
Under review as submission to TMLR

Learning to Boost Resilience of Complex Networks via Neu-
ral Edge Rewiring

Anonymous authors
Paper under double-blind review

Abstract

The resilience of complex networks refers to their ability to maintain functionality in the
face of structural attacks. This ability can be improved by performing minimal modifica-
tions to the network structure via degree-preserving edge rewiring-based methods. Existing
learning-free edge rewiring methods, although effective, are limited in their ability to gener-
alize to different graphs. Such a limitation cannot be trivially addressed by existing graph
neural networks (GNNs)-based learning approaches since there is no rich initial node fea-
tures for GNNs to learn meaningful representations. In this work, inspired by persistent
homology, we specifically design a variant of GNN called FireGNN, specifically designed
to learn meaningful node representations solely from graph structures. We then develop
an end-to-end inductive method called ResiNet, which aims to discover resilient network
topologies while balancing network utility. ResiNet reformulates the optimization of net-
work resilience as a Markov decision process equipped with edge rewiring action space. It
learns to sequentially select the appropriate edges to rewire for maximizing resilience. Ex-
tensive experiments demonstrate that ResiNet outperforms existing approaches and achieves
near-optimal resilience gains on various graphs while balancing network utility.

1 Introduction

Network systems, such as infrastructure systems and supply chains, are susceptible to malicious attacks,
which necessitates addressing their vulnerability through the concept of network resilience. Network resilience
serves as a metric to assess the ability of a network system to withstand failures and defend itself against
attacks (Schneider et al., 2011). Figure 1 visualizes this scenario that the failures of a dozen of nodes could
jeopardize the connectivity and utility of the EU power network. Maintaining network resilience is crucial in
ensuring that networked systems continue to function and provide an acceptable level of utility, even when
confronted with natural disasters or targeted attacks. Consequently, the study of the resilience of complex
networks has found widespread applications in various fields, including ecology (Sole & Montoya, 2001),
biology (Motter et al., 2008), economics (Haldane & May, 2011), and engineering (Albert et al., 2004).

To enhance network resilience, numerous learning-free optimization methods have been proposed, typically
falling into heuristic-based (Schneider et al., 2011; Chan & Akoglu, 2016; Yazıcıoğlu et al., 2015; Rong &
Liu, 2018) and evolutionary computation (Zhou & Liu, 2014) categories. These methods aim to improve
the resilience of complex networks by making minimal modifications to graph topologies using a degree-
preserving atomic operation known as edge rewiring (Schneider et al., 2011; Chan & Akoglu, 2016; Rong &
Liu, 2018). Specifically, for a given graph G = (V, E) and two existing edges AC and BD, an edge rewiring
operation alters the graph structure by removing AC and BD and adding AB and CD, where AC, BD ∈ E
and AB, CD, AD, BC /∈ E. Edge rewiring possesses several advantageous properties when compared to
simple addition or deletion of edges. Firstly, it preserves node degrees, ensuring capacity constraints are not
violated. Secondly, it minimizes utility degradation in terms of graph Laplacian measurement, which may not
be the case with edge addition or deletion, as they can lead to significant network utility degradation (Jaume
et al., 2020; Ma et al., 2021).

Despite their success, learning-free methods share the following limitations:

1

Under review as submission to TMLR

(a) Original EU network (b) EU network after attacks

0 20 40 60 80 100

Number of removed nodes

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

L
C

C
si

ze

Original

ResiNet

(c) Remaining LCC size under attack

Figure 1: The EU power network under the adaptive degree-based attack which removes the most critical node
recursively with (a) original EU network with 217 nodes, (b) remaining EU network after a series of attacks on
40 nodes, and (c) the change of the normalized size of the largest connected component (LCC). The node size is
proportional to its degree and the node color is given by DBSCAN (Ester et al., 1996).

• Transduction. Existing methods for selecting edges for rewiring are transductive, meaning they
search for robust topologies specific to each individual graph instance. This search procedure is
performed independently for each graph and does not generalize across graphs, even if the graphs
only differ slightly in structure.

• Local optimality. Combinatorially choosing two edges to rewire in order to achieve globally optimal
resilience is an NP-hard problem (Mosk-Aoyama, 2008). Previous studies primarily rely on greedy-
like algorithms, resulting in local optimality in practice (Chan & Akoglu, 2016).

• Utility Loss. The rewiring operation in network resilience optimization may result in significant
degradation of the network utility, potentially compromising the network’s overall functionality.

To the best of our knowledge, there is currently no learning-based inductive method for optimizing network
resilience. One of the key challenges lies in the fact that many network science tasks, including resilience
optimization, often involve pure network topologies without rich node features. Learning paradigms based
on Graph Neural Networks (GNNs) have demonstrated their effectiveness in solving a wide range of graph-
related tasks when rich features are available in an inductive manner (Li et al., 2018; Joshi et al., 2019; Khalil
et al., 2017; Nazari et al., 2018; Peng et al., 2020). However, it remains challenging to adapt these approaches
to tasks that rely solely on topological structures, particularly those that require distinguishable node/edge
representations for sequentially constructing a solution. For instance, Boffa et al. (2022) demonstrated a
significant performance degradation of GNNs when solving the Traveling Salesman Problem (TSP) without
node coordinate features. Similarly, we have empirically observed that the popular combination of GNNs and
reinforcement learning (RL) fails to optimize network resilience. The RL agent gets trapped in an undesired
infinite action backtracking loop without meaningful edge representations, as illustrated in Figure 2. A more
detailed analysis can be found in Appendix D.

Therefore, devising a novel graph neural network (GNN) that can effectively handle network resilience
optimization tasks without relying on rich features is a challenging endeavor. In this study, we address the
aforementioned limitation of GNNs in modeling graphs without rich features and introduce the first inductive
learning-based method for discovering resilient networks through successive edge rewiring operations. To
achieve this, we propose a specialized variant of GNN called Filtration enhanced GNN (FireGNN), which
is solely focused on topology-oriented graph analysis. Our inspiration for FireGNN stems from persistent
homology and persistence diagrams (Edelsbrunner & Harer, 2008; Aktas et al., 2019; Hofer et al., 2020;
Horn et al., 2022). FireGNN generates a filtration, a series of subgraphs obtained by iteratively removing
the node with the highest degree from the original graph. By doing so, FireGNN learns to aggregate node
representations from each subgraph, allowing for the acquisition of meaningful representations through the
proposed filtration process.

2

Under review as submission to TMLR

AC-BD

AB-CD

Gt+2k+1

D

A

B

CD
A

B

C

Gt+2k

Agent

Figure 2: Action backtracking in successive edge rewirings since GNNs cannot provide distinguishable edge repre-
sentations on graphs without rich features. After selecting AC and BD from Gt+2k for rewiring at step t + 2k, the
agent would select AB and CD at step t + 2k + 1, returning back to Gt+2k and forming a cycled action backtracking
between Gt+2k and Gt+2k+1.

The main contributions of this paper can be summarized as follows:

1) We propose ResiNet, the first learning-based method designed to enhance network resilience without
relying on rich node features. ResiNet employs an inductive approach to preserve degrees while min-
imizing utility loss during the resilience optimization process. It formulates resilience optimization
as a sequential decision-making process for neural edge rewirings. Extensive experiments demon-
strate that ResiNet achieves near-optimal resilience while effectively balancing network utilities,
outperforming existing approaches by a significant margin.

2) We propose ResiNet, the first learning-based method designed to enhance network resilience without
relying on rich node features. ResiNet employs an inductive approach to preserve degrees while min-
imizing utility loss during the resilience optimization process. It formulates resilience optimization
as a sequential decision-making process for neural edge rewirings. Extensive experiments demon-
strate that ResiNet achieves near-optimal resilience while effectively balancing network utilities,
outperforming existing approaches by a significant margin.

2 Related Work

GNNs for graph-related tasks with rich features. GNNs are powerful tools to learn from relational
data with rich features, providing meaningful representations for downstream tasks. Several successful
applications using GNNs as backbones include node classification (Kipf & Welling, 2017; Hamilton et al.,
2017), link prediction (Li et al., 2020a; Kipf & Welling, 2017), graph property estimation (Xu et al., 2019; Kipf
& Welling, 2017; Li et al., 2020a; Bodnar et al., 2021), and combinatorial problems on graphs (e.g., TSP (Li
et al., 2018; Joshi et al., 2019; Khalil et al., 2017; Hudson et al., 2022), vehicle routing problem (Nazari
et al., 2018; Peng et al., 2020), graph matching (Yu et al., 2021) and adversarial attack on GNNs (Ma et al.,
2021; Dai et al., 2018)). However, till now, it remains unclear how to adapt GNNs to graph tasks without
rich feature (Zhu et al., 2021) like the resilience optimization task that we focus on. Current topology-based
GNNs like TOGL (Horn et al., 2022) still rely on distinct node features for calculating the filtration, while
our proposed FireGNN addresses this by creating a temporal-related filtration and learning to aggregate
them.

Graph rewiring Graph rewiring is typically used in the GNN community to build novel classes of GNNs
by preprocessing a given graph to overcome the problems of the over-squashing issue of training GNNs. For
example, Klicpera et al. (2019) developed graph diffusion convolution (GDC) to improve GNN’s performance
on downstream tasks by replacing message passing with graph diffusion convolution (Topping et al., 2022)
proposed an edge-based combinatorial curvature to help alleviate the over-squashing phenomenon in GNNs.
To our knowledge, there is currently no inductive learning-based graph rewiring method, and graph rewiring
methods rely on rich features to train GNNs better on downstream tasks. The edge rewiring operation used
in our paper is a special graph rewiring operator that preserves node degree.

3

Under review as submission to TMLR

Network resilience. Modern network systems are threatened by various malicious attacks, such as the de-
struction of critical nodes, critical connections and critical subset of the network via heuristics/learning-based
attack (Fan et al., 2020; Iyer et al., 2013; Grassia et al., 2021; Fan et al., 2020). Network resilience was pro-
posed and proved as a suitable measurement for describing the robustness and stability of a network system
under such attacks (Schneider et al., 2011). Around optimizing network resilience, various defense strategies
have been proposed to protect the network functionality from crashing and preserve network’s topologies
to some extent. Commonly used manipulations of defense include adding additional edges (Li et al., 2019;
Carchiolo et al., 2019), protecting vulnerable edges (Wang et al., 2014) and rewiring two edges (Schneider
et al., 2011; Chan & Akoglu, 2016; Buesser et al., 2011). Among these manipulations, edge rewiring fits
well to real-world applications as it induces fewer functionality changes to the original network and does
not impose additional loads to the vertices (degree-preserving) (Schneider et al., 2011; Rong & Liu, 2018;
Yazıcıoğlu et al., 2015). By now, there has been no learning-based inductive edge rewiring strategy for the
resilience task.

Extended related work. The related work on network utility, graph structure learning, multi-views graph
augmentation for GNNs and deep graph generation is deferred to Appendix A.

3 Problem Definition

An undirected graph is defined as G = (V, E), where V = {1, 2, . . . , N} is the set of N nodes, E is the
set of M edges, A ∈ {0, 1}N×N is the adjacency matrix, and F ∈ RN×d is the d-dimensional node feature
matrix1. The degree of a node is defined as di =

∑N
j=1 Aij , and a node with degree 0 is called an isolated

node. Let GG denote the set of graphs with the same node degrees as G.

Following the conventional setting in network science, resilience metrics used in our experiments include graph
connectivity-based (Schneider et al., 2011) and spectrum-based measurements (adjacency matrix spectrum
and Laplacian matrix spectrum). Utility metrics consist of global efficiency and local efficiency (Latora &
Marchiori, 2001).

Resilience metrics Three kinds of resilience metrics are considered:

• The graph connectivity-based resilience measurement is defined as (Schneider et al., 2011)

R(G) = 1
N

N∑
q=1

s(q) ,

where s(q) is the fraction of nodes in the largest connected remaining graph after removing q nodes
from G according to certain attack strategy. The range of possible values of R is [1/N, 1/2], where
these two extreme values correspond to a star network and a fully connected network, respectively.

• The spectral radius (SR) denotes the largest eigenvalue of an adjacency matrix.

• The algebraic connectivity (AC) is the second smallest eigenvalue of the Laplacian matrix of G.

Utility metrics The global and local communication efficiency are used as two measurements of the
network utility, which are widely applied across diverse applications of network science, such as transportation
and communication networks (Latora & Marchiori, 2003).

The average efficiency of a network G is defined inversely proportional to the average over pairwise distances
(Latora & Marchiori, 2001) as

E(G) = 1
N(N − 1)

∑
i ̸=j∈V

1
d(i, j) ,

where d(i, j) is the length of the shortest path between a node i and another node j.
1For a graph with pure topology structure, node feature matrix is not available.

4

Under review as submission to TMLR

FireGNN

State Gt

State Gt+1

and reward Rt

Env step:
Rewire AC and BD to

AB and CD

ResiNet

Node embedding First edge embedding EAC = argmax f1(St ,a)

ResiNet

EBD = argmax f2(St ,a) Second edge embedding

FireGNN

Figure 3: Overview of the architecture of ResiNet to select two edges for edge rewiring.

Based on the average efficiency, the global efficiency and local efficiency are defined as

• The global efficiency of a network G is defined as (Latora & Marchiori, 2001)

Eglobal(G) = E(G)
E(Gideal) ,

where Gideal is the “ideal” fully-connected graph on N nodes and the range of Eglobal(G) is [0, 1].

• The local efficiency of a network G measures a local average of pairwise communication efficiencies
and is defined as (Latora & Marchiori, 2001)

Elocal(G) = 1
N

∑
i∈V

E(Gi) ,

where Gi is the local subgraph including only of a node i’s one-hop neighbors, but not the node i
itself. The range of Elocal(G) is [0, 1].

Given the network resilience metric R(G) (Schneider et al., 2011) and the utility metric U(G) (Latora &
Marchiori, 2003), the objective of boosting the resilience of G is to find a target graph G⋆ ∈ GG, which
maximizes the network resilience while balancing the network utility. Formally, the problem of maximizing
the resilience of complex networks is formulated as

G⋆ = arg max
G′ ∈GG

α · R(G
′
) + (1 − α) · U(G

′
) .

To satisfy the constraint of preserving degree, edge rewiring is the default atomic operation for obtaining
new graphs G

′ from G. Combinatorially, a total of T successive steps of edge rewiring has the complexity
of O(E2T).

4 Proposed Approach: ResiNet

In this section, we formulate the task of boosting network resilience as a reinforcement learning task by
learning to select two edges and rewire them successively. We first present the graph resilience-aware envi-
ronment design and describe our innovation FireGNN in detail. Finally, we present the graph policy network
that guides the edge selection and rewiring process.

5

Under review as submission to TMLR

B

A

C

D

(a) Example graph

A

C

(b) First edge selection

A

C B

D

(c) Second edge selection

B

A
C

D

(d) Graph after the edge
rewiring

Figure 4: The edge rewiring operation with the removal of AC, BD and the addition of AB, CD.

4.1 Boosting Network Resilience via Edge Rewiring as Markov Decision Process

To satisfy the constraint of preserving the node degree, the resilience optimization of a given graph is based
on edge rewiring. We formulate the network resilience optimization problem via successive edge rewiring
operations into the Markov decision process (MDP) framework. The Markov property denotes that the
graph obtained at time step t+1 relies only on the graph at time step t and the rewiring operation, reducing
the complexity from original O(E2T) to O(TE2). Then we further reduce the complexity to O(TE) by
designing an autoregressive edge selection module shown as follows.

As shown in Figure 3, the environment performs the resilience optimization in an auto-regressive step-wise
way through a sequence of edge rewiring actions. Given an input graph, the agent first decides whether to
terminate or not. If not, it selects one edge from the graph to remove, receives the very edge it just selected
as the auto-regression signal, and then selects another edge to remove. Four nodes of these two removed
edges are re-combined, forming two new edges to be added to the graph. The optimization process repeats
until the agent decides to terminate. The detailed design of the state, the action, the transition dynamics,
and the reward are presented as follows.

State. The fully observable state is formulated as St = Gt, where Gt is the current input graph at step t.
The widely-used node degree feature cannot significantly benefit the network resilience optimization of a
single graph due to the degree-preserving rewiring. Therefore, we construct node features for each input
graph to aid the transductive learning and inductive learning, including

• The distance encoding strategy (Li et al., 2020b). Node degree feature is a part of it.

• The 8-dimensional position embedding originating from the Transformer (Vaswani et al., 2017) as
the measurement of the vulnerability of each node under attack. If the attack order is available, we
can directly encode it into the position embedding. If the attack order is unknown, node degree, node
betweenness, and other node priority metrics can be used for approximating the node importance
in practice. In our experiments, we used the adaptive node degree for the position embedding.

Action. ResiNet is equipped with a node permutation-invariant, variable-dimensional action space. Given
a graph Gt, the action at is to select two edges and the rewiring order. As is shown in Figure 4, the agent
first chooses an edge e1 = AC and a direction A → C. Then conditioning on the state, e1, and the direction
the agents chooses an edge e2 = BD such that AB, CD, AD, BC /∈ E and a direction B → D. The heads of
the two edges reconnect as a new edge AB, and so does the tail CD. Although Gt is undirected, we propose
to consider the artificial edge directions, which effectively avoids the redundancy in representing action space
since A → C, B → D and C → A, D → B refer to the same rewiring operation. The choice of the direction
of e1 is randomized (this randomized bit is still an input of choosing e2). Therefore, our proposed action
space effectively reduces the size of the original action space by half and still leads to a complete action
space. In this way, the action space is the set of all feasible pairs of (e1, e2) ∈ E2, with a variable size no
larger than 2|E|(|E| − 1).

Transition dynamics. The formulation of the action space implies that if the agent does not terminate
at step t, the selected action must form an edge rewiring. This edge rewiring is executed by the environment,
and the graph transits to the new graph.

6

Under review as submission to TMLR

5
9

12

7

11

10

13

14

9

12

7

11

13

14

2

4

5

9

12

7

11

10

13

14

9

12

13

14

1

2

3

4

5

9

12

7

11

10

13

14

12

13

1

2

3

4

5

6

8

9

12

7

11

10

13

14

0

1

2

3

4

5

6

8

9

12

7

11

10

13

14

Figure 5: Filtration Process in FireGNN on BA-15. The original graph is decomposed into temporal-related sub-
graphs.

Note that in some other work, infeasible operations are also included in the action space (to make the
action space constant through the process) (You et al., 2018; Trivedi et al., 2020). This reduces the sample
efficiency and causes biased gradient estimations (Huang & Ontañón, 2020). ResiNet takes advantage of the
state-dependent variable action space composed of only feasible operations.

Reward. ResiNet aims to optimize resilience while balancing the utility, forming a complicated and pos-
sibly unknown objective function. Despite this, by Wakuta (1995), an MDP that maximizes a complicated
objective is up to an MDP that maximizes the linear combination of resilience and utility for some coefficient
factor. This fact motivates us to design the reward as the step-wise gain of such a linear combination as

Rt = α · (R(Gt+1) − R(Gt)) + (1 − α) · (U(Gt+1) − U(Gt)) ,

where R(G) and U(G) are the resilience and the utility functions, respectively. The cumulative reward∑T −1
t=0 Rt up to time T is then the total gain of such a linear combination.

4.2 FireGNN

Motivated by graph filtration in persistent homology (Edelsbrunner & Harer, 2008), we design the filtrated
graph enhanced GNN termed FireGNN to model graphs without rich features, or even with only topology.
For a given input graph G, FireGNN transforms G from the static version to a temporal version consisting
of a sequence of subgraphs, by repeatedly removing the node with the highest degree. Observing a sequence
of nested subgraphs of G grants FirGNN the capability to observe how G evolves towards being empty.
Then FireGNN aligns and aggregates the node, edge, and graph embedding from each subgraph, leading to
meaningful representations in node, edge, and graph levels. Formally, the filtration in FireGNN is constructed
as

G(k−1) = G(k) − vk, vk = argmax
vi∈G(k)

DEGREE(vi)

(V, ∅) = G(0) ⊂ G(1) ⊂ · · · ⊂ G(N) = G

G̃ = [G(0), G(1), . . . , G(N)] ,

where G(k) denotes the remaining graph after removing N − k nodes with highest node degrees, vk denotes
the node with highest degree in current subgraph G(k), DEGREE(·) measures the node degree, G(N) is the
original graph, and G(0) contains no edge. The sequence of the nested subgraphs of G is termed the filtrated
graph G̃. We illustrate the filtration process on a toy dataset in Figure 5.

7

Under review as submission to TMLR

Node embedding. Regular GNN only operates on the original graph G to obtain the node embedding
for each node vi as h(vi) = ϕ(G(N) = G)i , where ϕ(·) denotes a standard GNN model. In FireGNN, by
using the top K + 1 subgraphs in a graph filtration, the final node embedding h(vi) of vi is obtained by

h(vi) = AGGN

(
h(N−K)(vi), . . . , h(N−1)(vi), h(N)(vi)

)
,

where AGGN (·) denotes a node-level aggregation function, h(k)(vi) is the node embedding of i in the k-th
subgraph G(k) obtained by passing G to a backbone GNN, and K ∈ [N]. In practice, h(k)(vi) is discarded
when calculating h(vi) if vi is isolated or not included in G(k).

Edge embedding. The directed edge embedding h(k)(eij) of the edge from node i to node j in each
subgraph is obtained by combining the embeddings of the two end vertices in G(k) as

h(k)(eij) = mf

(
AGGN→E

(
h(k)(vi), h(k)(vj)

))
,

where AGGN→E(·) denotes an aggregation function for obtaining edge embedding from two end vertices
(typically chosen from min, max, sum, difference, and multiplication). mf (·) is a multilayer perceptron
(MLP) model that ensures the consistence between the dimensions of edge embedding and graph embedding.

The final embedding of the directed edge eij of the filtrated graph G̃ is given by

h(eij) = AGGE

(
h(N−K)(eij), . . . , h(N−1)(eij), h(N)(eij)

)
,

where AGGE(·) denotes an edge-level aggregation function.

Graph embedding. With the node embedding h(k)(vi) of each subgraph G(k) available, the graph embed-
ding h(k)(G) of each subgraph G(k) is calculated by a readout functions (e.g., mean, sum) on all non-isolated
nodes in G(k) as

h(k)(G) = READOUT
(

h(k)(vi)
)

∀vi ∈ G(k) and d
(k)
i ≥ 0 .

The final graph embedding of the filtrated graph G̃ is given by

h(G) = AGGG

(
h(N−K)(G), . . . , h(N−1)(G), h(N)(G)

)
,

where AGGG(·) denotes a graph-level aggregation function.

4.3 Edge Rewiring Policy Network

Having presented the details of the graph resilience environment and FireGNN, in this section, we describe
the policy network architecture of ResiNet in detail, which learns to select two existing edges for rewiring at
each step. At time step t, the policy network uses FireGNN as the graph extractor to obtain the directed
edge embedding h(eij) ∈ R2|E|×d and the graph embedding h(G) ∈ Rd from the filtrated graph G̃t, and
outputs an action at representing two selected rewired edges, leading to the new state Gt+1 with reward Rt.

To be inductive, we adapt a special autoregressive node permutation-invariant dimension-variable action
space to model the selection of two edges from graphs with arbitrary sizes and permutations. The detailed
mechanism of obtaining the action at based on edge embedding and graph embedding is presented as follows,
further reducing the complexity from O(TE2) to O(TE).

Auto-regressive latent edge selection. An edge rewiring action at at time step t involves the prediction
of the termination probability a

(0)
t and the selection of two edges (a(1)

t and a
(2)
t) and the rewiring order. The

action space of a
(0)
t is binary, however, the selection of two edges imposes a huge action space in O(|E|2),

which is too expensive to sample from even for a small graph. Instead of selecting two edges simultaneously,
we decompose the joint action at into at = (a(0)

t , a
(1)
t , a

(2)
t), where a

(1)
t and a

(2)
t are two existing edges which

do not share any common node (recall that a
(1)
t and a

(2)
t are directed edges for an undirected graph). Thus

the probability of at is

P(at|st) = P(a(0)
t |st)P(a(1)

t |st, a
(0)
t)P(a(2)

t |st, a
(0)
t , a

(1)
t) .

8

Under review as submission to TMLR

Predicting the termination probability. The first policy network π0(·) takes the graph embedding
as input and outputs the probability distribution of the first action that decides to terminate or not as
P(a(0)

t |st) = π0(h(G)) , where π0(·) is implemented by a two-layer MLP. Then the probability of the first
subaction is given as

a
(0)
t ∼ Bernoulli(P(a(0)

t |st)) ∈ {0, 1} .

Selecting edges. If the signal a
(0)
t given by the agent decides to continue to rewire, two edges are then

selected in an auto-regressive way. The signal of continuing to rewire a
(0)
t is input to the selection of

two edges as a one-hot encoding vector lc. The second policy network π1(·) takes the graph embedding
and lc as input and outputs a latent vector l1 ∈ Rd. The pointer network (Vinyals et al., 2015) is used to
measure the proximity between l1 and each edge embedding h(eij) in G to obtain the first edge selection
probability distribution. Then, to select the second edge, the graph embedding h(G) and the first selected
edge embedding h(e(1)

t) and lc are concatenated and fed into the third policy network π2(·). π2(·) obtains
the latent vector l2 for selecting the second edge using a respective pointer network. The overall process can
be formulated as

l1 = π1([h(G), lc])

P(a(1)
t |st, a

(0)
t) = f1(l1, h(eij))

l2 = π2([h(G), h(e(1)
t), lc])

P(a(2)
t |st, a

(1)
t , a

(0)
t) = f2(l2, h(eij)),

where eij ∈ E and πi(·) is a two-layer MLP model, [·, ·] denotes the concatenation operator, h(e(1)
t) is the

embedding of the first selected edge at step t, and fi(·) is a pointer network.

5 Experiments

In this section, we demonstrate the advantages of ResiNet over existing non-learning-based and learning-
based methods in achieving superior network resilience, inductively generalizing to unseen graphs, and ac-
commodating multiple resilience and utility metrics. Moreover, we show that FireGNN can learn meaningful
representations from graph data without rich features, while current GNNs fail. Our implementation is
available at https: // anonymous. 4open. science/ r/ ResiNet-F241 .

5.1 Experimental Settings

Datasets. Synthetic and real datasets including EU power network (Zhou & Bialek, 2005) and Internet
peer-to-peer networks (Leskovec et al., 2007; Ripeanu et al., 2002) are used to demonstrate the performance
of ResiNet in transductive and inductive settings. The details of data generation and the statistics of the
datasets are presented in Appendix B.1. Following the conventional experimental settings in network science,
the maximal node size is set to be around 1000 (Schneider et al., 2011), taking into account: 1) the high
complexity of selecting two edges at each step is O(E2); 2) evaluating the resilience metric is time-consuming
for large graphs.

Baselines. We compare ResiNet with existing graph resilience optimization algorithms, including learning-
free and learning-based algorithms. Learning-free methods (upper half of Table 1) include the hill climbing
(HC) (Schneider et al., 2011), the greedy algorithm (Chan & Akoglu, 2016), the simulated annealing (SA)
(Buesser et al., 2011), and the evolutionary algorithm (EA) (Zhou & Liu, 2014). Since to our knowledge
there is no previous learning-based baseline, we specifically devise five counterparts based on our method by
replacing FireGNN with existing well-known powerful GNNs (DE-GNN (Li et al., 2020b), k-GNN (Morris
et al., 2019), DIGL (Klicpera et al., 2019) and SDRF (Topping et al., 2022)) (lower half of Table 1). The
classical GIN model is used as the backbone (Xu et al., 2019).

The ResiNet’s training setup is detailed as follows. Our proposed FireGNN is used as the graph encoder
in ResiNet, including a 5-layer defined GIN (Xu et al., 2019) as the backbone. The hidden dimensions for

9

https://anonymous.4open.science/r/ResiNet-F241

Under review as submission to TMLR

Table 1: Resilience optimization algorithm under the fixed maximal rewiring number budget of 20. Entries are in
the format of X(Y), where 1) X: weighted sum of the graph connectivity-based resilience and the network efficiency
improvement (in percentage); 2) Y : required rewiring number. ✗ means that the algorithm cannot find a solution in
a reasonable time.

Method α BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09

HC 0 26.8 (10) 30.0 (20) 24.1 (20) 6.4 (20) 66.6 (20) 19.8 (20) 6.2 (20) 8.4 (20)
0.5 18.6 (11.3) 22.1 (20) 14.9 (20) 5.9 (20) 16.4 (20) 16.3 (20) 5.2 (20) 7.0 (20)

SA 0 21.6 (17.3) 11.9 (20) 12.5 (20) 3.8 (20) 42.9 (20) 14.9 (20) 3.9 (20) 3.7 (20)
0.5 16.8 (19.0) 11.4 (20) 13.4 (20) 4.0 (20) 15.4 (20) 14.0 (20) 6.3 (20) 4.8 (20)

Greedy 0 23.5 (6) 48.6 (13) 64.3 (20) ✗ ✗ 0.5 (3) ✗ ✗
0.5 5.3 (15) 34.7 (13) 42.7 (20) ✗ ✗ 0.3 (3) ✗ ✗

EA 0 8.5 (20) 6.4 (20) 4.0 (20) 8.5 (20) 174.1 (20) 8.2 (20) 2.7 (20) 0 (20)
0.5 6.4 (20) 4.7 (20) 2.8 (20) 5.6 (20) 18.7 (20) 9.3 (20) 3.7 (20) 0.1 (20)

DE-
GNN-RL

0 13.7 (2) 0 (1) 0 (1) 1.6 (20) 41.7 (20) 9.0 (20) 2.2 (20) 0 (1)
0.5 10.9 (2) 0 (1) 0 (1) 2.7 (20) 20.1 (14) 2.1 (20) 0 (1) 1.0 (20)

k-GNN-
RL

0 13.7 (2) 0 (1) 0 (1) 0 (1) 8.8 (20) 4.5 (20) -0.2 (20) 0 (1)
0.5 6.3 (2) 0 (1) 0 (1) 0 (20) -24.9 (20) 4.8 (20) -0.1 (20) 0 (1)

DIGL-
RL

0 9.8 (2) 0 (1) 0 (1) ✗ ✗ 5.9 (20) ✗ ✗
0.5 6.3 (2) 0 (1) 0 (1) ✗ ✗ 7.2 (20) ✗ ✗

SDRF-
RL

0 9.8 (2) 0 (1) 0 (1) ✗ ✗ 4.7 (20) ✗ ✗
0.5 8.0 (2) 0 (1) -4.7 (20) ✗ ✗ 5.3 (20) ✗ 55

ResiNet
(ours)

0 35.3 (6) 61.5 (20) 70.0 (20) 10.2 (20) 172.8 (20) 54.2 (20) 14.0 (20) 18.6 (20)
0.5 26.9 (20) 53.9 (20) 53.1 (20) 15.7 (20) 43.7 (20) 51.8 (20) 12.4 (20) 15.1 (20)

node embedding and graph embedding in each hidden layer are set to 64 and the SeLU activation function
is used after each message passing propagate. Graph normalization strategy is adopted to stabilize the
training of GNN (Cai et al., 2021). The jumping knowledge network (Xu et al., 2018) is used to aggregate
node features from different layers of the GNN. The overall policy is trained by using the highly tuned
implementation of proximal policy optimization (PPO) algorithm (Schulman et al., 2017). Several critical
strategies for stabilizing and accelerating the training of ResiNet are used, including advantage normalization
(Andrychowicz et al., 2021), the dual-clip PPO (the dual clip parameter is set to 10) (Ye et al., 2020), and
the usage of different optimizers for policy network and value network. Additionally, since the step-wise
reward range is small (around 0.01), we scale the reward by a factor of 10 to aim the training of ResiNet.
The policy head model and value function model use two separated FireGNN encoder networks with the
same architecture. We run all experiments for ResiNet on the platform with two GEFORCE RTX 3090
GPU and one AMD 3990X CPU.

5.2 Comparisons to the Baselines

In this section, we compare ResiNet to baselines in optimizing the combination of resilience and utility with
weight coefficient α ∈ {0, 0.5}. Following conventional setting, the graph connectivity-based metric is used
as resilience metric (Schneider et al., 2011) and the global efficiency is used as utility metric (Latora &
Marchiori, 2003).

Table 1 records the metric gain and the required number of rewiring operations of different methods under
the same rewiring budget. ResiNet outperforms all baselines consistently on all datasets. Note that this
performance may be achieved by ResiNet under a much fewer number of rewiring operations, such as on
BA-15 with α = 0. In contrast, despite approximately searching for all possible new edges, the greedy
algorithm is trapped in a local optimum (as it maximizes the one-step resilience gain) and is too expensive
to optimize the resilience of a network with more than 300 nodes. For SA, the initial temperature and
the temperature decay rate need to be carefully tuned for each network. EA performs suboptimally with a
limited rewiring budget due to the numerous rewiring operations required in the internal process (e.g., the
crossover operator). Learning-based methods using existing GNNs coupled with distance encoding cannot
learn effectively compared to our proposed ResiNet, supporting our claim about the effectiveness of FireGNN
on graphs without rich features.

10

Under review as submission to TMLR

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Graph size N

0.0

0.1

0.2

0.3

0.4

0.5

R
es

ilie
nc

e
ga

in

(a) Induction on resilience

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Graph size N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

U
til

ity
 g

ai
n

(b) Induction on utility

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Graph size N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

gh
te

d
su

m
 o

f r
es

ilie
nc

e
an

d
ut

ilit
y

ga
in

(c) Induction on both metrics

Figure 6: The inductive ability of ResiNet on the test dataset (BA-10-30) when optimizing (a) network resilience,
(b) network utility, and (c) their combination.

Table 2: The effect of the coefficient α on ResiNet. The result is shown as percentages.

Dataset Gain 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BA-15
Resilience 35.3 35.3 35.3 33.3 17.6 17.6 27.5 17.6 17.6 17.6 -2.0
Utility -5.9 -3.9 -3.8 -2.7 1.1 1.1 0 1.1 1.1 1.1 5.4
Reward 35.3 34.2 32.9 29.7 15.2 14.2 19.7 11.4 9.2 6.0 5.4

BA-50
Resilience 56.7 51.1 42.3 48.6 53.9 59.2 51.4 50.6 48.1 39.3 -19.1
Utility -3.6 3.4 -2.1 -4.0 -4.2 -4.2 -2.6 -2.2 -2.1 0.5 5.5
Reward 56.7 49.5 39.9 43.1 44.9 45.6 35.7 30.1 22.0 11.8 5.5

BA-100
Resilience 75.4 74.6 74.8 76.1 72.8 72.8 75.1 75.4 74.9 71.6 -11.8
Utility -4.0 -4.6 -3.9 -5.1 -4.2 -4.2 -3.8 -3.7 -3.5 -2.5 4.8
Reward 75.4 71.9 69.0 66.4 59.4 54.3 49.7 41.8 31.1 16.7 4.8

5.3 Ablation Study of ResiNet

In this section, we investigate the impact of coefficient α of the objective on ResiNet and the effect of the
filtration order K on FireGNN.

To investigate the impact of the α in the reward function on ResiNet, we run a grid search by varying α
from 0 to 1 and summarize the resilience gain, utility gain, and the sum of them in Table 2. Table 2 shows
that when we only optimize the resilience with α = 0, the utility will degrade. Similarly, the resilience would
also decrease if we only optimize the utility with α = 1. This suggests a general tradeoff between resilience
and utility and is consistent with their definitions. However, despite this tradeoff, we can achieve resilience
gain and utility gain simultaneously on BA-15 and BA-50 since the original graph usually does not have the
maximum resilience or utility. This incentivizes almost every network conducts such optimization to some
extent when feasible.

In FireGNN, the filtration order K of FireGNN determines the total number of subgraphs involved in
calculating the final node embedding, edge embedding, and graph embedding. FireGNN degenerates to
existing GNNs when the filtration order K is 0. Table 1 validates the effectiveness and necessity of FireGNN.
Without FireGNN (other GNNs as the backbone), it is generally challenging for ResiNet to find a positive
gain on graphs without rich features since ResiNet cannot learn to select the correct edges with the incorrect
edge embeddings. The maximum K of each dataset is recorded in Appendix Table 6, which shows that the
maximum K equals the around half size of the graph since we gradually remove the node with the largest
degree, leading to a fast graph filtration process. For our experiments, we use the maximum of K for graphs
of sizes less than 50 and set K = 3 (1) for graphs of sizes larger than 50 (200). To validate that ResiNet is
not sensitive to K, we run a grid search on several datasets to optimize the resilience by setting K = 0, 1, 2, 3.
As shown in Appendix Table 4, the resilience is improved significantly with K > 0 and ResiNet performs
well with K = 1 or K = 2.

11

Under review as submission to TMLR

6 Generalization

0.57 0.58 0.59 0.60 0.61 0.62
Utility (global efficiency)

0.22

0.24

0.26

0.28

0.30

R
es

ilie
nc

e

alpha
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7: Pareto points obtained by ResiNet of bal-
ancing various combinations of the graph connectivity-
based resilience and the global efficiency-based utility
on the BA-15 dataset.

To demonstrate the induction of ResiNet, we first train
ResiNet on two different datasets (BA-10-30 and BA-20-
200), and then evaluate its performance on an individual
test dataset. The test dataset is not observed during
the training process and fine-tuning is not allowed. We
report the averaged resilience gain for the graphs of the
same size for each dataset.

The performance of ResiNet on BA-10-30 is shown in
Figure 6 and the results of other datasets are deferred
to Figure 9 in Appendix C. Figure 6 shows a nearly lin-
ear improvement of resilience with the increase of graph
size, which is also consistent with the results in the trans-
ductive setting that larger graphs usually have a larger
room to improve their resilience. Moreover, we conduct
experiments to demonstrate ResiNet’s generalization on
optimizing different utility and resilience metrics, and
the details are deferred to Appendix C.

To explore the complicated objective of resilience and utility, BA-15 is taken as an example to be optimized
by ResiNet to obtain the approximate Pareto frontier. The Pareto points are shown in Figure 7 to denote
the optimum under different objectives. Surprisingly, the initial gain of resilience (from around 0.21 to
around 0.24) is obtained without loss of the utility, which incentivizes almost every network to conduct such
optimization to some extent when feasible.

7 Conclusion

We have proposed a learning-based inductive method, ResiNet, for the discovery of resilient network topolo-
gies with minimal changes to the graph structure. ResiNet is the first inductive method that formulates
the task of boosting network resilience as an MDP of successive edge rewiring operations. Our technical
innovation, FireGNN, is motivated by persistent homology as the graph feature extractor for handling graphs
with only topologies available. FireGNN alleviates the insufficiency of current GNNs (including GNNs more
powerful than 1-WL test) on modeling graphs without rich features. By decomposing graphs into temporal
subgraphs and learning to combine the individual representations from each subgraph, FireGNN can learn
meaningful representations on the resilience task to provide sufficient gradients for training an RL agent to
select correct edges while current GNNs fail due to the infinite action backtracking. Our method is prac-
tically feasible as it balances the utility of the networks when boosting resilience. FireGNN is potentially
general enough to be applied to solve various graph problems without rich features.

References
Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. Persistence homology of networks: methods and

applications. Applied Network Science, 4(1):1–28, 2019.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47, 2002.

Réka Albert, István Albert, and Gary L Nakarado. Structural vulnerability of the north american power
grid. Physical review E, 69(2):025103, 2004.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What matters for on-policy deep actor-critic methods? A large-scale study. In ICLR, 2021.

12

Under review as submission to TMLR

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial opti-
mization with reinforcement learning. In ICLR, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network based
generative models for non-iterative diverse candidate generation. NeurIPS, 34, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael
Bronstein. Weisfeiler and lehman go cellular: CW networks. In NeurIPS, 2021.

Matteo Boffa, Zied Ben-Houidi, Jonatan Krolikowski, and Dario Rossi. Neural combinatorial optimization
beyond the TSP: existing architectures under-represent graph structure. In AAAI, 2022.

Béla Bollobás and Oliver Riordan. Robustness and vulnerability of scale-free random graphs. Internet
Mathematics, 1(1):1–35, 2004.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What’s
wrong with deep learning in tree search for combinatorial optimization. In ICLR, 2022.

Pierre Buesser, Fabio Daolio, and Marco Tomassini. Optimizing the robustness of scale-free networks with
simulated annealing. In ICANNGA, pp. 167–176. Springer, 2011.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. GraphNorm: A principled
approach to accelerating graph neural network training. In ICML, 2021.

Vincenza Carchiolo, Marco Grassia, Alessandro Longheu, Michele Malgeri, and Giuseppe Mangioni. Network
robustness improvement via long-range links. Computational Social Networks, 6(1):1–16, 2019.

Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general framework. Data
Mining and Knowledge Discovery, 30(5):1395–1425, 2016.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In ICML, 2018.

Herbert Edelsbrunner and John Harer. Persistent homology-A survey. Contemporary Mathematics, 453:
257–282, 2008.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, volume 96, pp. 226–231, 1996.

Changjun Fan, Li Zeng, Yizhou Sun, and Yang-Yu Liu. Finding key players in complex networks through
deep reinforcement learning. Nature Machine Intelligence, pp. 1–8, 2020.

Marco Grassia, Manlio De Domenico, and Giuseppe Mangioni. Machine learning dismantling and early-
warning signals of disintegration in complex systems. Nature Communications, 12(1):1–10, 2021.

Xiaojie Guo, Lingfei Wu, and Liang Zhao. Deep graph translation. CoRR, abs/1805.09980, 2018. URL
http://arxiv.org/abs/1805.09980.

Andrew G Haldane and Robert M May. Systemic risk in banking ecosystems. Nature, 469(7330):351–355,
2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In
ICML, 2020.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In ICML, 2020.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. In ICLR, 2022.

13

http://arxiv.org/abs/1805.09980

Under review as submission to TMLR

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In ICLR, 2020.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient algorithms.
CoRR, abs/2006.14171, 2020. URL https://arxiv.org/abs/2006.14171.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network guided
local search for the traveling salesperson problem. In ICLR, 2022.

Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. Attack robustness and centrality of
complex networks. PloS One, 8(4):e59613, 2013.

Daniel A Jaume, Adrián Pastine, and Victor Nicolas Schvöllner. 2-switch: transition and stability on graphs
and forests. arXiv preprint arXiv:2004.11164, 2020.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network tech-
nique for the travelling salesman problem. CoRR, abs/1906.01227, 2019. URL http://arxiv.org/abs/
1906.01227.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the travelling
salesperson problem requires rethinking generalization. Constraints, pp. 1–29, 2022.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In NeurIPS, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In
NeurIPS, 2019.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In ICLR,
2018.

Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks. Physical Review Letters,
87(19):198701, 2001.

Vito Latora and Massimo Marchiori. Economic small-world behavior in weighted networks. The European
Physical Journal B-Condensed Matter and Complex Systems, 32(2):249–263, 2003.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD
International conference on Knowledge Discovery and Data Mining, 2006.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diam-
eters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All you need to train deeper
GCNs. arXiv preprint arXiv:2006.07739, 2020a.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more
powerful neural networks for graph representation learning. In NeurIPS, 2020b.

Wenguo Li, Yong Li, Yi Tan, Yijia Cao, Chun Chen, Ye Cai, Kwang Y Lee, and Michael Pecht. Maximizing
network resilience against malicious attacks. Scientific Reports, 9(1):1–9, 2019.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. In NeurIPS, 2018.

14

https://arxiv.org/abs/2006.14171
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227

Under review as submission to TMLR

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via rewiring.
In KDD, pp. 1161–1169. ACM, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In AAAI, 2019.

Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard. Operations Research
Letters, 36(6):677–679, 2008.

Adilson E Motter, Natali Gulbahce, Eivind Almaas, and Albert-László Barabási. Predicting synthetic rescues
in metabolic networks. Molecular systems biology, 4(1):168, 2008.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takác. Reinforcement learning
for solving the vehicle routing problem. In NeurIPS, 2018.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic attention
model for vehicle routing problems. CoRR, abs/2002.03282, 2020. URL https://arxiv.org/abs/2002.
03282.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie
Tang. GCC: graph contrastive coding for graph neural network pre-training. In KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2020.

Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design. arXiv preprint cs/0209028, 2002.

Lei Rong and Jing Liu. A heuristic algorithm for enhancing the robustness of scale-free networks based on
edge classification. Physica A: Statistical Mechanics and its Applications, 503:503–515, 2018.

Christian M Schneider, André A Moreira, José S Andrade, Shlomo Havlin, and Hans J Herrmann. Mitigation
of malicious attacks on networks. PNAS, 108(10):3838–3841, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Ricard V Sole and Ma Montoya. Complexity and fragility in ecological networks. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 268(1480):2039–2045, 2001.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022.

Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. GraphOpt: Learning optimization models of graph
formation. In ICML, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS, 2015.

Kazuyoshi Wakuta. Vector-valued markov decision processes and the systems of linear inequalities. Stochastic
Processes and Their Applications, 56(1):159–169, 1995.

Xiangrong Wang, Evangelos Pournaras, Robert E Kooij, and Piet Van Mieghem. Improving robustness of
complex networks via the effective graph resistance. The European Physical Journal B, 87(9):1–12, 2014.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In ICML, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

15

https://arxiv.org/abs/2002.03282
https://arxiv.org/abs/2002.03282
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=ryGs6iA5Km

Under review as submission to TMLR

A Yasin Yazıcıoğlu, Magnus Egerstedt, and Jeff S Shamma. Formation of robust multi-agent networks
through self-organizing random regular graphs. IEEE Transactions on Network Science and Engineering,
2(4):139–151, 2015.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng
Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforcement learning. In
AAAI, 2020.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. In NeurIPS, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In NeurIPS, 2020.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Deep latent graph matching. In ICML, 2021.

Mingxing Zhou and Jing Liu. A memetic algorithm for enhancing the robustness of scale-free networks
against malicious attacks. Physica A: Statistical Mechanics and its Applications, 410:131–143, 2014.

Qiong Zhou and Janusz W Bialek. Approximate model of european interconnected system as a benchmark
system to study effects of cross-border trades. IEEE Transactions on Power Systems, 20(2):782–788, 2005.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and Shu Wu. A
survey on graph structure learning: Progress and opportunities. In IJCAI, 2021.

16

	Introduction
	Related Work
	Problem Definition
	Proposed Approach: ResiNet
	Boosting Network Resilience via Edge Rewiring as Markov Decision Process
	FireGNN
	Edge Rewiring Policy Network

	Experiments
	Experimental Settings
	Comparisons to the Baselines
	Ablation Study of ResiNet

	Generalization
	Conclusion

