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Abstract

Correlation MRI is a promising microstructure imaging technique, but its reconstruction
remains highly ill-conditioned. We propose to first classify correlation signals, and achieve
high accuracy for classification into single- vs. multi-component. Further we establish a
solid baseline for predicting the exact number of sub-compartments.
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1. Introduction

Multiparametric correlation magnetic resonance imaging (MRI) and multi-component re-
laxometry are promising techniques for the quantification of soft tissue microstructure.
However, the need for many different contrasts collides with limited scan times, especially
in clinical exams. This leaves the reconstruction of tissue sub-compartments in the form
of multiparametric spectra as a highly ill-conditioned inverse problem that requires strong
regularization (Canales-Rodriguez et al., 2021; Benjamini and Basser, 2020).

We believe that prior knowledge will allow for novel strategies in the quantification of
tissue sub-compartments and propose the classification of correlation signals using neural
networks. We aim to simultaneously answer two questions:

e Are there multiple sub-compartments present?

e How many sub-compartments are there?
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Figure 1: A weighted sum of compartmental 2D signals is fed into our CNN. The network
comprises two convolutional layers, followed by three fully-connected layers. We
distinguish four output classes, representing the number of sub-compartments n.
(here: n. = 2). Adapted from (Leung, 2021).

2. Methods
2.1. Data set

The data for our deep learning approach consists of multi-contrast input signals and the
corresponding class, i.e. number of sub-compartments n.. We consider the four cases
ne € {1,...,4}, each contributing 25 % of the data. In total, 105 samples are generated.

To simulate tissues, we choose n, random T1e {50 : 50 : 5000} ms, random T2€ {5:5:
500}ms, and signal fractions f € [0,1], with f > 0.05 and ) ¢, f; = 1. We assume a set
of 8 x 8 = 64 unique combinations of scan parameters TI and TE, taken from an actual
correlation imaging experiment (Endt et al., 2023). Given the set of n. tissue parameters
T1, T2, and f and the set of 64 different scan parameters TI and TE, the multiexponential
signal M of size 8 x 8 is computed as follows:

=3 o (2E) (12 (L)) 8

Random Gaussian noise between 1% and 5% is added to the multiexponential signals.

Lastly, all signals are normalized to their 2-norm [|[M]||2 <1

The simulated data is split into training, validation and test data according to the ratio
70 %-20 %-10 %, while both varying number of sub-compartments n. and different noise
levels are equally present in all three data sets.

2.2. Architecture and learning strategy

We use a convolutional neural network (CNN) with two ReLU-activated convolutional layers
with a 3 x 3 kernel and 6 and 16 channels, respectively. The second convolution is followed
by a 2 x 2 max-pooling layer and 20 % dropout. Then we add two ReLU-activated fully
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connected layers with 32 nodes and 20 % dropout each, and a softmax-activated output
layer with four classes. The architecture is shown in Fig. 1.

The network is trained on training data, minimizing the cross-entropy between outputs
and reference labels using stochastic gradient descent (SGD) with a momentum of 0.9.
The learning rate decreases step wise from 1 to 0.01 over a total of 3000 epochs. We use
validation data to choose the final model, which is finally tested on previously unseen test
data. The network is trained in Python 3.10 using PyTorch 2.2 (Paszke et al., 2019). Results
are evaluated using scikit-learn 1.3 (Pedregosa et al., 2011). The code is publicly available
on https://github.com/SebastianEndtTHI/CorrelationClassification.

3. Results

The binary classification task distinguishing between one (n. = 1) or more (n. > 2) compart-
ments reached an accuracy of 94.1 % (precision 0.88, recall 0.88), and a Receiver Operating
Characteristic (ROC) area under the curve (AUC) of 0.98. The confusion matrix is shown
in Fig. 2(a). The multi-class prediction of the number of compartments reaches an accuracy
of 61.2 % (precision 0.60, recall 0.61) and is further evaluated using a Confusion Matrix and
ROC curves, as shown in Fig. 2(b) and 2(c), respectively, detailing class specific results.

1.0
_,. 22061 2939 0 0
[EPXLETOW (2.94%) | (0.00%) | (0.00%)
22061 :
(22.06%)
2583 15945 4540 1932
M (2.58%) WELEEDN (4.54%) | (1.93%)
8285 6389 9987
4%) | (8.29%) | (6.39%) | (9.99%)
72021
(72.02%)
57 3343 4781 16819 :
Bl (0.06%) | (3.34%) | (4.78%) [EIFFED) i
0082
i 1 2 0.

3 4 0.0 0.2 04 06 0.8 1.0
Predicted label Predicted label False positive rate

(a) (b) (¢)
Figure 2: (a) Binary confusion matrix for the prediction whether there are multiple com-
partments. (b) Multi-class confusion matrix for the estimation of the number of

compartments n.. (¢) ROC curves for the multi-class problem, including individ-
ual one-vs-rest curves and averages. n = 1 is equivalent to the binary task.
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4. Discussion

The binary classification tasks of distinguishing signals with multiple compartments against
signals with one single compartment reached a high accuracy and may soon be used as a
prior to stabilize both constrained optimization algorithms and recently emerging deep
learning approaches for the reconstruction of spectra (Yu et al., 2021; Endt et al., 2021).

For the multi-class classification task of predicting the number of compartments n., we
reach an accuracy of 61.2 %. This establishes a solid baseline for this novel problem, which
is subject to further development of the methodology in the future, i.e. by making use of
spatial context to stabilize the classification of a whole image slice or volume.
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