) computational
complexity. Although this might limit the representative capacity of the curvature matrix, we em-
pirically find that the performance of our method still surpasses other merging methods.

Efficient test-time inference with reparameterization. We focus on the case where α = 1. To
further optimize the computation of curvature-aware merging, we embed the curvature matrices into
the domain-vectors using the following reparameterization trick:

E′
i ← Em +Mi · τi (4)

In this case, the merging formula at test time becomes:

Êm = Em +

N−1∑
i=1

si · (E′
i −Em) = Em +

N−1∑
i=1

Mi · (si · τi)

Thus, during inference, we avoid storing the curvature matrices and recomputing their product with
domain vectors, reducing the total FLOPs. This explains the computational efficiency seen in Sec-
tion 3.
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2.6 THEORETICAL ANALYSIS

In this section, we investigate how optimizing the curvature matrix M in Eqn. CA-Merg can im-
prove the generalization of the expert merging process for downstream tasks. We first recall the
formulation for domain-specific merging

Êm = Em + α

N−1∑
j=1

sj · τj (5)

We begin by calculating the gradient of the downstream task loss function, denoted by L, with
respect to Mj at a specific lth layer as follows:

∂L
∂Mj

=
∂L
∂Êm

· ∂Êm

∂Mj
=

∂L
∂Êm

· (αsj ∗ τj) = αsj ∗
∂L
∂Êm

· (Ej −Em) (6)

This is the outer product of the gradients of the task loss and the domain vectors. It is important
to note the connection with the Fisher Information Matrix. For a downstream task, if we define
the loss function as the negative log-likelihood, such as in a supervised classification task L(θ) =
E(x,y)∼p[− logθ p(y|x)], then the empirical Fisher Information Matrix can be defined as

F = E(x,y)∼p[∇θ logθ p(y|x)∇θ logθ p(y|x)⊤]

Next, we consider how the gradient of the curvature matrix can contribute to better performance.
Given a time step t, the standard gradient descent from an initial point Mj with learning rate β
yields the following update:

Mt+1
j = Mt

j − β ∗ ∂L
∂M t

j

= Mt
j − αβ ∗ stj ∗

∂L
∂Êt

m

· (Et
j −Et

m) (7)

We assume standard gradient descent for simplicity, but the argument extends to other advanced
gradient algorithms, such as momentum and ADAM. We then apply Mj to the merging process in
Eqn. CA-Merg and get

Êm = Em + α

N−1∑
j=1

st+1
j ∗Mt

j · τ t+1
j︸ ︷︷ ︸

domain-specific merging with curvature-aware

−α2β

N−1∑
j=1

stjs
t+1
j ∗

(
τ t

⊤

j · τ t+1
j

)
· ∂L
∂Êt

m

(8)

The detail for the derivation can be found in Appendix E. We can see that the first term in Eqn. 8 is the
classic domain-specific merging formula with the guidance of the learned curvature. Furthermore,
the second term contains the direction from the task loss gradient and the inner product between
domain-vectors from two consecutive gradient steps. If Mj = I ∀j, this term can be seen as
an auxiliary signal from task loss of the previous update step guiding the merging direction. The
term stjs

t+1
j ·

(
τ t

⊤

j τ t+1
j

)
modeling the agreement of the merging direction between updating steps:

if there are conflicts between current and the previous updating direction, then this signal will be
alleviated, thus dampening the harm to the merging direction of the current step; otherwise if they
show strong agreement, this amplifies the impact of the updating direction toward minimizing the
task loss with respect to the previous step, thus accelerate the training process while implicitly
helping current merging direction with additional experience.

On the other hand, we can rewrite Eqn. 8 as follows:

Êm = Em + α

N−1∑
j=1

st+1
j ∗Mt

j · τ t+1
j − α2β

N−1∑
j=1

stjs
t+1
j ∗

(
τ t

⊤

j

∂L
∂Êt

m

)
︸ ︷︷ ︸
gradient matching

·τ t+1
j (9)

We now have the inner-product between the gradient of the task loss and the domain-vector. This
can be interpreted as the matching between the update from the task loss gradient and the domain-
specific direction. We then have the updated domain-specific direction for each expert whose weight-
ing factors are calculated by the inner-product. Therefore, we are performing a soft nearest distance
voting to find the experts that agree the most with the task loss and enhance the merged experts with
the corresponding domain-vector.

3 EXPERIMENTAL RESULTS
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Table 2: Performance of T5-base variants on the fine-tuning tasks for GLUE. All SMoE variants
have 8 experts per layer. We follow Devlin et al. (2019) in conducting experiments on the GLUE
benchmark. Our curvature-aware methods outperform all baselines across tasks, while maintaining
the same number of parameters and FLOPs as the SMoE models.

Methods Params TFLOPs SST-2 MRPC CoLA QQP STSB QNLI RTE MNLI
Vanilla 220M 4.65 93.34 89.70 58.06 88.76 89.06 92.34 74.36 86.36
SMoE 1.0B 4.65 94.26 90.87 56.78 88.69 89.44 92.07 70.75 86.38

Domain-Specific 1.0B 4.65 93.57 90.19 58.07 88.77 89.40 92.51 72.56 86.40
Ties 1.0B 4.65 93.92 91.44 58.54 86.47 88.58 91.87 75.54 86.39
Dare 1.0B 4.65 93.80 89.46 58.33 88.72 89.13 92.29 73.64 86.20

Domain-specific-CA 1.0B 4.65 93.80 91.16 58.57 88.86 89.47 92.60 74.72 86.44
Dare-CA 1.0B 4.65 94.49 91.15 58.56 88.76 89.56 92.80 78.70 86.34
Ties-CA 1.0B 4.65 94.61 92.49 60.06 88.83 89.54 91.89 75.81 86.45
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Figure 3: Perplexity of GPT2-small variants
starting at the tenth epoch.

We perform evaluations on four major tasks, includ-
ing language modeling, text classification, question
answering, and image classification. For language
modeling, we use the Wikitext-2 and Wikitext-103
(Merity et al., 2016) benchmarks. For text classi-
fication, we employ a subset of the GLUE (Wang
et al., 2019) benchmark, a collection of eight diverse
tasks designed to test different aspects of language
understanding. For question answering, we employ
two famous benchmarks: SQuAD (Rajpurkar et al.,
2016) and WikiQA (Yang et al., 2015). Finally, the
ImageNet-1k (Deng et al., 2009) dataset is chosen
for image classification evaluation.
We choose GPT-2 (Radford et al., 2019) small and
Swin-Transformer small (Liu et al., 2021) as our
backbones for language modeling and image classification, respectively. Regarding GLUE and
question-answering tasks, T5 base (Raffel et al., 2020) is chosen.
Our experimental results confirm that the proposed merging method accelerates pre-training conver-
gence and, when combined with other merging protocols, enhances model performance across tasks
and settings. All results are averaged over 5 runs with different random seeds. Detailed informa-
tion on the datasets, models, training procedures, and hyperparameters is provided in Appendix B
and Appendix D. For additional experiments on different routers and merging methods, we refer to
Appendix H.1, and H.2.

3.1 TRAINING AND EVALUATION DETAILS

We fix the number of epochs for all models on each task. For each text-related task, we first un-
dertake a comprehensive hyper-parameter search. This encompasses batch sizes from {8, 16, 32,
64}, learning rates from {3e−4, 1e−4, 3e−5, 1e−5}, to pinpoint the optimal fine-tuned models.
Regarding image classification tasks, a batchsize of 96 for chosen for all models. In addition, we
choose AdamW (Loshchilov & Hutter, 2019) as the default optimizer and conduct all experiments
on NVIDIA A100 GPUs. We compare our proposal to three merging baselines, including domain-
specific, Ties, and Dare merging. There exists prior works on merging methods with the aid of the
Fisher Information Matrix, such as Matena & Raffel (2022), which rely on access to a validation set
used to compute the Fisher matrix or fine-tune hyperparameters. To eliminate the need for a valida-
tion set, Jin et al. (2023) proposes storing and transmitting inner product matrices derived from the
training data for each task, which are of the same size as the original model. However, this approach
becomes costly for large models, as storage and transmission demands increase linearly with model
size and the number of tasks as well as the number of experts. Therefore, we choose baselines
that are needless of extra information and computational cost to perform comparisons. More details
about theoretical comparison between CAMEx and Fisher-based merging methods can be found in
Appendix A. We want to note that our merging protocol can be easily integrated into other works
such as merge then compress protocol Li et al. (2024).
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3.2 RESULTS

In the following tables, the row with our method’s results is highlighted in grey. Results with the best
and second best performance are written in bold and underline, respectively. In addition, methods
with the postfix ”-CA” denote the curvature-aware version of the corresponding baseline.

In Table 2, the results demonstrate that CA-augmented models consistently outperform their non-
CA counterparts. Ties-CA achieves the highest scores on SST-2 (94.61), MRPC (92.49), CoLA
(60.06), and MNLI (86.45), showing considerable improvements over both the vanilla and standard
Ties models. Similarly, Dare-CA performs best on RTE (78.70), surpassing Dare (73.64), indicating
that CA improves performance on smaller datasets and tasks with higher variability. Furthermore,
Domain-specific-CA exceeds the non-CA version on QNLI and MNLI, demonstrating the broader
applicability of curvature-aware methods. We provided a significant t-test at Appendix G.

Table 3: Performance of GPT-2 small variants for
the pre-training task on Wikitext-103.

Methods Perplexity↓ Params (M) GFLOPS ↓
Vanilla 23.03 125 292.5
SMoE 22.42 522 292.5
Domain-specific 21.64 522 292.5

Domain-specific-CA 21.50 522 292.5
Dynamic 21.55 470 292.5

In Table 3, the Domain-specific-CA and Dy-
namic outperform the Vanilla, SMoE, and
Domain-specific baselines, with lower perplex-
ity values. Domain-specific-CA achieves the
lowest perplexity score of 21.50, showcas-
ing superior performance in language model-
ing tasks when compared to all other methods.
The Dynamic architecture follows closely with
a perplexity of 21.55 while also reducing the
parameter count by 9%, compared to the other methods. This highlights the Dynamic archi-
tecture’s efficiency in maintaining strong performance with fewer parameters, making it ideal
for resource-constrained environments. Moreover, the Dynamic architecture is competitive with
Domain-specific-CA and outperforms the rest in terms of convergence speed, which is shown in
Figure 3.

Table 4: Performance of GPT-2 small variants for
the supervised fine-tuning task on Wikitext-2

Methods Perplexity↓ Params (M) GFLOPS ↓
Vanilla 21.84 125 292.5
SMoE 21.60 522 292.5

Domain-specific 21.56 522 292.5
Ties 21.45 522 292.5
Dare 21.60 522 292.5

Domain-specific-CA 21.06 522 292.5
Dare-CA 21.42 522 292.5
Ties-CA 21.11 522 292.5

In Table 4 the Vanilla model reach a per-
plexity of 21.84. Despite increasing param-
eters, SMoE only slightly improves to 21.60.
Domain-specific, Ties, and Dare methods show
small gains, with Ties reaching 21.45. How-
ever, curvature-aware (CA) methods outper-
form all others. Domain-specific-CA achieves
the best perplexity at 21.06, followed by Ties-
CA (21.11) and Dare-CA (21.42), each signif-
icantly improving over their non-CA counter-
parts. All models beyond Vanilla share the
same computational cost, indicating that CA methods enhance performance without added com-
plexity. Domain-specific-CA stands out, demonstrating the clear advantage of curvature-aware op-
timization.

Table 5: Performance of T5-base variants on ques-
tion answering tasks.

Methods Params TFLOPs SQuAD WikiQA
Em/F1 Accuracy

Vanilla 222M 2.86 81.01/88.14 96.06
SMoE 1.0B 2.86 81.25/88.50 96.04

Domain-specific 1.0B 2.86 80.21/87.44 95.32
Ties 1.0B 2.86 80.76/88.11 95.87
Dare 1.0B 2.86 80.88/88.03 96.01

Domain-specific-CA 1.0B 2.86 80.44/87.69 95.72
Ties-CA 1.0B 2.86 81.52/88.60 96.55
Dare-CA 1.0B 2.86 81.76/88.60 96.23

In Table 5, the baseline models, including
Vanilla, SMoE, and non-CA versions of Ties
and Dare, achieve solid results but show dimin-
ishing improvements as model complexity in-
creases. In contrast, our curvature-aware meth-
ods significantly outperform their counterparts.
For instance, on the SQuAD dataset, Dare-CA
achieves the highest Exact Match (EM) score of
81.76% and an F1 score of 88.60%, surpassing
all other methods. Similarly, on WikiQA, Ties-
CA attains the highest accuracy of 96.55%,
with Dare-CA closely following at 96.23%.

In Table 6, while Vanilla and SMoE exhibit solid accuracy scores, they are surpassed by the
curvature-aware (CA) enhanced versions of the models. Notably, Ties-CA delivers the best top-1
accuracy at 83.38% and the highest top-5 accuracy at 96.96%, slightly edging out Dare-CA, which
achieves 83.38% and 96.94%, respectively.
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Figure 4: Impact of the α parameter on Curvature-Aware method performance across NLP tasks.
We observe that the scaling factors that are within the range [0.8, 1] consistently improve model’s
performance.
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Figure 5: Impact of the Kronecker rank of curvature matrix on model’s performance. We observe
that as the rank increases the performance drops and then saturates. However, we would like to note
that this curve might change depending on the downstream tasks and the merging protocol.

4 ABLATION

Table 6: Comparison of Accuracy for Swin-
Transformer small variants on ImageNet-1k.

Methods Params (M) GFLOPs Acc@1 Acc@5
Vanilla 50 6.75 83.14 96.90
SMoE 157 6.75 83.15 96.71

Domain-specific 157 6.75 83.15 96.91
Ties 157 6.75 83.28 96.93
Dare 157 6.75 83.13 96.88

Domain-specific-CA 157 6.75 83.29 96.95
Ties-CA 157 6.75 83.38 96.96
Dare-CA 157 6.75 83.38 96.94

Impact of the scaling factor. The plot in Fig-
ure 4 illustrates the impact of the α parameter
on the performance of three curvature-aware
(CA) model variants Domain-specific-CA,
Ties-CA, and Dare-CA across three natural
language processing tasks: STSB, MRPC, and
RTE. The α parameter ranges from 0.5 to 1.0.
The overall trend suggests that increasing α
leads to better generalization, particularly for
complex tasks such as RTE, where sentence-
level entailment and similarity benefit from
stronger curvature-aware representations. Moreover, across all tasks, the model reaches its peak
performance when α is inside the range [0.8, 1]. This observation aligns with that indicated by
Yadav et al. (2023). For a more comprehensive analysis on the impact of α and number of experts,
we direct the readers to Appendix H.4.1 and H.4.2.

Table 7: Comparison for Swin-Transformer small
variants on corrupted ImageNet.

Methods ImageNet-O ImageNet-A ImageNet-R
Vanilla 45.88 23.68/53.10 37.34/52.34
SMoE 43.34 23.72/53.15 38.02/55.17

Ours 50.69 25.45/54.24 38.37/55.42

Improved performance with higher Kro-
necker rank. Across all three tasks (STSB,
MRPC, and RTE), the evaluation metrics tend
to improve as the rank increases from 1 to 8.
This indicates that higher-ranked models gener-
ally perform better, suggesting a positive corre-
lation between rank and task performance. No-
tably, the Domain-specific-CA model consis-
tently achieves high performance across all tasks, especially in STSB, where metrics approach 0.90.
Although MRPC and RTE show slightly lower metrics, ranging from 0.50 to 0.75, there is a clear
improvement in performance as rank increases, particularly in the lower-to-mid ranks. However, we
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observed a decline in performance for Ties-CA and Dare-CA as the rank increases. We hypothesize
that this is due to the masking mechanism employed by these methods, which may interfere with the
learning process of the curvature matrices.

Robustness against noise. Table 7 demonstrates that curvature-aware models offer superior perfor-
mance on corrupted ImageNet datasets compared to both Vanilla and SMoE variants. Among the
models, our best configuration (Ties-CA) stands out as the best performer, showcasing robustness
to corruptions across all datasets. These results suggest that incorporating curvature-awareness can
substantially improve model robustness in challenging conditions.

5 RELATED WORK

Sparse Mixture-of-Experts (SMoE). As the demand for model scaling grows increasingly
widespread, there is a pressing inquiry into efficient ways to optimize computing costs while mini-
mizing the impact on model performance. To address this need, Sparse Mixture of Experts (SMoE)
has emerged and undergone extensive research and exploration (Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2022). Starting with Shazeer et al. (2017), the integration of SMoE into trans-
former architectures followed shortly after with the works of Lepikhin et al. (2021) and Fedus et al.
(2022). The principle of SMoE is based on a simple concept: scaling the horizontal dimension of
models (i.e., the number of feedforward blocks) rather than the vertical dimension (i.e., the number
of stacked layers). This allows the model to selectively activate units or parameters based on the
input tokens, thereby optimizing resource usage while maintaining performance.

SMoE Efficiency Bottlenecks and Emerging Solutions. While it remains controversial whether
to use Top-1 or Top-K routing, some research has highlighted the potential performance gains from
increasing the number of activated experts (Shazeer et al., 2017; Chen et al., 2023). Other studies
have found redundancies among experts in MoE layers (Li et al., 2024; Lu et al., 2024a). Addition-
ally, some work has proposed using low-rank experts (Wu et al., 2024b; Liu et al., 2024; Wu et al.,
2024a) inspired by LoRA (Hu et al., 2022). Despite the varying research directions, these studies
consistently show that training a robust SMoE requires substantial computational and memory re-
sources. This has motivated researchers such as Li et al. (2024), He et al. (2023), and Zhong et al.
(2024) to merge experts within each MoE layer, reducing the number of experts to a single one and
significantly improving training and inference efficiency.

Model Merging with curvature-aware. Though numerous methods for merging models have been
introduced and developed (Yadav et al., 2023; Cai et al., 2023; Ilharco et al., 2022; Matena & Raffel,
2022; Jin et al., 2022; Don-Yehiya et al., 2022; Rame et al., 2023; Lu et al., 2024b), most of these
works consider merging protocols in the Euclidean parameter space. However, it has been noted
that the space of deep neural network models is a Riemannian one (Amari, 1998). Matena & Raffel
(2022) and Jin et al. (2022) were the first to fuse model weights while accounting for the Fisher
Information. Despite their promising results, these methods require massive computation to approx-
imate the inversion of the Fisher matrix. Moreover, the Fisher matrix has a size proportional to the
dimension of the model parameters, which significantly increases memory usage. Consequently,
these methods are challenging for directly integrating into SMoE layers to fuse expert weights.

6 LIMITATION AND CONCLUSION

In this work, we introduced CAMEx, a curvature-aware approach to expert merging in Mixture
of Experts architectures. By leveraging natural gradients to account for the parameter manifold’s
curvature, CAMEx enhances model performance and reduces computational costs during both pre-
training and fine-tuning, outperforming traditional Euclidean-based methods. Additionally, our dy-
namic merging architecture optimizes resource usage by incorporating a global expert across layers,
thus minimizing model size without sacrificing accuracy. Despite the overall improvements, a minor
limitation is that curvature-aware merging demonstrates reduced compatibility with Ties and Dare
merging at higher Kronecker ranks. Future work could dive deeper into this phenomenon and extend
CAMEx to other expert merging methods and explore curvature-aware approaches in broader neural
network models to further enhance our dynamic architecture. This research lays the groundwork for
developing more efficient and scalable models in large-scale machine learning.
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Reproducibility Statement: Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section 3 and the Appendix D. All datasets that we used in the paper are published, and
they are easy to find in the Internet.
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Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001.

Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL, Shiwei Liu, and Zhangyang Wang.
Sparse moe as the new dropout: Scaling dense and self-slimmable transformers. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=w1hwFUb_81.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, and Furu Wei. On the representation collapse of sparse mixture of experts.
arXiv preprint arXiv:2204.09179, 2022.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognizing textual entailment
challenge. In Proceedings of the First PASCAL Challenges Workshop on Recognising Textual
Entailment, 2006.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stable-
MoE: Stable routing strategy for mixture of experts. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7085–7095, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
489.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.
06066.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem
Choshen. Cold fusion: Collaborative descent for distributed multitask finetuning. arXiv preprint
arXiv:2212.01378, 2022.

11

https://openreview.net/forum?id=w1hwFUb_81
https://openreview.net/forum?id=w1hwFUb_81
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

Marawan Gamal Abdel Hameed, Marzieh S. Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convolu-
tional neural network compression through generalized kronecker product decomposition. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 36(1):771–779, Jun. 2022. doi: 10.
1609/aaai.v36i1.19958. URL https://ojs.aaai.org/index.php/AAAI/article/
view/19958.

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Merging experts
into one: Improving computational efficiency of mixture of experts. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 14685–14691, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
907.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15262–15271, 2021b.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
gan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre. Training
compute-optimal large language models. In Proceedings of the 36th International Conference on
Neural Information Processing Systems. Curran Associates Inc., 2024. ISBN 9781713871088.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. Advances in Neural Information Processing Systems, 35:29262–29277, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=FCnohuR6AnM.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

12

http://jmlr.org/papers/v23/21-0998.html
https://ojs.aaai.org/index.php/AAAI/article/view/19958
https://ojs.aaai.org/index.php/AAAI/article/view/19958
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=FCnohuR6AnM
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=qrwe7XHTmYb


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tian-
long Chen. Merge, then compress: Demystify efficient SMoe with hints from its routing
policy. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=eFWG9Cy3WK.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Zihan Liu, Hanyi Wang, Yaoyu Kang, and Shilin Wang. Mixture of low-rank experts for transferable
ai-generated image detection, 2024. URL https://arxiv.org/abs/2404.04883.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models, 2024a. URL https://arxiv.org/abs/2402.14800.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
Dynamic integration of modular expertise in model merging. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024b. URL https://openreview.net/
forum?id=81YIt63TTn.

James Martens. New insights and perspectives on the natural gradient method. J. Mach. Learn. Res.,
21(1), jan 2020. ISSN 1532-4435.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pp. 2408–2417. JMLR.org, 2015.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive rout-
ing. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=7I199lc54z. Featured Certification.

Eunbyung Park and Junier B Oliva. Meta-curvature. In H. Wallach, H. Larochelle,
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A COMPRISION OF CAMEX AND FISHER-BASED MERGING METHODS

The pipeline comparison between CAMEx and Fisher-based merging methods is shown in Figure
6. Both approaches aim to capture the curvature of the parameter space during the merging process.
(Diagonal) Fisher Merging Matena & Raffel (2022) applies a diagonal approximation to the Fisher
information matrix. In this work, they estimate the diagonal of the Fisher matrix as:

F = E
x∼Dm

[
E

y∼pθ(y|x)

[
∇θ logpθ(y|x)∇θ logpθ(y|x)⊤

]]
, (10)
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Merging

Merging

Storing
Gradient

a) CAMEx

b) Fisher Merging

Figure 6: CAMEx merging pipeline vs Fisher-based merging pipeline. Note that Fisher merging
requires the storing of the∇Ei

log pEi
(y|x) for all experts and all x in training dataset. Furthermore,

it has been pointed out that Fisher merging will have poor performance while using fewer examples
to estimate the Fisher.

The expectation over y can be estimated via sampling from pθ(y|xi) or computed exactly when
the number of classes is small. The closed-form solution for Fisher merging (without necessarily
applying the diagonal approximation) is given by:

Êl
m =

( M∑
m=1

Fl
m

)−1( N∑
i=1

Fl
iE

l
i

)
. (11)

Thus, to approximate the Fisher Information Matrix for SMoE models, Fisher merging requires stor-
ing∇Ei

log pEi
(y|x) for all experts and all x in the training dataset. Additionally, it has been noted

that Fisher merging can suffer from poor performance when fewer examples are used to estimate the
Fisher matrix (Matena & Raffel, 2022).
In the case of our method (depicted in Figure 6a), by denoting Mi as the curvature matrix of the i-th

expert, CAMEx utilizes the formula for merging experts derived from the natural gradient descent
update as:

Êl
m = El

m + α

N−1∑
i=1

Mi · (sli ∗ τ li ) (CA-Merg)

CAMEx implicitly implements the gradient-based matching between the task loss gradient and
domain-vector of the corresponding expert to approximate the empirical Fisher through the dynamic
of gradient descend update of Mi:

Mt+1
i = Mt

i − β ∗ ∂L
∂Mt

i

= Mt
i − αβ ∗ sti ∗

∂L
∂Êt

m

· (Et
i −Et

m), (12)

where the term
∂L
∂Êm

· (Ei −Em) represents the outer product of the gradients of the task loss and

the domain vectors. This operation contributes to capturing the curvature of the expert parameter
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space, ensuring curvature awareness during the merging process. This approach eliminates the need
to compute the inversion of the empirical Fisher Information Matrix, thereby reducing computational
overhead while maintaining sensitivity to parameter space curvature.

B ADDITIONAL DETAILS ON DATASETS

This section provides detailed information on the datasets and evaluation metrics used in the exper-
iments in Section 3.

B.1 LANGUAGE MODELING ON WIKITEXT

The WikiText-103 dataset consists of Wikipedia articles designed to capture long-range contextual
dependencies. The training set includes approximately 28,000 articles, totaling around 103 million
words. The validation and test sets have 218,000 and 246,000 words, respectively, spread across
60 articles per set, with each set comprising roughly 268,000 words. Our experiments follow the
standard procedure described in Merity et al. (2017).

WikiText-2 is a smaller version of WikiText-103, containing 2 million tokens and a vocabulary of
33,000 words.

B.2 TEXT CLASSIFICATION ON GLUE BENCHMARK

These tasks include MNLI (Williams et al., 2018), which assesses a model’s ability to determine
entailment between pairs of sentences; QQP (Quora, 2017) and MRPC (Dolan & Brockett, 2005),
which focus on identifying sentence similarity and paraphrase detection; SST-2 (Socher et al., 2013)
for sentiment analysis; CoLA (Warstadt et al., 2019) for grammaticality judgment; and QNLI (Wang
et al., 2019) for question-answer classification. Additionally, STSB (Cer et al., 2017) evaluates
the model’s ability to measure sentence similarity, while RTE (Dagan et al., 2006) tests logical
reasoning.

B.3 QUESTION-ANSWERING ON SQUAD AND WIKIQA

SQuADv1.1 (Rajpurkar et al., 2016) (Stanford Question Answering Dataset) is a widely used bench-
mark for reading comprehension and question answering tasks. It contains over 100,000 question-
answer pairs sourced from more than 500 Wikipedia articles. Each question is paired with a para-
graph from the article, where the answer is a span of text extracted from the passage. The dataset
consists of natural language questions that cover a wide range of topics, context paragraphs from
Wikipedia, and answers marked by their start and end positions within the context. The primary task
is to extract the correct answer span based on the posed question. Key features of the dataset include
the need for exact span extraction, the large dataset size, and its task design focused on reading com-
prehension. Evaluation is typically done using Exact Match (EM), which measures the percentage
of predictions that exactly match the ground-truth answers, and the F1 score, which measures the
overlap between predicted and ground-truth answers by calculating the harmonic mean of precision
and recall.

WikiQA (Yang et al., 2015) is an open-domain question answering dataset designed for answer
sentence selection tasks. It consists of natural language questions primarily extracted from search
engine queries, with candidate sentences sourced from Wikipedia articles. Each candidate sentence
is labeled as either a correct or incorrect answer for the given question. The dataset contains 3,047
questions and 29,258 candidate sentences. The main challenge is selecting the correct sentence from
a set of candidates, unlike SQuADv1.1, where the task focuses on extracting a text span. Key fea-
tures include its real-world query origins, the sentence selection task, and the open-domain nature,
which requires models to identify relevant sentences from diverse topics. WikiQA is evaluated using
Accuracy.
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Algorithm 1 The Overall Procedures of CAMEx.
1: Initialize: A modelM with l SMoE layers, the total number of original experts N .
2: Let Ht ∈ RB×L×N and Tt ∈ RB×L×d denote the router logits and the sequence of tokens at intermediate

layer t, respectively.
3: for layer t = 1, . . . , l do
4: K = L/S, T l ← RESHAPE(T,B ∗K,S, d) ▷ Begin Causal Segmenting
5: Hl ← G

(
T l

)
6: Hl ← ROLLandDETACH

(
Hl
)

7: if TIES-MERGING then ▷ Generate mask for merging
8: for expert i = 1, . . . , N − 1 do
9: τi ← Ei −Em

10: γi ← sgn(τi)
11: end for
12: γm = sgn(

∑N−1
i=1 τi)

13: for expert i = 1, . . . , N − 1 do
14: τm

i ← γi ∧ γm

15: τi ← τi ·Mi

16: end for
17: else
18: Generate mask for DARE-MERGING
19: end if
20: Em ← Em + γm ∗

∑N−1
i=1 Hl

i ∗ τi ▷ Merge Experts
21: end for

B.4 IMAGE CLASSIFICATION ON IMAGENET

ImageNet-1k, the most widely utilized subset of the ImageNet dataset introduced by Deng et al.
(2009), comprises 1.28 million images for training and 50,000 images for validation, across 1,000
categories. Performance evaluation is typically based on top-1 and top-5 accuracy metrics.

B.5 ADVERSARIAL EXAMPLES AND OUT-OF-DISTRIBUTION DATASETS

ImageNet-A: The ImageNet-A dataset (Hendrycks et al., 2021b) contains real-world images specif-
ically curated to fool ImageNet classifiers. It focuses on 200 classes, a subset of the 1,000 classes in
ImageNet-1k. Errors made within these 200 classes are considered particularly significant, as they
represent a wide variety of categories from ImageNet-1k.

ImageNet-O: This dataset consists of examples adversarially filtered to challenge out-of-distribution
(OOD) detectors on ImageNet (Hendrycks et al., 2021b). It includes images from the larger
ImageNet-22k dataset but excludes those present in ImageNet-1k. The selected samples are those
that a ResNet-50 model confidently misclassifies as an ImageNet-1k class, and the primary evalua-
tion metric is the area under the precision-recall curve (AUPR).

ImageNet-R: ImageNet-R contains a variety of artistic renditions of object classes found in the
original ImageNet dataset (Hendrycks et al., 2021a). This dataset includes 30,000 artistic represen-
tations of images from 200 classes, selected from the ImageNet-1k subset. The dataset was created
to challenge models with non-standard visual interpretations of the classes.

C ALGORITHM AND IMPLEMENTATION DETAILS

C.1 CAUSAL SEGMENTING

Background of Causal Segmenting: A significant advancement in SMoE design centers on fully
differentiable architectures that eliminate the need for additional loss terms to stabilize training. In
Muqeeth et al. (2024), a model was introduced that computes a weighted average of expert feed-
forward networks (FFNs). For an input x with corresponding routing weights, the output is defined
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as:

ox = FFN

(
hx;

N∑
i=1

si ·Ei

)
, where si = Softmax(G(hx))i.

However, applying this approach to autoregressive language models is computationally costly, as the
merged FFN must be computed for each token in the sequence, leading to costs that scale linearly
with the number of experts. An alternative based on pooling—routing via the sequence’s average
representation, as follows:

si = Softmax

(
G

(∑L
j=1 hxj

L

))
i

.

This, however, disrupts the autoregressive property essential for pre-training. To address this, Zhong
et al. (2024) introduced causal segment routing. This technique merges FFNs in an MoE layer by
utilizing information from the preceding segment to process the current segment. Specifically, given
a training instance X consisting of L tokens (e.g., L = 4096), we divide the instance into N
segments, each containing T (e.g., T = 256) consecutive tokens. For the k-th segment Sk, where
k > 1, we compute the average of the hidden representations from the previous segment Sk−1,
denoted as h̄k−1. By using the average hidden representation, the model can adapt to prompts
of varying lengths during inference. The average hidden representation h̄k−1 is then employed to
determine the routing weights, leading to a merged expert Ē:

h̄k−1 =
1

T

∑
x∈Sk−1

hx, si = Softmax(G(h̄k−1)), Ē =
∑
i

si ·Ei. (13)

The merged expert Ē is then used to process all tokens in the current segment Sk, i.e., ox =
FFN(hx; Ē),∀x ∈ Sk. This approach ensures that the model’s routing decisions rely exclusively on
data from preceding positions. For the first segment S1, the segment’s own representation is used to
compute the merging weights for its FFN. To prevent information leakage, a stop-gradient operation
is applied to G(h̄1):

h̄0 =
1

T

T∑
x∈S0

hx (14)

These tokens are then used to calculate the scores for the merging procedure

s0 = DETACH
(
G(h̄1, k)

)
(ROLLandDETACH)

si = G(h̄i−1), i = 1, . . . , S − 1

C.2 SOME IMPLEMENTATIONS

Implementation of Kronecker product We consider the case where experts are linear layers

# Calculating domain-specific vectors
taus = weights - weight_m

# output_size = dim_out1 * dim_out2, input_size = dim_in1 * dim_in2
taus = taus.view(1, -1, dim_out1, dim_out2, dim_in1,

dim_in2).repeat(rank, 1, 1, 1, 1, 1)
# Calculate Kronecker-product
taus = torch.einsum("rbij, rbjklm->rbiklm", curve1_out, taus)
taus = torch.einsum("rbik, rbjklm->rbjilm", curve2_out, taus)
taus = torch.einsum("rbil, rbjklm->rbjkim", curve1_in, taus)
taus = torch.einsum("rbim, rbjklm->rbjkli", curve2_in, taus)
# Summation along the Kronecker rank dimension and reshape
taus = taus.sum(0)
taus = taus.reshape(-1, output_size, input_size)
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D MORE EXPERIMENT DETAILS

Supervised Fine-Tuning Hyper-Parameters Besides {batch size, learning rate, epoch counts}
which vary for each task, we keep other hyper-parameters of supervised fine-tuning fixed for all
tasks. These are shown in Table 8.

Table 8: Fine-tuning hyper-parameters of all models in Section 3

Hyper-Parameters Values

Optimizer ADAMW
Adam ϵ 1e−6
Adam β (0.9, 0.98)
Warm-up steps 16
Weight decay 0.01
LR scheduler LINEAR DECAY

Scaling factor α 1
Kronecker rank r 1

E DERIVATION

This is the derivation for Eqn 8 in Section 2.6

Êm = Em + α

N−1∑
j=1

Mt+1
j · (st+1

j ∗ τ t+1
j ) (15)

= Em + α

N−1∑
j=1

[
Mt

j − αβ ∗ stj ∗
∂L
∂Êt

m

· τ tj
]
· (st+1

j ∗ τ t+1
j ) (16)

= Em + α

N−1∑
j=1

st+1
j ∗Mt

j · τ t+1
j︸ ︷︷ ︸

domain-specific merging with curvature-aware

−α2β

N−1∑
j=1

stjs
t+1
j ∗

(
τ t

⊤

j · τ t+1
j

)
· ∂L
∂Êt

m

(17)

F STEP-BY-STEP WALKTHROUGH FOR KEY EQUATIONS OF CAMEX

F.1 KEY EQUATION FOR MERGING OF CAMEX

Êl
m = El

m + α

N−1∑
i=1

Mi · (sli ∗ τ li ) (CA-Merg)

In (CA-Merg) equation, we consider the merging of experts at l-th layer of the model. El
m denotes

the ”base” expert that is not included in the routing process. τ li = El
i−El

m denotes i-th the domain-
vector that adapts the ”base” expert to the corresponding domain. Finally, sli denotes the score of
the i-th domain vector w.r.t the input. We view the merging of experts as a optimization problem
where α ∗ sli acts as the adaptive learning rate. Therefore, it is straightforward to integrate natural
gradient approach into this equation by introducing curvature matrices Mi. Due to the challenging
tractability of the Fisher Matrix in the intermediate layers of deep models, we proposed to learn
them empirically through backpropagation as indicated by Eqn. 6 in the main text and a simmilar
approach using meta-learning (Park & Oliva, 2019).

F.2 KEY EQUATION FOR MERGING IN DYNAMIC ARCHITECTURE
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El+1

m = El
m +

α

N− 1

N−1∑
i=1

Mi · τ li

Êl+1
m = El+1

m + α

N−1∑
i=1

Mi · (sl+1
i ∗ τ l+1

i )

(Dynamic-Merg)

The (Dynamic-Merg) system perform two steps which are calculating base expert for the next layer
and perform (CA-Merge), respectively. For the first step, we eliminate the score and take the average
of curvure-aware domain vector instead to avoid information leakage. The result then takes the role
as the base expert for the next layer.

F.3 CURVATURE UPDATE

In the main text, we try to give an explaination of how our method we update the curvature matrix
with the curvature information of the parameters space. To achive that, we first take the derivative
of equation (CA-Merge) w.r.t the curvature matrix Mi:

∂Êm

∂Mj
= (αsj ∗ τj) = αsj ∗ (Ej −Em) (18)

To evaluate the gradient of the task loss L w.r.t Mi we apply the chain-rule:

∂L
∂Mj

=
∂L
∂Êm

· ∂Êm

∂Mj
= αsj ∗

∂L
∂Êm

· (Ej −Em) (19)

G STUDENT’S T-TEST FOR EXPERIMENTS ON GLUE DATASET

We report the t-test results, beginning with the null hypothesis H0: The performance between each
pair of T5-Ties-CA vs T5-Ties, and T5 on GLUE SST-2, MRPC, CoLA, and MNLI are the same.. In
this test, we choose the significant value to be 0.05.

Table 9: Evaluation results on SST-2 with different random seeds.

Index Ties CA Ties Vanilla
1 94.44 93.77 93.31
2 94.86 94.13 93.33
3 94.62 93.90 93.21
4 94.60 94.12 93.46
5 94.54 93.70 93.41
6 94.55 93.87 93.56
7 94.37 94.03 93.67

Table 10: T-statistic and p-value when evaluating on SST-2.

Test t-statistic p-value
Ties-CA vs Vanilla 13.72 1.08e-8
Ties-CA vs Ties 7.36 8.74e-6
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Table 11: Evaluation results on MRPC with different random seeds.

Index Ties CA Ties Vanilla
1 92.35 91.35 89.85
2 92.61 91.30 89.65
3 92.55 91.40 89.74
4 92.40 91.55 89.49
5 92.54 91.62 89.76
6 92.44 91.77 89.85
7 92.33 91.43 89.62

Table 12: T-statistic and p-value when evaluating on MRPC.

Test t-statistic p-value
Ties-CA vs Vanilla 42.91 1.67e-14
Ties-CA vs Ties 12.95 2.06e-8

Table 13: Evaluation results on CoLA with different random seeds.

Index Ties CA Ties Vanilla
1 61.01 57.95 57.74
2 59.53 58.63 57.82
3 60.36 58.90 58.03
4 60.13 58.92 58.23
5 59.41 58.31 58.51
6 59.33 57.38 57.36
7 60.03 58.53 58.40

Table 14: T-statistic and p-value when evaluating on CoLA.

Test t-statistic p-value
Ties-CA vs Vanilla 7.14 1.18e-5
Ties-CA vs Ties 5.16 2.00e-4

Table 15: Evaluation results on MNLI with different random seeds.

Index Ties CA Ties Vanilla
1 86.52 86.25 86.22
2 86.45 86.32 86.31
3 86.37 86.39 86.36
4 86.59 86.46 86.41
5 86.32 86.53 86.50
6 86.54 86.38 86.34
7 86.47 86.41 86.34

Table 16: T-statistic and p-value when evaluating on MNLI.

Test t-statistic p-value
Ties-CA vs Vanilla 2.29 0.04
Ties-CA vs Ties 1.49 0.16
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Based on the p-values in the tables above, we draw the following conclusions:

• The T5-Ties-CA variant significantly outperforms T5-Ties and T5-Vanilla on SST-2,
MRPC, and CoLA.

• While T5-Ties-CA does not statistically outperform T5-Ties on MNLI, it still demonstrates
significant improvement over T5-Vanilla.

H ADDITIONAL EXPERIMENTS

H.1 INTEGRATING CAMEX INTO TWIN-MERGING

We expand our experiments to include a broader range of most recent merging expert methods.
Specifically, we integrated our CAMEx method with the Twin-Merging approach (Lu et al., 2024b).
Key distinctions between CAMEx and Twin-Merging lie in their core mechanisms:

• Our method is a non-Euclidean merging method, which utilizes the curvature-aware matrix,
whereas Twin-Merging is a model merging method, which relies on Euclidean merging.

• Our approach is specifically designed for finetuning, in contrast to Twin-Merging, which is
intended for post-training.

• Finally, our dynamic mechanism performs inter-layer to form the merged expert, unlike
Twin-Merging, which uses within-layer pre-calculations for merging. To integrate our
method with Twin-Merging, we first fine-tune the Curvature Aware model for a specific
GLUE task. At test time, we apply the Twin-Merging algorithm to merge experts, referring
to our approach as Twin-CA. Notably, we found Twin-Merging to be a simple yet powerful
technique that is easy to implement and helps reduce memory usage during inference. We
adhere to the original implementation settings, using a sparsity density value of 0.2.

Table 17: Performance of Twin-Merging and its Curvature Aware (CA) variant on GLUE tasks.

Method MRPC RTE STSB

Twin-Merging 91.97 72.20 88.56
Twin-CA (Ours) 92.30 74.73 89.55

The results in Table 17 demonstrate the effectiveness of our CAMEx approach when integrated with
the Twin-Merging mechanism on GLUE tasks, highlighting its strong potential for incorporation
into more advanced merging techniques.

H.2 EXPERIMENTS ON TOKEN-CHOICE VS EXPERT-CHOICE ROUTING

We also demonstrate our merging approach with the following routing mechanisms:

• Stable MoE routing (Dai et al., 2022).

• Naive routing (Shazeer et al., 2017).

Note that the Curvature Aware model leverages the segment routing strategy (the causal segmenting
strategy) proposed in Lory (Zhong et al., 2024), enabling a direct comparison between our model
and the expert choice method.

Table 18: Performance of T5-base variants on the finetuning GLUE tasks.

Method MRPC RTE STSB SST-2

Expert Choice MoE 93.10 66.78 89.19 93.80
Stable MoE routing CA 92.96 78.76 89.64 94.63
Naive routing CA 92.49 78.70 89.56 94.61
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H.3 LONGER TRAINING FOR WIKITEXT-103 PRE-TRAINING

We conduct additional experiments by training for longer iterations on the Wikitext-103 dataset.
The performance gaps between methods remain stable starting around epoch 40.
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Figure 7: Performance of Vannila, Domain-specific, Domain-specific-CA under longer pre-training.

As shown in Figure 7 the trends demonstrate consistent improvements of our method over the base-
line, with the gap remaining significant even after prolonged training.

H.4 MORE COMPREHENSIVE ABLATION STUDY ON HYPERPARAMETERS

H.4.1 ABLATION STUDY ON α

We extend the range of α for the ablation study, specifically evaluating Dare-CA and Ties-CA with
α ∈ [0.1, 1.6]. The evaluation is conducted using 5 different seeds, and the results are averaged.
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Figure 8: Test performance of Curvature-Aware methods under varying settings of α.

The results in Figure 8 lead to the following observations:

• The performance of the models is suboptimal or even worse than the vanilla baseline when
α is either too small (α ∈ [0.1, 0.4]) or too large (α > 1.1).

• Dare-CA is more sensitive to the choice of α, showing sharper improvements and declines
across the range.

• Ties-CA exhibits more gradual changes, suggesting it is more robust to variations in α. The
optimal range for α is [0.8, 1.0].
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H.4.2 ABLATION STUDY ON NUMBER OF EXPERTS

We conduct additional studies on our method using different numbers of experts in the T5 backbone.
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Figure 9: Test performance of Curvature-Aware methods under varying number of experts.

The following conclusions can be drawn from Figures 9:

• Increasing the number of experts generally improves accuracy up to a certain point: Accu-
racy improves as the number of experts increases, with the most significant gains occurring
from 4 to 8 experts.

• After 12 experts, the accuracy either saturates or slightly decreases.
• We suggest using 8 experts as it provides a balanced trade-off between performance and

efficiency.
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