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ABSTRACT

Conformal prediction, as an emerging uncertainty quantification technique, typ-
ically functions as post-hoc processing for the outputs of trained classifiers. To
optimize the classifier for maximum predictive efficiency, Conformal Training
rectifies the training objective with a regularization that minimizes the average
prediction set size at a specific error rate. However, the regularization term in-
evitably deteriorates the classification accuracy and leads to suboptimal efficiency
of conformal predictors. To address this issue, we introduce Conformal Adapter
(C-Adapter), an adapter-based tuning method to enhance the efficiency of con-
formal predictors without sacrificing accuracy. In particular, we implement the
adapter as a class of intra order-preserving functions and tune it with our proposed
loss that maximizes the discriminability of non-conformity scores between cor-
rectly and randomly matched data-label pairs. Using C-Adapter, the model tends
to produce extremely high non-conformity scores for incorrect labels, thereby en-
hancing the efficiency of prediction sets across different coverage rates. Extensive
experiments demonstrate that C-Adapter can effectively adapt various classifiers
for efficient prediction sets, as well as enhance the conformal training method.

1 INTRODUCTION

Quantifying the uncertainty of predictions is critical for artificial intelligence systems, particularly
in high-stakes environments (e.g., financial decision-making and medical diagnostics). Conformal
prediction, a statistic framework for uncertainty estimation, converts an algorithm’s predictions into
prediction sets containing the true class with a user-specified coverage rate (Balasubramanian et al.,
2014; Shafer & Vovk, 2008). Critically, the validity of sets is satisfied in a distribution-free sense:
they possess explicit, non-asymptotic guarantees even without distributional assumptions or model
assumptions. To obtain informative outputs, it is of great importance to improve the efficiency of
conformal predictors, aiming for the prediction sets with minimal ambiguity (Sadinle et al., 2019).

Conformal prediction typically functions as post-hoc processing for the output of trained classifiers,
which might already be either unnecessarily conservative or overconfident (Bellotti, 2021; Stutz
et al., 2022). To optimize the predictive efficiency, Conformal Training (Stutz et al., 2022) rectifies
the training objective with a regularization that minimizes the average prediction set size at a specific
error rate (e.g., 0.01). However, the regularization term inevitably deteriorates the classifier accuracy
by increasing the difficulty of converging to an optimal solution (Stutz et al., 2022), which in turn
leads to the suboptimal efficiency of the conformal predictor. This challenge is especially significant
when dealing with many classes, making it difficult to apply to large-scale datasets such as ImageNet
(Deng et al., 2009). This motivates our methodology, which enables the efficient adaptation of
trained classifiers for conformal prediction without sacrificing classification accuracy.

In this work, we propose Conformal Adapter (dubbed C-Adapter), an adapter-based tuning method
to enhance the efficiency of conformal predictors. In particular, we tune an adapter layer appended
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to trained classifiers for conformal prediction using the training data. Our key idea is to adapt
trained classifiers for conformal prediction while preserving the ranking of labels in the output log-
its, thereby maintaining the top-k accuracy of the classifiers. To achieve this, we implement the
adapter as a class of intra order-preserving functions (Rahimi et al., 2020). For the optimization
of this adapter, we propose a loss function that enhances the discriminability of non-conformity
scores between correctly and randomly matched data-label pairs. In effect, the loss encourages the
non-conformity scores of correctly matched data-label pairs to be lower than those of incorrectly
matched ones, resulting in more efficient predictions across different coverage rates. Equipped with
C-Adapter, the predictor maintains top-k accuracy and generates highly efficient prediction sets. For
better clarity, we include a diagram in Appendix B to visually illustrate the application of C-Adapter.

To validate our method, we conduct extensive evaluations on three benchmarks of image classifica-
tion, including CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and ImageNet-
V2 (Recht et al., 2019). The results demonstrate that C-Adapter can significantly enhance the effi-
ciency of conformal predictors. For example, C-Adapter reduces the average size for APS from 9.21
to 2.86 on ImageNet (Deng et al., 2009) with DenseNet121 (Huang et al., 2017) at α = 0.1. This
approach also generalizes effectively to different score functions, consistently improving their effi-
ciency. Moreover, we show that C-Adapter can improve the efficiency of prediction sets while either
enhancing or maintaining conditional coverage metrics. Notably, our method is easy to implement,
as it does not require heavy tuning of hyperparameters and incurs low computational costs.

We summarize our contributions as follows:

• We propose C-Adapter, a simple and effective method to enhance the efficiency of confor-
mal predictors without sacrificing classifier accuracy. This approach serves as a distinctive
complement to existing score-based and training-based conformal prediction algorithms.

• We theoretically demonstrate that enhancing the discriminability of non-conformity scores
between correctly and randomly matched data-label pairs is equivalent to improving the
overall efficiency of conformal predictors. To this end, we propose a loss function specifi-
cally designed to achieve this goal and apply it to optimize our conformal adapter.

• We empirically show that C-Adapter effectively adapts a range of classifiers for efficient
prediction sets across different score functions. Moreover, we show that C-Adapter outper-
forms the fine-tuned version of Conformal Training and further improves its performance.

2 BACKGROUND

Setup In this work, we consider the multi-class classification task with K classes. Let (X,Y ) ∼
PXY denote a random data pair sampled from the joint distribution PXY , where X ⊂ Rd is the
input space and Y := {1, · · · ,K} is the label space. Given a training set, we learn a classifier
f : X → RK with parameter θ. Given an instance x, we predict the probability of class k by:

π̂k(x;θ) = ψ(fk(x;θ)) =
efk(x;θ)∑K
i=1 e

fi(x;θ)
, (1)

where ψ denotes the softmax function and fk(x;θ) is the k-th element of the logits f(x;θ). Deep
classifiers always suffer from the miscalibration issue: the estimated probabilities might be either
conservative or overconfident, leading to inaccurate assessments of uncertainty (Guo et al., 2017).

Conformal Prediction In uncertainty quantification, conformal prediction (Vovk et al., 2005)
seeks to construct prediction sets C(X) ⊆ Y such that P{Y ∈ C(X)} ≥ 1 − α for a pre-specified
error rate α ∈ (0, 1). To satisfy the desired coverage rate 1− α, we take an independent conformal
calibration dataset Dcal := {(xi, yi)}ni=1, and then determine the threshold τα such that the pre-
diction sets are large enough to achieve the desired coverage level of 1 − α on this calibration set.
Specifically, we calculate the non-conformity score si := S(xi, yi; π̂) for each sample (xi, yi) in
the calibration set where S is a pre-specified score function to measure non-conformity of each input
sample. We then determine the threshold τα as the 1− α quantile of the set {si}ni=1, as follows:

τα = inf

{
s :
|{i ∈ {1, · · · , n} : si ≤ s}|

n
≥ ⌈(n+ 1)(1− α)⌉

n

}
.
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(a) CIFAR-100
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(b) ImageNet

Figure 1: The accuracy and efficiency of ConfTr with various λ, using THR, APS and RAPS at
α = 0.1. The experiments are conducted with ResNet18 on (a) CIFAR-100 and (b) ImageNet. ⋆
represents the baseline without ConfTr. The findings indicate that the increment of λ decreases the
classification accuracy, ultimately leading to suboptimal efficiency in conformal prediction.

During testing, we calculate the non-conformity score S(xn+1, y; π̂) for a given instance xn+1 and
each label y ∈ Y . Then, the prediction set C(xn+1; τα, π̂) with 1− α coverage is constructed by:

C(xn+1; τα, π̂) := {y ∈ Y : S(xn+1, y; π̂) ≤ τα} . (2)

In other words, the final prediction sets achieve marginal coverage by containing all labels with
non-conformity scores below the threshold (Vovk, 2012; Angelopoulos et al., 2020). In addition
to the coverage, we typically expect to optimize the size of prediction sets, which is referred to as
efficiency. Nevertheless, the length of the resulting prediction sets can vary dramatically depending
on the design of S(x, y; π̂). In this work, we consider three popular score functions for classification,
including THR (Sadinle et al., 2019), APS (Romano et al., 2020), and RAPS (Angelopoulos et al.,
2020). We provide a detailed introduction to these score functions in Appendix C.1.

Conformal Training Conformal prediction typically works as post-hoc processing for the outputs
of trained classifiers. To optimize the classifier for maximum predictive efficiency, Conformal Train-
ing (ConfTr) (Stutz et al., 2022) rectifies the training objective with a regularization that minimizes
the average prediction set size at a specific error rate α. The loss function is formulated as:

LConfTr(f(x;θ), y, τ
soft
α ) = Lcls(f(x;θ), y) + λLsize(f(x;θ), τ

soft
α ). (3)

Here, Lcls represents the classification loss, while Lsize refers to the size loss, which approximates
the size of the prediction set at a coverage rate of 1− α. τ soft

α denotes the soft threshold and the hy-
perparameter λ controls the strength of the regularization term. We provide a detailed introduction
to ConfTr in Appendix C.2. Notably, while ConfTr with a tuned hyperparameter λ may improve the
efficiency of conformal predictors, the regularization term Lsize inevitably deteriorates the classifica-
tion accuracy of the classifier by increasing the difficulty of converging to an optimal solution (Stutz
et al., 2022). We theoretically demonstrate in Appendix D that the lower bound on the expected
size of the conformal prediction set is inversely related to the top-k accuracy of the classifier. Simi-
lar analyses exploring the relationship between model performance and the efficiency of conformal
predictors have been previously presented in prior works (Zecchin et al., 2024; Sadinle et al., 2019).

To provide a straightforward view, we demonstrate the effect of the regularization term Lsize on the
accuracy and efficiency of conformal predictors in Figure 1. We conduct experiments of ConfTr
with various λ, using ResNet18 on CIFAR100 and ImagNet. The results demonstrate that using this
regularization continuously degrades the classification accuracy of the classifier as λ increases. For
efficiency, ConfTr raises the average size of APS and RAPS after achieving the optimal performance
on CIFAR-100. On ImageNet, ConfTr offers only marginal benefits for the efficiency of conformal
predictors. The negative effect of ConfTr is especially noticeable on THR: the average size of
THR is consistently increased over various λ. The decrease in classification accuracy inevitably
results in larger prediction sets, which in turn limits the efficiency on average. We present a detailed
description of the experimental setup and the effect of the regularization termLsize on top-k accuracy
in Appendix I.1. We proceed by introducing our method, targeting this issue.
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Figure 2: Flow of C-Adapter. The design follows the definition of intra order-preserving functions
(Rahimi et al., 2020), ensuring that the refined logits maintain the ranking of the inputs.

3 METHOD

In our previous analysis, we demonstrate that ConfTr deteriorates the classification accuracy, thereby
hindering the efficiency of conformal predictors. To address this issue, our key idea is to adapt the
trained classifiers for conformal prediction while preserving the ranking of labels in the output logits,
thereby keeping the top-k accuracy of the original classifier unchanged.

Conformal Adapter To this end, we propose a novel adapter-based tuning method – Conformal
Adapter (dubbed C-Adapter), which appends an adapter layer to trained classifiers for conformal
prediction. Formally, we use g : RK → RK to denote the conformal adapter that takes the model
outputs f(x;θ) as input. Then, the final prediction of the model equipped with C-Adapter is:

π̃(x;θ,w) = ψ(g(f(x;θ);w)),

where w denotes the parameters of C-Adapter. While ConfTr alters the parameters of trained clas-
sifiers θ through retraining or fine-tuning, we only update a few trainable parameters w added for
conformal prediction. In addition to enhancing training efficiency, the adapter-based tuning method
requires access only to the model outputs. This makes it compatible with black-box models (e.g.,
online APIs) and other modern neural networks (e.g., Radford et al. (2021, CLIP)).

Importantly, the adapter requires to be learned within a hypothesis space that can provably guarantee
preserving the accuracy of the original network f . To achieve that, we implement the adapter as a
class of intra order-preserving functions (Rahimi et al., 2020), a family of functions that is both
necessary and sufficient to keep the top-k accuracy of the original network unchanged. Formally,
a function h : RK → RK is intra order-preserving, if, for all i, j ∈ [K] and any vector x ∈ RK ,
xi > xj (or xi = xj) if and only if hi(x) > hj(x) (or hi(x) = hj(x)). For convenience, we use
f to indicate the model output f(x;θ). We denote R : RK → UK as the sorting function, where
UK ⊂ {0, 1}K×K represents the set of K ×K permutation matrices. We have r = R(f)f as the
sorted f , satisfying r1 > · · · > rK . We use U to denote theK×K upper-triangular matrix of ones.

To ensure that C-Adapter belongs to the class of intra order-preserving functions, we define it by
g(f ;w) = R(f)−1UΨ(f), (4)

where the i-th term of Ψ(f) is formulated as:

Ψi(f) =

{√
(ri − ri+1)σ(φi(f)) for i < K,

φK(f) for i = K.
(5)

Here, φ(f) = w · f + w′, and σ represents the sigmoid function. We denote φi(f) as the i-
th component of φ(f). The term

√
ri − ri+1 is designed to preserve all ties and inequalities in

the sorted sequence, and equals zero if and only if ri = ri+1. Alternative formulations, such as
(ri − ri+1) or 1{ri>ri+1}, are also valid options within our framework, each resulting in different
local optima for this task. We outline the workflow in Figure 2. A detailed description of this
function family, along with the configuration of our adapter and optimization strategies, is provided
in Appendix E. The core idea is to decouple the label ranking and the logit values in the tuning. It
begins by preserving a duplicate of the label ranking, and then transmit the logits to the linear layer
for processing. Finally, we recover the label ranking in the output. This structure decouples the
logit order from the adaptation for conformal prediction, allowing C-Adapter to focus on optimizing
efficiency. We show the superiority of this adaptation strategy over others in Figures 5 and 6.
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Training objective ConfTr optimizes the efficiency of conformal predictors at a predetermined
error rate (e.g., α = 0.01), which may result in suboptimal performance when predicting with a
different coverage rate. In contrast, we consider a more general criterion for efficiency:

Ex∼PX

[∫ 1

0

|C(x; τα, π̃w)| dα
]
, (6)

which measures the definite integral of efficiency over α ∈ (0, 1). For notation shorthand, we use
π̃w to indicate that the underlying classifier f is equipped with C-Adapter, parameterized by w.
This objective is analogous to the AUC in classification (Cortes & Mohri, 2003), as AUC reflects
the classifier’s performance across all possible thresholds, while classification error considers only
a single fixed one. However, the objective in Equation (6) cannot be directly computed from a given
dataset. To address this issue, we translate it into an equivalent form that can be explicitly calculated.

From Equation (2), we can infer that we construct the conformal prediction set for X̂ ∼ PX at
α by comparing the non-conformity score S(X̂, y; π̃w) with τα for each y ∈ Y . Therefore, it
is straightforward to verify that the expected set size at the error rate α over the data distribution
PX is determined by the probability of the event {τα ≥ S(X̂, Ŷ ; π̃w)}, where X̂ ∼ PX and
Ŷ ∼ Uniform(Y). When extending to any α ∈ (0, 1), the threshold τα can be the non-conformity
score of any observation (X,Y ) ∼ PXY . This prompts us to consider the following probability:

P
(
S(X,Y ; π̃w) ≥ S(X̂, Ŷ ; π̃w)

)
,where (X,Y ) ∼ PXY , X̂ ∼ PX , Ŷ ∼ Uniform(Y). (7)

In particular, this probability quantifies the likelihood that the non-conformity score of a randomly
matched data-label pair (X̂, Ŷ ) is not greater than that of a correctly matched pair (X,Y ) . This
probability approaches zero when the scores of correctly and incorrectly matched data-label pairs
are well distinguishable, and approaches 1/2 when they are not effectively distinguished. In the fol-
lowing, we present a formal analysis demonstrating that minimizing the probability in Equation (7)
is equivalent to optimizing the overall efficiency defined in Equation (6).
Proposition 1. Let π̂ and π̂′ be pre-trained classifiers with parameters θ and θ′, respectively, and
let S be a specific non-conformity score function. We denote PSθ

and PSθ′ as the distributions of
S(X,Y ; π̂) and S(X,Y ; π̂′), where (X,Y ) ∼ PXY . Let FSθ

, and FSθ′ be the CDF corresponding
to PSθ

and PSθ′ . Given that X̂ ∼ PX and Ŷ follows a uniform distribution over Y , we have

P
(
S(X,Y ; π̂) ≥ S(X̂, Ŷ ; π̂)

)
> P

(
S(X,Y ; π̂′) ≥ S(X̂, Ŷ ; π̂′)

)
holds if and only if

EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂

)
|dα

]
> EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ′
(1− α), π̂′

)
|dα

]
.

The proof of Proposition 1 is provided in Appendix F. Here, the inverse CDF calculates the (1−α)-
th quantile of the score distributions, which determines the threshold τα. Then, to optimize overall
efficiency in Equation (6), we turn to minimize the following objective, rewritten from Equation (7):

L(w) = E
[
1{S(X,Y ;π̃w)>S(X̂,Ŷ ;π̃w}

]
, (8)

where (X,Y ) ∼ PXY , X̂ ∼ PX , and Ŷ ∼ Uniform(Y). Given the non-differentiability of the indi-
cator function, it is common practice to utilize surrogate functions as differentiable approximations
(Yan et al., 2003; Yuan et al., 2021). In this work, we apply the sigmoid function with a parameter
T as the surrogate, defined as σT (x) = 1/ (1 + exp (−x/T )). For the score function utilized dur-
ing training, we employ either THR or APS. The differentiable APS is implemented as outlined in
ConfTr (Stutz et al., 2022). Ultimately, the convex relaxation of Equation (8) is given by

L̃(w) = E
[
σT

(
S(X,Y ; π̃w)− S(X̂, Ŷ ; π̃w)

)]
. (9)

By optimizing this objective, the scores of correctly and incorrectly matched data-label pairs be-
come more distinguishable: correctly matched pairs are encouraged to have relatively smaller non-
conformity scores compared to incorrectly matched pairs. We visualize this effect in Figure 3. With
C-Adapter, the APS scores of incorrect labels become significantly higher than those of correct la-
bels, leading to more efficient prediction sets across varying coverage rates. Moreover, our proposed
objective achieves superior average performance compared to the size loss of ConfTr (see Table 2).
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Figure 3: Score distributions of correctly and incorrectly matched data-label pairs: (a) without
C-Adapter, (b) with C-Adapter. We calculate the APS scores on ImageNet using CLIP (Radford
et al., 2021). The three gray lines indicate the set sizes with τα at α = 0.15, 0.1, and 0.05, respec-
tively. Using C-Adapter, the APS scores of incorrect labels tend to be much higher (approaching the
maximum 1.0) than those of correct labels. The highly distinguishable scores between correct and
incorrect labels translate to more efficient conformal prediction sets at various coverage rates.

Batched optimization In the t-th iteration, we construct an auxiliary batch B̂t by creatingK data-
label pairs for each instance in Bt. Each pair (x̂, ŷ) in B̂t consists of an instance from Bt and one of
the K possible labels ŷ ∈ Y . Subsequently, we update the parameters w of C-Adapter by

w(t) ← w(t−1) − ηt · ∇w

 1

|Bt| · |B̂t|

∑
(x,y)∈Bt

∑
(x̂,ŷ)∈B̂t

σT (S (x, y; π̃w)− S (x̂, ŷ; π̃w))

 . (10)

The optimization incurs low computational costs, as we only update the parameters of the linear lay-
ers in C-Adapter. In practical applications, we tune the parameters of C-Adapter using the training
set for the trained classifier f . Our method can also be implemented with a hold-out set, which is
explicitly validated in Figure 8. Noticeably, our method offers several compelling advantages:

• Flexible: C-Adapter can enhance the efficiency of conformal predictors across different
non-conformity score functions, not limited to the one employed during its tuning (see
Table 1 and Table 5). By default, we tune C-Adapter using THR.

• Easy to use: C-Adapter requires minimal hyperparameter tuning and performs well with
any sufficiently small T (see Figure 7). Moreover, our method shows high computational
efficiency and a rapid convergence rate (refer to the convergence analysis in Appendix G).

• Model-agnostic: C-Adapter requires access only to the model outputs and integrates effort-
lessly with any classifier. Our method can effectively adapt trained classifiers for efficient
prediction sets, regardless of the network architecture or pre-training strategy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our approach using three benchmarks of image classification: CIFAR-100
(Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and ImageNet-V2 (Recht et al., 2019).
For CIFAR-100 and ImageNet-V2, we randomly split the test sets into calibration and test subsets,
each containing 5,000 samples. For ImageNet, we partition the 50,000-sample test dataset into a
calibration subset of 30,000 samples and a test subset of 20,000 samples.

Models For our evaluations, we utilize four well-established deep image classifiers: ResNet101
(RN101) (He et al., 2016), two variants of DenseNet (DN121 and DN161) (Huang et al., 2017), and
ResNeXt50 (RNX50) (Xie et al., 2017). Additionally, we employ the Vision-Language Model CLIP
(Radford et al., 2021), which is based on a Vision Transformer architecture (ViT-B/16) (Dosovitskiy
et al., 2020). For ImageNet, we leverage pre-trained classifiers from TorchVision (Paszke et al.,
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Table 1: Performance of C-Adapter on common benchmarks. ↓ indicates that a smaller value is
better. Results in bold indicate superior performance. C-Adapter is tuned using THR.

w/o C-Adapter \ w/ C-Adapter

Score Model
ImageNet CIFAR-100

α = 0.05 α = 0.1 α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓) Cover Size (↓) Coverage Size (↓)

THR

RN101 0.95 \ 0.95 4.03 \ 3.82 0.90 \ 0.90 1.91 \ 1.89 0.95 \ 0.95 3.64 \ 3.17 0.90 \ 0.90 1.87 \ 1.76
DN121 0.95 \ 0.95 5.66 \ 5.35 0.90 \ 0.90 2.42 \ 2.34 0.95 \ 0.95 3.27 \ 3.00 0.90 \ 0.90 1.72 \ 1.70
DN161 0.95 \ 0.95 4.03 \ 3.69 0.90 \ 0.90 1.89 \ 1.82 0.95 \ 0.95 2.91 \ 2.75 0.90 \ 0.90 1.72 \ 1.69
RNX50 0.95 \ 0.95 4.06 \ 3.87 0.90 \ 0.90 1.87 \ 1.85 0.95 \ 0.95 3.41 \ 3.09 0.90 \ 0.90 1.78 \ 1.76
CLIP 0.95 \ 0.95 6.88 \ 6.71 0.90 \ 0.90 3.33 \ 3.25 0.95 \ 0.95 9.71 \ 8.25 0.90 \ 0.90 4.78 \ 4.36

Average 0.95 \ 0.95 4.93 \ 4.69 0.90 \ 0.90 2.29 \ 2.23 0.95 \ 0.95 4.59 \ 4.05 0.90 \ 0.90 2.37 \ 2.25

APS

RN101 0.95 \ 0.95 14.73 \ 3.98 0.90 \ 0.90 7.23 \ 2.30 0.95 \ 0.95 7.60 \ 3.19 0.90 \ 0.90 3.95 \ 1.86
DN121 0.95 \ 0.95 20.00 \ 5.73 0.90 \ 0.90 9.21 \ 2.86 0.95 \ 0.95 10.20 \ 3.08 0.90 \ 0.90 5.39 \ 1.85
DN161 0.95 \ 0.95 16.43 \ 4.23 0.90 \ 0.90 6.82 \ 2.33 0.95 \ 0.95 9.90 \ 2.86 0.90 \ 0.90 5.42 \ 1.80
RNX50 0.95 \ 0.95 21.54 \ 4.26 0.90 \ 0.90 8.92 \ 2.32 0.95 \ 0.95 9.95 \ 3.26 0.90 \ 0.90 5.14 \ 1.91
CLIP 0.95 \ 0.95 26.35 \ 7.98 0.90 \ 0.90 13.24 \ 3.94 0.95 \ 0.95 16.13 \ 13.50 0.90 \ 0.90 10.18 \ 8.70

Average 0.95 \ 0.95 19.81 \ 5.24 0.90 \ 0.90 9.08 \ 2.75 0.95 \ 0.95 10.76 \ 5.18 0.90 \ 0.90 6.01 \ 3.22

RAPS

RN101 0.95 \ 0.95 7.13 \ 3.75 0.90 \ 0.90 4.60 \ 2.25 0.95 \ 0.95 5.16 \ 4.43 0.90 \ 0.90 3.25 \ 1.81
DN121 0.95 \ 0.95 10.28 \ 6.53 0.90 \ 0.90 6.57 \ 2.80 0.95 \ 0.95 7.19 \ 3.74 0.90 \ 0.90 4.50 \ 1.80
DN161 0.95 \ 0.95 7.31 \ 4.10 0.90 \ 0.90 4.63 \ 2.27 0.95 \ 0.95 7.10 \ 3.15 0.90 \ 0.90 4.59 \ 1.79
RNX50 0.95 \ 0.95 7.87 \ 4.11 0.90 \ 0.90 5.20 \ 2.26 0.95 \ 0.95 7.20 \ 3.94 0.90 \ 0.90 4.47 \ 1.89
CLIP 0.95 \ 0.95 15.14 \ 7.82 0.90 \ 0.90 9.25 \ 3.49 0.95 \ 0.95 14.52 \ 11.19 0.90 \ 0.90 9.41 \ 7.62

Average 0.95 \ 0.95 9.55 \ 5.26 0.90 \ 0.90 6.05 \ 2.61 0.95 \ 0.95 8.24 \ 5.45 0.90 \ 0.90 5.24 \ 2.98
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Figure 4: Comparison of C-Adapter and ConfTr, using (a) THR, (b) APS, and (c) RAPS at
α = 0.1 on CIFAR-100. “ConfTr + Ours” refers to applying C-Adapter to models that have been
fine-tuned using ConfTr. The results demonstrate that C-Adapter outperforms ConfTr.

2019), whereas for CIFAR-100, we train the classifiers from scratch using the entire training set.
For CLIP, we rely on its inherent zero-shot capabilities to perform classification tasks.

Implementation details C-Adapter is tuned using Adam (Kingma & Ba, 2014) optimizer, with
a batch size of 256 and a learning rate of 0.1. The parameter T is set to 0.0001 by default. We
partition the calibration set into a validation subset and a calibration subset in an 20:80 ratio, with the
validation set used for early stopping. When a validation set is not necessary, the entire calibration
set is employed for calibration, ensuring all methods have access to the same dataset. Additionally,
following recent work (Zeng et al., 2025), we can also directly use the whole calibration set for early
stopping or parameter tuning in our case, which does not introduce a noticeable coverage gap. We
consider three score functions: THR, APS, and RAPS. For RAPS, we set kreg = 1 and λ = 0.001.
Each experiment is repeated 10 times with different seeds, and the average result is reported. All the
experiments are conducted on an NVIDIA GeForce RTX 4090 using PyTorch (Paszke et al., 2019).

Evaluation metrics The primary metrics for evaluating prediction sets are: (1) efficiency (Size)
and (2) marginal coverage rate (Coverage). We detail these metrics in Appendix H. Moreover, we
examine the impact of C-Adapter on conditional coverage in Appendix J.

4.2 RESULTS

C-Adapter improves the efficiency of conformal predictors. In Table 1, we present the perfor-
mance of THR, APS, and RAPS with C-Adapter on ImageNet and CIFAR-100. A salient observa-
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Table 2: Comparison of C-Adapter with different loss functions, on ImageNet with DN121.
Baseline represents the scenario without C-Adapter. Since each entry achieves the desired coverage,
only Size is presented. Our loss achieves superior average performance compared to the size loss.

THR APS

α 0.06 0.05 0.04 0.03 0.02 0.01 Average 0.06 0.05 0.04 0.03 0.02 0.01 Average

Baseline 4.35 5.66 7.26 10.46 15.91 33.84 12.91 15.94 20.00 24.42 32.62 48.13 91.49 38.77
size loss 4.26 5.33 7.04 9.93 17.44 43.16 14.53 4.48 5.71 7.39 10.82 18.82 42.63 14.98
Ours 4.27 5.35 6.94 9.75 15.01 30.31 11.94 4.44 5.73 7.37 10.70 17.30 36.24 13.63

RN101 DN121 DN161 RNX50
1.6

1.8

2.0

2.2

2.4

2.6

2.8

Si
ze

Baseline
Retraining
Fine-tuning
Ours

(a) THR

RN101 DN121 DN161 RNX50

2

3

4

5

6

7

8

9

Si
ze

Baseline
Retraining
Fine-tuning
Ours

(b) APS

RN101 DN121 DN161 RNX50
1

2

3

4

5

6

7

Si
ze

Baseline
Retraining
Fine-tuning
Ours

(c) RAPS

Figure 5: Comparison of different adaptation strategies, using (a) THR, (b) APS, and (c) RAPS
at α = 0.1. The experiment is conducted on CIFAR-100. Retraining refers to training the classifier
from scratch with our proposed loss function, while Fine-tuning indicates tuning only the fully
connected layer with our loss. C-Adapter outperforms the other two adaptation strategies.

tion is that our method drastically improves the efficiency of conformal predictors with the desired
coverage rate. For example, C-Adapter reduces the size of APS from 16.43 to 4.23 on ImageNet us-
ing DN161 with α = 0.05. Notably, the improvements remain substantial when there is a mismatch
between the score functions used during adapter tuning (THR) and those employed in conformal pre-
diction (APS and RAPS). When C-Adapter is tuned with APS, similar enhancements are observed
with both THR and RAPS, as detailed in Appendix K. This highlights the flexibility of our method.
Overall, empirical results show that C-Adapter can enhance the efficiency of conformal predictors
across various score functions, regardless of model architectures and pre-training strategies.

C-Adapter outperforms the fine-tuned version of ConfTr. ConfTr (Stutz et al., 2022) can also
be employed as a fine-tuning method to adapt classifiers for conformal prediction. Initially, the
classifier is trained with cross-entropy loss, and then only the linear layer is tuned using the objective
in Equation (3). We compare this approach with ours on CIFAR-100. For ConfTr, we set the learning
rate to 0.001 with a batch size of 256. A higher learning rate significantly decreases accuracy, leading
to a dramatic decline in efficiency. The parameters T and λ are tuned from the sets {0.01, 0.1, 0.5, 1}
and {0.005, 0.01, 0.05, 0.1, 0.2}, respectively. During training, we utilize THRLP (Stutz et al., 2022)
for ConfTr, setting α to 0.01. For evaluation, we employ THR, APS, and RAPS with α = 0.1.

Our results in Figure 4 illustrate the superior performance of our approach. For APS and RAPS,
both C-Adapter and ConfTr improve the efficiency of conformal predictors, with C-Adapter demon-
strating superior performance. Furthermore, C-Adapter enhances the efficiency of THR, whereas
ConfTr does not. Additionally, we apply C-Adapter to models that have already been fine-tuned
using ConfTr. The results indicate that our approach can further improve the performance of Con-
fTr. Notably, Baseline+C-Adapter outperforms ConfTr+C-Adapter, suggesting that the accuracy
decline associated with ConfTr limits the efficiency of conformal predictors. Overall, empirical
results demonstrate that C-Adapter not only surpasses ConfTr but can also enhance its performance.

Ablation study on the loss function The size loss from ConfTr can also be utilized to tune our
conformal adapter. We conduct an ablation study on ImageNet using DN121, comparing C-Adapter
with size loss against our proposed loss function. For the size loss, we maintain a consistent experi-
mental setup and tune the parameter T within the range {0.0001, 0.001, 0.01, 0.1}, while setting the
error rate α to 0.01 during training. For evaluation, we use THR and APS at various coverage rates.
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Figure 7: Effect of T on the efficiency of prediction sets with (a) THR, (b) APS, and (c) RAPS.

Our results in Table 2 indicate that C-Adapter effectively integrates with size loss, enhancing the
efficiency of conformal predictors regardless of the employed score function. However, our pro-
posed loss function achieves superior average performance. Notably, size loss performs poorly at
small error rates α; it exhibits inferior performance compared to the baseline when utilizing THR
at α = 0.01 and α = 0.02, while our method consistently outperforms the baseline. Overall, this
analysis highlights the flexibility of C-Adapter and the efficacy of our proposed loss function.
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Figure 6: Accuracy of various adapta-
tion strategies, on CIFAR-100. Both Re-
training and Fine-tuning result in 3-5%
lower accuracy compared to the baseline.

Ablation study on the adaptation strategy To fur-
ther demonstrate the significance of this adapter-based
tuning method, this ablation compares our approach
with two alternative strategies: (1) Retraining, which in-
volves training the classifier from scratch with our pro-
posed loss function, and (2) Fine-tuning, where the clas-
sifier is initially trained with cross-entropy loss and sub-
sequently fine-tuned only on the fully connected layer
with our loss. The second strategy is analogous to the
fine-tuned version of ConfTr, but it employs a differ-
ent loss function. In our approach, we first train the
classifier using cross-entropy loss and then adapt it for
conformal prediction with C-Adapter. This ablation em-
ploys a consistent loss function to ensure a fair compar-
ison among different strategies. We provide the detailed
setup for the competing methods in Appendix I.2.

As demonstrated in Figure 6, both Retraining and Fine-tuning result in 3-5% lower accuracy com-
pared to the baseline. Our results in Figure 5 empirically demonstrate that this decline in accuracy
limits overall efficiency: while all three adaptation strategies can enhance the efficiency of APS and
RAPS, our method significantly outperforms the others. The negative impact of decreased accu-
racy is particularly evident in THR, where only our method achieves an improvement in efficiency.
Overall, this ablation study further highlights the superiority of our adaptation strategy.

How does the parameter T affect the performance of C-Adapter? In Figure 7, we ablate how
the parameter T introduced by the surrogate function affects the efficiency of conformal predic-
tors, using THR, APS, and RAPS. We set the error rate α to 0.05. As demonstrated in this figure,
C-Adapter with a sufficiently small T (below 0.01) stably enhances the efficiency of conformal pre-
dictors. This is because the sigmoid function in Equation (9) approximates the indicator function
when T is small. For simplicity, we set T = 10−4 throughout the experiments.

C-Adapter shows robustness to distribution shifts. We investigate the robustness of C-Adapter
to distribution shifts. Specifically, we tune C-Adapter using the training set of ImageNet and split
ImageNet-V2 into two equal-sized calibration and test sets. Notably, the shifts happen between the
training set and calibration/test sets. Thus, coverage will not be affected, as the calibration and test
sets remain exchangeable. We examine the performance of C-Adapter on APS, THR, and RAPS
at α = 0.1 and α = 0.2. As demonstrated in Table 3, C-Adapter consistently reduces Size across
various base classifiers on ImageNet-V2, regardless of the score function or the predefined error rate
α. For example, when evaluated on DN161 with α = 0.1, C-Adapter reduces the Size of APS from
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Table 3: The robustness of C-Adapter to distribution shift. C-Adapter is tuned using ImageNet
and tested on ImageNet-V2. Since each entry achieves the desired coverage, only Size is presented.

w/o C-Adapter \ w/ C-Adapter

Model THR APS RAPS

α =0.1 α =0.2 α =0.1 α =0.2 α =0.1 α =0.2

RN101 6.03 \ 5.43 2.11 \ 2.01 19.65 \ 5.59 7.17 \ 2.57 10.90 \ 7.01 5.67 \ 2.29
DN121 8.01 \ 7.70 2.60 \ 2.52 24.73 \ 8.14 9.13 \ 3.21 14.31 \ 10.38 7.20 \ 3.01
DN161 5.41 \ 4.72 2.06 \ 1.91 19.32 \ 5.21 6.31 \ 2.52 10.27 \ 5.98 5.18 \ 2.18
RNX50 6.80 \ 5.78 2.07 \ 2.05 26.27 \ 6.11 8.58 \ 2.63 11.43 \ 7.83 6.14 \ 2.38
CLIP 5.66 \ 5.59 2.31 \ 2.29 20.73 \ 14.88 8.21 \ 6.60 10.60 \ 8.67 6.35 \ 6.10

Average 6.38 \ 5.84 2.23 \ 2.16 22.14 \ 7.99 7.88 \ 3.51 11.50 \ 7.97 6.11 \ 3.19

19.32 to 5.21. The results highlight the robustness of C-Adapter to distribution shifts. We further
investigate the robustness of C-Adapter under different kinds of data shifts in Appendix K.
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Figure 8: Performance of C-Adapter imple-
mented using a hold-out set on CIFAR-100
with DN121. The size of THR is reported
with and without C-Adapter for comparison.

Can C-Adapter be implemented using a hold-
out set? In the original setup, we train C-Adapter
using the training set of the classifier f . In this
study, we investigate whether C-Adapter can be im-
plemented using a hold-out set. Specifically, we
randomly divide the CIFAR-100 test set into three
subsets: 5,000 samples for training, 3,000 samples
for calibration, and 2,000 samples for testing. C-
Adapter is tuned for 15 iterations using the 5,000-
sample training set with Adam, a batch size of 256,
and a learning rate of 0.1, while the parameter T is
set to 0.0001. For evaluation, we use THR across
coverage rates ranging from 0.90 to 0.99. We also
provide the result for APS in Appendix K.

Our results in Figure 8 demonstrate that C-Adapter
consistently achieves improved performance when
trained using a hold-out set, regardless of the spec-
ified coverage rate. This experiment highlights the adaptability of C-Adapter, which can be effec-
tively implemented with either training data or hold-out data. For scenarios prioritizing data effi-
ciency, C-Adapter can be implemented using the original training data. However, in cases where the
pre-trained model exhibits severe overfitting to the training set—a common issue with small-scale
datasets—leveraging hold-out data may become essential to enhance generalization.

5 CONCLUSION

In this paper, we introduce C-Adapter, an adapter-based tuning method to enhance the efficiency of
conformal predictors. Our key idea is to adapt the trained classifiers for conformal prediction while
preserving the ranking of labels in the output logits, thereby maintaining the top-k accuracy of the
classifiers. To achieve this, we implement the adapter as a class of intra order-preserving functions.
For the optimization of C-Adapter, we propose a loss function that enhances the discriminability
of non-conformity scores between correctly and randomly matched data-label pairs. Extensive ex-
periments demonstrate that C-Adapter effectively adapts various classifiers for efficient prediction
sets and enhances the conformal training method. Our method is user-friendly, as it does not require
heavy tuning of hyperparameters and computationally efficient. We hope the insights from this work
will inspire future research to explore more effective adaptation strategies for conformal prediction.

Limitation Although our adaptation strategy demonstrates promise, we focus solely on using it to
optimize the efficiency of conformal predictors. Developing targeted loss functions to adapt deep
classifiers for other aspects of conformal prediction (e.g., conditional coverage or robustness) is not
explored in this work and offers an interesting direction for future research.
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A RELATED WORK

Conformal prediction has found diverse applications across various domains, including classifica-
tion (Sadinle et al., 2019), regression (Romano et al., 2019), and more specialized areas such as
large language models (Su et al., 2024; Cherian et al., 2024), graph neural networks (Zargarbashi
et al., 2023), image generative models (Horwitz & Hoshen, 2022), hyperspectral imaging (Liu et al.,
2024), robotic control (Wang et al., 2023), and autonomous systems (Lindemann et al., 2024). In
this work, we focus on the split conformal prediction framework (Vovk et al., 2005; Angelopoulos
& Bates, 2021), where the training and calibration sets are disjoint. Despite significant progress in
developing score functions, such as THR (Sadinle et al., 2019), APS (Romano et al., 2020), RAPS
(Angelopoulos et al., 2020), SAPS (Huang et al., 2024a), and RANK (Luo & Zhou, 2024), con-
formal prediction is typically applied as a post-hoc process for trained classifiers. This separate
processing can lead to suboptimal efficiency of conformal predictors.

Adapting deep classifiers for conformal prediction To address the aforementioned issue, several
works propose training (fine-tuning) time regularizations to improve the performance of conformal
predictors (Stutz et al., 2022; Einbinder et al., 2022; Correia et al., 2024; Huang et al., 2024b). The
uncertainty-aware conformal loss function (Einbinder et al., 2022) optimizes the performance of
conformal predictors by encouraging the non-conformity scores to follow a uniform distribution,
specifically focusing on optimizing APS. To optimize the classifier for maximum predictive effi-
ciency, ConfTr (Stutz et al., 2022) modifies the training objective by introducing a regularization
term that minimizes the average set size at a specific error rate. However, this term can negatively
impact accuracy by making it challenging to converge to an optimal solution, thereby limiting the
overall efficiency of the conformal predictor. Similar works (Huang et al., 2024b; Correia et al.,
2024) adopt the ConfTr framework to enhance the efficiency of conformal predictors, yet they still
encounter the limitations of ConfTr. Motivated by this, we propose C-Adapter, which enables the
efficient adaptation of trained classifiers for conformal prediction without sacrificing accuracy.

Adapters in other tasks Adapters have been extensively explored in parameter-efficient fine-
tuning (Houlsby et al., 2019; Rebuffi et al., 2017), aiming to reduce the storage and computational
costs of adapting pre-trained models to downstream tasks. These typically involve small, trainable
layers integrated into the existing pre-trained model while keeping the original parameters frozen.
For instance, LoRA (Hu et al., 2021) has become a standard approach for adapting large language
models. Adapters have demonstrated effectiveness across diverse domains (Stickland & Murray,
2019; Sung et al., 2022; Zhang et al., 2023). While C-Adapter aligns with the general concept of
adapters, its core insight is fundamentally different. Specifically, C-Adapter introduces an adapter
layer to the output layer of the original pre-trained classifier, unlike previous adapters that rely on
trainable mid-layers within the model. A distinctive feature of C-Adapter is its ability to preserve
the original label ranking, a design uniquely tailored for conformal prediction. The adapters in other
tasks cannot preserve the label ranking, making it suboptimal for conformal prediction. This critical
difference sets C-Adapter apart from existing adapter techniques in other tasks.

B APPLICATION OF C-ADAPTER

The application of C-Adapter is illustrated in Figure 9. C-Adapter refines the raw logits of trained
classifiers for conformal prediction while preserving their intra-order, resulting in more efficient
conformal prediction sets without compromising the marginal coverage rate.

C VITAL TECHNIQUES IN CONFORMAL PREDICTION

C.1 KEY SCORE FUNCTIONS

Score functions play a crucial role in conformal prediction. With a fixed underlying classifier, the
usefulness of the prediction sets is entirely dependent on the chosen score function. Thresholding
(THR) (Sadinle et al., 2019) is a commonly used one, which is formulated as:

STHR(x, y; π̂) = 1− π̂y(x).
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Figure 9: Application of C-Adapter. C-Adapter adapts trained classifiers for conformal prediction
while preserving the ranking of labels in the output logits. Compared to using the raw logits, this
refinement improves the efficiency of prediction sets while maintaining the marginal coverage rate.

THR tends to generate efficient prediction sets. However, this score function frequently undercovers
hard examples while overcovering trivial ones, resulting in high conditional coverage violations.

To mitigate this issue, a popular alternative is the series of adaptive prediction sets. Adaptive Predic-
tion Sets (APS) (Romano et al., 2020), the pioneering work in this series, was specifically designed
to reduce conditional coverage violations in classification tasks. It is formulated as follows:

SAPS(x, y, u; π̂) =
∑
yi∈Y

π̂yi(x) · 1{π̂yi
(x)>π̂y(x)} + u · π̂y(x),

where u is an independent random variable following a uniform distribution on [0, 1]. The prediction
set is constructed by adding classes in descending order of probabilities, starting from the most likely
to the least, until the cumulative probability exceeds 1− α.

However, APS always results in large prediction sets since tail classes with low probabilities are
easily included. To alleviate this limitation, Regularized Adaptive Prediction Sets (RAPS) (An-
gelopoulos et al., 2020) penalizes classes based on their rank information with a predefined thresh-
old, thereby promoting the formation of efficient prediction sets. RAPS is formulated as follows:

SRAPS(x, y, u; π̂) = SAPS(x, y, u; π̂) + λ · (o(y, π̂(x))− kreg)+,

where o(y, π̂(x)) is the label ranking of y, λ and kreg are hyperparameters, and (z)+ denotes the
positive part of z. This regularization encourages more efficient conformal prediction sets. In this
work, we evaluate the performance of C-Adapter on THR, APS, and RAPS. For RAPS, we fix its
parameters and consistently set kreg to 1 and λ to 0.001 across all experiments.

C.2 CONFORMAL TRAINING

The core concept of ConfTr (Stutz et al., 2022) is to render the entire conformal prediction pipeline
differentiable, thereby enabling direct optimization of the average prediction set size during classifier
training. This process involves simulating both the calibration and prediction phases in each mini-
batch. Specifically, mini-batch B is divided into a calibration subset Bcal and a test subset Btest. The
subset Bcal is used to compute the soft threshold τ soft, while Btest is used to obtain the soft prediction
sets Csoft(x; τ

soft, π̂) for loss calculations. The detailed operations are as follows:

Soft threshold: During the calibration step, a non-differentiable quantile operation is required to
determine the threshold τ . To make this operation differentiable, smooth sorting techniques (Blondel
et al., 2020; Cuturi et al., 2019; Petersen et al., 2021) are employed, as follows:

τ soft
α = Qsoft({S(x, y; π̂)}(x,y)∈Bcal , 1− α), (11)

where Qsoft denotes the differentiable quantile operator, derived using smooth sorting techniques.

Soft conformal prediction set: The calculation of conformal prediction sets involves a non-
differentiable hard-thresholding operation, as shown in Equation (2). To address this limitation,
ConfTr employs the sigmoid function as a differentiable surrogate for the thresholding:

Csoft(x; τ
soft
α , π̂) =

{
σ

(
τ soft
α − S(x, y; π̂)

T

)
|y ∈ Y

}
, (12)
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where σ denotes the sigmoid function and T is a hyperparameter. The k-th term in this set represents
a soft assignment of class k, indicating the probability of class k being included in the prediction
set. By taking the limit as T → 0, this operator becomes

lim
T→0

σ

(
τ soft
α − S(x, y; π̂)

T

)
=

{
1, S(x, y; π̂) ≤ τ soft

α ,

0, S(x, y; π̂) > τ soft
α .

For loss calculation, after τ soft is computed using Bcal as specified in Equation (11), Equation (12)
is applied to each instance in Btest to compute the soft prediction sets. The size of each prediction
set is approximated by summing the values in the set Csoft(x), which is optimized during training.
Additionally, a standard classification loss, such as cross-entropy loss, is incorporated to enhance
classification accuracy. The total loss function is then formulated as follows:

LConfTr(f(x;θ), y, τ
soft
α ) = Lcls(f(x;θ), y) + λLsize(f(x;θ), τ

soft
α ),

where Lcls represents the classification loss, and Lsize refers to the size loss, which approximates the
size of the prediction set at a specific error rate (e.g., 0.01). Here, λ controls the strength of Lsize.

D THEORETICAL ANALYSIS OF CLASSIFICATION ACCURACY ON
CONFORMAL PREDICTOR EFFICIENCY

In Figures 1 and 11, we have empirically shown that ConfTr reduces the top-k accuracy of classi-
fiers. In this section, we formally analyze how top-k accuracy affects the efficiency of conformal
predictors. For notation shorthand, given the classifier π̂, we define o(y) ≡ o(y, π̂(x;θ)) to denote
the index of label y in the sorted softmax probabilities for x ∼ PX .
Proposition 2 (Lower bound). Let π̂ be a classifier with top-J classification accuracy accJ , and let
the error rate be α. Then, the expected size of the conformal prediction set is bounded below by:

E [|C(X)|] ≥
{
(J + 1)(1− α)− J · accJ , if accJ ≤ 1− α,
1− α, if accJ > 1− α.

Proof. To obtain the lower bound of the expected set size, we assume an oracle score function and
an ideal model such that, for the case accJ ≤ 1− α:

|C∗(X)| =


0, if Y /∈ C(X) ,

1, if o(Y ) ≤ J and Y ∈ C(X),

J + 1, if o(Y ) > J and Y ∈ C(X),

where (X,Y ) ∼ PXY .

Given the top-J accuracy accJ , to satisfy the desired coverage rate of 1 − α, the expected value of
minimal set size is:

E[C∗(X)] = accJ · 1 + (1− α− accJ)(J + 1) + (1− α) · 0
= (J + 1)(1− α)− J · accJ .

Thus, we have the lower bound in the case accJ ≤ 1− α:

E[C(X)] ≥ (J + 1)(1− α)− J · accJ .

Similarly, for the case accJ > 1− α, we have:

|C∗(X)| =
{
0, if Y /∈ C(X) ,

1, if o(Y ) ≤ J and Y ∈ C(X),

where (X,Y ) ∼ PXY .

In this case, the minimal size of expected prediction sets under the top-J accuracy accJ is:

E[C∗(X)] = (1− α)(1) + α · 0 = 1− α.

Therefore, we have the lower bound in the case accJ > 1− α:

E[C(X)] ≥ 1− α.
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Now we have the lower bound of the expected set size:

E [|C(X)|] ≥
{
(J + 1)(1− α)− J · accJ , if accJ ≤ 1− α,
1− α, if accJ > 1− α.

According to Proposition 2, the lower bound of the expected set size is negatively related to
the top-k accuracy. Therefore, the cost of accuracy introduced by ConfTr will increase the lower
bound of the expected size, leading to suboptimal performance in efficiency. This highlights the
importance of preserving top-k accuracy in the efficiency optimization for conformal prediction.

E INTRA ORDER-PRESERVING FUNCTIONS

Definition 1. A function h : RK → RK is considered intra order-preserving if, for any vector
x ∈ RK , the relative ordering of the elements in x is preserved in h(x). Formally, hi(x) > hj(x)
(or hi(x) = hj(x)) holds if and only if xi > xj (or xi = xj).

An intra order-preserving function maintains all ties and inequalities among the input elements. A
typical example is the softmax operator presented in Equation (1). The following theorem outlines
the necessary and sufficient conditions for constructing continuous intra order-preserving functions.
Theorem 1 (Rahimi et al. (2020)). Let UK ⊂ {0, 1}K×K denote the set of K × K permutation
matrices, and let R : RK → UK represent the sorting function. For any vector x ∈ RK , the vector
r = R(x)x satisfies r1 ≥ · · · ≥ rK . A continuous function h : RK → RK is intra order-preserving
if and only if it can be written as h(x) = R(x)−1Ut(x), where U is an upper-triangular matrix of
ones, and t : RK → RK is a continuous function that satisfies the following condition: ti(x) > 0
(or ti(x) = 0) if ri > ri+1 (or ri = ri+1), for all i < K. The value of tK(x) is arbitrary.

This theorem provides a pathway for learning within this function family using backpropagation. To
better demonstrate how the transformation in Equation 4 refines input logits for conformal prediction
without compromising their ranking, we analyze the algorithm step by step as follows:

1. For an input logit vector f , we sort it in descending order. The resulting sorted vector is
denoted as r, where r1 > r2 > · · · > rK .

2. We calculate Ψ(f) using Equation (5). It can be observed that, except for ΨK(f), if
ri > ri+1, this will always result in Ψi(f) > 0; and if ri = ri+1, it will always result
in Ψi(f) = 0. Essentially, Ψ(f) captures the absolute difference between each element in
the transformed logits and the next smaller element. This term is designed to ensure that
all ties are preserved in the transformed logits.

3. After calculating Ψ(f), we obtain a sorted vector UΨ(f) by performing a reverse cumu-
lative sum operation, where U is an upper-triangular matrix of ones. This sorted vector is
denoted as v = UΨ(f). We observe that vi > vi+1 (or vi = vi+1) holds if and only if
ri > ri+1 (or ri = ri+1). Notably, v is the sorted version of the refined logits.

4. The reverse sorting operator R(f)−1 is applied to rearrange v, aligning it with the order of
f . This ensures that the resulting vector preserves all ties and inequalities among the input
elements. The expressivity of this transformation is guaranteed by the adaptive layer φ.

Additional implementation details with optimization strategies of C-Adapter

• For the adaptive layer φ(f), we use a single fully connected layer (linear layer) without
structural tuning in our current work.

• A residual term is always incorporated, i.e., g(f ;w) = R(f)−1UΨ(f) + f , which con-
sistently leads to a better local optimum solution in our experiments.

• The input f is rescaled to the range (0, 1) using the softmax before passing through the
adapter, which helps with optimization. While using raw logits or applying log-softmax to
transform f can also work, they empirically lead to suboptimal performance.
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• Empirically, we observe that using (ri − ri+1) in Equation 5 results in suboptimal perfor-
mance. In contrast, applying

√
ri − ri+1 leads to better local optimum and enhanced effi-

ciency. Further gains are achieved with { a
√
ri − ri+1}, particularly as a increases, show-

ing significant improvements on CIFAR-100. A stable empirical solution is to set a to∞,
which corresponds to directly using 1{ri>ri+1} in Equation 5. Additionally, tuning α for
specific datasets may further enhance the efficiency of the conformal predictor.

F PROOF FOR PROPOSITION 1

Proof. Considering (X,Y ) ∼ PXY , X̂ ∼ PX , Ŷ ∼ Uniform(Y), and letting µ(π̂) :=

P
(
S(X,Y ; π̂) ≥ S(X̂, Ŷ ; π̂)

)
, we have

µ(π̂) = E(X,Y )∼PXY ,X̂∼PX ,Ŷ∼Uniform(Y)

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]
= EX̂∼PX ,Ŷ∼Uniform(Y)

[
E(X,Y )∼PXY

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]]
=

1

K

∑
Ŷ ∈Y

EX̂∼PX

[
E(X,Y )∼PXY

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]]

=
1

K
EX̂∼PX

E(X,Y )∼PXY

∑
Ŷ ∈Y

1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}


=

1

K
EX̂∼PX

Esθ∼PSθ

∑
Ŷ ∈Y

1{sθ≥S(X̂,Ŷ ;π̂)}

 .
Assuming that the CDF of Pθ, denoted as FSθ

, is monotonically increasing, we have

EX̂∼PX

Esθ∼PSθ

∑
Ŷ ∈Y

1{sθ≥S(X̂,Ŷ ;π̂)}


= EX̂∼PX

∫ ∑
Ŷ ∈Y

1{t≥S(X̂,Ŷ ;π̂)}dFSθ
(t)


(let t = F−1

Sθ
(1− α)) = EX̂∼PX

∫ 0

1

∑
Ŷ ∈Y

1{F−1
Sθ

(1−α)≥S(X̂,Ŷ ;π̂)} d(1− α)


= EX̂∼PX

∫ 1

0

∑
Ŷ ∈Y

1{F−1
Sθ

(1−α)≥S(X̂,Ŷ ;π̂)}dα


= EX̂∼PX

[∫ 1

0

|C
(
X̂;F−1

Sθ
(1− α), π̂

)
|dα

]
.

Thus, µ(π̂) > µ(π̂′) if and only if

EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂

)
|dα

]
> EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂′) |dα] .

G CONVERGENCE ANALYSIS

Our method is computationally efficient, as it updates only a limited number of parameters and
converges rapidly. To demonstrate this, we conduct an experiment on ImageNet using DN121,
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Figure 10: Convergence analysis of C-Adapter on ImageNet using DN121.

visualizing the changes in average loss and efficiency over iterations. The C-Adapter is tuned with
Adam, a learning rate of 0.1, a batch size of 256, and a weight decay of 0.0001. THR is applied
during both adapter tuning and evaluation, with the error rate set to 0.5. As shown in Figure 10,
our method converges rapidly within 200 iterations, with the efficiency of the conformal predictor
improving quickly and approaching nearly optimal performance within just 50 iterations. (Note that
the average loss is calculated by averaging the loss across batches over iterations.) This convergence
analysis underscores the computational efficiency of our proposed approach.

H EVALUATION METRICS

Size refers to the average number of labels in the prediction sets, Size is defined by:

Size =
1

|Dtest|
∑

(x,y)∈Dtest

|C(x)|.

Coverage indicates the percentage of test samples where the prediction sets contain the ground-truth
labels, which is given by:

Coverage =
1

|Dtest|
∑

(x,y)∈Dtest

1{y∈C(x)}.

I DETAILED EXPERIMENTAL SETUP

I.1 DETAILED SETUP FOR FIGURE 1

For CIFAR100, ResNet18 is trained using the training set of 50,000 samples. The test set of 10,000
samples is divided into a calibration subset of 5,000 samples and a test subset of 5,000 samples.
The calibration subset is further split into a validation set and a calibration set in an 20:80 ratio for
parameter tuning. The network is trained for 200 epochs using SGD with a momentum of 0.9, a
weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1 and is reduced
by a factor of 5 at 60, 120, and 160 epochs. The hyperparameters T and λ of ConfTr are tuned from
the ranges {0.01, 0.1, 0.5, 1} and {0.005, 0.01, 0.05, 0.1, 0.2}, respectively.

For ImageNet, instead of training the classifier from scratch, we fine-tune only the fully connected
layer of a pre-trained ResNet18 using the training set. This is also a commonly applied setting of
ConfTr (Stutz et al., 2022). The test set is divided into a calibration subset of 30,000 samples and
a test subset of 20,000 samples, with the calibration subset further split into a validation set and
a calibration set in a 20:80 ratio for parameter tuning. The fully connected layer is tuned for 240
iterations using Adam with a batch size of 256 and a learning rate of 0.001. A larger learning rate
significantly decreases classification accuracy, thereby reducing efficiency. The hyperparameters
T and λ for ConfTr are selected from the ranges {0.01, 0.1, 0.5, 1} and {0.001, 0.005, 0.01, 0.05,
0.1}, respectively; a larger λ also leads to a substantial decline in accuracy.
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Figure 11: The accuracy of ConfTr with various λ, using ResNet18 on (a) CIFAR-100 and (b)
ImageNet. ⋆ denotes the baseline without ConfTr. The results indicate that increasing λ consis-
tently decreases the top-2, top-3, and top-5 classification accuracies.

For evaluation, we use THR, APS, and RAPS, with the error rate α set to 0.1. During model training,
we utilize the THRLP score function (Stutz et al., 2022), setting the error rate α to 0.01. We also
present the top-2, top-3, and top-5 accuracy of ConfTr on CIFAR100 and ImageNet in Figure 11.

I.2 DETAILED SETUP FOR FIGURE 5

Retraining: Classifiers are trained using the complete training set of 50,000 samples, with the ob-
jective defined in Equation (9). The network is trained for 200 epochs using SGD with a momentum
of 0.9, a weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1 and
reduced by a factor of 5 at epochs 60, 120, and 160. The parameter T is tuned within the range
{0.001, 0.01, 0.1, 1} using the validation set. We utilize THR for classifier training.

Fine-tuning: Classifiers are trained using the same training set of 50,000 samples with cross-entropy
loss. The network is trained for 200 epochs using SGD, with a momentum of 0.9, a weight decay
of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1, reduced by a factor of 5
at epochs 60, 120, and 160. During fine-tuning, only the fully connected layer of the pre-trained
classifier is updated, training for 240 iterations with Adam, a batch size of 256, and a learning rate
of 0.001. Notably, a larger learning rate results in a significant decrease in classification accuracy.
The parameter T is tuned from the range {0.001, 0.01, 0.1, 1} using the validation set.

J ANALYSIS OF CONDITIONAL COVERAGE

Evaluation metrics We examine the impact of C-Adapter on conditional coverage and consider
two metrics: (1) class-conditional coverage gap (CovGap) (Ding et al., 2024) and (2) size-stratified
coverage violation (SSCV) (Angelopoulos et al., 2020) on ImageNet. CovGap (Ding et al., 2024)
and SSCV (Angelopoulos et al., 2020) are defined as follows:

CovGap = 100× 1

|Y|
∑
y∈Y
|ĉy − (1− α)|,

SSCV = 100× sup
j

∣∣∣∣(1− α)− |{i : yi ∈ C (xi) , i ∈ Jj}|
|Jj |

∣∣∣∣ .
For CovGap, ĉy denotes the coverage rate for class y and quantifies the deviation of class-conditional
coverage from the desired level of 1− α. For SSCV, J represents the partitioned sets, with predic-
tion sets categorized by their sizes. This metric evaluates the maximum deviation of the observed
coverage rate from 1 − α across different set size categories. In our experiment, the set size parti-
tioning for SSCV is defined as {0-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-100, 101-1000}.
Since SSCV evaluates the maximum deviation (in contrast to the mean deviation used by CovGap)
within each group, extremely small groups can result in disproportionately large coverage gaps,
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Table 4: Experimental results on conditional coverage. This experiment is conducted on Ima-
geNet with different architectures. ↓ indicates that lower values are better. Coverage is omitted in
this table. C-Adapter consistently reduces Size, SSCV, and CovGap in most cases.

Size ↓ / SSCV ↓ / CovGap ↓
RN101 DN121 DN161 RNX50 CLIP Average

α
=

0.
05

APS 15.77 / 3.47 / 4.44 19.81 / 3.09 / 4.35 16.59 / 3.86 / 4.57 21.27 / 4.48 / 4.49 27.12 / 3.51 / 4.83 20.11 / 3.68 / 4.54
+Ours 12.99 / 2.91 / 4.34 15.55 / 2.26 / 4.33 11.25 / 2.66 / 4.50 14.11 / 3.57 / 4.44 17.64 / 2.61 / 4.81 14.31 / 2.80 / 4.48
RAPS 7.42 / 3.08 / 4.51 10.43/ 3.94 / 4.45 7.28 / 3.36 / 4.64 7.87 / 3.76 / 4.62 15.21 / 1.71 / 5.06 9.64 / 3.17 / 4.66
+Ours 7.15 / 2.85 / 4.44 9.33 / 1.75 / 4.43 6.53 / 2.74 / 4.61 7.31 / 3.03 / 4.60 12.61 / 1.65 / 5.01 8.59 / 2.40 / 4.62

α
=

0.
1 APS 6.86 / 6.49 / 6.32 9.39 / 5.37 / 6.23 6.78 / 6.51 / 6.42 8.66 / 7.14 / 6.50 13.31 / 6.77 / 7.61 9.00 / 6.46 / 6.62

+Ours 6.24 / 4.33 / 6.21 7.80 / 3.89 / 6.25 5.38 / 4.80 / 6.52 6.72 / 5.12 / 6.41 9.34 / 3.73 / 7.61 7.10 / 4.37 / 6.60
RAPS 4.77 / 4.69 / 6.37 6.62 / 2.52 / 6.33 4.59 / 5.16 / 6.53 5.15 / 3.77 / 6.60 9.21 / 3.39 / 7.50 6.07 / 3.90 / 6.67
+Ours 4.64 / 4.07 / 6.27 5.95 / 3.40 / 6.34 4.17 / 4.55 / 6.55 4.79 / 3.92 / 6.50 7.86 / 2.61 / 7.49 5.48 / 3.71 / 6.63

making the metric unreliable. For example, when set α = 0.1, if a size group contains only one
sample and is not covered, SSCV could yield a value of 90, even though the metric performs well
for other groups. To ensure a accurate reflection of the adaptiveness of prediction sets, we apply a
threshold to exclude groups with excessively small sizes (less than 1/200 of the test set size).

As shown in Table 1, C-Adapter can enhances the efficiency of THR, APS, and RAPS. However,
while THR aims to achieve optimal efficiency with limited conditional coverage, APS is designed
to improve the conditional coverage of prediction sets. RAPS also targets enhanced conditional
coverage while simultaneously boosting efficiency. In this study, we further demonstrate that C-
Adapter can improve the conditional coverage metrics of both APS and RAPS. For the main ex-
periment in Table 1, we apply early stopping and select the iteration with optimal efficiency at the
desired coverage rate. In this experiment, all experimental conditions remain consistent, except that
efficiency-oriented early stopping is not applied. Instead, training continues until the loss converges
(720 iterations) to assess the impact of C-Adapter on conditional coverage metrics.

As detailed in Table 4, C-Adapter consistently reduces Size, SSCV, and CovGap in most cases
tested on ImageNet. Notably, the reduction in Size is less substantial compared to the results in
Table 1. Thus, users can adopt a training strategy that best aligns with their specific needs for
efficiency or conditional coverage metrics. Overall, this experiment validates that C-Adapter can
enhance or maintain the conditional coverage of APS and RAPS while simultaneously improving
their efficiency, highlighting its flexibility in improving the efficiency of conformal predictors.

K ADDITIONAL EXPERIMENTAL RESULTS

Results when tuning C-Adapter using APS We present the detailed results for Coverage and Size
when tuning C-Adapter using APS. Empirical results in Table 5 show that C-Adapter consistently
improves the efficiency of conformal predictors, regardless of model architecture or pre-training
strategy, underscoring the flexibility of our approach. Since THR is more efficient to compute, we
use it by default in the training of C-Adapter.

C-Adapter is robust to various distribution shifts. We further investigate the robustness
of C-Adapter on ImageNet-R(rendition) (Hendrycks et al., 2021a) and ImageNet-A(adversarial)
(Hendrycks et al., 2021b). ImageNet-A and ImageNet-R are extended versions of the ImageNet
dataset designed to evaluate model robustness, with ImageNet-A focusing on adversarial examples
that are modified to mislead models, and ImageNet-R consisting of images transformed by various
artistic styles and visual changes to test models’ adaptability to different visual distributions.

Specifically, we tune C-Adapter using the ImageNet training set, then split both ImageNet-R and
ImageNet-A into equal-sized calibration and test sets for conformal prediction. In this experi-
ment, we use pre-trained RN101. Given the relatively low performance of the pre-trained RN101
on ImageNet-R and ImageNet-A (for example, it achieves only 39% classification accuracy on
ImageNet-R), we set the error rate α to 0.4 and 0.5, respectively. Notably, coverage remains unaf-
fected by this setting, as the calibration and test sets are still exchangeable. We evaluate the perfor-
mance of C-Adapter using the APS, THR, and RAPS. As shown in Table 6, C-Adapter consistently
reduces size across various base classifiers on both ImageNet-R and ImageNet-A, regardless of the
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Table 5: Performance of C-Adapter on common benchmarks. ↓ indicates that a smaller value is
better. Results in bold indicate superior performance. C-Adapter is tuned using APS.

w/o C-Adapter \ w/ C-Adapter

Score Model
ImageNet CIFAR-100

α = 0.05 α = 0.1 α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓) Coverage Size (↓) Coverage Size (↓)

THR

RN101 0.95 \ 0.95 4.03 \ 3.66 0.90 \ 0.90 1.91 \ 1.86 0.95 \ 0.95 3.64\ 3.11 0.90 \ 0.90 1.87 \ 1.80
DN121 0.95 \ 0.95 5.66 \ 5.39 0.90 \ 0.90 2.42 \ 2.40 0.95 \ 0.95 3.27 \ 3.03 0.90 \ 0.90 1.72 \ 1.69
DN161 0.95 \ 0.95 4.03 \ 3.88 0.90 \ 0.90 1.89 \ 1.86 0.95 \ 0.95 2.91 \ 2.71 0.90 \ 0.90 1.72 \ 1.71
RNX50 0.95 \ 0.95 4.06 \ 3.93 0.90 \ 0.90 1.87 \ 1.84 0.95 \ 0.95 3.41 \ 3.16 0.90 \ 0.90 1.78 \ 1.77
CLIP 0.95 \ 0.95 6.88 \ 6.90 0.90 \ 0.90 3.33 \ 3.28 0.95 \ 0.95 9.71\ 9.67 0.90 \ 0.90 4.78 \ 4.69

Average 0.95 \ 0.95 4.93 \ 4.75 0.90 \ 0.90 2.29 \ 2.25 0.95 \ 0.95 4.59 \ 4.34 0.90 \ 0.90 2.37 \ 2.33

APS

RN101 0.95 \ 0.95 14.73 \ 3.82 0.90 \ 0.90 7.23 \ 2.07 0.95 \ 0.95 7.60 \ 3.16 0.90 \ 0.90 3.95 \ 1.80
DN121 0.95 \ 0.95 20.00 \ 5.64 0.90 \ 0.90 9.21 \ 2.74 0.95 \ 0.95 10.20 \ 4.12 0.90 \ 0.90 4.44 \ 2.35
DN161 0.95 \ 0.95 16.43 \ 4.13 0.90 \ 0.90 6.82 \ 2.05 0.95 \ 0.95 9.90 \ 3.14 0.90 \ 0.90 5.42 \ 1.87
RNX50 0.95 \ 0.95 21.54 \ 4.10 0.90 \ 0.90 8.92 \ 2.07 0.95 \ 0.95 9.95 \ 3.19 0.90 \ 0.90 5.14 \ 1.90
CLIP 0.95 \ 0.95 26.35 \ 7.42 0.90 \ 0.90 13.24 \ 3.43 0.95 \ 0.95 16.13 \ 12.94 0.90 \ 0.90 10.18 \ 8.10

Average 0.95 \ 0.95 19.81 \ 5.04 0.90 \ 0.90 9.08 \ 2.47 0.95 \ 0.95 10.76 \ 5.31 0.90 \ 0.90 6.01 \ 3.20

RAPS

RN101 0.95 \ 0.95 7.13 \ 4.43 0.90 \ 0.90 4.60 \ 2.01 0.95 \ 0.95 5.16 \ 4.71 0.90 \ 0.90 3.25 \ 1.81
DN121 0.95 \ 0.95 10.28 \ 7.38 0.90 \ 0.90 6.57 \ 2.66 0.95 \ 0.95 7.19\ 4.00 0.90 \ 0.90 4.50 \ 1.83
DN161 0.95 \ 0.95 7.31 \ 5.01 0.90 \ 0.90 4.63 \ 2.00 0.95 \ 0.95 7.10 \ 3.22 0.90 \ 0.90 4.59 \ 1.81
RNX50 0.95 \ 0.95 7.88 \ 5.05 0.90 \ 0.90 5.20 \ 2.01 0.95 \ 0.95 7.20 \ 3.64 0.90 \ 0.90 4.47 \ 1.79
CLIP 0.95 \ 0.95 15.14 \ 8.74 0.90 \ 0.90 9.25 \ 3.41 0.95 \ 0.95 14.52 \ 13.61 0.90 \ 0.90 9.41 \ 8.92

Average 0.95 \ 0.95 9.55 \ 6.12 0.90 \ 0.90 6.05 \ 2.42 0.95 \ 0.95 8.24 \ 5.84 0.90 \ 0.90 5.24 \ 3.23

Table 6: Robustness of C-Adapter under different data shifts. C-Adapter is tuned using Ima-
geNet and tested on ImageNet-R and ImageNet-A. The base classifier adopted in this experiment is
RN101. Since each entry achieves the desired coverage, only Size is presented.

w/o C-Adapter \ w/ C-Adapter

Dataset THR APS RAPS

α = 0.4 α = 0.5 α = 0.4 α = 0.5 α = 0.4 α = 0.5

ImageNet-R 6.13 \ 5.56 2.23 \ 2.11 11.32 \ 7.16 6.16 \ 2.61 6.24 \ 5.95 3.32 \ 2.78
ImageNet-A 26.99 \ 20.09 18.21 \ 13.13 36.62 \ 23.01 25.98 \ 17.56 20.26 \ 20.08 13.72 \ 13.40

Average 16.56 \ 13.25 10.22 \ 7.62 23.97 \ 15.09 16.07 \ 10.09 13.25 \ 13.02 8.52 \ 8.09

score function used in conformal prediction or the pre-defined error rate α. The experimental results
further highlight the robustness of C-Adapter under different kinds of data shift.

Results on text classification using LLMs To provide a comprehensive understanding of the
broad capabilities of our method, we evaluate its performance on a text classification task. Addi-
tionally, we demonstrate the versatility of C-Adapter by performing this task using Large Language
Models (LLMs). Before delving into the experiment, we introduce a commonly used framework for
applying LLMs to text classification. For each input, we construct a prompt in the following format:

\n Company, Educational Institution, Artist, Athlete, Office
Holder, Mode of Transportation, Building, Natural Place,
Village, Animal, Plant, Album, Film, or Written Work? \n Input
: </text> \n Output: </text>

In this prompt, each input instance x is paired with a label y ∈ Y , where Y represents the set
of possible categories (e.g., “Company”, “Artist”, etc.). The input x and label y are then inserted
into the appropriate position in the prompt. After obtaining the model’s output, we construct the
input-output pair z, tokenize it, and calculate its perplexity as follows:

Perplexity(z) = exp

(
− 1

N

N∑
i=1

log p(zi|z<i)

)
,
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Table 7: Performance of C-Adapter on text classification. ↓ indicates that a smaller value is better.
C-Adapter is tuned using THR. The experiment is carried on dbpedia 14 using LLama3-8B.

w/o C-Adapter \ w/ C-Adapter

Score α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓)

THR 0.94 \ 0.95 2.80 \ 2.61 0.89 \ 0.89 2.17 \ 2.04
APS 0.95 \ 0.94 3.14 \ 2.75 0.90 \ 0.91 2.33 \ 2.08

RAPS 0.95 \ 0.95 3.23 \ 3.11 0.90 \ 0.90 2.48 \ 2.32

Average – 3.06 \ 2.82 – 2.33 \ 2.15

where p(zi|z<i) denotes the predicted probability of token zi given the preceding tokens, and N
is the total number of tokens in the input-output pair z. Perplexity quantifies the uncertainty of
the language model in predicting the next token in the sequence. The label corresponding to the
input-output pair z with the lowest perplexity is selected as the predicted label for the input x.
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Figure 12: Performance of C-Adapter imple-
mented using a hold-out set on CIFAR-100
with DN121. The size of APS is reported with
and without C-Adapter for comparison.

We perform conformal prediction in this classi-
fication setting, specifically on the dbpedia 14
dataset, a 14-class classification task (Lehmann
et al., 2015). For the LLM, we use LLama3-8B
(Touvron et al., 2023). In this experiment, we apply
conformal prediction based on perplexity. For an
input x, we compute the perplexity vector for each
label y ∈ Y . Since a lower perplexity indicates a
more likely label, the reciprocal of the normal-
ized perplexity is used as the raw logits to per-
form conformal prediction. We use the test set of
dbpedia 14 with 7,480 samples to perform the
experiment, where 2,000 of them are used for tun-
ing, and the remaining data is equally and randomly
divided into calibration and test sets. Notably, we
rely on the zero-shot ability of LLama3-8B to per-
form classification. The classification accuracy on
this set is 66%. The experimental results are presented in Table 7. Compared to using the raw per-
plexity as input logits, C-Adapter significantly improves the efficiency across different conditions.

Additional results on implementing C-Adapter using hold-out data Our results in Figure 12
demonstrate that C-Adapter consistently achieves improved performance when trained using a hold-
out set, regardless of the specified coverage rate. Unlike the results presented in the main paper, this
experiment utilizes the APS score function, while keeping all other settings unchanged.
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