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ABSTRACT

Diffusion-based generative methods have proven effective in modeling trajectories
with offline datasets. However, they often face computational challenges and can
falter in generalization, especially in capturing temporal abstractions for long-
horizon tasks. To overcome this, we introduce the Hierarchical Diffuser, a simple,
fast, yet surprisingly effective planning method combining the advantages of hi-
erarchical and diffusion-based planning. Our model adopts a “jumpy” planning
strategy at the higher level, which allows it to have a larger receptive field but at a
lower computational cost—a crucial factor for diffusion-based planning methods,
as we have empirically verified. Additionally, the jumpy sub-goals guide our low-
level planner, facilitating a fine-tuning stage and further improving our approach’s
effectiveness. We conducted empirical evaluations on standard offline reinforce-
ment learning benchmarks, demonstrating our method’s superior performance and
efficiency in terms of training and planning speed compared to the non-hierarchical
Diffuser as well as other hierarchical planning methods. Moreover, we explore
our model’s generalization capability, particularly on how our method improves
generalization capabilities on compositional out-of-distribution tasks.

1 INTRODUCTION

Planning has been successful in control tasks where the dynamics of the environment are known (Sut-
ton & Barto, 2018; Silver et al., 2016). Through planning, the agent can simulate numerous action
sequences and assess potential outcomes without interacting with the environment, which can be
costly and risky. When the environment dynamics are unknown, a world model (Ha & Schmidhuber,
2018; Hafner et al., 2018; 2019) can be learned to approximate the true dynamics. Planning then
takes place within the world model by generating future predictions based on actions. This type
of model-based planning is considered more data-efficient than model-free methods and tends to
transfer well to other tasks in the same environment (Moerland et al., 2023; Hamrick et al., 2020).

For temporally extended tasks with sparse rewards, the planning horizon should be increased accord-
ingly (Nachum et al., 2019; Vezhnevets et al., 2017b; Hafner et al., 2022). However, this may not
be practical as it requires an exponentially larger number of samples of action sequences to cover
all possible plans adequately. Gradient-based trajectory optimization addresses this issue but can
encounter credit assignment problems. A promising solution is to use hierarchical planning (Singh,
1992; Pertsch et al., 2020; Sacerdoti, 1974; Knoblock, 1990), where a high-level plan selects subgoals
that are several steps apart, and low-level plans determine actions to move from one subgoal to the
next. Both the high-level plan and each of the low-level plans are shorter than the original flat plan,
leading to more efficient sampling and gradient propagation.

Conventional model-based planning typically involves separate world models and planners. However,
the learned reward model can be prone to hallucinations, making it easy for the planner to exploit
it (Talvitie, 2014). Recently, Janner et al. (2022b) proposed Diffuser, a framework where a single
diffusion probabilistic model Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021) is
learned to serve as both the world model and the planner. It generates the states and actions in the full
plan in parallel through iterative refinement, thereby achieving better global coherence. Furthermore,
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it also allows leveraging the guided sampling strategy Dhariwal & Nichol (2021) to provide the
flexibility of adapting to the objective of the downstream task at test time.

Despite such advantages of Diffuser, how to enable hierarchical planning in the diffusion-based
approach remains elusive to benefit from both diffusion-based and hierarchical planning simulta-
neously. Lacking this ability, Diffuser is computationally expensive and sampling inefficient due
to the current dense and flat planning scheme. Moreover, we empirically found that the planned
trajectories produced by Diffuser have inadequate coverage of the dataset distribution. This deficiency
is particularly detrimental to diffusion-based planning.

In this paper, we propose the Hierarchical Diffuser, a simple framework that enables hierarchical
planning using diffusion models. The proposed model consists of two diffusers: one for high-level
subgoal generation and another for low-level subgoal achievement. To implement this framework,
we first split each training trajectory into segments of equal length and consider the segment’s split
points as subgoals. We then train the two diffusers simultaneously. The high-level diffuser is trained
on the trajectories consisting of only subgoals, which allows for a "jumpy" subgoal planning strategy
and a larger receptive field at a lower computational cost. This sparseness reduces the diffusion
model’s burden of learning and sampling from high-dimensional distributions of dense trajectories,
making learning and sampling more efficient. The low-level diffuser is trained to model only the
segments, making it the subgoal achiever and facilitating a fine-tuning stage that further improves our
approach’s effectiveness. At test time, the high-level diffuser plans the jumpy subgoals first, and then
the low-level diffuser achieves each subgoal by planning actions.

The contributions of this work are as follows. First, we introduce a diffusion-based hierarchical
planning framework for decision-making problems. Second, we demonstrate the effectiveness of
our approach through superior performance compared to previous methods on standard offline-RL
benchmarks, as well as efficient training and planning speed. For example, our proposed method
outperforms the baseline by 12.0% on Maze2D tasks and 9.2% on MuJoCo locomotion tasks.
Furthermore, we empirically identify a key factor influencing the performance of diffusion-based
planning methods, and showcase our method’s enhanced generalization capabilities on compositional
out-of-distribution tasks. Lastly, we provide a theoretical analysis of the generalization performance.

2 PRELIMINARIES

2.1 DIFFUSION PROBABILISTIC MODELS

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have
achieved state-of-the-art generation quality on various image generation tasks (Dhariwal & Nichol,
2021; Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022). They model the data generative
process as M steps of iterative denoising, starting from a Gaussian noise xM ⇠ N (0, I):

p✓(x0) =

Z
p(xM )

M�1Y

m=0

p✓(xm | xm+1) dx1:M . (1)

Here, x1:M are latent variables of the same dimensionality as the data x0, and

p✓(xm | xm+1) = N (xm;µ✓(xm+1),�
2
m
I) (2)

is commonly a Gaussian distribution with learnable mean and fixed covariance. The posterior of the
latents is given by a predefined diffusion process that gradually adds Gaussian noise to the data:

q(xm | x0) = N (xm;
p
↵̄mx0, (1� ↵̄m)I) , (3)

where the predefined ↵̄m ! 0 as m!1, making q(xM | x0) ⇡ N (0, I) for a sufficiently large M .

In practice, the learnable mean µ✓(xm) is often parameterized as a linear combination of the latent
xm and the output of a noise-prediction U-Net ✏✓(xm) (Ronneberger et al., 2015). The training
objective is simply to make ✏✓(xm) predict the noise ✏ that was used to corrupt x0 into xm:

L(✓) = Ex0,m,✏

⇥
k✏� ✏✓(xm)k2

⇤
, (4)

where xm =
p
↵̄mx0 +

p
1� ↵̄m✏, ✏ ⇠ N (0, I).
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2.2 DIFFUSER: PLANNING WITH DIFFUSION

Diffuser (Janner et al., 2022b) is a pioneering model for learning a diffusion-based planner from
offline trajectory data. It has shown superior long-horizon planning capability and test-time flexibility.
The key idea is to format the trajectories of states and actions into a two-dimensional array, where
each column consists of the state-action pair at a single timestep:

x =


s0 s1 . . . sT
a0 a1 . . . aT

�
. (5)

Diffuser then trains a diffusion probabilistic model p✓(x) from an offline dataset. After training,
p✓(x) is able to jointly generate plausible state and action trajectories through iterative denoising.
Importantly, p✓(x) does not model the reward, and therefore is task-agnostic. To employ p✓(x) to
do planning for a specific task, Diffuser trains a separate guidance function J�(x), and samples the
planned trajectories from a perturbed distribution:

p̃✓(x) / p✓(x) exp (J�(x)) . (6)

Typically, J�(x) estimates the expected return of the trajectory, so that the planned trajectories
will be biased toward those that are plausible and also have high returns. In practice, J�(x) is
implemented as a regression network trained to predict the return R(x) of the original trajectory x
given a noise-corrupted trajectory xm as input:

L(�) = Ex,m,✏

⇥
kR(x)� J�(xm)k2

⇤
, (7)

where R(x) can be obtained from the offline dataset, xm =
p
↵̄mx+

p
1� ↵̄m✏, ✏ ⇠ N (0, I).

Sampling from p̃✓(x) is achieved similarly as classifier guidance (Dhariwal & Nichol, 2021; Sohl-
Dickstein et al., 2015), where the gradientrxmJ� is used to guide the denoising process (Equation 2)
by modifying the mean from µm to µ̃m:

µm  µ✓(xm+1), µ̃m  µm + !�2
m
rxmJ�(xm)|xm=µm . (8)

Here, ! is a hyperparameter that controls the scaling of the gradient. To ensure that the planning
trajectory starts from the current state s, Diffuser sets s0 = s in each xm during the denoising process.
After sampling a full trajectory, Diffuser executes the first action in the environment, and replans
at the next state s0. In simple environments where replanning is unnecessary, the planned action
sequence can be directly executed.

3 HIERARCHICAL DIFFUSER

While Diffuser has demonstrated competence in long-horizon planning and test-time flexibility, we
have empirically observed that its planned trajectories inadequately cover the dataset distribution,
potentially missing high-return trajectories. Besides, the dense and flat planning scheme of the
standard Diffuser is computationally expensive, especially when the planning horizon is long. Our key
observation is that hierarchical planning could be an effective way to address these issues. To achieve
this, we propose Hierarchical Diffuser, a simple yet effective framework that enables hierarchical
planning while maintaining the benefits of diffusion-based planning. As shown in Figure 1, it consists
of two Diffusers: one for high-level subgoal generation (Section 3.1) and the other for low-level
subgoal achievement (Section 3.2).

3.1 SPARSE DIFFUSER FOR SUBGOAL GENERATION

To perform hierarchical planning, the high-level planner needs to generate a sequence of intermediate
states (g1, . . . ,gH) that serve as subgoals for the low-level planner to achieve. Here, H denotes the
planning horizon. Instead of involving complicated procedures for finding high-quality subgoals (Li
et al., 2023) or skills (Rajeswar et al., 2023; Laskin et al., 2021), we opt for a simple approach that
repurposes Diffuser for subgoal generation with minimal modification. In essence, we define the
subgoals to be every K-th states and model the distribution of subsampled trajectories:

xSD =


s0 sK . . . sHK

a0 aK . . . aHK

�
=:


g0 g1 . . . gH

a0 aK . . . aHK

�
. (9)
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Figure 1: Test and train-time differences between Diffuser models. Hierarchical Diffuser (HD) is a general
hierarchical diffusion-based planning framework. Unlike the Diffuser’s training process (A, left), the HD’s
training phase reorganizes the training trajectory into two components: a sub-goal trajectory and dense segments.
These components are then utilized to train the high-level and low-level denoising networks in parallel (B, left).
During the testing phase, in contrast to Diffuser (A, right), HD initially generates a high-level plan consisted of
sub-goals, which is subsequently refined through the low-level planner (B, right).

We name the resulting model Sparse Diffuser (SD). While using every K-th states as subgoalas
is a simplifying assumption, it is widely adopted in hierarchical RL due to its practical effective-
ness (Zhang et al., 2023; Hafner et al., 2022; Li et al., 2022; Mandlekar et al., 2020; Vezhnevets
et al., 2017a). We will empirically show that, desipite this simplicity, our approach is effective and
efficient in practice, substantially outperforming HDMI (Li et al., 2023), a state-of-the-art method
that adaptively selects subgoals.

The training procedure of Sparse Diffuser is almost the same as Diffuser. The only difference is
that we need to provide the subsampled data xSD to the diffusion probabilistic model p✓SD(x

SD) and
the guidance function J�SD(x

SD). It is important to note that, although the guidance function uses
the subsampled data as input, it is still trained to predict the return of the full trajectory. Therefore,
its gradient rxSDJ�SD will direct toward a subgoal sequence that is part of high-return trajectories.
However, due to the missing states and actions, the return prediction may become less accurate than
Diffuser. In all of our experiments, we found that even if this is the case, it does not adversely affect
task performance when compared to Diffuser. Moreover, our investigation suggests that including
dense actions in xSD can improve return prediction and, in some environments, further improve
task performance. We provide a detailed description in Section Section 3.4 and an ablation study in
Section 4.3.

It is worth noting that Sparse Diffuser can itself serve as a standalone planner, without the need to
involve any low-level planner. This is because Sparse Diffuser can generate the first action a0 of
the plan, which is sufficient if we replan at each step. Interestingly, Sparse Diffuser already greatly
outperforms Diffuser, mainly due to its increased receptive field (Section 4.3). While the receptive
field of Diffuser can also be increased, this comes with hurting generalization performance and
efficiency due to the increased model size (Appendix E and G).

3.2 FROM SPARSE DIFFUSER TO HIERARCHICAL DIFFUSER

While Sparse Diffuser can be used as a standalone planner, it only models the environment dynamics
at a coarse level. This is beneficial for generating a high-level plan of subgoals, but it is likely that
some low-level details are not taken into consideration. Therefore, we use a low-level planner to
further refine the high-level plan, carving out the optimal dense trajectories that go from one subgoal
to the next. This also allows us to avoid per-step replanning when it is not necessary. We call this
two-level model Hierarchical Diffuser (HD).
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Low-level Planner. The low-level planner is simply implemented as a Diffuser p✓(x(i)) trained on
trajectory segments x(i) between each pair of adjacent subgoals gi = siK and gi+1 = s(i+1)K :

x(i) =


siK siK+1 . . . s(i+1)K

aiK aiK+1 . . . a(i+1)K

�
, 0  i < H . (10)

We also train a low-level guidance function J�(x(i)) that predicts the return R(x(i)) for each segment.
The low-level Diffuser and guidance function are both shared across all trajectory segments, and they
can be trained in parallel with the high-level planner.

Hierarchical Planning. After training the high-level and low-level planners, we use them to
perform hierarchical planning as follows. Given a starting state g0, we first use the high-level
planner to generate subgoals g1:H . This can be achieved by sampling from the perturbed distribution
p̃✓SD(x

SD) / p✓SD(x
SD) exp (J�SD(x

SD)), and then discarding the actions. Since the actions generated
by the high-level planner are not used anywhere, in practice we remove the actions from subsampled
trajectories xSD when training the high-level planner. In other words, we redefine

xSD = [s0 sK . . . sHK ] =: [g0 g1 . . . gH ] . (11)

Next, for each pair of adjacent subgoals gi and gi+1, we use the low-level planner to generate a dense
trajectory that connects them, by sampling from the distribution p̃✓(x(i)) / p✓(x(i)) exp (J�(x(i))).
To ensure that the generated x(i) indeed has gi and gi+1 as its endpoints, we set siK = gi and
s(i+1)K = gi+1 in each denoising step during sampling. Importantly, all low-level plans {x(i)

}
H�1
i=0

can be generated in parallel. In environments that require per-step replanning, we only need to sample
x(0)
⇠ p̃✓(x(0)), then execute the first action a0 in the environment, and replan at the next state. We

highlight the interaction between the high-level and low-level planners in Appendix B.

3.3 IMPROVING RETURN PREDICTION WITH DENSE ACTIONS

Sparse Diffuser with Dense Actions (SD-DA). The missing states and actions in the subsampled
trajectories xSD might pose difficulties in accurately predicting returns in certain cases. Therefore,
we investigate a potential model improvement that subsamples trajectories with sparse states and
dense actions. The hypothesis is that the dense actions can implicitly provide information about what
has occurred in the intermediate states, thereby facilitating return prediction. Meanwhile, the sparse
states preserve the model’s ability to generate subgoals. We format the sparse states and dense actions
into the following two-dimensional array structure:

xSD-DA =

2

66664

s0 sK . . . sHK

a0 aK . . . aHK

a1 aK+1 . . . aHK+1
...

...
. . .

...
aK�1 a2K�1 . . . a(H+1)K�1

3

77775
=:

2

66664

g0 g1 . . . gH

a0 aK . . . aHK

a1 aK+1 . . . aHK+1
...

...
. . .

...
aK�1 a2K�1 . . . a(H+1)K�1

3

77775
,

(12)
where a�HK in the last column are included for padding. Training proceeds similarly as Sparse
Diffuser, where we train a diffusion model p✓SD-DA(x

SD-DA) to capture the distribution of xSD-DA in the
offline dataset and a guidance function J�SD-DA(x

SD-DA) to predict the return of the full trajectory.

Hierarchical Diffuser with Dense Actions (HD-DA). This is obtained by replacing the high-
level planner in Hierarchical Diffuser with SD-DA. The subgoals are generated by sampling from
p̃✓SD-DA(x

SD-DA) / p✓SD-DA(x
SD-DA) exp (J�SD-DA(x

SD-DA)), and then discarding the actions.

3.4 THEORETIC ANALYSIS

Theorem 1 in Appendix G demonstrates that the proposed method can improve the generalization
capability of the baseline. Moreover, our analysis also sheds light on the tradeoffs in the value of
K and the kernel size. With a larger value of K, it is expected to have a better generalization gap
for the diffusion process but a more loss of state-action details to perform RL tasks. With a larger
kernel size, we expect a worse generalization gap for the diffusion process but a better receptive field
to perform RL tasks. See Appendix G for more details.
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Table 1: Long-horizon Planning. HD combines the benefits of both hierarchical and diffusion-based planning,
achieving the best performance across all tasks. HD results are averaged over 100 planning seeds.

Environment Flat Learning Methods Hierarchical Learning Methods
MPPI IQL Diffuser IRIS HiGoC HDMI HD (Ours)

Maze2D U-Maze 33.2 47.4 113.9±3.1 - - 120.1±2.5 128.4±3.6
Maze2D Medium 10.2 34.9 121.5±2.7 - - 121.8±1.6 135.6±3.0
Maze2D Large 5.1 58.6 123.0±6.4 - - 128.6±2.9 155.8±2.5

Single-task Average 16.2 47.0 119.5 - - 123.5 139.9

Multi2D U-Maze 41.2 24.8 128.9±1.8 - - 131.3±1.8 144.1±1.2
Multi2D Medium 15.4 12.1 127.2±3.4 - - 131.6±1.9 140.2±1.6
Multi2D Large 8.0 13.9 132.1±5.8 - - 135.4±2.5 165.5±0.6

Multi-task Average 21.5 16.9 129.4 - - 132.8 149.9

AntMaze U-Maze - 62.2 76.0±7.6 89.4±2.4 91.2±1.9 - 94.0±4.9
AntMaze Medium - 70.0 31.9±5.1 64.8±2.6 79.3±2.5 - 88.7±8.1
AntMaze Large - 47.5 0.0±0.0 43.7±1.3 67.3±3.1 - 83.6±5.8

AntMaze Average - 59.9 36.0 66.0 79.3 - 88.8

4 EXPERIMENTS

In our experiment section, we illustrate how and why the Hierarchical Diffuser (HD) improves
Diffuser through hierarchcial planning. We start with our main results on the D4RL (Fu et al., 2020)
benchmark. Subsequent sections provide an in-depth analysis, highlighting the benefits of a larger
receptive field (RF) for diffusion-based planners for offline RL tasks. However, our compositional
out-of-distribution (OOD) task reveals that, unlike HD, Diffuser struggles to augment its RF without
compromising the generalization ability. Lastly, we report HD’s efficiency in accelerating both the
trainig time and planning time compared with Diffuser. The performance of HD across different K
values is detailed in the Appendix C. For the sake of reproducibility, we provide implementation and
hyper-parameter details in Appendix A and we will release our code upon acceptance.

4.1 LONG-HORIZON PLANNING

We first highlight the advantage of hierarchical planning on long-horizon tasks. Specifically, we
evaluate on Maze2D and AntMaze (Fu et al., 2020), two sparse-reward navigation tasks that can
take hundreds of steps to accomplish. The agent will receive a reward of 1 when it reaches a fixed
goal, and no reward elsewhere, making it challenging for even the best model-free algorithms (Janner
et al., 2022b). The AntMaze adds to the challenge by having higher-dimensional state and action
space. Following Diffuser (Janner et al., 2022b), we also evaluate multi-task flexibility on Multi2D, a
variant of Maze2D that randomizes the goal for each episode.

Results. As shown in Table 1, Hierarchical Diffuser (HD) significantly outperforms previous state of
the art across all tasks. The flat learning methods MPPI (Williams et al., 2016), IQL (Kostrikov et al.,
2022), and Diffuser generally lag behind hierarchical learning methods, demonstrating the advantage
of hierarchical planning. In addition, the failure of Diffuser in AntMaze-Large indicates that Diffuser
struggles to simultaneously handle long-horizon planning and high-dimensional state and action
space. Within hierarchical methods, HD outperforms the non-diffusion-based IRIS (Mandlekar et al.,
2020) and HiGoC (Li et al., 2022), showing the benefit of planning with diffusion in the hierarchical
setting. Compared with the diffusion-based HDMI (Li et al., 2023) that uses complex subgoal
extraction procedures and more advanced model architectures, HD achieves >20% performance gain
on Maze2D-Large and Multi2D-Large despite its simplicity.

4.2 OFFLINE REINFORCEMENT LEARNING

We further demonstrate that hierarchical planning generally improves offline reinforcement learning
even with dense rewards and short horizons. We evaluate on Gym-MuJoCo and FrankaKitchen (Fu
et al., 2020), which emphasize the ability to learn from data of varying quality and to generalize to
unseen states, respectively. We use HD-DA as it outperforms HD in the dense reward setting. In
addition to Diffuser and HDMI, we compare to leading methods in each task domain, including
model-free BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019), CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022), Decision Transformer (DT; Chen et al., 2021), model-based MoReL (Ki-
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Table 2: Offline Reinforcement Learning. HD-DA achieves the best overall performance. Results are averaged
over 5 planning seeds. Following Kostrikov et al. (2022), we emphasize in bold scores within 5% of maximum.

Gym Tasks BC CQL IQL DT TT MOReL Diffuser HDMI HD-DA (Ours)
Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95.0 53.3 88.9±0.3 92.1±1.4 92.5±0.3
Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 108.7 103.3±1.3 113.5±0.9 115.3±1.1
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 106.9±0.2 107.9±1.2 107.1± 0.1

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.1 42.8± 0.3 48.0±0.9 46.7±0.2
Medium Hopper 52.9 58.5 66.3 67.6 61.1 95.4 74.3± 1.4 76.4±2.6 99.3±0.3
Medium Walker2d 75.3 72.5 78.3 74.0 79.0 77.8 79.6±0.6 79.9±1.8 84.0±0.6

Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 40.2 37.7±0.5 44.9±2.0 38.1±0.7
Med-Replay Hopper 18.1 95.0 94.7 82.7 91.5 93.6 93.6±0.4 99.6±1.5 94.7±0.7
Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 49.8 70.6±1.6 80.7±2.1 84.1±2.2

Average 51.9 77.6 77.0 74.7 78.9 72.9 77.5 82.6 84.6

Kitchen Tasks BC BCQ BEAR CQL IQL RvS-G Diffuser HDMI HD-DA (Ours)
Partial FrankaKitchen 33.8 18.9 13.1 49.8 46.3 46.5 56.2± 5.4 - 73.3±1.4
Mixed FrankaKitchen 47.5 8.1 47.2 51.0 51.0 40.0 50.0± 8.8 69.2±1.8 71.7±2.7

Average 40.7 13.5 30.2 50.4 48.7 43.3 53.1 - 72.5

Table 3: Ablation on Model Variants. SD yields an
improvement over Diffuser, and the incorporation of
low-level refinement in HD provides further enhance-
ment in performance compared to SD.

Dataset Diffuser SD HD
Gym-MuJoCo 77.5 80.7 81.7
Maze2D 119.5 133.4 139.9
Multi2D 129.4 145.8 149.9

Table 4: Guidance Function Learning. The included
dense action helps learn guidance function, resulting in
better RL performance.

Dataset J� RL Performance
HD HD-DA HD HD-DA

Hopper 101.7 88.8 93.4±3.1 94.7±0.7
Walker2d 166.1 133.0 77.2±3.3 84.1±2.2
HalfCheetah 228.5 208.2 37.5±1.7 38.1±0.7

dambi et al., 2020), Trajectory Transformer (TT; Janner et al., 2021), and Reinforcement Learning
via Supervised Learning (RvS; Emmons et al., 2022).

Results. As shown in Table 2, HD-DA achieves the best average performance, significantly outper-
forming Diffuser while also surpassing the more complex HDMI. Notably, HD-DA obtains >35%
improvement on FrankaKitchen over Diffuser, demonstrating its superior generalization ability.

4.3 ANALYSIS

To obtain a deeper understanding on HD improvements over Diffuser, we start our analysis with
ablation studies on various model configurations. Insights from this analysis guide us to investigate
the impact of effective receptive field on RL performance, specifically for diffusion-based planners.
Furthermore, we introduce a compositional out-of-distribution (OOD) task to demonstrate HD’s
compositional generalization capabilities. We also evaluate HD’s performance on varied jumpy step
K values to test its robustness and adaptability.

SD already outperforms Diffuser. HD further improves SD via low-level refinement. This can be
seen from Table 3, where we report the performance of Diffuser, SD, and HD averaged over Maze2D,
Multi2D, and Gym-MuJoCo tasks respectively. As mentioned in Section 3.1, here we use SD as a
standalone planner. In the following, we investigate potential reasons why SD outperforms Diffuser.

Large kernel size improves diffusion-based planning for in-distribution tasks. A key difference
between SD and Diffuser is that the subsampling in SD increases its effective receptive field. This
leads us to hypothesize that a larger receptive field may be beneficial for modeling the data distribution,
resulting in better performance. To test this hypothesis, we experiment with different kernel sizes of
Diffuser, and report the averaged performance on Maze2D, Multi2D, and Gym-MuJoCo in Figure 2.
We find that Diffuser’s performance generally improves as the kernel size increases up to a certain
threshold. (Critical drawbacks associated with increasing Diffuser’s kernel sizes will be discussed
in detail in the subsequent section.) Its best performance is comparable to SD, but remains inferior
to HD. In Figure 3, we further provide a qualitative comparison of the model’s coverage of the data
distribution. We plot the actual executed trajectories when the agent follows the model-generated
plans. Our results show that HD is able to generate plans that cover all distinct paths between the
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start and goal state, exhibiting a distribution closely aligned with the dataset. Diffuser has a much
worse coverage of the data distribution, but can be improved with a large kernel size.
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Figure 2: Impact of Kernel Size. Results of the impact of kernel size on performance of Diffuser in offline RL
indicates that reasonably enlarging kernel size can improves the performance.

Figure 3: Coverage of Data Distribution. Empirically, we observed that Diffuser exhibits insufficient coverage
of the dataset distribution. We illustrate this with an example featuring three distinct paths traversing from the
start to the goal state. While Diffuser struggles to capture these divergent paths, both our method and Diffuser
with an increased receptive field successfully recover this distribution.

Large kernel size hurts out-of-distribution generalization. While increasing the kernel size appears
to be a simple way to improve Diffuser, it has many drawbacks such as higher memory consumption
and slower training and planning. Most importantly, it introduces more model parameters, which can
adversely affect the model’s generalization capability. We demonstrate this in a task that requires the
model to produce novel plans between unseen pairs of start and goal states at test time, by stitching
together segments of training trajectories. We report the task success rate in Table 5, as well as the
discrepancy between generated plans and optimal trajectories measured with cosine similarity and
mean squared error (MSE). HD succeeds in all tasks, generating plans that are closest to the optimal
trajectories, while Diffuser variants fail this task completely. Details can be found in Appendix E.

Table 5: Out-Of-Distribution (OOD) Task Performance. Only Hierarchical Diffuser (HD) can solve the
compositional OOD task and generate plans that are most close to the optimal.

Metrics Diffuser-KS5 Diffuser-KS13 Diffuser-KS19 Diffuser-KS25 HD
Successful Rate 0.0% 0.0% 0.0% 0.0% 100.0%
Cosine Similarity 0.85 0.89 0.93 0.93 0.98
Deviation (MSE) 1269.9 1311.1 758.5 1023.2 198.2

Effect of Dense Actions. Though the dense actions generated from high-level planer are discarded tn
the low-level refinement phase, we empirically find that including dense actions facilitates the learning
of the guidance function. As shown in Table 4, validation loss of guidance fuction learned from
HD-DA is lower than that of SD-SA, leading to better RL performance. We conduct the experiment
on the Medium-Replay dataset where learning the value function is hard due to the mixed policies.

Efficiency Gains with Hierarchical Diffuser. A potential concern when introducing an additional
round of sampling might be the increase in planning time. However, the high-level plan, being K
times shorter, and the parallel generation of low-level segments counteract this concern. In Table 6,
we observed a 10⇥ speed up over Diffuser in medium and large maze settings with horizons beyond
250 time steps. Details of the time measurement are in Appendix D.
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Table 6: Wall-clock Time Comparison. Hierarchical Diffuser (HD) is more computationally efficient compared
to Diffuser during both training and testing stages.

Environment Training [s] Planning [s]

U-Maze Med-Maze L-Maze MuJoCo U-Maze Med-Maze L-Maze MuJoCo

HD 8.0 8.7 8.6 9.9 0.8 3.1 3.3 1.0
Diffuser 26.6 132.7 119.7 12.3 1.1 9.9 9.9 1.3

5 RELATED WORKS

Diffusion Models. Diffusion models have recently emerged as a new type of generative model
that supports generating samples, computing likelihood, and flexible-model complexity control.
In diffusion models, the generation process is formulated as an iterative denoising process Sohl-
Dickstein et al. (2015); Ho et al. (2020). The diffusion process can also be guided to a desired
direction such as to a specific class by using either classifier-based guidance Nichol et al. (2021) or
classifier-free guidance Ho & Salimans (2022). Recently, diffusion models have been adopted for
agent learning. Janner et al. (2022b) have adopted it first and proposed the diffuser model which is the
non-hierarchical version of our proposed model, while subsequent works by Ajay et al. (2022); Lu
et al. (2023) optimized the guidance sampling process. Other works have utilized diffusion models
specifically for RL Wang et al. (2022); Chen et al. (2023), observation-to-action imitation modeling
Pearce et al. (2022), and for allowing equivariance with respect to the product of the spatial symmetry
group Brehmer et al. (2023). A noteworthy contribution in this field is the hierarchical diffusion-based
planning method Li et al. (2023), which resonates closely with our work but distinguishes itself in
the subgoal preprocessing. While it necessitates explicit graph searching, our high-level diffuser to
discover subgoals automatically.

Hierarchical Planning. Hierarchical planning has been successfully employed using temporal
generative models, commonly referred to as world models Ha & Schmidhuber (2018); Hafner et al.
(2019). These models forecast future states or observations based on historical states and actions.
Recent years have seen the advent of hierarchical variations of these world models Chung et al.
(2017); Kim et al. (2019); Saxena et al. (2021). Once trained, a world model can be used to train a
separate policy with rollouts sampled from it Hafner et al. (2019); Deisenroth & Rasmussen (2011);
Ghugare et al. (2023); Buckman et al. (2018); Hafner et al. (2022), or it can be leveraged for plan
searching Schrittwieser et al. (2020); Wang & Ba (2020); Pertsch et al. (2020); Hu et al. (2023);
Zhu et al. (2023). Our proposed method draws upon these principles, but also has connections to
hierarchical skill-based planning such as latent skill planning Xie et al. (2020); Shi et al. (2022).
However, a crucial distinction of our approach lies in the concurrent generation of all timesteps of a
plan, unlike the aforementioned methods that require a sequential prediction of future states.

6 CONCLUSION

We introduce Hierarchical Diffuser, a comprehensive hierarchical framework that leverages the
strengths of both hierarchical reinforcement learning and diffusion-based planning methods. Our
approach, characterized by a larger receptive field at higher levels and a fine-tuning stage at the lower
levels, has the capacity to not only capture optimal behavior from the offline dataset, but also retain
the flexibility needed for compositional out-of-distribution (OOD) tasks. Expanding our methodology
to the visual domain, which boasts a broader range of applications, constitutes another potential
future direction.

Limitations Our Hierarchical Diffuser (HD) model has notable strengths but also presents some
limitations. Foremost among these is its dependency on the quality of the dataset. Being an offline
method, the performance of HD is restriced by the coverage or quality of datasets. In situations where
it encounters unfamiliar trajectories, HD may struggle to produce optimal plans. Another restriction
is the choice of fixed sub-goal intervals. This decision simplify the model’s architecture but might
fall short in handling a certain class of complex real-world scenarios. Furthermore, it introduces a
task-dependent hyper-parameter. Lastly, the efficacy of HD is tied to the accuracy of the learned
value function. This relationship places limits on the magnitude of the jump steps K; excessively
skipping states poses challenge to learn the value function.
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