
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAGICDEC: BREAKING THE LATENCY-THROUGHPUT
TRADEOFF FOR LONG CONTEXT GENERATION WITH
SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have become more prevalent in long-context applications
such as interactive chatbots, document analysis, and agent workflows, but it is challenging
to serve long-context requests with low latency and high throughput. Speculative decoding
(SD) is a widely used technique to reduce latency losslessly, but the conventional wisdom
suggests that its efficacy is limited to small batch sizes. In MagicDec, we show that
surprisingly SD can achieve speedup even for a high throughput inference regime for
moderate to long sequences. More interestingly, an intelligent drafting strategy can achieve
better speedup with increasing batch size based on our rigorous analysis. MagicDec
first identifies the bottleneck shifts with increasing batch size and sequence length, and
uses these insights to deploy SD more effectively for high throughput inference. We
leverage draft model with sparse KV cache to address the KV bottleneck, which scales
with both sequence length and batch size. Additionally, we propose a theoretical model
to select the optimal drafting strategy for maximum speedup. Our work highlights the
broad applicability of speculative decoding in long-context serving, as it can enhance
throughput and reduce latency without compromising accuracy. For moderate to long
sequences, we demonstrate up to 2.51x speedup for LLaMA-3.1-8B when serving
batch sizes ranging from 32 to 256 on various types of hardware and tasks.

1 INTRODUCTION

The emergence of extremely long-context Large Language Models (LLMs) (AI@Meta, 2024; QwenTeam,
2024; Liu et al., 2023) has led to the popularity of long-context applications such as retrieval augmented
generation (Lewis et al., 2021), code generation (AWS, 2024; Chen et al., 2021) and document summarization.
Low latency and high throughput are both crucial for serving these long-context LLMs – low latency ensures
a positive user experience in interactive applications like chatbots (Achiam et al., 2023; Deepmind, 2024),
while high throughput amortizes serving costs.

However, optimizing both latency and throughput in LLM serving presents significant challenges. Speculative
decoding (SD)(Leviathan et al., 2022; Xia et al., 2023; Chen et al., 2023) can reduce latency by using a
smaller model to predict multiple tokens ahead followed by verification by the target model. But this approach
becomes inefficient with large batch sizes because of increased verification cost(Liu et al., 2024a; Su et al.,
2023), as shown in Fig. 7a. For small batches, the main performance bottleneck is the parameter loading cost,
which can be amortized by the verification process across the tokens to be verified at the expense of increased
computation. However, with large batches, LLMs become compute bound, making verification significantly
costly because of its compute-hungry nature. Additionally, if the smaller model’s predictions do not align well
with the target model, frequent costly verifications are needed. Consequently, the usage of SD in high batch
size regime is discouraged by existing works(Liu et al., 2024a; Su et al., 2023; Miao et al., 2023). On the other
hand, techniques like (Kwon et al., 2023; Yu et al., 2022; Agrawal et al., 2024b) improve throughput by accom-
modating larger batches, but at the cost of increased token-wise latency. While techniques such as quantization,
pruning and KV cache eviction (Frantar et al., 2023; Xiao et al., 2024a; Hooper et al., 2024; Ma et al., 2023;
Sun et al., 2024b) can improve both throughput and latency, they typically result in lower quality model outputs.

Based on these challenges, we pose the following question:

Can we simultaneously improve throughput and latency without sacrificing accuracy,
particularly for long sequences?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 4 16 64 256
Batch size

0.0

5.0

10.0

15.0

20.0

25.0

Ti
m

e
(m

s)

Parameter load
Activation load and store
KV load
KV store
Compute

(a)

5 10 15 20 25
Avg. Tokenwise Latency (ms)

3000

4000

5000

6000

7000

8000

9000

10000

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

)

(AR) Prefill 32000
(SD) Prefill 32000

(b)

0.00 0.05 0.10 0.15 0.20 0.25
Memory Ratio

40

50

60

70

80

90

100

A
cc

ep
ta

nc
e

R
at

e

7B/70B

1.1B/70B

1.1B/7B

68M/7B

8B/70B

Self-spec Llama-3.1-70B

(c)

Figure 1: (a) Time breakdown of LLaMA-3.1-8B vs batch size (input length=16384, hardware=8xH100s). (b)
Throughput of autoregressive decoding and StreamingLLM-based self-speculation of LLaMA-3.1-8B against
per-token latency for prompt length of 32k. (c) Draft token acceptance rate comparison for LLaMA-3.1-70B .
Self-speculation using Top-k attention achieves a much higher acceptance rate than other draft-target pairs, even with
lower memory ratio. The x-axis represents the ratio of draft memory footprint to target memory footprint.

We answer with a resounding yes! For large batches of long sequences, we show that SD can be used more
effectively to improve both throughput and latency without degradation of the output quality. We base our
hypothesis on the following interesting insights:

(1) KV Cache Is The Dominant Bottleneck In Large batch size Long-context Regime: In long-context
and large batch size regime, the KV cache outgrows the memory footprint of the model parameter and
continues to increase with batch size. Computation also increases with batch size, but due to the high peak
FLOPS-to-memory bandwidth ratio of modern GPUs, the KV loading time increases much more than former
for larger batches, making LLM inference more memory-bound, as shown in Fig. 1a (Yuan et al., 2024).

(2) SD Can Improve Throughput Only Beyond a Critical Sequence Length: While existing research(Liu
et al., 2024a; Su et al., 2023) suggests that SD is inefficient for large batches due to high verification costs,
this limitation only applies to very short sequences. Because with short sequences, increasing the batch size
makes computational costs the primary bottleneck, which is prohibitive for an efficient verification process.
However, once sequences exceed a certain critical length (which varies based on the model and hardware),
the KV loading cost becomes the dominant factor, even for large batches. At this point, SD becomes effective
again because the computational overhead of verification becomes less significant compared to the KV
loading costs, which can be amortized across the tokens to be verified.

(3) Compressed KV Cache Enables More Efficient Speculation: Token acceptance rate is crucial for SD in
large batch processing to minimize costly verification steps. Our research found that compressing the Draft KV
cache leads to higher acceptance rates than compressing model weights. To evaluate model compression only,
we test different draft-target pairs on PG-19 (Rae et al., 2019) sequences of length only 256, to restrict the KV
cache impact. For KV compression, we tested LLaMA-3.1-70B on longer sequences (4,000-100,000
tokens)1 using Top-K selection for KV sparsification. Fig. 1c illustrates that model compression alone
is unable to reach 90% acceptance rate, while KV compression achieved significantly higher rates under
similar memory constraints. This advantage becomes even more significant with larger batch sizes, offering
a promising new direction for improving the batch-processing efficiency speculative decoding.

Building upon these insights, our work MagicDec illustrates that SD can improve speedup even for large
batches by utilizing KV compression, contrary to prior belief. As shown in Fig. 1b, under long context-length,
compressed KV-based self-speculation can improve throughput and latency at the same time in all spectrum,
without hurting generation quality. Furthermore, MagicDec evaluates different KV compression-based
drafting methods to determine the optimal approach based on the specific model, hardware, and task
requirements. We structure the paper as follows.

• In Section 3.1, we theoretically analyze the factors that decide the efficiency of speculative decoding.
Section 3.2 discusses how the performance bottlenecks in LLM inference shift with batch size and sequence
length, and what are its implications on SD’s batch-processing efficiency. In the light of this study, we
discuss the challenges involved with conventional SD in large batch setting and how it can be overcome
by KV sparsification based drafting. Additionally, we introduce the concept of the critical sequence length

1batch size is set to 1 to nullify the effect of batch size on KV cache size

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

beyond which SD can achieve higher speedups for larger batches contrary to prior studies (Liu et al., 2024a;
Su et al., 2023; Miao et al., 2023).

• In Section 3.3, we show why compressing the KV cache is crucial for effective batch processing. Our
experimental results demonstrate that this approach achieves higher acceptance rates and, consequently,
better batch performance compared to using parameter-efficient draft models. Section 4.4 discusses
the trade-off between draft cost and acceptance rate for different static and dynamic KV sparsification
algorithms on different kinds of tasks.

• Finally, in Section 5 we provide a comprehensive empirical evaluation across different hardware setups and
tasks to show the effectiveness of our theoretical analysis and method. We demonstrate that our approach
achieves a 2.51x speedup in large batch settings for LLaMA-3.1-8B on 8xH100 GPUs, significantly
improving both throughput and latency over traditional autoregressive decoding (§5).

2 RELATED WORKS

Numerous efforts have been made to improve the latency and throughput of LLMs. Methods like Flash
decoding (Dao, 2023), and Flash decoding++(Hong et al., 2023) have performed system optimizations to
improve latency. KV compression methods (Li et al., 2024; Gupta et al., 2021; Xiao et al., 2024b; Tang et al.,
2024; Cai. et al., 2024; Zhang et al., 2023; Oren et al., 2024) utilize attention sparsity to reduce the KV loading
cost. KV compression can improve both latency and throughput, but suffers from accuracy degradation.

Batching has been a natural technique to improve GPU utilization by amortizing the model parameter loading
cost across requests, thus boosting throughput. Recently continuous batching (Kwon et al., 2023; Yu et al.,
2022; Prabhu et al., 2024) has been proposed to address the problems arising from heterogeneous batches
with unequal context and generation lengths. In our work, we have considered the orthogonal direction
of homogeneous batches, and the aforementioned methods are complementary to our observation.

Speculative decoding (Leviathan et al., 2022; Xia et al., 2023; Chen et al., 2023) has emerged as an
algorithmic novelty to improve latency without quality degradation. SD improves latency by using a fast
draft model to generate multiple tokens, which are then verified in parallel by the LLM, thus maximizing
GPU utilization. However, as the batch size increases and computation resources are saturated, the verification
of speculated tokens becomes costly. Hence, existing research(Liu et al., 2024a; Su et al., 2023; Miao et al.,
2023; Sun et al., 2024a) has discouraged the use of speculative decoding to serve large batches of requests.
In our work, we show that this claim only applies to short sequences.

To address the KV bottleneck for serving long sequences, we take inspiration from TriForce (Sun et al.,
2024a), which demonstrates the effectiveness of self-speculation with compressed KV. While TriForce is
designed for small batches of extremely long sequences, we have focused on large batches of moderate
to long sequences, which is more nuanced in terms of draft selection. For draft selection, we have considered
a subset of KV compression techniques(Xiao et al., 2024b; Li et al., 2024; Zhang et al., 2024) to exhibit the
trade-off between draft cost and acceptance rate. Our work does not advocate for a single KV compression
technique, rather provides a framework to choose the optimal strategy from a suite of such techniques.

Many methods have been proposed to improve speculative decoding. For instance, Speculation Parallelism
(SP) (Timor et al., 2024) overlaps target verification with draft speculation to enhance speedup. This method
evaluates the drafter based on draft cost and acceptance rate, which is similar to our analysis. SP complements
our approach: with the high acceptance rate and low draft cost of compressed KV-based drafting, along
with reduced verification costs provided by SP, speculative decoding can achieve even greater speedups
in long-context serving scenarios.

3 THEORETICAL ANALYSIS

In this section, we present our theoretical analysis of speculative decoding and LLM inference performance.
We begin by reviewing the mathematical formulation of speculative decoding speedup and identifying the key
factors influencing it. Next, we analyze LLM inference in long-context scenarios, highlighting the bottleneck
shift that enables speculative decoding to achieve speedup with large batch sizes. Finally, we demonstrate
the necessity of compressed KV-based drafting to achieve high speedup in long-context, large batch scenarios.

3.1 SPECULATIVE DECODING SPEEDUP ANALYSIS

The decoding time required by the target model and the draft model for a batch of size B and sequence
length S are given by TT (B,S) and TD(B,S) respectively. The time taken by the target model to verify
γ tokens is given by TV (B,S,γ). Given the draft token acceptance rate α∈ [0,1] and speculation length

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128 256
Batch Size

0.2

0.4

0.6

0.8

1.0

D
ra

ft
 T

im
e

/ T
ar

ge
t T

im
e

Prefill=4000
Prefill=8000
Prefill=16000
Prefill=32000
Prefill=64000

(a)

1 2 4 8 16 32 64 128 256
Batch Size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ve
ri

fic
at

io
n

Ti
m

e
/ D

ec
od

in
g

Ti
m

e

Prefill=1000
Prefill=4000
Prefill=16000
Prefill=64000

(b)

1 4 16 64 256
Batch size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sp
ee

du
p

1 1
1

1
2

1

1

2

4

4

1

3

4

4
4Prefill 4000

Prefill 16000
Prefill 64000

(c)

Figure 2: Theoretical analysis and expected speedup for LLaMA-3.1-8B deployed on 8×A100s with γ=3. (a)
Theoretical TD/TT versus batch sizes. (b) Theoretical TV(γ)/TT versus batch size. (c) Theoretical expected speedup
of self-speculation across different batch sizes (draft KV budget = 512).

γ, the expected number of tokens generated in one verification step is denoted by Ω(γ,α). As described
in (Leviathan et al., 2022), the expected number of generated tokens can be estimated as,

Ω(γ,α):=E[#generatedtokens]=
1−αγ+1

1−α
(1)

The total time taken for speculative decoding, TSD
Total, is given by:

TSD
Total=γ ·TD(B,S)+TV (B,S,γ)

Hence, the expected latency per token for speculative decoding is simply TSD
Avg=TSD

Total/Ω(γ,α). For brevity
of notation, we will refer to these times as TT , TD, and TV in the future, with the dependence on B and
S implied, unless otherwise specified.

The speedup of speculative decoding and the factors regulating it can be understood from the following
equation,

TSD
Avg

TT
=

1

Ω(γ,α)

(
γ ·TD
TT

+
TV (γ)

TT

)
(2)

From equation 2 we can see that speed-up depends on three primary factors: (a) target verification to decoding
cost ratio TV(γ)/TT, (b) draft to target cost ratio TD/TT, and (c) expected generation length Ω(γ,α).
For better speedups, we aim to achieve low TV (γ)/TT (close to 1), low TD/TT (close to 0) and high Ω(γ,α).

3.2 KV CACHE BOTTLENECK ENABLES SPECULATIVE DECODING SPEEDUP

In this section, we analyze how the inference bottleneck shifts as sequence length and batch size increase
and how it affects the factors discussed in Section 3.1.

For short sequence lengths, speculative decoding negatively impacts batch inference efficiency (Liu et al.,
2024a; Su et al., 2023). As batch size grows, the linear layers become compute-bound due to improved
arithmetic intensity. This reduces the availability of compute resources that speculative decoding utilizes
for parallel verification, essentially increasing the verification to decoding cost ratio.

In contrast, for moderate to long sequences, we observe a transition towards a memory-bound regime since
with increasing batch size, the memory cost of loading the KV cache becomes the dominant factor. This
shift from compute-bound to memory-bound inference makes the verification cost comparable to the target
decoding cost. Because verification and decoding share the same KV budget, their KV cache loading costs
are equivalent. The high ratio of peak FLOPS to memory bandwidth in modern GPUs causes the increase
in KV loading time with batch size to outweigh the increase in computation time (see Fig. 1a). As a result,
although compute-bound linear layers increase verification cost, it is mitigated by the KV bottleneck.

Based on this shift in bottlenecks, we identify a critical sequence length Sinflection, beyond which speculative
decoding achieves speedup for large batches. Moreover, its speedup tends to increase with batch size. This
threshold depends on factors like the model architecture, hardware configuration, and drafting strategy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1000 2000 3000 4000 5000 6000 7000 8000

Prefill Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

La
te

nc
y

R
at

io

TD/TT

TV()/TT

(a)

2500 5000 7500 10000 12500 15000
Prefill Length

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

du
p

1375 3297

Llama-2-7b-hf
Meta-Llama-3.1-8B

(b)

0 1000 2000 3000 4000 5000 6000
Prefill Length

50

100

150

200

250

300

FL
O

PS
/M

em
or

y

L40

A100

H100

V100

395

L40

A100

H100

V100

1958

meta-llama/Llama-2-7b-hf
meta-llama/Meta-Llama-3-8B

(c)

Figure 3: Theoretical analysis of self-speculation for LLaMA-2-7B-32K and LLaMA-3.1-8B with a draft KV
budget of 512 and a batch size of 256. We assume the acceptance rate is 0.8 here. (a) Ratio of target-draft latency
(γ ·TD/TT) and verification-target latency (TV (γ)/TT) versus sequence length for LLaMA-2-7B-32K , with γ=3.
(b) Theoretical speedup for different sequence lengths with a fixed α=0.8. (c) Theoretical arithmetic intensity for
different sequence lengths and different models.

• For S<Sinflection:
In this regime, as batch size increases, decoding becomes more compute-bound. Large batches can saturate
the available compute, making verification relatively more expensive, as illustrated in Fig. 2b. The cost
ratio TV (γ)/TT increases significantly for 1000 token long sequences. If the draft token acceptance
rate is low, the target model spends considerable time verifying incorrect speculations, reducing SD
efficiency. Our theoretical estimate in this regime aligns with (Liu et al., 2024a). The expected speed-up
with speculative decoding decreases with batch size for context lengths below the critical sequence length.

• For S≥Sinflection:
In this regime, speculative decoding can provide speedup for large batches, and this speedup even tends
to increase with batch size when we use some intelligent drafting strategies. This happens as a combined
effect of how verification to decoding cost ratio (TV (γ)/TT) and draft to target cost ratio (TD/TT)
evolve with increasing batch size, as shown in Fig. 2b and 2a.
For long sequences, KV cache loading becomes the primary bottleneck rather than compute (Sun et al.,
2024a; Aminabadi et al., 2022) and the target model shifts towards memory bound regime, as shown
in 3c. Because KV memory bottleneck scales with batch-size, this shift is sustained even for large batches.
As the verification and decoding phases share the same KV loading cost, the cost ratio TV (γ)/TT remains
close to 1.
However, the cost ratio TV (γ)/TT still increases monotonically with batch size and cannot explain
how we can achieve higher speedups for larger batches. The draft to target cost ratio (TD/TT) plays
an important role here. If the KV cache size of the draft model increases slower than target model, the
cost ratio TD/TT will decrease for larger batches. That is because the target model inference will be
more dominated by the KV cache bottleneck rather than the draft.

As Figure 2c illustrates in the case of LLaMA-3.1-8B , the theoretical speedup of speculative decoding
is expected to improve with increasing batch size for longer sequence lengths. The speedup decreases with
batch size for S<4000, but for S≥4000, the speedup increases with batch size.

As illustrated in Figure 3c, this critical sequence length Sinflection depends on both the model’s FLOPS-to-
memory ratio and the GPU’s FLOPS-to-memory bandwidth ratio. For a device with higher FLOPS-to-memory
bandwidth ratio, we expect a lower Sinflection. Models also affect this critical sequence length. For instance,
GQA model like LLaMA-3.1-8B tends to have higher Sinflection due to Grouped Query Attention (GQA),
which requires a larger sequence length to achieve the same KV memory footprint.

3.3 COMPRESSED KV CACHE ENABLES MORE EFFICIENT SPECULATION

In this section, we explain why KV compression is preferred over lightweight draft models for speculation
in long-context, large batch-size scenario. There are primarily two reasons,

KV cache grows beyond the parameter memory footprint: Unlike parameter memory, the KV cache
size grows linearly with batch size. If we use LLaMA-3.1-8B as a draft for LLaMA-3.1-70B and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 8 16 32 64 128 256 512 1024

Batch Size

0.20

0.25

0.30

0.35

0.40

D
ra

ft
 M

em
or

y
 /

 T
ar

ge
t

M
em

or
y

L40

A100

B200

Prefill 32000

Prefill 64000

Prefill 128000

(a)

4 8 16 32 64 128 256 512 1024

Batch Size

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
ra

ft
 M

em
or

y
 /

 T
a
rg

et
 M

em
or

y

L40

A100

B200

Prefill 8000

Prefill 16000

Prefill 32000

(b)

500 1000 1500 2000 2500 3000 3500 4000
KV Budget

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

A
cc

ep
ta

nc
e

R
at

e

Top-K
SnapKV
StreamLLM

(c)

Figure 4: (a, b) Draft/target memory ratio vs batch size across different sequence lengths for LLaMA-
3.1-8B /LLaMA-3.1-70B and LLaMA-2-7B /LLaMA-2-70B models. (c) LLaMA-3.1-8B
self-speculation acceptance rate of different drafting strategy versus KV budget. Target KV length: 32000.

LLaMA-2-7B for LLaMA-2-70B , the draft models can occupy up to 38∼140% memory footprint
of target models (Figures 4a and 4b) due to the fact that dimkv/dimmodel is higher. Hence, in this regime,
small draft models are not sufficient and compressed KV-based drafting is quite beneficial(Sun et al., 2024a).
This can be seen in Figure 3a, which illustrates how TD/TT for fixed KV size draft self-speculation with
LLaMA-3.1-8B approaches 0 with increasing sequence length for batch size 256.

KV compression achieves a better token acceptance rate than model compression: A high draft token
acceptance rate is critical to restrict the number of costly verification steps while serving large batches.
Interestingly, we see that KV cache compression can be a more cost-effective way to improve the acceptance
rate of draft tokens, especially in a high batch size long-context regime. Figure 1c illustrates this phenomenon
that if a target LLM speculates itself with a sparsified version of its own KV cache, then it can achieve
acceptance rates higher than those of small draft models with a full KV cache.

In summary, a draft model with compressed KV cache achieves two important factors for higher speedup
in a long-context scenario: low draft cost and high acceptance rate. Figures 7b and 7c empirically illustrate
the efficacy of this drafting strategy over standard SD with a small draft model in achieving higher speedups.

4 MAGICDEC

In this section, we present the trade-off analysis MagicDec performs to identify the correct drafting strategy.
In Section 3.3, we have motivated the reason behind adopting compressed KV-based drafting in this regime.
However, there are three different factors that we need to consider to effectively leverage KV compression
- (a) draft model size, (b) draft KV cache size or draft KV budget, and (c) KV compression algorithm. All
three factors are to be considered to strike the perfect balance between draft cost and acceptance rate.

4.1 GENERAL FORMULATION OF SPEEDUP WITH COMPRESSED KV-BASED DRAFTING

To begin with, we give a general formulation of speedup obtained with compressed KV-based drafting. The
following analysis considers sparse KV selection algorithms; however, it can be easily extended to other
KV compression methods (Hooper et al., 2024; Liu et al., 2024b; Singhania et al., 2024). The draft cost
for sparse-KV methods depends on two main components: (1) draft model decoding cost, and (2) the cost
of KV selection. For a given KV sparsification strategy (select) with a fixed KV budget of K, the selection
cost is denoted as Tselect(B,S,K), while the decoding time for K tokens is TD(B,K). The total time taken
by the draft using this KV strategy with KV cache budget K is:

TD,selectK(B,S)=TD(B,K)+Tselect(B,S,K) (3)

Using this as the total draft decoding time in equation 2, our final objective becomes

min
Tselect,K,γ,α

[
TSD
Avg

TT

]
= min

Tselect,K,γ,α

[
1

Ω(γ,α)

(
γ ·(TD(B,K)+Tselect(B,S,K))

TT (B,S)
+
TV (B,S,γ)

TT (B,S)

)]
(4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128

Batch Size

1.0

1.5

2.0

2.5

3.0

S
p
ee

d
u
p

(a) Speedup Comparison

1024 2048 4096
Budget

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

n
ce

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

D
ra

ft
 t

o
 D

ec
od

in
g

C
os

t
R

at
io

(b) Trade-off Analysis

8000 10000 12000 14000 16000 18000 20000

Seq Length

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
in

im
um

 A
cc

ep
ta

nc
e

R
at

e

Budget: 128

Budget: 256

Budget: 512

Budget: 1024

(c) Draft KV Budget Selection

niah-multikey-3 cwe qa-1 Snap-KV PQ Snap-KV Cost Ratio PQ Cost Ratio

Figure 5: Comparative analysis of two KV selection algorithms - SnapKV (Li et al., 2024)(static KV selection) and
PQCache (Zhang et al., 2024) (dynamic KV selection) on 3 Ruler tasks - needle in a haystack with passkeys 3, common
word extraction, question answering 1 (context length = 32,000). (a) Expected speed-up comparison between the two
KV selection methods based on MagicDec evaluation framework. (b) Trade-off analysis between Draft-to-target cost
ratio and acceptance rate for SnapKV and PQCache methods. (c) Minimum acceptance rates required to be achieved
by self-speculation with different draft KV cache sizes to achieve 1.8x speedup over standard autoregressive decoding
by LLaMA-3.1-8B . The actual acceptance rates obtained for PG-19 dataset are marked with respective colors. The
admissible budgets for each sequence length are ticked right.

Now we discuss in detail the three main factors that decide the total draft decoding time TD,selectK and
the final speedup.

4.2 DRAFT MODEL SIZE SELECTION

Even with a compressed KV cache, the draft model weights can play a role in deciding the best performance.
The draft model parameter loading is the major part of draft cost when KV cache size is small. Usually
at lower batch sizes, a small draft model with compressed KV cache can outperform self-speculation because
of a lower draft to target cost ratio. When batch size and sequence length are relatively small, the parameter
loading cost can impede the draft performance. Moreover, for smaller batches, the token acceptance rate
requirement can be relaxed to favor a much more efficient draft model. However, beyond a certain batch
size, self-speculation can become more efficient because of its higher acceptance rate, as shown in Fig. 7c.

4.3 DRAFT KV BUDGET SELECTION

For a fixed draft model and KV compression algorithm, the optimal draft KV cache size varies across
different batch sizes and context lengths. Hence, before selecting the optimal KV compression algorithm,
we need to find the respective optimal KV budgets of the candidate algorithms. We illustrate the importance
of optimizing the KV budget of static KV selection algorithms for self-speculation in Figure 5c. Batches of
different sequence lengths and batch sizes require different minimum acceptance rates to achieve any speedup
via speculative decoding. Similarly, different KV budgets and different draft model would have different
draft cost-acceptance rate trade-offs. This plot recommends the admissible draft KV budgets that reach
the required minimum acceptance rate. This trade-off analysis is particularly useful for serving heterogeneous
batches with different sequence lengths. Different sequences in the same batch can leverage different draft
KV cache sizes to achieve the required speedup.

4.4 COMPARATIVE STUDY ON KV SELECTION STRATEGIES

Finally, MagicDec has to choose among different kinds of KV selection algorithms to regulate the search
cost Tselect. Although top-k attention can achieve very high acceptance rate with a much smaller KV cache
budget, it is not a practical draft option because of its prohibitively high KV selection cost.

There are many potential alternatives to top-k attention, but determining the optimal one is not straightforward.
There are primarily two kinds of KV selection algorithms - (a) dynamic KV selection algorithms such as
(Tang et al., 2024; Zhang et al., 2024), (b) static KV selection algorithms such as (Xiao et al., 2024b; Yang
et al., 2024; Li et al., 2024). The first kind of algorithms dynamically searches the KV cache for each input
query, attempting to find the top k nearest neighbors. Although these methods can achieve higher acceptance
rates, they incur substantial search costs. Conversely, static KV selection methods pre-gather a sparse KV

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

cache for attention approximation during generation. This approach eliminates search overhead but typically
results in lower acceptance rates.

Static vs Dynamic: We evaluate state-of-the-art KV selection strategies using both our theoretical framework
and empirical acceptance rates from self-speculation with the LLaMA-3.1-8B model on various Ruler
tasks (Hsieh et al., 2024). Our analysis includes both static (e.g., StreamingLLM (Xiao et al., 2024b), SnapKV
(Li et al., 2024)) and dynamic (e.g., PQCache (Zhang et al., 2024), TopK) KV selection algorithms, exploring
different KV budgets and speculation lengths to estimate optimal theoretical speedups.

Figure 5 illustrates the trade-off between two representative KV sparsification algorithms, SnapKV and
PQCache, and their respective theoretical speedups on three distinct Ruler tasks: needle in a haystack
with passkeys 3 (niah-multikeys-3), common word extraction (cwe), and question answering 1 (qa-1).
SnapKV2, a static algorithm, has a lower draft-to-target cost ratio compared to PQCache, as PQCache incurs
a batch-size-dependent KV selection cost Tselect.

When the acceptance rates of static and dynamic methods are similar, the static method tends to dominate,
as seen in the cwe and qa-1 tasks. However, for the niah-multikeys-3 task, PQCache benefits significantly
from its higher acceptance rate. With an acceptance rate close to 1, PQCache can leverage longer speculation
lengths, which significantly reduces the objective function in equation 4. Nevertheless, with increasing
batch-size, KV search cost dominates again and the static algorithm starts to outperform the dynamic one.

5 EVALUATIONS

In this section, we empirically validate our theoretical analysis and demonstrate the effectiveness of our
drafting strategy selection modeling. Specifically, in Section 5.1, we demonstrate the end-to-end speedup
of self-speculation with sparse KV, showing that speculative decoding achieves speedup for moderate-to-long
sequences, with speedup increasing as batch size grows, when sequence length exceeds a critical threshold.
In Section 5.2, we compare the speedup of two drafting strategies, highlighting the effectiveness of our
approach. In Section 5.3, we perform an ablation study on the speedup of speculative decoding.

5.1 END-TO-END SPEEDUP

We demonstrate the effectiveness of our analysis in Section 3 that speculative decoding can improve both
throughput and latency for moderate-to-long sequences.

Setup: We use StreamingLLM (Xiao et al., 2024b) style sparse KV for drafting and conduct experiments
across various batch sizes and sequence lengths to evaluate speculative decoding speedup. The system
implementation details are shown in A.1. The evaluation is performed using the state-of-the-art long-context
model LLaMA-3.1-8B on the PG-19 dataset (Rae et al., 2019). Each run generates 96 tokens per
sentence in the batch through greedy decoding on 20 batches. We tested two draft KV cache budgets to
assess the trade-off between draft cost and acceptance rate.

Results: Fig. 6 shows the speedup achieved by speculative decoding at the optimal speculation length across
various batch sizes and sequence lengths. These experiments are conducted on 8xA100 GPUs.

SD can achieve speedup for moderate to long context length. We can find that speculative decoding
consistently outperforms autoregressive decoding except when batch size is large and sequence length is
short, which indicate the correctness of our analysis in Sec. 3.2.

SD achieves better speedup with larger batch sizes. We find that on 8xA100, when the sequence length
exceeds 4000, speculative decoding achieves speedup, which increases with batch size. This result aligns
with our analysis in Sec. 3.2. To verify our analysis of factors affecting the critical sequence length, we ran
experiments on higher-end GPUs (H100) and lower-cost alternatives (L40), and compared the results with L
LaMA-2-7B-32K . As shown in Table 1, the H100 achieves higher speedup than the A100 and L40 under
the same setting (sequence length, batch size, and drafting strategy). This is due to the H100’s higher FLOPS-
to-memory bandwidth ratio, which lowers verification cost. Additionally, we can see for 8000 sequence
length and the 32 batch size LLaMA-2-7B-32K without GQA achieves higher speedup than LLaMA
-3.1-8B with 32000 sequence length, that’s because Non-GQA model has lower FLOPS-to-memory ratio.

2SnapKV was chosen for its superior acceptance rates among static algorithms, utilizing average pooling with a kernel
size of 5 and an observation window size of 32. PQCache employs product quantization with 16 sub-vectors and 8-bit
quantization per key vector.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

32 64 128 256
Batch Size

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

1

2
2

2

2

2

2

2
2

2
2

2

3

2

2

3

43

4
5

32 64 128 256
Batch Size

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

1

2
2 2

2
2

2
22

2
23

3

3
3

3

4
3

4

5

Prefill 4000
Prefill 8000

Prefill 16000
Prefill 24000

Prefill 32000
Prefill 64000

Prefill 100000

Figure 6: End-to-end speedups for StreamingLLM-based self-speculation with LLaMA-3.1-8B across various
compressed KV budgets (left: 256, right: 512) on PG-19. Annotations indicate γoptimal, which is the value corresponding
to the highest speedup achieved. Experiments are conducted on 8xA100 with 8-way tensor parallelism. Raw data can be
found in A.2.

Table 1: Results on L40 and H100, StreamingLLM budget for the draft model is 512, each with the optimal γ

Target Draft Task GPU Prefill Bsz γ γTD(1) TV(γ) Ω(γ,α) TAR TSD x

Llama3.1-8B StreamingLLM PG-19 8xL40 32000 32 3 44.11 45.12 3.00 36.62 30.32 1.21
Llama2-7B-32K StreamingLLM PG-19 8xL40 8000 32 2 29.06 42.02 2.53 35.13 28.70 1.22
Llama2-7B-32K StreamingLLM PG-19 8xL40 8000 64 3 58.33 74.85 3.14 62.92 42.96 1.46

Llama3.1-8B StreamingLLM PG-19 4xH100 32000 32 3 15.09 18.30 2.82 17.32 12.16 1.42
Llama2-7B-32K StreamingLLM PG-19 4xH100 8000 32 3 14.20 15.64 2.98 14.85 10.29 1.44
Llama2-7B-32K StreamingLLM PG-19 4xH100 8000 64 4 23.63 27.90 3.37 26.17 15.58 1.68

5.2 COMPARING DIFFERENT KV COMPRESSION METHODS

In this section, we compare two static KV compression methods for drafting, with results shown Fig. 7b
and Fig. 7c. The detail results are in Table 6. We perform a sweep to select the optimal speculation length
and KV budget for each method. The best draft budget for StreamingLLM-based self-speculation is 512,
while for SnapKV-based approach, it is 2049. The results indicate that SnapKV-based drafting outperforms
StreamingLLM for self-speculation in all the cases. Based on Fig. 4c and our analysis in Sec. 4, the key factor
is the acceptance rate. Both StreamingLLM and SnapKV are static KV compression methods, so neither incurs
KV search overhead. However, SnapKV has a much higher acceptance rate, which increases rapidly with KV
budget, mitigating the rise in draft cost. In contrast, StreamingLLM’s acceptance rate has a lower upper bound
and increases more slowly with KV budget. As a result, SnapKV achieves higher speedup due to the combined
effect of acceptance rate and draft cost. We further evaluated SnapKV-based self-speculation across different
batch sizes, sequence lengths, and tasks, with promising results. As shown in Table 2, SnapKV-based self-
speculation achieves up to 2.51x speedup, demonstrating speculative decoding’s ability to improve throughput.

Table 2: Further Results of SnapKV Self-speculation on Different Tasks

Target Draft Task GPU Prefill Bsz γ γTD(1) TV(γ) Ω(γ,α) TAR TSD x

Llama3.1-8B SnapKV PG-19 8xH100 100000 41 7 34.34 28.50 5.61 25.96 11.35 2.29
Llama3.1-8B SnapKV QA-1 8xH100 100000 41 11 53.90 29.89 7.93 25.90 10.64 2.43
Llama3.1-8B SnapKV CWE 8xH100 100000 41 11 53.98 29.93 8.21 25.83 10.29 2.51
Llama3.1-8B SnapKV PG-19 8xH100 64000 64 6 32.89 28.80 5.41 25.52 11.54 2.21
Llama3.1-8B SnapKV QA-1 8xH100 64000 64 7 38.40 29.11 6.08 25.43 11.20 2.27
Llama3.1-8B SnapKV CWE 8xH100 64000 64 8 43.91 29.29 6.83 25.48 10.81 2.36

5.3 ABLATION STUDY

In this section, we present ablation studies of our speculative decoding speedup analysis model.

Draft KV Budget. As modeled in Section 4, the selection of KV budget depends on verification cost,
acceptance rate, and draft cost. As shown in Fig. 6, when batch size and sequence length are large, a larger
KV budget results in higher speedup. In this scenario, the LLM is highly memory-bound, so verification

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1632 64 12
8

25
6

51
2

Batch Size

0.85

0.90

0.95

1.00

1.05

Sp
ee

du
p

vs
 A

ut
or

eg
re

ss
iv

e
D

ec
od

in
g

3

2

2

1

1

1

Llama-3.2-1B with full KV cache

(a) Prompt Length=256

16 64 12
8

25
6

48
0

Batch Size

0.9

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

vs
 A

ut
or

eg
re

ss
iv

e
D

ec
od

in
g

2

2
2

2

2

2

2

3
3

2

2

2

3

3

Llama-3.2-1B with StreamingLLM KV
Self-Spec with StreamingLLM KV
Llama-3.2-1B with full KV cache

(b) Prompt Length=8192

16 32 64 12
8

Batch Size

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

vs
 A

ut
or

eg
re

ss
iv

e
D

ec
od

in
g

3

3

3

3

3

3

3

4

3

4

5

6Llama-3.2-1B with StreamingLLM KV
Self-Spec with StreamingLLM KV
Self-Spec with SnapKV

(c) Prompt Length=32768

Figure 7: Comparison between different drafting strategy for LLaMA-3.1-8B under short, medium and long context
length across batch sizes. Hardware: 8xH100. Each with optimal gamma. Dataset: PG-19.

cost is low, but its absolute value is much larger than the draft cost with a fixed KV size. Therefore, a larger
KV budget with a higher acceptance rate is preferred to increase the average generation length per step.

Draft Model Weights. Draft model weights loading is also a part of draft cost. We have several choices of
drafting stategy with the trade-off of draft cost and acceptance rate. A small draft model can have much lower
model weights loading cost, but with significant lower acceptance rate. We conduct experiments under prompt
length 256, 8192 and 32768 to show the effect to speedup of different draft model selection. The results are
shown in Fig. 7. We can see in Fig. 7b that when sequence length is not sufficient long and batch size is not
very large, small draft model with the KV compression tends to outperform self-speculation. This is because,
in these scenarios, KV doesn’t fully dominate inference, and model weight loading makes draft costs of
self-speculation a lot higher. However, when both sequence length and batch size are very large, and the KV
cache dominates LLM inference, self-speculation surpasses the small draft model, as model weight loading
contributes minimally to overall latency. The high acceptance rate of compressed KV self-speculation has
higher speedup upper bound, and leads to better speedup when batch size is large, as demonstrated in Fig. 7c.

Models. Different models have different FLOPS to Memory Ratio and acceptance rate. We also conducted
experiments on Qwen2.5-7B , Qwen2.5-32B and Mistral-7B-v0.3 models to show the
generalizability of MagicDec. The results are shown in Sec. A.5. We can see speculative decoding works
well for these models, achieving up to 2.06x speedup for Mistral-7B-v0.3 , 1.89x speedup for Qwe
n2.5-7B and 1.51x speedup for Qwen2.5-32B on PG-19 dataset. The trend of speedup also matches
our previous analysis and the LLaMA-3.1-8B results.

6 CONCLUSION AND LIMITATION

Optimizing both throughput and latency for LLM inference is challenging, especially for long-context, large
batch-size regime. Our analysis reveals that speculative decoding can be beneficial in this regime, with its
efficacy increasing with larger batch-sizes, contrary to existing misconceptions. In search of effective drafting
strategies, we discover that KV compression is easier than model compression to achieve higher acceptance
rate at the same memory budget, which becomes more prominent in high batch-size and long context-length
regime. Leveraging these insights, we explore different KV compression algorithms for drafting and present
a bottleneck-aware general formulation to select suitable drafting strategy based on task, batch-size and
sequence-length. MagicDec only focuses on decoding performance for long-context LLM serving, while
the prefill is also very challenging in this scenario. There has been some work focusing on improving the
prefill performance (Agrawal et al., 2024a; Zhong et al., 2024), which could be integerated with MagicDec
to improve both prefill and decode performance. MagicDec tends to achieve better speedup on high-end
GPUs due to their higher FLOPS-to-memory bandwidth ratio and large HBM size. Future work can explore
the adoption of speculative decoding on offloading and distributed setting to reduce the communication
overhead, thus better utilize the resource of commodity devices.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Amey Agrawal, Junda Chen, Íñigo Goiri, Ramachandran Ramjee, Chaojie Zhang, Alexey Tumanov, and Esha
Choukse. Mnemosyne: Parallelization strategies for efficiently serving multi-million context length llm in-
ference requests without approximations, 2024a. URL https://arxiv.org/abs/2409.17264.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm inference with
sarathi-serve, 2024b. URL https://arxiv.org/abs/2403.02310.

AI@Meta. The llama 3 herd of models, 2024. URL https://ai.meta.com/research/
publications/the-llama-3-herd-of-models.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng Li,
Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, and Yuxiong He. Deepspeed
inference: Enabling efficient inference of transformer models at unprecedented scale, 2022. URL
https://arxiv.org/abs/2207.00032.

Amazon AWS. Codewhisperer, 2024. URL https://aws.amazon.com//codewhisperer.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Heb-
gen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Google Deepmind. Our next-generation model: Gemini 1.5, 2024. URL https://blog.google/
technology/ai/google-gemini-next-generation-model-february-2024/
#build-experiment.

flashinfer-ai. Flashinfer. URL https://github.com/flashinfer-ai/flashinfer.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/2210.17323.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient transformers
via top-k attention, 2021. URL https://arxiv.org/abs/2106.06899.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, and Yu Wang.
Flashdecoding++: Faster large language model inference on gpus. arXiv preprint arXiv:2311.01282, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache
quantization, 2024. URL https://arxiv.org/abs/2401.18079.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. Ruler: What’s the real context size of your long-context language models?, 2024.
URL https://arxiv.org/abs/2404.06654.

11

https://arxiv.org/abs/2409.17264
https://arxiv.org/abs/2403.02310
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://arxiv.org/abs/2207.00032
https://aws.amazon.com//codewhisperer
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2307.08691
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#build-experiment
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#build-experiment
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#build-experiment
https://github.com/flashinfer-ai/flashinfer
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2106.06899
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2404.06654

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Yu, Joseph E Gonzalez, Hao
Zhang, and Ion Stoica. vllm: Easy, fast, and cheap llm serving with pagedattention. See https://vllm.ai/
(accessed), 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
arXiv preprint arXiv:2211.17192, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL
https://arxiv.org/abs/2005.11401.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick
Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation, 2024. URL
https://arxiv.org/abs/2404.14469.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485.

Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk Kwon, Zhuohan Li, Xiangxi Mo, Alvin Cheung, Zhijie
Deng, Ion Stoica, and Hao Zhang. Optimizing speculative decoding for serving large language models
using goodput, 2024a. URL https://arxiv.org/abs/2406.14066.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint arXiv:2402.02750,
2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models, 2023. URL https://arxiv.org/abs/2305.11627.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative llm serving
with speculative inference and token tree verification. arXiv preprint arXiv:2305.09781, 2023.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-state
rnns, 2024. URL https://arxiv.org/abs/2401.06104.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vat-
tention: Dynamic memory management for serving llms without pagedattention, 2024. URL
https://arxiv.org/abs/2405.04437.

pytorch-labs. Gpt-fast, 2023. URL https://github.com/pytorch-labs/gpt-fast.

QwenTeam. Qwen2.5: A party of foundation models, September 2024. URL https:
//qwenlm.github.io/blog/qwen2.5/.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive transformers
for long-range sequence modelling, 2019. URL https://arxiv.org/abs/1911.05507.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank keys
for efficient sparse attention, 2024. URL https://arxiv.org/abs/2406.02542.

Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative decoding and
batching in serving large language models, 2023. URL https://arxiv.org/abs/2310.18813.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding, 2024a. URL
https://arxiv.org/abs/2404.11912.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models, 2024b. URL https://arxiv.org/abs/2306.11695.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han.
Quest: Query-aware sparsity for efficient long-context llm inference, 2024. URL
https://arxiv.org/abs/2406.10774.

12

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2406.14066
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2405.04437
https://github.com/pytorch-labs/gpt-fast
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/2406.02542
https://arxiv.org/abs/2310.18813
https://arxiv.org/abs/2404.11912
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2406.10774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

MLC team. MLC-LLM, 2023. URL https://github.com/mlc-ai/mlc-llm.

Nadav Timor, Jonathan Mamou, Daniel Korat, Moshe Berchansky, Oren Pereg, Moshe Wasserblat, Tomer
Galanti, Michal Gordon, and David Harel. Distributed speculative inference of large language models
is provably faster, 2024. URL https://arxiv.org/abs/2405.14105.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation, 2023. URL
https://arxiv.org/abs/2203.16487.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024a. URL
https://arxiv.org/abs/2211.10438.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks, 2024b. URL https://arxiv.org/abs/2309.17453.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramid-
infer: Pyramid kv cache compression for high-throughput llm inference, 2024. URL
https://arxiv.org/abs/2405.12532.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun.
Orca: A distributed serving system for Transformer-Based generative models. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521–
538, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL
https://www.usenix.org/conference/osdi22/presentation/yu.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao Xue, Bingzhe Wu, Zhikai Li, Qingyi
Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer. Llm inference unveiled: Survey
and roofline model insights, 2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and
Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference, 2024. URL
https://arxiv.org/abs/2407.12820.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o:
Heavy-hitter oracle for efficient generative inference of large language models, 2023. URL
https://arxiv.org/abs/2306.14048.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
Distserve: Disaggregating prefill and decoding for goodput-optimized large language model serving, 2024.
URL https://arxiv.org/abs/2401.09670.

A APPENDIX

A.1 SYSTEM IMPLEMENTATION

Compressed KV

Full KV Compressed KV

Full KV

Speculation

Speculated Tokens

Verification

KV Compression
Methods

Overwrite

Prefill Phase Decode Phase

Figure 8: Self-Speculation System Design. We demonstrate using a static KV compression method.

The design of our speculative decoding system is shown in Fig. 8, demonstrating the use of a static KV
compression method. The static compressed KV is generated during prefill phase and used for drafting. We
implement the speculative decoding system on both state-of-the-art inference framework MLC-LLM (team,

13

https://github.com/mlc-ai/mlc-llm
https://arxiv.org/abs/2405.14105
https://arxiv.org/abs/2203.16487
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2405.12532
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2401.09670

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

2023) and a self-implement inference backend. The main results are obatined from our self-implemented
backend. The comparison of our backend and MLC-LLM can be found in A.3.

The self-implement inference backend is built on GPT-Fast (pytorch-labs, 2023), with Flashinfer (flashinfer-ai)
accelerating attention computation. We use torch.compile to compile the model and utilize Triton-based
matrix multiplication to accelerate the MLP layers. We use Pytorch CUDA graphs to reduce CPU kernel
launch overhead. These optimizations help minimize overhead and improve speedup. We also implement
tensor parallelism for the embedding layer to further accelerate drafting.

A.2 RESULTS OF VARIOUS BATCH SIZE AND CONTEXT LENGTH ON A100

We show the raw data points we collected when running speculative decoding on the self-implement backend
to support our previous discussion. We sweep the batch size and sequence lengths, and compare the speedup
of different drafting strategy for different models. We ran all these experiments on 8 Nvidia A100 GPU
with 8-way Tensor Parallelism.

(a) LLaMA-2-7B-32K , TinyL
Lama-1.1B

S B γTD TV Ω TAR TSD x

1024 32 8.21 9.55 2.19 8.27 8.70 0.95
1024 48 8.46 10.66 2.19 9.41 9.33 1.01
1024 64 9.26 13.05 2.19 10.83 10.80 1.00
1024 128 12.04 18.87 2.19 14.02 14.83 0.94
4000 32 8.46 13.21 2.19 11.89 10.52 1.13
4000 48 8.71 16.19 2.19 14.39 12.02 1.20
4000 64 9.35 21.83 2.19 19.28 14.88 1.30
4000 128 12.31 33.82 2.19 28.77 21.78 1.32
8000 32 8.61 18.40 2.18 16.53 13.02 1.27
8000 48 8.91 23.67 2.18 21.45 15.58 1.38
8000 64 9.58 34.32 2.18 31.49 20.80 1.51
8000 128 12.54 53.78 2.18 49.89 31.25 1.60
16000 32 8.78 27.79 2.17 26.28 17.46 1.50
16000 48 9.33 38.29 2.18 35.83 22.52 1.59
16000 64 9.92 58.14 2.17 55.08 31.99 1.72
24000 32 8.68 37.57 2.16 35.70 22.05 1.62
32000 32 8.83 47.35 2.17 44.94 26.55 1.69

(b) LLaMA-2-7B-32K Self Spec-
ulation

S B γTD TV Ω TAR TSD x

4000 32 15.42 13.17 2.56 11.89 11.69 1.02

4000 48 16.96 16.38 2.56 14.39 13.55 1.06

4000 64 19.75 22.01 2.57 19.28 16.82 1.15

4000 128 25.82 33.79 2.56 28.77 23.86 1.21

8000 32 15.70 18.23 2.53 16.53 13.99 1.18

8000 48 18.44 24.32 2.53 21.45 17.50 1.23

8000 64 20.03 34.30 2.53 31.49 22.05 1.43

8000 128 26.10 53.69 2.52 49.89 32.25 1.55

16000 32 16.06 27.54 2.50 26.28 18.02 1.46

16000 48 19.75 39.03 2.50 35.83 24.15 1.48

16000 64 20.87 58.15 2.51 55.08 32.16 1.71

24000 32 15.80 37.06 2.49 35.70 21.77 1.64

32000 32 16.19 46.55 2.50 44.94 25.64 1.75

(c) LLaMA-3.1-8B Self Specula-
tion

S B γTD TV Ω TAR TSD x

4000 32 13.16 10.32 2.54 8.83 9.78 0.90
4000 64 16.48 13.55 2.54 10.07 12.36 0.81
4000 128 23.41 19.77 2.54 13.42 17.70 0.76
4000 256 39.29 35.05 2.53 23.23 30.46 0.76
8000 32 13.28 11.34 2.50 9.90 10.40 0.95
8000 64 16.98 16.06 2.51 14.16 13.72 1.03
8000 128 23.59 24.84 2.51 18.53 19.97 0.93
8000 256 39.32 46.44 2.51 35.35 34.99 1.01
16000 32 14.46 14.00 2.47 11.93 12.10 0.99
16000 64 18.00 21.15 2.48 17.17 16.40 1.05
16000 128 25.77 34.82 2.46 28.00 25.36 1.10
32000 32 14.12 19.04 2.46 17.13 14.05 1.22
32000 64 19.08 30.86 2.45 26.99 21.03 1.28
32000 128 28.26 54.98 2.45 47.24 34.94 1.35
64000 32 14.92 28.88 2.40 26.96 18.91 1.43
64000 64 18.25 50.19 2.40 46.09 29.22 1.58
100000 32 15.10 39.84 2.45 37.70 23.05 1.64

Table 3: Comparison of results for different LLaMA models and configurations (budget=512 and γ=2,8× A100). Here
S and B represent prefill length and batch size, respectively.

A.3 COMPARISON WITH MLC-LLM RESULTS

We compare the results of SnapKV based self-speculation on MLC-LLM and our backend. As the
measurement methods are different, we put them in two tables as shown in Table 4 and 5. The verification
time of MLC-LLM includes one step of draft decode time. Our backend is highly optimized for speculative
decoding setting, minimizing the drafting and verification overhead, thus, leading to better speedup. However,
the trend that speedup increases with batch size is the same, aligning with our theoretical analysis in Section 3.

Table 4: Results of Our Backend

Target Backend Task GPU Prefill Bsz γ γTD(1) TV(γ) Ω(γ,α) TAR TSD x

Llama3.1-8B Ours PG-19 8xH100 32000 16 3 10.96 6.91 3.42 6.41 5.41 1.18
Llama3.1-8B Ours PG-19 8xH100 32000 32 4 16.69 10.39 4.10 9.23 6.75 1.37
Llama3.1-8B Ours PG-19 8xH100 32000 64 5 23.96 17.45 4.59 14.85 9.17 1.62

Table 5: Results of MLC-LLM

Target Backend Task GPU Prefill Bsz γ TD(1) TV(γ) NumGen ARTrput SDTrput x

Llama3.1-8B MLC-LLM PG-19 8xH100 32000 16 4 3.64 13.60 724 2471.4 2133.0 0.86
Llama3.1-8B MLC-LLM PG-19 8xH100 32000 32 4 4.19 16.13 1455 3311.5 3664.5 1.11
Llama3.1-8B MLC-LLM PG-19 8xH100 32000 64 5 5.27 28.26 2719 3930.0 4959.2 1.26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 FURTHER SNAPKV AND STREAMINGLLM RESULTS

We show the raw experiment data. We compare both the StreamingLLM-based self-speculation and
SnapKV-based self-speculation, and also a small draft model with StreamingLLM KV cache.

Table 6: Comparison of SnapKV, StreamingLLM, and Tiny Draft (StreamingLLM KV) Speculation. Each with optimal γ
and KV budget

Target Draft Task GPU Prefill Bsz γ γTD(1) TV(γ) Ω(γ,α) TAR TSD x

Llama3.1-8B Llama3.2-1B(S) PG-19 8xH100 32000 16 3 4.43 6.71 2.43 6.18 4.86 1.27
Llama3.1-8B StreamingLLM PG-19 8xH100 32000 16 3 10.33 6.73 3.09 6.18 5.74 1.08
Llama3.1-8B SnapKV PG-19 8xH100 32000 16 3 10.55 6.84 3.41 6.18 5.27 1.17
Llama3.1-8B Llama3.2-1B(S) PG-19 8xH100 32000 32 3 4.71 9.70 2.43 9.10 6.22 1.46
Llama3.1-8B StreamingLLM PG-19 8xH100 32000 32 3 11.55 9.74 3.06 9.10 7.20 1.26
Llama3.1-8B SnapKV PG-19 8xH100 32000 32 4 15.79 10.36 4.03 9.10 6.64 1.37
Llama3.1-8B Llama3.2-1B(S) PG-19 8xH100 32000 64 3 5.05 15.86 2.44 14.84 8.88 1.67
Llama3.1-8B StreamingLLM PG-19 8xH100 32000 64 3 12.82 15.93 3.08 14.84 9.57 1.55
Llama3.1-8B SnapKV PG-19 8xH100 32000 64 5 22.91 17.70 4.55 14.84 9.05 1.64
Llama3.1-8B Llama3.2-1B(S) PG-19 8xH100 32000 128 3 5.79 28.51 2.43 26.07 14.43 1.81
Llama3.1-8B StreamingLLM PG-19 8xH100 32000 128 4 18.96 30.34 3.57 26.07 14.06 1.85
Llama3.1-8B SnapKV PG-19 8xH100 32000 128 6 33.33 31.60 5.07 26.07 12.96 2.01

A.5 RESULTS OF QWEN AND MISTRAL MODELS

Table 7: Results of Qwen and Mistral Models. Each with optimal γ and KV budget

Target Draft Task GPU Prefill Bsz γ γTD(1) TV(γ) Ω(γ,α) TAR TSD x

Mistral-7B-v0.3 SnapKV PG-19 8xH100 32000 32 3 11.71 9.62 3.49 8.92 6.12 1.46
Mistral-7B-v0.3 SnapKV PG-19 8xH100 32000 64 3 13.64 15.64 3.47 14.49 8.44 1.72
Mistral-7B-v0.3 SnapKV PG-19 8xH100 32000 128 5 27.49 30.65 4.72 25.41 12.31 2.06
Qwen-2.5-7B SnapKV PG-19 4xH100 32000 32 3 11.40 9.26 3.40 8.20 6.07 1.35
Qwen-2.5-7B SnapKV PG-19 4xH100 32000 64 4 17.67 15.67 4.06 13.11 8.20 1.6
Qwen-2.5-7B SnapKV PG-19 4xH100 32000 128 5 27.22 28.51 4.62 22.79 12.06 1.89
Qwen-2.5-32B SnapKV PG-19 8xH100 32000 8 3 23.67 11.98 3.50 10.42 10.19 1.02
Qwen-2.5-32B SnapKV PG-19 8xH100 32000 16 3 25.27 15.29 3.52 13.36 11.52 1.16
Qwen-2.5-32B SnapKV PG-19 8xH100 32000 32 3 28.99 21.90 3.51 19.43 14.49 1.34
Qwen-2.5-32B Qwen-2.5-7B PG-19 8xH100 32000 8 2 9.04 11.31 2.32 10.42 8.74 1.19
Qwen-2.5-32B Qwen-2.5-7B PG-19 8xH100 32000 16 2 11.61 14.59 2.32 13.36 11.31 1.18
Qwen-2.5-32B Qwen-2.5-7B PG-19 8xH100 32000 32 2 16.72 20.87 2.31 19.43 16.27 1.19
Qwen-2.5-32B Qwen-2.5-7B(Streaming) PG-19 8xH100 32000 8 2 6.77 11.31 2.27 10.42 7.97 1.31
Qwen-2.5-32B Qwen-2.5-7B(Streaming) PG-19 8xH100 32000 16 2 7.21 14.59 2.26 13.36 9.64 1.39
Qwen-2.5-32B Qwen-2.5-7B(Streaming) PG-19 8xH100 32000 32 3 11.78 21.82 2.62 19.43 12.85 1.51

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.6 TINYLLAMA1.1B-LLAMA2-7B-32K RESULTS

We also test the non-GQA model LLaMA-2-7B-32K for both StreamingLLM-based self-speculation and
small draft model with StreamingLLM KV cache. Due to the lower FLOPS to memory ratio of non-GQA
model, it tends to achieve higher speedup than GQA model under the same setting.

32 64 128 256

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2
1 2

2 2

2 2

2 2 2
2

2

2
2

3

3

3

3
4

3

4

4

4

44

32 64 128 256
Batch Size

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2
2 2

2
2

2 1

2 2
3

2
2

2 2
3

3

3

3
3

4

4

4

3

44

Prefill 1024
Prefill 2048

Prefill 4000
Prefill 8000

Prefill 16000
Prefill 24000

Prefill 32000

(a) Draft: TinyLLama-1.1B , Target: LLaMA-2-
7B-32K

32 64 128

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

2
2

2
2

2

3

3

4

4

4

3

4

4

32 64 128
Batch Size

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

2
2

2
22

3

3

4

4

4

3
4

4

Prefill 4000
Prefill 8000

Prefill 16000 Prefill 24000 Prefill 32000

(b) Draft: StreamingLLM based KV. Target: LLaMA-2
-7B-32K

Figure 9: End-to-end speedups for StreamingLLM-based self-speculation across various compressed KV budgets (left:
256, right: 512) on PG-19. Annotations indicate γoptimal, which is the value corresponding to the highest speedup achieved.
Experiments are conducted on 8xA100 with 8-way tensor parallelism. Raw data can be found in A.2.

16

	Introduction
	Related Works
	Theoretical Analysis
	Speculative Decoding Speedup Analysis
	KV Cache Bottleneck Enables Speculative Decoding Speedup
	Compressed KV Cache Enables More Efficient Speculation

	MagicDec
	General Formulation of Speedup with Compressed KV-based drafting
	Draft Model Size Selection
	Draft KV Budget Selection
	Comparative study on KV selection strategies

	Evaluations
	End-to-End Speedup
	Comparing Different KV Compression Methods
	Ablation Study

	Conclusion And Limitation
	Appendix
	System Implementation
	Results of Various Batch Size and Context Length on A100
	Comparison With MLC-LLM Results
	Further SnapKV and StreamingLLM Results
	Results of Qwen and Mistral Models
	TinyLlama1.1B-Llama2-7B-32K Results

