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Abstract

Fair machine learning methods seek to train models that balance model performance across
demographic subgroups defined over sensitive attributes like race and gender. Although
sensitive attributes are typically assumed to be known during training, they may not be
available in practice due to privacy and other logistical concerns. Recent work has sought
to train fair models without sensitive attributes on training data. However, these methods
need extensive hyper-parameter tuning to achieve good results, and hence assume that
sensitive attributes are known on validation data. However, this assumption too might not
be practical. Here, we propose Antigone, a framework to train fair classifiers without access
to sensitive attributes on either training or validation data. Instead, we generate pseudo
sensitive attributes on the validation data by training a ERM model and using the classifier’s
incorrectly (correctly) classified examples as proxies for disadvantaged (advantaged) groups.
Since fairness metrics like demographic parity, equal opportunity and subgroup accuracy
can be estimated to within a proportionality constant even with noisy sensitive attribute
information, we show theoretically and empirically that these proxy labels can be used to
maximize fairness under average accuracy constraints. Key to our results is a principled
approach to select the hyper-parameters of the ERM model in a completely unsupervised
fashion (meaning without access to ground truth sensitive attributes) that minimizes the gap
between fairness estimated using noisy versus ground-truth sensitive labels. We demonstrate
that Antigone outperforms existing methods on CelebA, Waterbirds, and UCI datasets.

1 Introduction

Despite their success on a range of real-world tasks, prior work (Hovy & Søgaard, 2015; Oren et al., 2019;
Hashimoto et al., 2018a) has found that state-of-the-art deep neural networks exhibit unintended biases
towards specific subgroups, for instance towards disadvantaged subgroups or because of tendency to learn
spurious correlations and simplicity bias, especially harming disadvantaged groups. Seminal work by Buo-
lamwini & Gebru (2018) demonstrated, for instance, that commercial face recognition systems had lower
accuracy on darker-skinned women than other groups. A body of work has sought to design fair machine
learning algorithms that account for a model’s performance on a per-group basis (Prost et al., 2019; Liu
et al., 2021; Sohoni et al., 2020).

Prior work typically assumes that attributes, e.g. gender and race, on which we seek to train fair models are
available on training and validation data (Sagawa* et al., 2020; Prost et al., 2019). We will refer to these as
sensitive attributes (SA). However, recent work (Veale & Binns, 2017; Holstein et al., 2019) has highlighted
many real-world settings in which SA may not be available. For example, data subjects may abstain from
providing sensitive information for privacy reasons or to evade future discrimination (Markos et al., 2017).
Attributes on which the model discriminates might not be known or available during training and only
identified post-deployment (Citron & Pasquale, 2014; Pasquale, 2015). For instance, recent work shows that
fair NLP models trained on western datasets discriminate based on last names when re-contextualized to
geo-cultural settings like India (Bhatt et al., 2022). Similarly, reports suggest that Nikon’s face detection
models repeatedly identify Asian faces as blinking, a bias that was only identified retrospectively (Leslie,
2020). Unfortunately, by this point, at least some harm is already incurred.
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Figure 1: Antigone on CelebA dataset with hair color as target label and gender as (unknown) sensitive
attribute. Blond men are discriminated against. Correspondingly, the mean image of the Blond class
incorrect set (row 4) has more male features than that of its correct set (row 1), reflecting this bias. Similarly,
a bias against non-blond women is also reflected. PSA = 0 corresponds to disadvantaged groups, and PSA
= 1 corresponds to advantaged groups.

Recent work has therefore sought to train fair classifiers without SA on the training set (Liu et al., 2021;
Creager et al., 2021; Nam et al., 2020; Hashimoto et al., 2018a). At their core, these methods first identify
advantaged and disadvantaged groups within the training dataset; i.e., subgroups with high and low accuracy,
respectively. Then, they deploy various training strategies to boost performance on disadvantaged groups.
However, these methods are highly sensitive to the choice of hyperparameters, and can actually hurt fairness
compared to baseline empirical risk minimization (ERM) without proper hyperparameter tuning (Liu et al.,
2021). Hence, with the exception of GEORGE (Sohoni et al., 2020) and ARL (Lahoti et al., 2020), prior work
has assumed access to SA on the validation data. However, in practical settings, SA may not be available
for the same reasons they are unavailable on training data.

In this paper, we propose Antigone, a principled approach that enables hyperparameter tuning for fairness
without access to SA on training and validation data. Antigone enables effective hyperparameter tuning of
methods like JTT (Liu et al., 2021), AFR (Qiu et al., 2023) (that currently assume ground-truth SAs on
validation data) and improves fairness when GEORGE’s and ARL’s own hyperparameter tuning methods are
replaced with Antigone. Antigone works for fairness metrics including demographic parity, equal opportunity
and worst sub-group accuracy.

Antigone starts with a baseline ERM model trained to predict target labels (note these target labels are known
and different from SAs). Subgroups advantaged by the baseline ERM model will be over-represented in the set
of correctly classified inputs; similarly, disadvantaged subgroups are over-represented in the set of incorrectly
classified inputs. Hence, Antigone uses the ERM model’s correctly and incorrectly classified validation data
as proxies for advantaged and disadvantaged subgroups, respectively. We refer to these as pseudo-sensitive
attributes (PSA). Note that PSA labels are noisy; some inputs from the advantaged subgroups will be
incorrectly classified, and vice-versa. Can they still be used for hyperparameter tuning? Prior work shows
that under certain theoretical assumptions on label noise, called the mutually corrupted (MC) noise model,
fairness measured on PSA is proportional to ground-truth fairness (Lamy et al., 2019). Thus, PSA labels on
validation data can still be used to compare different models for fairness, and consequently for hyperparameter
tuning.

However, this sets up a new problem: how do we tune the hyperparameters of the ERM model itself to
maximize the accuracy (or minimize the noise) of our PSA? We cannot directly measure PSA accuracy
or noise since we do not have any ground-truth SA labels. Here, we show formally that under the MC
noise model, minimizing noise is equivalent to maximizing the Euclidean distance between the mean (EDM)
images in the correct and incorrect classes. Since the EDM can be directly measured, we train a family of
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ERM models with different hyper-parameters and pick the model with the largest EDM on the validation
dataset. The PSAs obtained are then used to tune hyperparameters for fairness schemes like JTT, AFR,
GEORGE and ARL.

For more intuition, consider the example in Figure 1 on the CelebA dataset. The target label is hair color,
and the (unknown) SA is gender. The baseline ERM model discriminates against blond men. The correct set
for the ground-truth blond class has only 4% blond men while the incorrect set has 65% blond men. This is
also reflected in the mean images for these two classes: the correct set for the ground-truth blond individuals
has more female features while the incorrect set has more male features. As noted above, Antigone picks an
ERM model with the largest distance between these mean images so as to maximize PSA label accuracy.

We evaluate Antigone in conjunction with three state-of-art methods, JTT (Liu et al., 2021), AFR (Qiu et al.,
2023), GEORGE (Sohoni et al., 2020) and ARL (Lahoti et al., 2020), on binary SA using demographic parity,
equal opportunity, and worst subgroup accuracy as fairness metrics across the CelebA, Waterbirds and Adult
datasets. Empirically, we find that: (1) Antigone produces more accurate PSA labels on validation data
compared to GEORGE’s unsupervised clustering approach (Table 1); (2) used with JTT (AFR), Antigone
comes close to matching the fairness of JTT (AFR) tuned with ground-truth SA as shown in Table 2 (Table 5);
and (3) improves the fairness of both GEORGE and ARL when Antigone’s PSA labels are used instead of
their own hyperparameter tuning methods (Table 3, Table 4). Specifically, the worst-group accuracy increases
by 4.2% and 8.6% on the CelebA and Waterbirds datasets for GEORGE, respectively, and by up to 11.6%
on the Adult dataset for ARL. Ablation and sensitivity studies demonstrate the effectiveness of Antigone’s
EDM metric versus alternatives (Table 1) and shed light on discrepancies between the ideal MC assumptions
and its use in practice (Appendix Table 12). Overall, our key contributions are:

• We propose Antigone (subsection 2.2), a new method for the often overlooked problem of hyper-
parameter tuning for fair classification in setting where sensitive attributes are unavailable on both
training and validation data. Antigone generates PSA labels on validation data using the correctly
and incorrectly classified examples of an ERM model as proxies for advantaged and disadvantaged
subgroups.

• We propose an unsupervised approach to tune Antigone’s own hyperparameters (specifically, those
of its ERM model) by maximizing the Euclidean distance between the mean (EDM) images of the
correctly and incorrectly classified sets. We theoretically justify this choice under the MC noise
model, proving that maximizing EDM minimizes PSA label noise in an idealized setting (subsec-
tion 2.3). Empirically, we show that gap between our practical implementation and the idealized
MC noise model is small.

• Experimentally, we find that Antigone based hyperparameter tuning boosts fairness for three state-
of-art methods, JTT, AFR, GEORGE and ARL (section 3), even surpassing their own hyperparam-
eter tuning techniques. Antigone also generates more accurate PSA labels compared to GEORGE’s
unsupervised clustering approach (section 4).

2 Proposed Methodology

We now describe Antigone, starting with the problem formulation (Section 2.1) followed by a description of
the Antigone algorithm (Section 2.2).

2.1 Problem Setup

Consider a data distribution over set D = X × A × Y, the product of input data (X ), sensitive attributes
(A) and target labels (Y) triplets. We are given a training set Dtr = {xtr

i , atr
i , ytr

i }Ntr

i=1 with N tr training
samples, and a validation set Dval = {xval

i , aval
i , yval

i }Nval

i=1 with Nval validation samples. We will assume
binary sensitive attributes (A ∈ {0, 1}) and target labels (Y ∈ {0, 1}).

We seek to train a machine learning model, say a deep neural network (DNN), which can be represented
as a parameterized function fθ : X → Y ∈ {0, 1}, where θ ∈ Θ are the trainable parameters, e.g., DNN
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weights and biases. Standard fairness unaware empirical risk minimization (ERM) optimizes over trainable
parameters θ to minimize average binary cross-entropy loss on Dtr. Optimized model parameters θ∗ are
obtained by invoking a training algorithm, for instance stochastic gradient descent (SGD), on the training
dataset and model, i.e., θ∗,γ = MERM (Dtr, fθ, γ), where γ ∈ Γ are hyper-parameters of the training
algorithm including learning rate, training epochs etc. Hyper-parameters are tuned by evaluating models
fθ∗,γ for all γ ∈ Γ on Dval and picking the best model. More sophisticated algorithms like Bayesian
optimization can also be used. Next, we review three commonly used fairness metrics that we account for
in this paper.

Demographic parity (DP): DP requires the model’s outcomes to be independent of sensitive attribute.
In practice, we seek to minimize the demographic parity gap:

∆DP
θ = P[fθ(X) = 1|A = 1] − P[fθ(X) = 1|A = 0] (1)

Equal opportunity (EO): EO aims to equalize only the model’s true positive rates across sensitive
attributes. In practice, we seek to minimize

∆EO
θ = P[fθ(X) = 1|A = 1, Y = 1] − P[fθ(X) = 1|A = 0, Y = 1] (2)

Worst-group accuracy (WGA): WGA seeks to maximize the minimum accuracy over all sub-groups
(over sensitive attributes and target labels). That is, we seek to maximize:

WGAθ = min
a∈{0,1},y∈{0,1}

P[f(x) = y|A = a, Y = y] (3)

In all three settings, we seek to train models that optimize fairness under a constraint on average target
label accuracy, i.e., accuracy in predicting the target label. For example, for equal opportunity, we seek
θ∗ = arg minθ∈Θ ∆EO

θ such that P[fθ(x) = Y ] ∈ [Accthr
lower, Accthr

upper), where Accthr
lower and Accthr

upper are
user-specified lower and upper bounds on target label accuracies, respectively.

2.2 Antigone Algorithm

We now describe the Antigone algorithm which consists of three main steps. In step 1, we train multiple
ERM models that each provide pseudo sensitive attribute (PSA) labels on validation data. In step 2, we
use the proposed EDM metric to pick a single ERM model from step 1 with the most accurate PSA labels.
Finally, in step 3, we use the PSA labelled validation set from step 2 to tune the hyper-parameters of methods
like JTT that train fair classifiers without SA labels on training data.

Step 1: Generating PSA labels on validation set. In step 1, we use the training dataset and standard
ERM training to obtain a set of classifiers, θ∗,γ = MERM (Dtr, fθ, γ), each corresponding to a different value
of training hyper-parameters γ ∈ Γ. As we discuss in Section 2.1, these include learning rate, weight decay
and number of training epochs. Each classifier, which predicts the target label for a given input, generates
a validation set with PSA labels as follows:

Dval,γ
PSA = {xval

i , aval,γ
i , yval

i }Nval

i=1 ∀γ ∈ Γ, where (4)

aval,γ
i =

{
1, if fθ∗,γ (xval

i ) = yval
i

0, otherwise.
(5)

where aval,γ
i now refers to PSA labels. In the next step, we search over the set Γ to find hyperparameters

γ ∈ Γ that maximize PSA accuracy.
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Step 2: Picking the most accurate PSA labeller. From Step 1, let the correct set be Xval,γ
A=1,PSA =

{xval
i : aval,γ

i = 1} and the incorrect set be Xval,γ
A=0,PSA = {xval

i : aval,γ
i = 0}. We define Euclidean distance

between the means (EDM) of these sets as:

EDMγ = ∥µ(Xval,γ
A=1,PSA) − µ(Xval,γ

A=0,PSA)∥2, (6)

where µ(.) represents the empirical mean of a dataset. Antigone picks γ∗ that maximizes EDM, i.e., γ∗ =
arg maxγ∈Γ EDMγ . We justify this choice in two ways. Intuitively, PSA labels on validation data distinguish
between advantaged and disadvantaged classes, e.g., placing blond men and blond women in different groups
as in Figure 1, resulting in larger differences in the mean images of the two groups. Formally, we show the
optimality of this strategy under the MC noise model in Subsection 2.3.

Step 3: Training a fair model. Step 2 yields Dval,γ∗

PSA , a validation dataset with (estimated) pseudo sensi-
tive attribute labels. We can provide Dval,γ∗

PSA as an input to any method that trains fair models without access
to SA on training data, but requires a validation set with SA labels to tune its own hyper-parameters. In our
experimental results, we use Dval,γ∗

PSA to tune the hyper-parameters of JTT (Liu et al., 2021), GEORGE (So-
honi et al., 2020) and ARL (Lahoti et al., 2020).

2.3 Analyzing Antigone under Ideal MC Noise

Prior theoretical work (Lamy et al., 2019) has studied the impact of noisy sensitive attribute labels on
fairness under the “mutually contaminated" (MC) noise model (Scott et al., 2013). Here, it is assumed
that we have access to PSA labels, XA=0,PSA ∈ X and XA=1,PSA ∈ X , corresponding to disadvantaged
(PSA = 0) and advantaged (PSA = 1) groups, respectively, that are contaminated (or, noisy) versions
of their corresponding ground-truth SA labels, XA=0 ∈ X and XA=1 ∈ X . Specifically, P (X|PSA = 1) =
(1−α)P (X|A = 1)+αP (X|A = 0) and P (X|PSA = 0) = βP (X|A = 1)+(1−β)P (X|A = 0) decompositions
are satisfied under the MC noise model, but we follow the notation described in prior work (Scott et al.,
2013; Lamy et al., 2019) to denote the MC noise model in our setting as:

XA=1,PSA = (1 − α)XA=1 + αXA=0 and XA=0,PSA = βXA=1 + (1 − β)XA=0 (7)

where α and β are noise parameters. With some abuse of terminology for conciseness, Equation 7 says that
fraction α of the pseudo advantaged group, XA=1,PSA, is contaminated with data from the disadvantaged
group, and fraction β of the pseudo disadvantaged group, XA=0,PSA, is contaminated with data from the
advantaged group. We construct DA=0,PSA by appending input instances in XA=0,PSA with their corre-
sponding PSA labels (i.e., ai = 0) and target labels, respectively. We do the same for DA=1,PSA. The noise
can also be target dependent, in which case we use αi and βi as noise parameters for label i. Under this
model, Lamy et al. (2019) show the following result:
Proposition 2.1. (Lamy et al., 2019) Under the ideal MC noise model in Equation 7, DP and EO gaps
measured on the noisy datasets are proportional to the true DP and EO gaps. Mathematically:

∆DP (DA=0,PSA ∪ DA=1,PSA) = (1 − α − β)∆DP (DA=0 ∪ DA=1), and (8)

∆EO(DA=0,PSA ∪ DA=1,PSA) = (1 − α1 − β1)∆EO(DA=0 ∪ DA=1). (9)

Equation 8 and Equation 9 show that under the ideal MC noise model, the DP and EO gaps can be minimized
using PSA labels instead of ground-truth SA labels, although asymptotically with infinite validation data
samples. In practice, we seek to minimize the total noise α+β, or equivalently maximize the proportionality
constant 1−α−β to obtain the most reliable fairness estimates. We show that this can be done by maximizing
EDM.
Lemma 2.2. Assume XA=0,PSA and XA=1,PSA correspond to the input data of noisy datasets in the ideal MC
model. Then, maximizing the EDM between XA=0,PSA and XA=1,PSA, i.e., ∥µ(XA=0,PSA) − µ(XA=1,PSA)∥2
maximizes 1 − α − β.
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Proof. From Equation 7, we can see that ∥µ(XA=0,PSA) − µ(XA=1,PSA)∥2 = (1 − α − β)2∥µ(XA=0) −
µ(XA=1)∥2. Here ∥µ(XA=0) − µ(XA=1)∥2 is the EDM between the ground truth advantaged and disad-
vantaged data and is therefore a constant. Hence, maximizing EDM between XA=0,PSA and XA=1,PSA
maximizes 1 − α − β.

Remark 2.3. The MC noise model assumes independent label noise. However, when using ERM classifiers
to generate PSAs, this noise can be instance dependent. Although we use the simplified MC noise model
to inform our practical implementation, we do not claim that Antigone inherits the MC model’s theoretical
guarantees. In Table 12, we do show empirically that the gap between fairness achieved with Antigone and
under ideal MC noise is small.

3 Experimental Setup

3.1 Baseline Methods

We evaluate Antigone with state-of-the-art fairness methods that work without SA on training data:
JTT (Liu et al., 2021), GEORGE Sohoni et al. (2020), ARL Lahoti et al. (2020), and AFR (Qiu et al.,
2023). GEORGE and ARL additionally do not require SA on validation data. Below, we describe these
baselines.

JTT: JTT operates in two stages. In the first stage, a biased model is trained using T epochs of standard
ERM training to identify the incorrectly classified training examples. In the second stage, the misclassified
examples are upsampled λ times, and the model is trained again to completion with standard ERM. The
hyperparameters of stage 1 and stage 2 classifiers, including early stopping epoch T , learning rate and
weight decay for stage 1 and upsampling factor λ for stage 2, are jointly tuned using a validation dataset
with ground-truth SA labels. We refer to this as the Ground-Truth + JTT baseline.

GEORGE: GEORGE is a competing approach to Antigone in that it does not assume access to SA on
either training or validation data. GEORGE operates in two stages: In stage 1, an ERM model is trained
until completion on the ground-truth target labels. The activation in the penultimate layer of the ERM
model are clustered into k clusters to generate PSA labels on both the training and validation datasets. In
Stage 2, these PSA are used to train a Group DRO model Sagawa* et al. (2020) and tune its early stopping
hyper-parameter.

ARL: Adversarially Reweighted Learning (ARL) seeks to improve the worst-group performance without
access to SA on either training or validation datasets. ARL framework considers a mini-max game between a
learner and adversary. The goal of the learner is to output fair predictions by minimizing the weighted cross
entropy classification loss function. Whereas, the adversary maximizes the weighted cross entropy loss so as
to identify high loss training data points and upweight them during the training of the learner. Since ARL
does not assume access to SA on validation set, it tries to maximize the target label accuracy by performing
a grid search over the joint hyper-parameter space of both learner and adversary.

AFR: Automatic Feature Reweighting is a lightweight framework that operates in two stages. In the first
stage, a standard ERM model is trained on 80% of the training dataset to minimize the ERM objective.
In the second stage, AFR retrains only the last layer of the ERM model using the remaining 20% of the
training dataset with a weighted loss function. The weights of each sample, i, are determined by:

wi = κyi
exp(−γp̂i)

ΣM
j=1κyj exp(−γp̂j)

(10)

These weights emphasize the samples where the standard ERM model from stage 1 underperforms. The
hyper-parameter, γ, is used to control how much to up-weight examples with poor ground-truth target
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label prediction probability (p̂), ensuring that examples from the disadvantaged group are given greater
importance in stage 2. Additionally, AFR balances the target class labels using κy, which is the reciprocal of
the number of examples belonging to class y in the re-training set. In stage 2, AFR also uses a regularization
term to prevent the last layer from focusing only on minority examples, potentially at the cost of degrading
performance on majority group examples to an unacceptable level. The strength of this regularization is
controlled by the hyper-parameter τ . The hyper-parameters of the second stage are tuned using a validation
dataset with ground-truth SA labels. We refer to this as the Ground-Truth + AFR baseline.

3.2 Antigone + Baseline

Antigone+JTT: Here, we replace the ground-truth SA in the validation dataset with PSA obtained from
Antigone and use it to tune JTT’s hyper-parameters.

Antigone+GEORGE: For a fair comparison with GEORGE, we replace its stage 1 with Antigone, and
use the resulting validation PSA labels to tune the hyper-parameters of GEORGE’s stage 2.

Antigone+ARL: Instead of tuning the target label accuracy on the validation set, we use Antigone’s
validation PSA labels to tune the hyper-parameters of ARL. We also tune the hyper-parameters of ARL
with ground-truth SA labels and refer to it as Ground-Truth+ARL.

Antigone+AFR: Here, our primary goal is to improve WGA, as AFR seeks to mitigate spurious cor-
relations by improving WGA with the assumption of having access to ground-truth SA on the validation
dataset. We substitute the ground-truth SA in the validation dataset with PSA acquired from Antigone and
use it to tune AFR’s hyperparameters.

3.3 Datasets and Parameter Settings

We empirically evaluate Antigone on the CelebA and Waterbirds datasets, which allow for a direct comparison
with related work (Liu et al., 2021; Sohoni et al., 2020). We also evaluate Antigone on UCI Adult Dataset, a
tabular dataset commonly used in the fairness literature to directly compare with ARL Lahoti et al. (2020)
(see Appendix A) for more details.

CelebA Dataset: CelebA (Liu et al., 2015) is an image dataset, consisting of 202,599 celebrity face
images annotated with 40 attributes including gender, hair colour, age, smiling, etc. The task is to
predict hair color, which is either blond Y = 1 or non-blond Y = 0 and the sensitive attribute is
gender A = {Men, Women}. In all our experiments using CelebA dataset, we fine-tune a pre-trained
ResNet50 architecture for a total of 50 epochs using SGD optimizer and a batch size of 128. We tune
JTT over the same hyper-parameters as in their paper: three pairs of learning rates and weight decays,
(1e − 04, 1e − 04), (1e − 04, 1e − 02), (1e − 05, 1e − 01) for both stages, and over ten early stopping points
up to T = 50 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore over the same learning rate and
weight decay values, as well as early stopping at any of the 50 training epochs. We report results for DP,
EO and WGA fairness metrics. In each case, we seek to optimize fairness while constraining average target
label accuracy to ranges {[90, 91), [91, 92), [92, 93), [93, 94), [94, 95)}.

Waterbirds Dataset: Waterbirds is a synthetically generated dataset, containing 11,788 images of wa-
ter and land birds overlaid on top of either water or land backgrounds (Sagawa* et al., 2020). The task
is to predict the bird type, which is either a waterbird Y = 1 or a landbird Y = 0 and the sensitive
attribute is the background A = {Water background, Land background}. In all our experiments using Wa-
terbirds dataset, we fine-tune ResNet50 architecture for a total of 300 epoch using the SGD optimizer
and a batch size of 64. We tune JTT over the same hyper-parameters as in their paper: three pairs of
learning rates and weight decays, (1e − 03, 1e − 04), (1e − 04, 1e − 01), (1e − 05, 1.0) for both stages, and
over 14 early stopping points up to T = 300 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore
over the same learning rate and weight decay values, as well as early stopping points at any of the 300
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training epochs. In each case, we seek to optimize fairness while constraining average accuracy to ranges
{[94, 94.5), [94.5, 95), [95, 95.5), [95.5, 96), [96, 96.5)}.

In case of GEORGE, for both CelebA and Waterbirds datasets, we use the same architecture and early
stopping stage 2 hyper-parameters (T = 50 for CelebA and T = 300 for Waterbirds) reported in their paper.
For Antigone+GEORGE, we replace GEORGE’s stage 1 with the Antigone model, which is identified by
searching over the same hyperparameter space as in Antigone+JTT.

In case of AFR, for both CelebA and Waterbirds, we fine-tune a pre-trained ResNet50 architecture and tune
its hyper-parameters to minimize the cross-entropy loss function in stage 1. In stage 2, we re-train the last
layer by searching over the hyper-parameters space reported in their paper. Specifically, for CelebA, we tune
over early stopping stage 2 epochs (T = 1000), γ from 10 points linearly spaced between [1, 3], learning rate
= 2e − 2, and τ ∈ {0.001, 0.01, 0.1}. For Waterbirds, we tune over early stopping stage 2 epochs (T = 500),
γ from 33 points linearly spaced between [4, 20], learning rate = 1e − 2, and τ ∈ {0, 0.1, 0.2, 0.3, 0.4}. For
Antigone+AFR, we tune AFR’s stage 2 hyper-parameters using Antigone’s PSA, which are identified by
searching over the same hyperparameter space as in Antigone+JTT.

4 Experimental Results

Accuracy of Antigone’s PSA labels: Antigone seeks to generate accurate PSA labels on validation
data, referred to as pseudo label accuracy, based on the EDM criterion (Lemma 2.2). In Figure 2, we
empirically validate Lemma 2.2 by plotting EDM and noise parameters α1 (contamination in advantaged
group), β1 (contamination in disadvantaged group) and 1 − α1 − β1 (proportionality constant between true
and estimated fairness) on Waterbirds dataset (similar plot for CelebA dataset is in Appendix Figure 3(b)).
From the figure, we observe that in both cases the EDM metric indeed captures the trend in 1 − α1 − β1,
enabling early stopping at an epoch that minimizes contamination. The best early stopping points based on
EDM and oracular knowledge of 1 − α1 − β1 are shown in a blue dot and star, respectively, and are very
close.

Figure 2: Euclidean Distance between Means (EDM) and noise parameters (α1, β1 and 1 − α1 − β1) for the
positive target class of Waterbirds dataset. Blue dot indicates the model picked by Antigone, while black
star indicates the model that maximizes 1 − α1 − β1.

In Table 1 we compare Antigone’s PSA labels’ F1 Score to GEORGE with the baseline k = 5 and with k = 2
clusters on CelebA and Waterbirds. We find that Antigone outperforms GEORGE on all but one sub-group
in CelebA, and all Waterbirds. Table 1 also reports results on a version of Antigone that uses standard
ERM training instead of EDM (Antigone (w/o EDM)). We find that Antigone provides higher pseudo-label
accuracy compared to this baseline. Appendix Table 6 shows precision and recall of Antigone’s PSA labels
and reaches the same conclusion. We also study the impact of varying the fraction of disadvantaged group
individuals from 5%, 20%, 35%, 50% in the CelebA dataset (see Appendix Table 7). As the dataset gets more
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balanced, the models themselves are more fairer, and PSA label accuracy reduces (as expected). Nonetheless,
disadvantaged group individuals are over-represented in incorrect sets for up to 35% imbalance.

Table 1: F1 scores and pseudo label accuracies (Ps. Acc.) We mark the best performance in bold. BM
(blond men), BW (blond women), NBW (non-blond women) and NBM (non-blond men) for CelebA; WL
(waterbirds landbkgd), WW (waterbirds waterbkgd), LW (landbirds waterbkgd) and LL (landbirds land-
bkgd) for Waterbirds.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (F1 Scores)
BM 0.28± 0.01 0.13± 0.02 0.12 ± 0.01 0.35± 0.04

BW 0.95± 0.01 0.43± 0.04 0.51± 0.02 0.96± 0.00

NBW 0.22± 0.02 0.42± 0.01 0.6± 0.01 0.22± 0.01

NBM 0.67± 0.01 0.4± 0.02 0.31± 0.01 0.68± 0.01

Ps. Acc. 0.59± 0.01 0.33± 0.01 0.48± 0.00 0.60± 0.00

Waterbirds (F1 Scores)
WL 0.41± 0.02 0.43± 0.02 0.52± 0.01 0.76± 0.03

WW 0.72± 0.00 0.36± 0.02 0.43± 0.02 0.83± 0.01

LW 0.58± 0.02 0.44± 0.03 0.55± 0.03 0.78± 0.04

LL 0.76± 0.01 0.34± 0.02 0.55± 0.03 0.84± 0.02

Ps. Acc. 0.68± 0.01 0.30± 0.02 0.53± 0.03 0.81± 0.02

Antigone+JTT: In Table 2, we compare the test target label accuracy and fairness achieved by Antigone
with JTT (Antigone+JTT) vs. JTT using ground-truth SA (Ground-Truth+JTT). On DP and EO,
Antigone+JTT is very close to Ground-Truth+JTT in terms of both target label accuracy and fairness,
and substantially improves on standard ERM. Antigone+JTT improves WGA from 38.7% for standard
ERM to 68.1% at the expense of 3% target label accuracy drop. Ground-Truth+JTT improves WGA fur-
ther up to 78.6% but with a 4.4% target label accuracy drop. Waterbirds (Appendix Table 10) and UCI
Adult (Appendix Table 11) have the same trends.

Table 2: (Avg. target label accuracy, Fairness) on test data for different validation accuracy thresholds on
the CelebA dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[94, 95) Antigone + JTT (94.6, 15.0)± (0.2, 0.7) (94.7, 30.1)± (0.2, 3.2) (94.4, 59)± (0.2, 4.7)

Ground-Truth + JTT (94.7, 14.9)± (0.2, 0.6) (94.5, 30.4)± (0.2, 2.3) (94.3, 62.1)± (0.3, 3.2)

[93, 94) Antigone + JTT (93.7, 13.1)± (0.2, 0.7) (93.6, 26.4)± (0.4, 5.0) (93.4, 62.6)± (0.2, 7.0)

Ground-Truth + JTT (93.6, 13.1)± (0.1, 0.6) (93.6, 22.7)± (0.3, 2.7) (93.4, 67.9)± (0.1, 1.9)

[92, 93) Antigone + JTT (92.7, 11.1)± (0.2, 0.5) (92.3, 20.2)± (0.2, 3.4) (92.7, 68.1)± (0.4, 3.7)

Ground-Truth + JTT (92.7, 11.2)± (0.3, 0.5) (92.7, 16.9)± (0.4, 2.9) (92.7, 72.5)± (0.2, 1.3)

[91, 92) Antigone + JTT (91.7, 9.6)± (0.1, 0.5) (91.5, 16.3)± (0.3, 3.4) (91.3, 63.2)± (0.3, 2.6)

Ground-Truth + JTT (91.8, 9.7)± (0.2, 0.5) (91.8, 10.1)± (0.3, 4.1) (91.8, 77.3)± (0.1, 2.4)

[90, 91) Antigone + JTT (91.0, 8.3)± (0.2, 0.4) (90.9, 13.1)± (0.1, 3.6) (90.9, 63.1)± (0.5, 4.4)

Ground-Truth + JTT (91.0, 8.4)± (0.2, 0.4) (90.7, 6.8)± (0.4, 3.7) (91.4, 78.6)± (0.2, 2.0)

ERM (95.8, 18.6)± (0.0, 0.3) (95.8, 46.4)± (0.0, 2.2) (95.8, 38.7)± (0.0, 2.8)

Comparison with GEORGE: As already noted in Table 1, Antigone’s PSA labels are more accurate
and have higher F1 scores than GEORGE’s. In Table 3, Antigone+GEORGE shows marked improve-
ments over GEORGE in both WGA (8.6% higher) and target label accuracy on Waterbirds. For CelebA,
Antigone+GEORGE has a 4.2 % higher WGA but with a small drop of 0.4% in target label accuracy. Fair-
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ness improvement are statistically significant under paired t-tests; over 10 runs, Antigone+GEORGE always
equals or betters GEORGE in terms of WGA (Appendix Figure 5).

Table 3: Performance of GEORGE using Antigone’s validation PSA compared with GEORGE by itself.
We observe that on CelebA and Waterbirds dataset, Antigone + GEORGE out-performs GEORGE, even
if GEORGE assumes knowledge of number of clusters (k = 2) in its clustering step. ∗ (∗∗) indicates
p − value < 0.01(0.001).

CelebA Waterbirds
Method Avg Acc WGA Avg Acc WGA
ERM 95.75 35.14 95.91 29.70

GEORGE 93.61 60.44 95.39 49.15
Antigone + GEORGE 93.56 62.45∗ 95.99∗∗ 57.73∗∗

GEORGE (k=2) 94.62 60.75 94.61 42.98
Antigone + 94.18 64.94∗∗ 95.56∗∗ 52.80∗

GEORGE (k=2)

Comparison with ARL: In Table 4 (full table in Appendix Table 13), we compare the target label
accuracies and fairness of Antigone+ARL vs. just ARL for different validation accuracy thresholds on the
Adult UCI. Antigone+ARL has 4.5%-11.6% higher WGA than ARL alone, but with a small (< 0.6%) drop
in target label accuracy. Similar observations hold on DP Gap and EO Gap.

Table 4: Comparison of (Avg. target label accuracy, Fairness) between ARL using Antigone’s noisy validation
data, ARL alone, and ground-truth validation data on the UCI Adult dataset. Lower DP and EO gaps
indicate better fairness, while higher WGA is better. Antigone + ARL consistently outperforms ARL across
various validation accuracy thresholds and fairness metrics. The p-values are marked with ∗ accordingly: ∗

for p < 0.1, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[84.5, 85)
Antigone + ARL (84.51, 16.84)∗∗

± (0.13, 1.08) (84.1, 5.64)∗∗∗
± (0.08, 1.43) (84.14, 59.68)∗∗∗

± (0.13, 1.27)

ARL (84.53, 19.01) ± (0.13, 0.97) (84.53, 9.35) ± (0.13, 0.88) (84.53, 55.08) ± (0.13, 3.03)

Ground-Truth + ARL (84.5, 15.86) ± (0.24, 1.02) (84.43, 4.97) ± (0.17, 1.23) (84.08, 62.66) ± (0.32, 0.71)

[84, 84.5)
Antigone + ARL (84.12, 15.55)∗∗∗

± (0.21, 1.14) (83.7, 6.65)∗∗
± (0.22, 1.61) (83.47, 60.9)∗∗

± (0.22, 2.1)

ARL (84.02, 18.35) ± (0.17, 1.04) (84.02, 8.04) ± (0.17, 1.21) (84.02, 55.69) ± (0.17, 2.93)

Ground-Truth + ARL (84.23, 15.26) ± (0.12, 0.9) (83.81, 5.57) ± (0.12, 1.58) (83.62, 64.74) ± (0.14, 0.65)

[83.5, 84)
Antigone + ARL (83.29, 15.13)∗∗∗

± (0.21, 1.17) (83.07, 5.36)∗∗
± (0.22, 2.86) (82.93, 62.17)∗∗∗

± (0.13, 1.63)

ARL (83.54, 19.43) ± (0.12, 1.17) (83.54, 10.52) ± (0.12, 2.16) (83.54, 53.72) ± (0.12, 2.66)

Ground-Truth + ARL (83.53, 14.7) ± (0.19, 0.87) (83.17, 4.34) ± (0.17, 0.69) (83.31, 66.61) ± (0.24, 1.6)

[83, 83.5)
Antigone + ARL (82.98, 15.05)∗∗∗

± (0.18, 1.45) (82.69, 5.4)∗
± (0.16, 3.15) (82.55, 65.85)∗∗∗

± (0.31, 0.58)

ARL (83.2, 18.24) ± (0.13, 2.45) (83.2, 8.69) ± (0.13, 3.68) (83.2, 54.21) ± (0.13, 4.99)

Ground-Truth + ARL (82.86, 14.84) ± (0.13, 1.26) (83.04, 6.03) ± (0.13, 1.56) (82.47, 66.75) ± (0.16, 1.56)

ERM (84.69, 18.27) ± (0.08, 0.5) (84.69, 9.39) ± (0.08, 1.11) (84.69, 53.36) ± (0.08, 1.97)

Comparison with AFR: In Table 5, we compare the test target label accuracies and WGA achieved by
Antigone with AFR (Antigone+AFR) vs. AFR using ground-truth SA (Ground-Truth+AFR). Antigone +
AFR is very close to Ground-Truth + AFR in terms of both target label accuracy and WGA, and substantially
improves on standard ERM. On CelebA, Antigone + AFR improves WGA from 41% for standard ERM to
81% at the expense of 5% target label accuracy drop. Ground-Truth + AFR improves WGA further up to
82% with a 4% target label accuracy drop. Similar observations hold for the Waterbirds dataset also.

Ablation Studies: We perform two ablation experiments to understand the benefits of Antigone’s pro-
posed EDM metric. We already noted in Table 1 that Antigone with the proposed EDM metric produces
higher quality PSA labels compared to a version of Antigone that picks hyper-parameters using standard
ERM. We evaluated these two approaches using JTT’s training algorithm and find that Antigone with EDM

10



Under review as submission to TMLR

Table 5: Performance of AFR using Antigone’s validation PSA compared with AFR by itself. Higher WGA
is better. We observe that Antigone + AFR is close to the performance of Ground-Truth + AFR.

CelebA Waterbirds
Method Avg Acc WGA Avg Acc WGA
ERM 0.96 ± 0.01 0.41 ± 0.01 0.98 ± 0.02 0.64 ± 0.01

Antigone + AFR 0.91 ± 0.01 0.81 ± 0.01 0.92 ± 0.04 0.82 ± 0.02

Ground-Truth + AFR 0.92 ± 0.00 0.82 ± 0.01 0.93 ± 0.03 0.84 ± 0.02

results in a 5.7% increase in WGA and a small 0.06% increase in average target label accuracy. Second, in
Appendix Table 12, we also compare Antigone+JTT against a synthetically labeled validation dataset that
exactly follows the ideal MC noise model in Section 2.3. We find that on DP Gap and EO Gap fairness
metrics, Antigone ’s results are comparable (in fact sometimes slightly better) with those derived from the
ideal MC model. On WGA, the most challenging fairness metric to optimize for, we find that the ideal MC
model has a best-case WGA of 73.9% compared to Antigone’s 66.7%. This reflects the loss in fairness due
to the gap between the assumptions of the idealized model versus Antigone’s implementation; however, the
reduction in fairness is marginal when compared to the ERM baseline which has only a 38% WGA.

5 Limitations

Antigone has some notable limitations that we discuss here, along with potential avenues to mitigate these
concerns. First, in its current form, Antigone only explicitly deals with binary sensitive attributes. In
practice, multiple subgroups could in fact be over-represented in the incorrect set, and as such accounted
for during hyperparameter tuning but not explicitly. We note that downstream robustness methods, like
JTT, that we demonstrate Antigone in conjunction with and others like Creager et al. (2021) have the same
limitation. Antigone+JTT can improve fairness for these sub-groups as a whole but cannot, for example,
have different up-weighting factors for each subgroup. However, this limitation is not fundamental and can
be addressed by further sub-dividing the incorrect set, or via multiple rounds of Antigone+JTT where in
each round we address any remaining fairness gaps. We note also that although GEORGE addresses multiple
(k) subgroups, tuning k is challenging and results for larger k are sometimes worse than k = 2.

A second concern is whether the assumptions of the MC noise model, independent label noise in partic-
ular, hold strictly. While they do not, we are not claiming the theoretical fairness guarantees of Lamy
et al. (2019). Antigone is a practical solution to improve fairness like other works we evaluate against. In
Appendix Table 12, we do compare Antigone+JTT against a synthetically labeled validation dataset that
exactly follows the MC noise model and find that Antigone’s reduction in fairness is marginal. In Figure 2,
we also empirically validate that the proportionality constant 1 − α − β minimizes the gap between the true
and estimated fairness values.

6 Related Work

Methods that seek to achieve fairness are of three types: pre-processing, in-processing and post-processing
algorithms. Pre-processing (Quadrianto et al., 2019; Ryu et al., 2018) methods focus on curating the dataset
that includes removal of sensitive information or balancing the datasets. In-processing methods (Hashimoto
et al., 2018b; Agarwal et al., 2018; Zafar et al., 2019; Lahoti et al., 2020; Prost et al., 2019; Liu et al.,
2021; Sohoni et al., 2020) alter the training mechanism by adding fairness constrains to the loss function
or by training an adversarial framework to make predictions independent of sensitive attributes (Zhang
et al., 2018). Post-processing methods (Hardt et al., 2016; Wang et al., 2020b; Savani et al., 2020) alter
the outputs, for e.g. use different threshold for different sensitive attributes. In this work, we focus on
in-processing algorithms.

Prior in-processing algorithms, including the ones referenced above, assume access to sensitive attributes on
the training data and validation dataset. Recent work sought to train fair models without training data

11



Under review as submission to TMLR

annotations (Liu et al., 2021; Nam et al., 2020; Hashimoto et al., 2018a; Creager et al., 2021; Levy et al.,
2020; Duchi & Namkoong, 2018; Nam et al., 2022; Zhang et al., 2022; LaBonte et al., 2023) but require
sensitive attributes on validation dataset to tune the hyperparameters. With Antigone, we seek to remove
this restriction. Since JTT already compared against Nam et al. (2020) and Levy et al. (2020), a scalable
version of (Duchi & Namkoong, 2018), we compare against JTT, although we believe Antigone can be used
with these methods also.

Recently, Kirichenko et al. (2022) proposed a simple and light-weight framework to improve WGA. They
demonstrated that re-training the last layer of an ERM model with a small, group-balanced dataset is
sufficient for achieving robustness to spurious correlations. But, ground-truth SA’s are required to balance
the groups and tune-hyperparameters. AFR (Qiu et al., 2023) addresses this problem by retraining the
last layer of an ERM model with a weighted loss that emphasizes the examples where the ERM model
under-performs, automatically up-weighting the disadvantaged group without ground-truth SA labels. AFR
showed that it can achieve the same target label accuracy and WGA as DFR, but AFR still requires ground-
truth SA on validation dataset to tune-hyper-parameters. We show that using Antigone’s PSA, we can get
close to the performance of AFR without considering any access to ground-truth SA labels.

GEORGE (Sohoni et al., 2020) and and ARL (Lahoti et al., 2020) are two methods that like Antigone do
not require PSAs on validation data. Qualitative and empirical comparisons in section 4 show that Antigone
outperforms both. ARL is demonstrated to be effective only on smaller datasets and on simple structured
network architectures. Prior works (Sohoni et al., 2020; Wang, 2022) have also noted ARL does not scale
well to complex network architectures (e.g.: ResNet18) and large vision datasets. On the other hand, both
methods can account for multiple subgroups, although as we noted before, Antigone still helps improve
fairness for both. Another line of work makes implicit assumptions on ground-truth sensitive attributes. Zhu
et al. (2023) is based on open-source proxy models. These proxy models are trained on distinct datasets to
predict sensitive attributes. Subsequently, such off-the-shelf proxy models (Alao et al., 2021) are employed to
predict unknown sensitive attributes within the dataset. Zhao et al. (2022) presume that the proxy features
are known a-priori, thereby gaining knowledge of the attributes on which the model discriminates. However,
as noted in section 1, we consider a more realistic setting where no such knowledge is given/known a-priori.
There are also some post-processing methods to improve fairness without access to sensitive attributes but
assuming a small set of labelled data for auditing Kim et al. (2019). One could use Antigone to create this
auditing dataset, albeit with noise. Evaluating Antigone with these post-processing methods is an avenue
for future work.s

Finally, a parallel body of work has looked at fairness with noisy sensitive attributes and incomplete infor-
mation from a theoretical perspective using simplified but representative mathematical models (Lamy et al.,
2019; Wang et al., 2020a; Awasthi et al., 2021; Celis et al., 2021), and sometimes with restrictions on the
classifier types, etc. Yet these methods have largely not been translated to practical implementations on
large datasets and state-of-art deep networks, which is Antigone’s end goal. Antigone is one of the first
methods to bring insights from this line of work to bear on practical implementations. As a side note, we
observe that Lemma 2.2 adds an extra result that might be of interest to this stream of research.

7 Conclusion

We propose Antigone, a method to enable hyper-parameter tuning for fair ML models without access to
sensitive attributes on training or validation sets. Antigone generates high-quality PSA labels by training a
family of ERM models and using correctly (incorrectly) classified examples as proxies for majority (minority)
group membership. We propose a hyperparameter free approach to pick the ERM models that obtains the
most accurate PSA labels, and provide theoretical justification for this choice using the ideal MC noise
model. Antigone produces more accurate sensitive attributes estimates compared to the state-of-art, and
can be used to effectively tune hyperparameters of state-of-art fairness methods. Future work will also seek
to address the variance in fairness metrics (Mozannar et al., 2020) introduced by finite sample size under
the ideal MC noise model, extend Antigone to non-binary sensitive attributes, and use methods such as
Autotune (Koch et al., 2018) to automatically search over larger hyper-parameter spaces to maximize the
EDM metric.
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Appendix

Availability

Code with README.txt file is available at: https://anonymous.4open.science/r/fairness_without_
demographics-3BD0/README.md

A Experimental Setup

A.1 Compute

We trained all the models employing the JTT approach using Quadro RTX8000 (48 GB) NVIDIA GPU
cards, whereas, for both GEORGE and ARL approaches, we used GeForce RTX3090 (24 GB) NVIDIA GPU
cards.

A.2 CelebA Dataset

Dataset details: CelebA (Liu et al., 2015) is an image dataset, consisting of 202,599 celebrity face images
annotated with 40 attributes including gender, hair colour, age, smiling, etc. The task is to predict hair color,
which is either blond Y = 1 or non-blond Y = 0 and the sensitive attribute is gender A = {Men, Women}.
The dataset is split into training, validation and test sets with 162770, 19867 and 19962 images, respectively.
Only 15% of individuals in the dataset are blond, and only 6% of blond individuals are men. Consequently,
the baseline ERM model under-performs on the blond men.

Hyper-parameter settings: In all our experiments using CelebA dataset, we fine-tune a pre-trained
ResNet50 architecture for a total of 50 epochs using SGD optimizer and a batch size of 128. We tune
JTT over the same hyper-parameters as in their paper: three pairs of learning rates and weight decays,
(1e − 04, 1e − 04), (1e − 04, 1e − 02), (1e − 05, 1e − 01) for both stages, and over ten early stopping points
up to T = 50 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore over the same learning rate and
weight decay values, as well as early stopping at any of the 50 training epochs. We report results for DP,
EO and WGA fairness metrics. In each case, we seek to optimize fairness while constraining average target
label accuracy to ranges {[90, 91), [91, 92), [92, 93), [93, 94), [94, 95)}.

A.3 Waterbirds Dataset

Dataset details: Waterbirds is a synthetically generated dataset, containing 11,788 images of water and
land birds overlaid on top of either water or land backgrounds (Sagawa* et al., 2020). The task is to predict
the bird type, which is either a waterbird Y = 1 or a landbird Y = 0 and the sensitive attribute is the
background A = {Water background, Land background}. The dataset is split into training, validation and
test sets with 4795, 1199 and 5794 images, respectively. While the validation and test sets are balanced within
each target class, the training set contains a majority of waterbirds (landbirds) in water (land) backgrounds
and a minority of waterbirds (landbirds) on land (water) backgrounds. Thus, the baseline ERM model
under-performs on the minority group.

Hyper-parameter settings: In all our experiments using Waterbirds dataset, we fine-trained ResNet50
architecture for a total of 300 epoch using the SGD optimizer and a batch size of 64. We tune JTT
over the same hyper-parameters as in their paper: three pairs of learning rates and weight decays,
(1e − 03, 1e − 04), (1e − 04, 1e − 01), (1e − 05, 1.0) for both stages, and over 14 early stopping points up to
T = 300 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore over the same learning rate and weight de-
cay values, as well as early stopping points at any of the 300 training epochs. In each case, we seek to optimize
fairness while constraining average accuracy to ranges {[94, 94.5), [94.5, 95), [95, 95.5), [95.5, 96), [96, 96.5)}.

In case of GEORGE, for both CelebA and Waterbirds datasets, we use the same architecture and early
stopping stage 2 hyper-parameters (T = 50 for CelebA and T = 300 for Waterbirds) reported in their paper.
For Antigone+GEORGE, we replace GEORGE’s stage 1 with the Antigone model, which is identified by
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searching over the same hyper-parameter space as in Antigone+JTT. To establish statistical significance
and determine if Antigone+GEORGE’s performance is significantly greater than GEORGE by itself, we
conducted a paired statistical t-test. The null hypothesis (H0) states that the mean of Antigone+GEORGE
is less than or equal to the mean of GEORGE, while the alternative hypothesis (H1) states that the mean
of Antigone+GEORGE is greater than that of GEORGE.

A.4 UCI Adult Dataset

Dataset details: Adult dataset (Dua & Graff, 2017) is used to predict if an individual’s annual income is
≤ 50K (Y = 0) or > 50K (Y = 1) based on several continuous and categorical attributes like the individual’s
education level, age, gender, occupation, etc. The sensitive attribute is gender A = {Men, Women} Zemel
et al. (2013). The dataset consists of 45,000 instances and is split into training, validation and test sets
with 21112, 9049 and 15060 instances, respectively. The dataset has twice as many men as women, and only
15% of high income individuals are women. Consequently, the baseline ERM model under-performs on the
minority group.

Hyper-parameter settings: In all our experiments using Adult dataset, we train a multi-layer neural
network with one hidden layer consisting of 64 neurons. We train for a total of 100 epochs using the SGD
optimizer and a batch size of 256. We tune Antigone and JTT by performing grid search over learning
rates ∈ {1e − 03, 1e − 04, 1e − 05} and weight decays ∈ {1e − 01, 1e − 03}. For JTT, we explore over
T ∈ {1, 2, 5, 10, 15, 20, 30, 35, 40, 45, 50, 65, 80, 95} and λ ∈ {5, 10, 20}. In each case, we seek to optimize
fairness while constraining average accuracy to ranges {[82, 82.5), [81.5, 82), [81, 81.5), [80.5, 81), [80, 80.5)}.

For ARL, we train for a total of 100 epochs. We choose the best learning rate and batch size by exploring all
possible hyper-parameters for the learner and adversary in the hyper-parameter search space given by batch
size ∈ {32, 64, 128, 256, 512} and learning rate ∈ {0.001, 0.01, 0.1, 1, 2, 5}, as in their paper. The learner is
a fully connected two layer feed-forward network with 64 and 32 hidden units in the hidden layers, with
ReLU activation function. The adversary is a fully connected one layer feed-forward network with 32 hidden
units in the single hidden layer, with ReLU activation function. For Antigone+ARL, we use Antigone’s
pseudo sensitive attribute labels, for hyper-parameter tuning, identified by searching over the same hyper-
parameter space as in Antigone+JTT. We seek to optimize fairness while constraining average accuracy to
ranges {[84.5, 85), [84, 84.5), [83.5, 84), [83, 83.5), [82.5, 83), [82, 82.5)}. A paired statistical t-test is used to
establish statistical significance and determine if the fairness of Antigone+ARL is significantly greater than
that of ARL alone. The null hypothesis (H0) states that the mean fairness of Antigone+ARL is less than or
equal to that of ARL, while the alternative hypothesis (H1) states that the mean fairness of Antigone+ARL
is greater.

B Quality of Antigone’s Sensitive Attribute Labels

Antigone seeks to generate accurate PSA labels on validation data based on the EDM criterion (Lemma 2.2).
In Appendix Figure 3(b), we empirically validate Lemma 2.2 by plotting EDM and noise parameters α1
(contamination in advantaged group), β1 (contamination in disadvantaged group) and 1 − α1 − β1 (propor-
tionality constant between true and estimated fairness) on CelebA dataset. From the figure, we observe that
the EDM metric indeed captures the trend in 1−α1 −β1, enabling early stopping at an epoch that minimizes
contamination. The best early stopping point that maximizes EDM also has a very high 1 − α1 − β1.

Lemma 2.2 shows that the EDM metric is, in theory, proportional to 1−α−β. To further validate this lemma,
we consider a larger hyper-parameter space, including learning rate, weight decay, and early stopping epochs,
resulting in a total of 900 data points from our Waterbirds dataset. We compute the Pearson correlation
coefficient between the EDM metric and 1 − α − β across these 900 different data points. The Pearson
correlation coefficients are 0.90 and 0.95 for the waterbirds and landbirds classes, respectively, indicating
a strong positive correlation between the EDM metric and 1 − α − β. In Appendix Figure 4, we validate
Lemma 2.2 by plotting the EDM metric vs. 1 − α − β for different hyper-parameter settings.

In Appendix Table 6, we compare Antigone’s PSA label’s precision, recall, and F1 scores to GEORGE with
the baseline k = 5 and with k = 2 clusters on CelebA and Waterbirds. We find that Antigone outperforms
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(a) Dataset Details (b) EDM and noise parameters on Celeba

Figure 3: Figure (a) illustrates CelebA and Waterbirds datasets along with fraction of each sub-group
examples in their respective training dataset. Figure (b) shows Euclidean Distance between Means (EDM)
and noise parameters α1, β1 and and 1 − α1 − β1 for the positive target class of CelebA dataset. The noise
parameters are unknown in practice. Blue dot indicates the model that we pick to generate pseudo sensitive
attributes, while black star indicates the model that maximizes 1 − α1 − β1.

(a) Waterbirds Class (b) Landbirds Class

Figure 4: Figure illustrates a strong positive correlation between EDM and 1 − α − β with a Pearson
correlation coefficient of 0.90 and 0.95 for the (a) waterbirds and (b) landbirds classes, respectively, on the
Waterbirds dataset.
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GEORGE. We also study the impact of varying the fraction of disadvantaged group individuals from 5%,
20%, 35%, 50% in the CelebA dataset (see Appendix Table 7). As the dataset gets more balanced, the models
themselves are more fairer, and PSA label accuracy reduces (as expected). Nonetheless, disadvantaged group
individuals are over-represented in incorrect sets for up to 35% imbalance.

Table 6: We tabulate the precision, recall, F1-score of the noisy validation groups generated from ERM
model, GEORGE, GEORGE with number of clusters = 2 and Antigone. We observe that Antigone has
higher precision and F1 scores across different noisy groups on CelebA and Waterbirds, respectively.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (Precision, Recall, F1 Scores)

Blond Men 0.26, 0.31, 0.28 0.09, 0.32, 0.13 0.06, 0.70, 0.12 0.36, 0.34, 0.35
(0.02, 0.03, 0.01) (0.01, 0.09, 0.02) (0.01, 0.05, 0.01) (0.05, 0.04, 0.04)

Blond Women 0.95, 0.94, 0.95 0.94, 0.28, 0.43 0.95, 0.35, 0.51 0.96, 0.96, 0.96
(0.01, 0.01, 0.01) (0.01, 0.04, 0.04) (0.00, 0.02, 0.02) (0.0, 0.0, 0.0)

Non-blond Women 0.82, 0.13, 0.22 0.51, 0.36, 0.42 0.5, 0.76, 0.6 0.86, 0.13, 0.22
(0.01, 0.01, 0.02) (0.00, 0.01, 0.01) (0.00, 0.01, 0.01) (0.01, 0.01, 0.01)

Non-blond Men 0.52, 0.97, 0.67 0.53, 0.33, 0.40 0.47, 0.23, 0.31 0.52, 0.98, 0.68
(0.00, 0.00, 0.01) (0.01, 0.02, 0.02) (0.01, 0.01, 0.01) (0.0, 0.0, 0.0)

CelebA Accuracy 0.59 ± 0.01 0.33 ± 0.01 0.48 ± 0.00 0.60 ± 0.00
Waterbirds (Precision, Recall, F1 Scores)

Waterbirds Landbkgd 0.94, 0.26, 0.41 0.56, 0.34, 0.43 0.48, 0.57, 0.52 0.96, 0.63, 0.76
(0.01, 0.02, 0.02) (0.03, 0.02, 0.02) (0.01, 0.01, 0.01) (0.01, 0.04, 0.03)

Waterbirds Waterbkgd 0.57, 0.98, 0.72 0.55, 0.27, 0.36 0.48, 0.39, 0.43 0.73, 0.97, 0.83
(0.01, 0.00, 0.00) (0.07, 0.03, 0.02) (0.02, 0.02, 0.02) (0.02, 0.01, 0.01)

Landbirds Waterbkgd 0.96, 0.42, 0.58 0.57, 0.36, 0.44 0.55, 0.55, 0.55 0.97, 0.65, 0.78
(0.00, 0.03, 0.02) (0.04, 0.03, 0.03) (0.03, 0.03, 0.03) (0.00, 0.05, 0.04)

Landbirds Landbkgd 0.63, 0.98, 0.76 0.55, 0.24, 0.34 0.55, 0.56, 0.55 0.74, 0.98, 0.84
(0.01, 0.00, 0.01) (0.04, 0.04, 0.02) (0.03, 0.04, 0.03) (0.03, 0.00, 0.02)

Waterbirds Accuracy 0.68 ± 0.01 0.30 ± 0.02 0.53 ± 0.03 0.81 ± 0.02

Table 7: We tabulate the precision, recall, F1-score, pseudo label accuracy of the noisy validation groups
generated by varying the fraction of minority group examples in each class of CelebA dataset. We observe
that Antigone has higher precision, recall, F1 score and pseudo label accuracy if the imbalance is more in
the training dataset.

Fraction Minority 5% 20% 35% 50%
Precision, Recall, F1 Score

Blond Men (Minority) 0.57, 0.40, 0.47 0.81, 0.17, 0.29 0.67, 0.15, 0.24 0.75, 0.14, 0.24
Blond Women (Majority) 0.97, 0.98, 0.98 0.83, 0.99, 0.90 0.68, 0.96, 0.79 0.53, 0.95, 0.68

1 − α1 − β1 0.54 0.64 0.35 0.28
Blond Ps. Acc 0.95 0.83 0.68 0.55

Non-blond Women (Minority) 0.45, 0.26, 0.33 0.59, 0.17, 0.26 0.63, 0.18, 0.28 0.63, 0.16, 0.26
Non-blond Men (Majority) 0.96, 0.98, 0.97 0.82, 0.97, 0.89 0.68, 0.94, 0.79 0.52, 0.91, 0.66

1 − α0 − β0 0.41 0.41 0.31 0.15
Non-blond Ps. Acc. 0.94 0.81 0.67 0.54

Overall Ps. Acc. 0.95 0.81 0.67 0.54

B.1 Antigone’s Performance on Large Pre-trained Models

Antigone’s hyper-parameter search can include model architectures. We perform additional experiments by
fine-tuning a pre-trained state-of-art large transformer model, ViT-B/16 Dosovitskiy et al. (2020), on the
Waterbirds dataset and show that Antigone-ViT-B/16 can generate high quality PSA labels and improve
down-stream fairness. We seek to maximize the EDM metric by exhaustively performing a grid search
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over the hyper-parameter space which includes learning rate ∈ {1e − 03, 1e − 04, 1e − 05}, weight decay
∈ {0, 1e−04, 1e−01, 1.0}, batch size ∈ {64, 512}, and gradient clipping ∈ {False, True with threshold = 1.0}.

In Appendix Table 8, we compare the quality of Antigone-ViT-B/16’s PSA labels’ F1 Score and PSA labels’
accuracy to GEORGE with the baseline k = 5 and with k = 2 clusters. We find that Antigone-ViT-B/16
outperforms GEORGE. The table also reports results on a version of Antigone-ViT-B/16 that uses standard
ERM training instead of EDM (Antigone-ViT-B/16 (w/o EDM)). We find that Antigone-ViT-B/16 (w/
EDM) provides higher pseudo-label accuracy compared to this baseline. To validate Lemma 2.2, we compute
the Pearson correlation coefficient between the EDM metric and 1−α−β over a larger hyper-parameter space
containing 14,400 different data points from our Waterbirds datasets. The Pearson correlation coefficient
is 0.88 and 0.97 for waterbirds and landbirds classes, respectively, indicating a strong positive correlation
between the EDM metric and 1 − α − β.

Table 8: F1 scores and pseudo label accuracies (Ps. Acc.) of Antigone-ViT-B/16 and GEORGE on Wa-
terbirds dataset. We mark the best performance in bold. WL (waterbirds landbkgd), WW (waterbirds
waterbkgd), LW (landbirds waterbkgd) and LL (landbirds landbkgd) for Waterbirds dataset.

Antigone-ViT-B/16 GEORGE GEORGE Antigone-ViT-B/16
(w/o EDM) (k = 2) (w/ EDM)

Waterbirds (F1 Scores)
WL 0.28± 0.01 0.43± 0.02 0.52± 0.01 0.71± 0.07

WW 0.69± 0.01 0.36± 0.02 0.43± 0.02 0.67± 0.04

LW 0.18± 0.05 0.44± 0.03 0.55± 0.03 0.64± 0.02

LL 0.68± 0.01 0.34± 0.02 0.55± 0.03 0.77± 0.00

Ps. Acc. 0.57±0.02 0.30± 0.02 0.53± 0.03 0.72± 0.00

Furthermore, in Appendix Table 9, we compare the test target label accuracies and WGA achieved by
Antigone-ViT-B/16 + AFR vs. Ground-Truth+AFR. The results are consistent with prior observations and
show that Antigone-ViT-B/16 can be successfully used with large pre-trained models.

Table 9: Performance of AFR using Antigone-ViT-B/16’s validation PSA compared with Ground-Truth +
AFR on Waterbirds dataset. Higher WGA is better. We observe that Antigone-ViT-B/16 + AFR is close
to the performance of Ground-Truth + AFR.

Waterbirds
Method Avg Acc WGA
ERM 0.98 ± 0.02 0.64 ± 0.01

Antigone-ViT-B/16 + 0.90 ± 0.05 0.83 ± 0.02AFR
Ground-Truth + AFR 0.93 ± 0.03 0.84 ± 0.02
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C Antigone + JTT

Appendix Table 10 and Appendix Table 11 show the performance of Antigone in conjunction with JTT on
Waterbirds and UCI Adult datasets, respectively. While we observed on the validation set that Ground-
Truth+JTT consistently exhibits higher (or equal) fairness compared to Antigone+JTT, it is important to
note that fairness measurements may differ on test sets due to potential distribution shifts Xu & Goodacre
(2018).

To show that Antigone is effective on multiple binary sensitive attributes, we evaluate the trained
Antigone+JTT models with age as the sensitive attribute on the CelebA dataset. The baseline ERM model
achieves target label accuracy of 95.83% and worst-group accuracy (WGA) of 78.14%. Antigone improves
WGA to 86.23% with a target label accuracy of 95.25%; and improves WGA further to 91.22% with target
label accuracy of 93.53%. Antigone similarly improves demographic parity gap (2.21% to 1.81%) and equal
opportunity gap (4.88% to 2.59%) with target label accuracy >95%.

Table 10: We report the (Test average target label accuracy, Test fairness metric) for different validation
accuracy thresholds on Waterbirds dataset. We observe that Antigone + JTT (our noisy sensitive attributes)
improves fairness over baseline ERM model and closes the gap with Ground-Truth + JTT (ground-truth
sensitive attributes).

Val. Thresh. Method DP Gap EO Gap Worst-group

[96, 96.5) Antigone + JTT (95.8, 3.9) ± (0.4, 0.4) (96.2, 10.7) ± (0.3, 7.1) (96.3, 83.0) ± (0.4, 1.3)
Ground-Truth + JTT (95.8, 3.9) ± (0.4, 0.4) (96.0, 7.1) ± (0.3, 1.4) (96.3, 83.0) ± (0.4, 1.3)

[95.5, 96) Antigone + JTT (95.4, 2.8) ± (0.1, 0.1) (96.0, 7.5) ± (0.2, 1.5) (96.3, 83.2) ± (0.3, 0.6)
Ground-Truth + JTT (95.4, 2.9) ± (0.4, 1.1) (95.6, 6.0) ± (0.3, 2.1) (96.1, 83.5) ± (0.5, 0.8)

[95, 95.5) Antigone + JTT (94.5, 1.5) ± (0.6, 0.6) (94.7, 4.2) ± (0.9, 3.1) (94.7, 85.9) ± (0.9, 1.4)
Ground-Truth + JTT (94.4, 1.7) ± (0.7, 0.7) (94.3, 1.1) ± (0.5, 0.6) (95.1, 86.8) ± (0.6, 1.1)

[94.5, 95) Antigone + JTT (94.2, 0.4) ± (0.4, 0.4) (93.8, 2.0) ± (0.5, 1.4) (94.2, 86.7) ± (0.8, 1.8)
Ground-Truth + JTT (93.6, 0.6) ± (0.5, 0.5) (93.8, 2.0) ± (0.5, 1.4) (94.1, 88.2) ± (0.6, 0.7)

[94.0, 94.5) Antigone + JTT (93.0, 1.5) ± (0.6, 0.3) (93.6, 4.8) ± (1.2, 3.0) (93.7, 87.9) ± (0.5, 1.4)
Ground-Truth + JTT (93.1, 1.5) ± (0.3, 0.4) (93.2, 4.0) ± (1.0, 2.1) (93.8, 88.1) ± (0.7, 1.1)

ERM (97.3, 21.3) ± (0.2, 1.1) (97.3, 35.0) ± (0.2, 3.4) (97.3, 59.1) ± (0.2, 3.8)

Table 11: (Avg. target label accuracy, Fairness) on test data for different validation accuracy thresholds on
the UCI Adult dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

>=82 and <82.5 Antigone + JTT (81.85, 11.76) ± (0.11, 3.53) (81.46, 2.68) ± (0.24, 5.67) (81.65, 54.58) ± (0.20, 0.87)
Ground-Truth + JTT (81.83, 11.92) ± (0.18, 3.62) (81.49, 3.14) ± (0.17, 4.97) (81.65, 54.58) ± (0.16, 0.76)

>=81.5 and <82 Antigone + JTT (81.74, 11.72) ± (0.15, 3.48) (81.65, 6.39) ± (0.18, 1.14) (81.56, 56.32) ± (0.4, 1.22)
Ground-Truth + JTT (81.57, 10.97) ± (0.24, 3.87) (81.75, 6.1) ± (0.37, 1.85) (81.52, 57.24) ± (0.34, 1.32)

>=81 and <81.5 Antigone + JTT (81.01, 9.11) ± (0.19, 3.67) (81.14, 1.43) ± (0.24, 1.25) (81.19, 54.46) ± (0.25, 1.64)
Ground-Truth + JTT (81.05, 8.92) ± (0.25, 3.34) (81.11, 2.63) ± (0.22, 1.50) (81.07, 55.04) ± (0.34, 1.07)

>=80.5 and <81 Antigone + JTT (80.71, 8.36) ± (0.31, 2.54) (80.57, 2.28) ± (0.35, 1.31) (80.63, 56.3) ± (0.29, 1.81)
Ground-Truth + JTT (80.41, 7.04) ± (0.4, 2.97) (80.87, 5.93) ± (0.28, 1.52) (80.53, 56.23) ± (0.23, 0.98)

>=80 and <80.5 Antigone + JTT (80.09, 7.54) ± (0.26, 2.18) (80.19, 2.54) ± (0.32, 1.39) (80.18, 57.67) ± (0.22, 1.73)
Ground-Truth + JTT (80.09, 5.63) ± (0.39, 2.59) (80.23, 6.84) ± (0.15, 1.85) (79.88, 57.50) ± (0.44, 1.75)

ERM (84.82, 53.83) ± (0.09, 0.20) (84.82, 9.70) ± (0.09, 0.75) (84.82, 53.14) ± (0.09, 0.58)

D Comparison with GEORGE

Appendix Figure 5 and Appendix Figure 6 shows the performance of both Antigone+GEORGE and
GEORGE experiments across multiple runs on CelebA and Waterbirds datasets, respectively.
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Table 12: Antigone + JTT vs Ideal MC Model + JTT (Avg. target label accuracy, Fairness) comparison
on test data for different validation accuracy thresholds on the CelebA dataset. Lower DP and EO gaps are
better. Higher WGA is better.

DP Gap EO Gap WGA

[94, 95) Antigone + JTT (94.9, 14.7) (94.6, 33.7) (94.5, 61.7)
Ideal MC + JTT (94.9, 14.7) (94.4, 34.1) (94.4, 58.3)

[93, 94) Antigone + JTT (93.7, 12.2) (93.9, 30.3) (93.3, 60.0)
Ideal MC + JTT (93.7, 12.2) (93.5, 26.3) (93.7, 65.0)

[92, 93) Antigone + JTT (93.1, 12.1) (92.4, 22.9) (92.9, 65.6)
Ideal MC + JTT (93.1, 12.1) (93.0, 22.7) (93.2, 69.4)

[91, 92) Antigone + JTT (91.9, 9.3) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (91.9, 9.3) (92.2, 19.1) (91.8, 73.9)

[90, 91) Antigone + JTT (91.1, 7.9) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (90.9, 8) (90.4, 18.9) (91.4, 72.2)

E Comparison with ARL

Appendix Table 13 shows the performance of Antigone+ARL on UCI Adult dataset.

Table 13: Comparison of (Avg. target label accuracy, Fairness) between ARL using Antigone’s noisy valida-
tion data, ARL alone, and ground-truth validation data on the UCI Adult dataset. Lower DP and EO gaps
indicate better fairness, while higher WGA is better. Antigone + ARL consistently outperforms ARL across
various validation accuracy thresholds and fairness metrics (as shown in bold). The p-values are marked
with ∗ accordingly: ∗ for p < 0.1, ∗∗ for p < 0.05, ∗∗∗ for p < 0.01, and ∗∗∗∗ for p < 0.001.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[84.5, 85)
Antigone + ARL (84.51, 16.84)∗∗

± (0.13, 1.08) (84.1, 5.64)∗∗∗
± (0.08, 1.43) (84.14, 59.68)∗∗∗

± (0.13, 1.27)

ARL (84.53, 19.01) ± (0.13, 0.97) (84.53, 9.35) ± (0.13, 0.88) (84.53, 55.08) ± (0.13, 3.03)

Ground-Truth + ARL (84.5, 15.86) ± (0.24, 1.02) (84.43, 4.97) ± (0.17, 1.23) (84.08, 62.66) ± (0.32, 0.71)

[84, 84.5)
Antigone + ARL (84.12, 15.55)∗∗∗

± (0.21, 1.14) (83.7, 6.65)∗∗
± (0.22, 1.61) (83.47, 60.9)∗∗

± (0.22, 2.1)

ARL (84.02, 18.35) ± (0.17, 1.04) (84.02, 8.04) ± (0.17, 1.21) (84.02, 55.69) ± (0.17, 2.93)

Ground-Truth + ARL (84.23, 15.26) ± (0.12, 0.9) (83.81, 5.57) ± (0.12, 1.58) (83.62, 64.74) ± (0.14, 0.65)

[83.5, 84)
Antigone + ARL (83.29, 15.13)∗∗∗

± (0.21, 1.17) (83.07, 5.36)∗∗
± (0.22, 2.86) (82.93, 62.17)∗∗∗

± (0.13, 1.63)

ARL (83.54, 19.43) ± (0.12, 1.17) (83.54, 10.52) ± (0.12, 2.16) (83.54, 53.72) ± (0.12, 2.66)

Ground-Truth + ARL (83.53, 14.7) ± (0.19, 0.87) (83.17, 4.34) ± (0.17, 0.69) (83.31, 66.61) ± (0.24, 1.6)

[83, 83.5)
Antigone + ARL (82.98, 15.05)∗∗∗

± (0.18, 1.45) (82.69, 5.4)∗
± (0.16, 3.15) (82.55, 65.85)∗∗∗

± (0.31, 0.58)

ARL (83.2, 18.24) ± (0.13, 2.45) (83.2, 8.69) ± (0.13, 3.68) (83.2, 54.21) ± (0.13, 4.99)

Ground-Truth + ARL (82.86, 14.84) ± (0.13, 1.26) (83.04, 6.03) ± (0.13, 1.56) (82.47, 66.75) ± (0.16, 1.56)

[82.5, 83)
Antigone + ARL (82.69, 14.16)∗∗∗∗

± (0.17, 1.42) (82.32, 8.23)∗∗
± (0.14, 2.84) (82.12, 66.93)∗∗∗∗

± (0.16, 1.46)

ARL (82.71, 20.27) ± (0.37, 0.62) (82.71, 10.32) ± (0.37, 2.17) (82.71, 54.4) ± (0.37, 3.28)

Ground-Truth + ARL (82.63, 13.79) ± (0.18, 1.52) (82.21, 4.31) ± (0.28, 3.04) (81.91, 69.08) ± (0.21, 1.52)

[82, 82.5)
Antigone + ARL (82.3, 13.63)∗∗∗∗

± (0.18, 0.69) (81.88, 8.76)∗∗
± (0.16, 1.46) (81.39, 66.61)∗∗∗

± (0.29, 1.97)

ARL (82.16, 21.63) ± (0.33, 1.69) (82.16, 13.55) ± (0.33, 2.98) (82.16, 52.82) ± (0.33, 5.58)

Ground-Truth + ARL (82.34, 13.21) ± (0.25, 1.07) (81.97, 3.39) ± (0.38, 2.71) (81.35, 69.98) ± (0.23, 1.38)

ERM (84.69, 18.27) ± (0.08, 0.5) (84.69, 9.39) ± (0.08, 1.11) (84.69, 53.36) ± (0.08, 1.97)
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Figure 5: Figure illustrates the performance of Antigone+GEORGE and GEORGE in terms of target label
accuracy and WGA across multiple trials for both k = 5 and k = 2 on the CelebA dataset.

Figure 6: Figure illustrates the performance of Antigone+GEORGE and GEORGE in terms of target label
accuracy and WGA across multiple trials for both k = 5 and k = 2 on the Waterbirds dataset.
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