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ABSTRACT

Transformer models have been widely investigated in different domains by pro-
viding long-range dependency handling and global contextual awareness, driv-
ing the development of popular AI applications such as ChatGPT, Gemini, and
Alexa. State Space Models (SSMs) have emerged as strong contenders in the field
of sequential modeling, challenging the dominance of Transformers. SSMs in-
corporate a selective mechanism that allows for dynamic parameter adjustment
based on input data, enhancing their performance. However, this mechanism
also comes with increasing computational complexity and bandwidth demands,
posing challenges for deployment on resource-constraint mobile devices. To ad-
dress these challenges without sacrificing the accuracy of the selective mecha-
nism, we propose a sparse learning framework that integrates architecture-aware
compiler optimizations. We introduce an end-to-end solution–Cn

4 kernel spar-
sity, which prunes n elements from every four contiguous weights, and develop a
compiler-based acceleration solution to ensure execution efficiency for this spar-
sity on mobile devices. Based on the kernel sparsity, our framework generates
optimized sparse models targeting specific sparsity or latency requirements for
various model sizes. We further leverage pruned weights to compensate for the
remaining weights, enhancing downstream task performance. For practical hard-
ware acceleration, we propose Cn

4 -specific optimizations combined with a layout
transformation elimination strategy. This approach mitigates inefficiencies aris-
ing from fine-grained pruning in linear layers and improves performance across
other operations. Experimental results demonstrate that our method achieves su-
perior task performance compared to other semi-structured pruning methods and
achieves up-to 7⇥ speedup compared to llama.cpp framework on mobile devices.

1 INTRODUCTION

Recent research advancements have significantly heightened interest in State Space Models (SSMs).
Building on the foundation of the Kalman filter model (kal, 1960), SSMs have been further improved
to address long-range dependencies with parallel training. Works (Gu et al., 2021a;b; 2022; Gupta
et al., 2022) propose SSM-based models designed to process sequence data across a variety of tasks
and modalities. Recent work, Mamba (Gu & Dao, 2023b), integrates time-varying parameters into
the SSM, enabling the model to selectively propagate or forget information. Additionally, Mamba
introduces a hardware-aware parallel algorithm designed to accelerate training and inference. Com-
pared to quadratic attention, which becomes prohibitively expensive with longer sequence lengths,
Mamba’s subquadratic-time architecture is more efficient and better suited for handling long se-
quences. Mamba’s exceptional scaling performance highlights its potential as an effective alterna-
tive to the Transformer model (Vaswani et al., 2017) for generative language modeling tasks.

To make advanced language processing accessible to more people and address privacy concerns, de-
ploying Mamba models on mobile devices is a promising strategy to improve the accessibility and
usability of SSMs. A report indicates that by the end of 2020, nearly 6 billion smartphones were in
use worldwide, experiencing an annual growth rate of 4% (Samsung), and demonstrating increasing
processing capabilities (Huynh et al., 2017; Xu et al., 2018; Chen et al., 2023). Deploying Mamba
models on mobile devices ensures functionality in offline scenarios and reduces reliance on costly
cloud services. However, the hardware-aware parallel algorithm in Mamba models is specifically
optimized for GPUs, similar optimizations for mobile devices have yet to be explored. The com-
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putational complexity in Mamba poses significant challenge for resource-constraint mobile devices,
where bandwidth is limited compared to desktop-level GPUs (Huynh et al., 2017; Lee et al., 2019).
Moreover, the projection mechanism within Mamba demands high throughput memory. Unlike
powerful server platforms, mobile devices typically have less memory size and are constrained by
limited battery capacity, which restricts their computing performance and memory bandwidth. For
instance, state-of-the-art framework – llama.cpp (contributors, 2023a) takes over 2.5s to generate
one token with Mamba-2.8B model on a high-end mobile device (Qualcomm, 2017), highlighting
the need for further optimization to make Mamba models viable for mobile deployment.

To tackle the mentioned challenges on mobiles, we propose a sparse learning framework that in-
corporates architecture-aware compiler optimizations for the acceleration of Mamba models on mo-
bile devices. Inspired by the modern hardware architecture of Single Instruction Multiple Data
(SIMD) (Cypher & Sanz, 1989; Mitra et al., 2013; Khorasani et al., 2015) units, which are opti-
mized to load and process four-element vectors in parallel. We focus on investigating the sparse
patterns within every four elements to improve the hardware efficiency with the support of our
compiler optimization. We first introduce the Cn

4 kernels which prune n elements from every four
contiguous weights. We further propose a sparse learning framework to thoroughly optimize the
pruning strategy for these kernels, i.e., determine the value of n for each kernel (four-element vec-
tor) and the corresponding pruned n elements. To preserve task performance while applying sparsity
and achieving significant acceleration, we profile the effectiveness loss (as an accuracy predictor),
sparsity loss and latency loss for each choice of n for each kernel. With the detailed profiling,
given the specific sparsity or latency goals, our sparse learning framework targets to learn a mask
to choose a value of n for each kernel, so that the accuracy loss is minimized while satisfying the
sparsity/latency constraint. In detail, to render the sparse learning process differentiable, we define
the pruning strategy (mask) through probabilities assigned to different kernels for every set of four
consecutive weights throughout the entire model. Finally, we introduce a compensation algorithm
to rectify the remaining weights by utilizing the pruned weights, optimizing overall model function-
ality. The compensation is mainly based on the classic OBS update (Hassibi et al., 1993; Singh &
Alistarh, 2020; Frantar et al., 2021) for the weight reconstruction, leveraging calibration with only
128 training samples. Regarding hardware acceleration, we propose a unique design for C

n
4 -specific

optimizations that includes weight reordering and an efficient method for storing sparse weights. For
other operators with intensive memory movement, we design a layout transformation elimination to
decrease the bandwidth demands without the need for data layout changes. These optimizations
are crucial to mitigate the performance degradation associated with fine-grained C

n
4 pruning versus

structured pruning or dense configurations. Experiments show that our algorithmic approaches can
achieve better performance with the same sparsity on different scales of Mamba models compared
to other semi-structure pruning methods with fixed sparsity patterns. Specifically, we reduce the per-
plexity from 212.9 to 28.97 and enhance the accuracy from 35.6% to 41.0% on Mamba-130M model
compared to Wanda (Sun et al., 2023) with 2:4 pattern. Our comprehensive ablation study demon-
strates the effectiveness of our mixed kernel design and the compensation methods. We implement
the sparse model with our proposed kernels on mobile devices and achieve a practical on-device
speedup of up to 7⇥ compared to llama.cpp. We summarize our contribution as follows,

1. We design a special kernel Cn
4 and with a set of comprehensive compiler optimizations, includ-

ing C
n
4 -specific optimizations and layout transformation elimination strategy on mobile devices.

2. We propose the sparsity-oriented and/or latency-oriented sparse learning framework to explore
the optimal pruning strategy with the proposed kernels for Mamba models.
3. We propose the weight compensation algorithm for the rectification of the sparse model weights
by calibrating with only 128 samples, thereby further enhancing the model effectiveness.
4. Experiments show that our framework can achieve better task performance than other semi-
structure pruning methods and achieve pratical on-device speedup up to 7⇥ compared to llama.cpp.

2 RELATED WORK

2.1 STATE SPACE MODELS

The work (Gu et al., 2021a) initially models long sequences using structured state spaces rather than
Transformers (Vaswani et al., 2017) or Convolutional Neural Networks (CNNs), sparking interest in
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exploring state space models. The memory usage in Transformer increases with the context length,
making it difficult to efficiently process long-context windows or multiple parallel batches without
substantial hardware resources. Meanwhile, the attention mechanism in Transformer grows quadrat-
ically as the sequence length increases, resulting in slower throughput since each token relies on the
entire preceding sequence. Recently, the work (Fu et al., 2022) fills the performance gap between
SSMs and Transformers in language modeling, and Mamba (Gu & Dao, 2023a) introduces a new
Mamba structure as the general sequence model backbones. Mamba introduces an input-dependent
selection mechanism into SSMs and benefits from linear scaling in sequence length, surpassing tra-
ditional Transformers across multiple model sizes on large-scale language data. Beyond the realm
of language research, SSMs have been successfully adapted for a variety of vision tasks, including
image classification (Zhu et al., 2024; Liu et al., 2024b), image segmentation (Liu et al., 2024a; Ma
et al., 2024; Ruan & Xiang, 2024; Wang & Ma, 2024; Xing et al., 2024), and video understanding (Li
et al., 2024; Yang et al., 2024b). However, these studies have not fully investigate the redundancy
inherent in SSMs and hardware acceleration on resource-constraint mobile devices, leaving this
research area largely under-explored.

2.2 DNN INFERENCE ACCELERATION ON MOBILE

As machine learning applications on mobile devices continue to grow, there is a strong em-
phasis on optimizing frameworks of deep neural network (DNN) inference on mobile. Efforts
such as MCDNN (Han et al., 2016), DeepX (Lane et al., 2016), DeepMon (Huynh et al., 2017),
DeepSense (Yao et al., 2017), and DeepCache (Xu et al., 2018) have primarily focused on accelerat-
ing traditional CNNs. General inference frameworks that support both server and mobile platforms
for different neural networks, such as TensorFlow-Lite (TensorFlow, 2017), Pytorch-Mobile (Py-
Torch, 2019), TVM (Chen et al., 2018), and MNN (Alibaba, 2020), offer advanced features in-
cluding operator fusion, memory planning, shape inference, quantization, and tensor offloading.
More recently, there has been a trend towards working with large models like llama.cpp (con-
tributors, 2023a), exLLaMa (exllama contributors, 2023), MLC-LLM (contributors, 2023b), and
fastLLM (The fastllm contributors, 2023). Yet many of these efforts either overlook model pruning
techniques or fail to support SSMs on mobile platforms.

3 MOTIVATION AND BACKGROUND
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Figure 1: Throughput v.s. Log of Parameters (M)

To showcase the superior efficiency and
mobile-friendliness of Mamba models over
Transformers, we conduct a throughput com-
parison between them. As shown in Figure 1,
by comparing the model size and throughput
(tested on a Oneplus 11 mobile phone) un-
der the same configuration (such as the same
batch size and input sequence length), Mamba
models can achieve a higher throughput with
a model size similar or even larger than the
Transformer models from various LLM fam-
ilies (Mehta et al., 2024; Yang et al., 2024a;
Le Scao et al., 2023), leading to a better trade-off between throughput and model size.

Besides, in practice, under the same memory usage, Mamba models typically can use a larger batch
size, resulting in 4-5⇥ higher inference throughput than a Transformer of similar size. The reason is
that, unlike Transformers, Mamba models don’t require the KV cache (Gu & Dao, 2023a), reducing
memory usage and allowing for larger batch sizes with higher throughput.

Furthermore, because of Mamba’s ability to selectively remember the relevant token while ignoring
everything else in between, it can even use extremely long context with length up to 1M. On induc-
tion heads task (Olsson et al., 2022), it generalizes perfectly to million-length sequences, or 4000⇥
longer than it saw during training, while no other method goes beyond 2⇥ (Gu & Dao, 2023a).

Due to the efficiency and mobile-friendliness of Mamba models over Transformers, we focus on
optimizing Mamba models for superior on-mobile performance.

3
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4 PRELIMINARY

State Space Models (SSMs) are sequential models that can map a 1-dimensional function or se-
quence x(t) 2 R to the output sequence y(t) 2 R through a hidden state h(t) 2 RN as follows,

h0(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where N denotes the representation number, A 2 RN⇥N is evolution parameter, B 2 RN⇥1 and
C 2 R1⇥N are projection parameters.

The Mamba model (Gu & Dao, 2023b) represents the discrete version of the continuous system
for SSMs and incorporates a timescale parameter � to facilitate the transformation of continuous
parameters with the zero-order hold (ZOH) as follows,

A = exp(�A),

B = (�A)�1(exp(�A)� I) ·�B.
(2)

After getting the discretized A and B, the discretization of Equation (1) can be rewritten as follows,

ht = Aht�1 +Bxt,

yt = Cht.
(3)

At last, the Mamba model computes the output through a global convolution as follows,

K = (CB,CAB, · · · ,CA
L�1

B),

y = x ⇤K
(4)

where y denotes the output sequence, L denotes the length of the input sequence x and K 2 RL

denotes one structured convolutional kernel.

5 METHODOLOGY

In this section, we start by exploring the design philosophy for sparse patterns on mobile devices.
Next, we present a sparse learning framework aimed at optimizing the model’s sparse structure
through effective loss, sparsity loss, and latency loss for each layer. We then introduce a compen-
sation method that leverages pruned weights to further optimize the remaining weights. Finally, we
illustrate a set of comprehensive compiler-enabled optimizations for proposed kernels.

5.1 SPARSE KERNEL DESIGN

Rationality of our sparse kernels We split the weights into multiple non-overlapping groups and
each group has 4 adjacent weights. Our kernel is designed as C

n
4 , which removes n elements from

every group with four adjacent weights. This approach is inspired by the architecture of modern
hardware’s Single Instruction Multiple Data (SIMD) units that process groups of four elements at
once (Cypher & Sanz, 1989; Mitra et al., 2013; Khorasani et al., 2015). Utilizing SIMD’s ability to
handle vectors of four elements in parallel boosts computational efficiency and performance (Chen
et al., 2018; Alibaba, 2020). By tailoring our pruning kernels to fit the SIMD architecture, we en-
hance the inference computations to fully leverage hardware capabilities, leading to higher efficiency
with faster speed. Details are further explained in Section 5.6.

Table 1: Latency profiling for different kernels.
Kernel C0

4 C1
4 C2

4 C3
4 C4

4

Sparisty 0% 25% 50% 75% 100%
Latency (ms) 37.14 29.66 22.71 19.05 5.74

Latency profiling In our sparse kernels with
C

n
4 , n can be different values leading to vari-

ous sparsity and latency. To get a deeper under-
standing for our C

n
4 and n, we collect latency

data from various kernels for our next sparse
learning process. A synthesized model with
random weights is utilized for profiling on a mobile CPU since the weight values barely affect
latency. The representative profiling results are shown in Table 1. We can establish the latency func-
tion FT (·) using Table 1. This function is then used in the latency loss, as detailed in Section 5.3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5.2 EFFECTIVENESS LOSS

Next we perform sparse learning for the SSM model to apply our sparse kernels for the whole model.
To mitigate the accuracy degradation, it is essential to develop an accuracy predictor for our sparse
learning, given that evaluating model performance on the full testing dataset is resource-intensive
and not conducive to model generalization. To address this problem, we introduce an effectiveness
loss LE based on the weight removal error, as the accuracy predictor. Considering the computational
constraints, a global analysis of weight removal error presents significant challenges. Consequently,
a layer-wise investigation emerges as a viable approach under these limitations.

Given the input X 2 RDin⇥L⇥B for one layer with weight W 2 RDout⇥Din , where B denotes the
batch size, L is the sequence length, and Din/Dout denote the input/output dimensions, to mitigate
the performance loss, the difference of outputs before and after pruning is minimized as follows,

minM,cW L = kWX� (cW �M)Xk22, (5)

where k·k22 denotes the `2 norm, M 2 RDout⇥Din is the sparse mask indicating the pruned locations,
� denotes the element-wise multiplication, and cW denotes the optimized weights. To make the
problem tractable, we assume that the sparse mask is given and fixed during the optimization, and
we can have the following solution with detailed proof in Appendix A.
Theorem 5.1. The optimal solution to Problem (5) with a fixed M can be obtained by the following,

cW⇤ = W�
 
X

i

eqie
T
qiWMi[M

T
i (2XXT )�1Mi]

�1MT
i

!
⇥ (2XXT )�1. (6)

and the minimal loss can be expressed as

L⇤ =
1

2

X

i

eTqiWMi[M
T
i (2XXT )�1Mi]

�1MT
i W

T eqi . (7)

The sparse locations are distributed in a total of k rows in W, and their row indices can be denoted

by eqi 2 {0, 1}Dout⇥1, i = 1, ..., k, where eqi is a one-hot vector with the qthi element as 1 and all

others as 0. There are ki elements pruned in the qthi row and their indices can be represented by

epj qi 2 {0, 1}Din⇥1, j = 1, ..., ki, which are also one-hot vectors similar to eqi . Mi 2 RDin⇥ki ,

where the jth column of Mi is [Mi]:,j = epj qi , 8j.

Remark 5.2. If 2XXT is not full rank with difficulties for the inversion (2XXT )�1, the dampening
technique is adopted to compute (2XXT + �I)�1 instead, with � as the dampening ratio.
Remark 5.3. Although M is fixed during the optimization, the optimal M can be obtained by min-
imizing the loss in Equation (7), i.e., each mask corresponds to a loss in Equation (7) and the mask
with the minimal loss is the optimal one. But it typically incurs unaffordable complexity to find the
optimal mask by comparing the losses of all masks.

Kernel-wise effectiveness loss Based on the optimal loss, we can obtain the effectiveness loss to
estimate the weight removal error for each kernel. For example, for C2

4 which has 2 zero elements
among 4 elements, there are 6 combinations to select 2 elements from 4, and we compute the loss
for each combination following Equation (7). Then we sort the 6 losses and find out the minimal
loss as the effectiveness loss with the corresponding two pruned elements. We can perform the same
process for other cases such as C3

4 with 3 zeros among 4 weights. In this way, the effectiveness loss
for all cases (C0

4, C1
4, C2

4, C3
4, C4

4) of each kernel can be obtained. Note that once the effectiveness
loss is determined, the corresponding pruning locations or weights for each kernel are also obtained
as other combinations lead to larger weight removal error.

Effectiveness loss of the layer For the weight subset wi,j 2 R1⇥4 with i = 1, ..., Dout and
j = 1, ..., dDin/4e where d·e denotes rounding up to the nearest integer, the weight effectiveness
EW 2 RDout⇥dDin/4e according to the removal strategy NW 2 {0, 1, 2, 3, 4}Dout⇥dDin/4e can be
defined as follows,

[EW]i,j = FL(wi,j , [N
W]i,j), (8)

where FL(·, k) denotes the function to generate the effectiveness loss for each kernel with k pruned
elements according to Equation (7) and [NW]i,j denotes the number of pruned elements in wi,j .
Thus, we deliver the effectiveness loss LE by accumulating weight removal errors of all kernels:

LE(E
W) =

X

i,j

[EW]i,j . (9)

5
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5.3 SPARSITY AND LATENCY LOSS

In our proposed sparse learning framework, the optimization of the sparse structure can be driven by
accuracy or latency considerations. Thus, apart from the effectiveness loss, we include the additional
sparsity loss LS or the latency loss LT , to learn the sparse mask.

We first deliver the discrete sparsity SW 2 RDout⇥dDin/4e of the subset weight wi,j with the
removal strategy NW as follows,

[SW]i,j = [NW]i,j / 4 (10)

Subsequently, we define the sparsity loss LS with the target sparsity ratio St as follows,

LS(S
W, St) =

⇢
St � avg(SW), if St > avg(SW)

0, otherwise (11)

where avg(·) is the average function. We denote the discrete latency TW 2 RDout⇥dDin/4e of the
sparse model using FT (·) defined in Section 5.1 with the look up table as follows,

[TW]i,j = FT ([N
W]i,j) (12)

Then, the latency loss LT can be defined with the target latency Tt as follows,

LT (T
W, Tt) =

⇢ P
i,j T

W � Tt, if
P

i,j T
W > Tt

0, otherwise (13)

5.4 SPARSE LEARNING

To optimize the removal strategy [NW]i,j for each sparse kernel wi,j in one layer, we define the
trainable probability mask as MW 2 RDout⇥dDin/4e⇥5 with its subset mW

i,j 2 R1⇥5 for each kernel.
Each kernel has its unique effectiveness loss, sparsity loss and latency loss, corresponding to differ-
ent pruned number, i.e, 0,1,2,3, or 4 with a total of 5 cases. The probability mask mW

i,j is designed
to learn the number of pruned weights in wi,j (choosing one from the 5 cases), and it is randomly
initialized with the Gaussian distribution for the probability of removing 0,1,2,3, or 4 weights. We
minimize the sum of the weight effectiveness and sparsity (or latency) losses with the sparse kernel
selection denoted by the trainable mask MW with softmax operation to learn the appropriate spar-
sity configuration for each kernel. The algorithm for sparse learning is presented in Algorithm 1,
featuring re as the effectiveness loss ratio and rt as the target loss ratio. The ‘max index’ retrieves
the index of the maximum value along a specified dimension. The output Noutput generated by the
algorithm represents the optimal sparse structure using the proposed kernel. Note that although we
only find the number of pruned elements in each kernel for the sparse learning, the pruned locations
corresponding to each choice of pruned number is already determined as discussed in Section 5.2.
Thus, once MW is learned, the pruned weights in each kernel are also obtained immediately.

Algorithm 1: Sparse Learning
Input: W 2 RDin⇥Dout , re, rt, St or Tt,
Create trainable mask MW 2 RDout⇥dDin/4e⇥5.
Initialize all mW

i,j ✓ MW with Gaussian distribution.
[Nu] = {u}Dout⇥dDin/4e, u = 0, 1, 2, 3, 4
[Eu]i,j = FL(wi,j , [Nu]i,j), u = 0, 1, 2, 3, 4, 8i, j
Su = Nu/4, u = 0, 1, 2, 3, 4 or Tu = FT ([Nu]i,j), u = 0, 1, 2, 3, 4, 8i, j
for e in [1, steps] do

M0 = softmax(MW, dim=-1)
L = re ⇤ LE(sum(M0 � [E0,E1,E2,E3,E4], dim=-1))
+rt ⇤ LS(sum(M0 � [S0,S1,S2,S3,S4], dim=-1), St)
or
+rt ⇤ LT (sum(M0 � [T0,T1,T2,T3,T4], dim=-1), Tt)

Backward L
Update MW with SGD
Decay learning rate

end

Output: Noutput = max index(softmax(MW), dim=-1)

6
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5.5 COMPENSATION

After learning the sparse mask for each kernel in previous steps, we adjust the unpruned weights to
offset the accuracy loss from pruning. Specifically, we update the unpruned weights according to
Equation (6). Since eqi is a one-hot vector, eqi ⇥A only has non-zero values in the qthi row with all
zeros for all other rows. Thus, in Equation (6), each term with the index i in the sum just computes
the qthi row in the outputs and the computation of the qthi row does not affect the qths row, 8s 6= i.
Specifically, based on Theorem 5.1, we have the following,

[cW⇤]qi,: = [W]qi,: � eT
qiWMi[M

T
i (2XXT )�1Mi]

�1MT
i (2XXT )�1 (14)

Thus, we can perform optimal adjustments row by row. For each row, Equation (14) incorporates
the pruned locations across all kernels in the same row and considers their connections, as shown by
[MT

i (2XXT )�1Mi]�1.

5.6 HARDWARE IMPLEMENTATION

For Mamba models utilizing C
n
4 pruning, our compiler aims for maximum hardware efficiency

during inference by implementing advanced optimizations and code generation. The optimization
strategy consists of two primary approaches: (1) General optimizations, which includes operator
fusion, static memory planning, and parameter tuning for Mamba models. (2) Cn

4 -specific opti-

mizations aimed at enhancing performance uniquely for the C
n
4 . Our compiler takes a model (in

the form of computational graph) as input and generates source code output. Specifically, it pro-
duces C++/Assembly code for mobile CPUs and OpenCL code for mobile GPUs. Due to the space
limitations, our general compiler optimizations details in Appendix B.1.

C
n
4 -specific Optimizations The irregular data access and computation patterns in pruned models

significantly contribute to the inefficient execution of sparse DNNs (Sun et al., 2023; Frantar & Alis-
tarh, 2023). Our compiler tackles this inefficiency through two strategies: (1) reordering the weights
offline to remove computational uncertainty and balance load disparities in sparse computation. (2)
developing an efficient sparse weight storage method that utilizes the kernel information to further
reduce extra storage needs.

Figure 2 (a) and (b) illustrate examples of matrix multiplication with and without reordering. In
Figure 2 (a), without reordering, the process encounters typical challenges of sparse matrix mul-
tiplication: control-flow divergence among threads, load imbalance across threads, and irregular
memory access patterns. In Figure 2 (b), we initially group rows with similar numbers of non-
zero elements in the weights to minimize load imbalance since different threads in a warp access
contiguous rows. This approach reduces the number of idle threads caused by load imbalances.
Within each row, we further reorder the same pattern of non-zero elements together to minimize the
control-flow divergence. In Figure 2 (a) and (b), prior to reordering, the nested loop for computation
induces if-else divergence, which is not hardware-friendly for parallel computing units, particularly
in mobile GPUs. However, after reordering, we employ a regular for loop that can perform identical
computations for identical patterns contiguously, thereby eliminating branch divergence.

After reordering the matrix, we store the model in a compact format using our C
n
4 -specific format,

named C
n
4 Compact as shown in Figure 2 (c). Unlike CSR (Buluç et al., 2009), which only elim-

inates zero weights, C
n
4 Compact achieves a higher compression ratio through a hierarchical index

structure that removes redundant column indices resulting from pruning with C
n
4 . This method effi-

ciently conserves the limited memory bandwidth of mobile devices. The primary advantage of C
n
4

Compact over CSR is its ability to store column indices more compactly. This efficiency comes
from recognizing that multiple rows may share identical column indices after applying C

n
4 kernels

for pruning. To accomplish this, it utilizes three arrays: Ro Idx, Rc Idx, and K Idx, to represent the
row and column index for each kernel after reordering, and pattern style, respectively. As we don’t
need to store the column/row information for each non-zero elements, this compact storage saves
significant memory usage ranging from 25% to 75% (the number depends on the pruning ratio in
the sparse weights) compared with the CSR format.

Layout Transformation Optimization Our previous optimizations are dedicated for the sparse
model, targeting computational intensive operators, e.g., Conv, MatMul. However, Mamba’s archi-
tecture (computational graph), which relies heavily on layout transformation operators for tensor
reshaping and transposing, demands high bandwidth memory (Gu & Dao, 2023a). This issue is par-
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0 0 1 1 1 4
0 0 1 1 1 4

1 0 4 1 1 0
1 2 2 3 1 4
0 1 1 1 4 0
2 1 2 3 4 1

𝐶41 1 1 2 2 3 4
1 1 2 2 3 4

𝐶40
𝐶42

For i in  0 to matrix_a_h: 
For j in 0 to matrix_b_w: 

For k in 0 to matrix_a_w step 4: 
block_a = matrix_a[i, k:k+4]
// compute according to pattern
If (block_a is 𝐶40)
else if (𝐶41)
else if (𝐶42)
……

For i in   0  to  matrix_a_h step s:  // s=2 in the example
For j  in 0  to  matrix_b_w: 

For k  in  0  to  matrix_a_w step 4: 
block_a_1  =  matrix_a[ Ro_Idx[i], Rc_idx[i] [k:k+4]]
……

block_a_s   =  matrix_a[Ro_Idx[i+s], Rc_idx[i+1][k:k+4]]
For b  in    K_Idx[i] to K_Idx[i+1]:

// compute 𝐶40 blocks
……

For b  in    K_Idx[i+3]  to K_Idx[i+4]:
// compute 𝐶43 blocks

Ro_Idx:

Rc_Idx:

K_Idx: 0 0 2 4 5 0 2 5 5 51 3 0 2

0 4 1 2 3 5 … 0 5 1 2 3 4

(a) Before Reorder (b) After Reorder

(c) Sparse Storage

Figure 2: Weight reorder and sparse storage. Numbers in (a) and (b) represent the pattern styles.
Three extra indexes will be utilized during execution. Ro Idx represents the original row index after
reordering, while Rc Idx denotes the original column index for each reordered kernel. And K Idx
represents the stride information for kernels with identical patterns.

ticularly critical on mobile devices, where bandwidth is limited compared to desktop GPUs (Huynh
et al., 2017; Lee et al., 2019), leading to significant overhead. To further improve the performance,
we propose a layout transformation elimination strategy to fully eliminate the layout transformation
operators while maintain the same accuracy. The key insight is that requiring the producer to create
a layout based on the consumer’s reduction dimension results in relatively low additional overhead
compared to other options. First, our compiler extract the operator information (e.g., operator types,
input feature sizes) and select the optimal layouts for each individual operator. Then, we eliminate
the layout transformation operator in the computational graph (i.e., Transpose and Reshape). Fi-
nally, we align the data layout produced by one operator to the needs of the subsequent operator
during computation, and the layout transformation elimination technique minimizes the overhead
associated with explicit data transformations. The detailed formalized algorithm for layout trans-
formation elimination is provided in Appendix B.2. This approach significantly benefits mobile
devices with limited bandwidth by enhancing data locality and reducing memory access costs, as
reflected in Table 3 (our dense vs. llama.cpp).

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Sparse learning recipe We use Mamba models to test the effectiveness of our method. Our approach
covers a variety of Mamba models, with parameters ranging from 130M to 2.8B. The selective SSM
architecture in Mamba primarily uses linear projections for both input and output in each block,
with a significantly smaller number of SSM parameters (projections for �, B, C, and A). We
apply sparsity to all these parameters. For sparse learning, we train over 1000 steps using the SGD
optimizer at a starting learning rate of 0.1, decaying it by 0.1 every 200 steps. The original model
weights are frozen and sparse learning for Mamba-2.8B takes 50 mins on a A6000 GPU. We generate
optimal sparse mask for each layer with sparsity-oriented sparse learning independently. The results
generated with latency-oriented sparse learning are included in Appendix C. We prune the model in
one-shot and evaluate the task performance on multiple common sense reasoning datasets including
LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Arc-
easy (Clark et al., 2018), Arc-challenge (Clark et al., 2018), and WinoGrade (Sakaguchi et al., 2021).
Perplexity on LAMBADA dataset and average accuracy on all mentioned datasets are provided.

Testing bed The latency evaluations are conducted on a Oneplus 11 mobile device equipped with
Snapdragon 8 Gen 2 SoC, featuring an octa-core Kryo CPU and Qualcomm Adreno 740 GPU with
16GB memory. Tests utilize all threads on mobile CPUs and all pipelines on mobile GPUs. We
report the performance comparison against llama.cpp (contributors, 2023a), as it is the only open-
source framework to support Mamba on mobile devices yet. The GPU runs use 16-bit floating points
while the CPU runs use 32-bit floating points. The data types used in the evaluation are aligned with
llama.cpp’s support for Mamba. Each experiment is repeated 50 times. Due to small variance, only
average results are reported. The batch size is set to 1 for all models unless otherwise specified.

6.2 MAIN RESULTS

We show our main results of zero-shot performance with Mamba models with 130M, 370M, 790M,
1.4B, and 2.8B in Table 2. We compare our method against other semi-structure pruning methods,
including SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), with 2:4 and 4:8
patterns which can accelerate the sparse networks (Mishra et al., 2021). As observed, our proposed

8
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Table 2: Main results of zero-shot performance with all scales of Mamba models. We compare
against semi-structure pruning methods, including SparseGPT and Wanda, with 2:4 pattern.

Method Sparsity LAMBDA HellaSwag PIQA Arc-E Arc-C WinoGrade Avg.
Ratio PPL # Acc " Acc " Acc " Acc " Acc " Acc " Acc "

Mamba-130M \ 16.07 44.3 35.3 64.5 48.0 24.3 51.9 44.7

SparseGPT 2:4 50% 69.80 26.1 29.8 58.8 37.5 22.7 52.4 37.9
Wanda 2:4 50% 212.91 15.4 29.4 56.8 38.7 21.1 52.5 35.6

Ours 30% 17.47 42.1 34.5 64.0 47.1 23.8 53.6 44.2
Ours 50% 28.97 35.2 32.2 60.8 41.6 24.2 51.9 41.0
Ours 70% 57.29 27.7 29.9 58.9 36.4 22.9 50.1 37.8

Mamba-370M \ 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0

SparseGPT 2:4 50% 27.93 35.8 34.7 61.5 40.6 23.1 51.8 41.2
Wanda 2:4 50% 82.52 22.6 31.9 60.1 40.3 22.4 51.7 38.1

Ours 30% 8.55 54.6 44.9 68.8 52.7 27.5 55.3 50.6
Ours 50% 12.33 47.9 40.2 64.7 47.6 26.5 54.3 46.9
Ours 70% 22.09 38.9 35.2 61.4 40.5 23.7 51.6 41.9

Mamba-790M \ 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1

SparseGPT 2:4 50% 13.69 46.2 40.1 64.0 45.0 24.7 55.3 45.9
Wanda 2:4 50% 43.76 28.5 36.9 62.8 43.3 22.6 55.3 41.5

Ours 30% 6.21 60.7 53.6 71.8 58.7 28.4 56.2 54.9
Ours 50% 7.87 56.0 48.0 68.9 51.6 26.3 55.9 51.1
Ours 70% 11.85 48.9 41.8 64.7 44.5 25.8 55.4 46.9

Mamba-1.4B \ 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7

SparseGPT 2:4 50% 8.87 54.3 44.5 66.5 49.1 24.3 54.5 48.9
Wanda 2:4 50% 32.72 31.6 38.2 63.9 46.8 22.8 53.7 42.8

Ours 30% 5.08 65.1 58.2 73.2 64.0 32.4 60.7 58.9
Ours 50% 5.65 62.5 52.7 70.7 58.6 29.0 59.0 55.4
Ours 60% 7.30 57.5 46.0 68.3 51.6 26.3 57.4 51.2
Ours 70% 17.40 43.2 31.7 62.5 43.4 19.5 55.1 42.6
Ours 75% 19.65 42.0 35.7 61.1 41.2 22.9 54.4 42.9

Mamba-2.8B \ 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3

SparseGPT 2:4 50% 5.11 65.6 52.1 70.0 56.0 27.6 59.8 55.2
Wanda 2:4 50% 10.49 50.0 48.0 65.8 54.9 26.3 56.2 50.2

Ours 30% 4.18 69.4 65.2 75.6 69.2 36.4 62.6 63.1
Ours 50% 4.26 68.9 60.2 72.6 65.2 31.5 61.1 59.9
Ours 60% 4.72 66.7 54.0 71.1 57.3 28.4 59.4 56.1
Ours 70% 7.51 58.8 43.3 64.6 46.6 25.2 58.3 49.5
Ours 75% 15.86 46.6 36.2 61.0 40.7 22.8 56.2 43.9

pruning method shows a consistently significant improvement over SparseGPT and Wanda at the
same sparsity ratio in terms of the average accuracy across the six datasets. Taking Mamba-1.4B
as an example, our method with a sparsity ratio of 50% increases the average accuracy by at least
3% compared with all baseline methods. Besides, compared to other methods with fixed 2:4 or
4:8 patterns, our method can achieve flexible sparsity ratios, such as a 30% sparsity ratio with an
accuracy comparable to the dense model. Full results are provided in Appendix D. Compared with
the dense Mamba-370M model with an average accuracy of 50.0%, our method reaches an average
accuracy of 50.6%. In summary, the results achieved by our method indicate the effectiveness of
our pruning technique in maintaining performance across different model scales and tasks. Fur-
thermore, we provide the comparison to the transformer-based models in Table A3 and Table A4.,
and we achieve superior task performance in terms of perplexity and average accuracy compared to
transformer-based models under the same model size.

6.3 LATENCY RESULTS

We conduct the latency measurements of our method under different model scales on both the CPU
and GPU of the Snapdragon 8 Gen 2 mobile platform to show the actual acceleration performance.
The generation latency results are shown in Table 3. Our results demonstrate that, compared with the
dense model, our method achieves approximately 1.1⇥ to 1.2⇥ acceleration at 30% sparsity, 1.3⇥ to
1.5⇥ acceleration at 50% sparsity and nearly 1.6⇥ to 1.7⇥ acceleration at 70% and 75% sparsity, on
both mobile CPU and GPU. To demonstrate the performance gains from our general optimizations
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Table 3: Latency results of Mamba with different scales
and 64 sequence length. SPD stands for speedup over
llama.cpp (red) and our dense baseline (blue).

Mamba Method Sparsity Mobile CPU Mobile GPU
Token/s SPD Token/s SPD

130M
llama.cpp 0% 3.5 1.0⇥ - -

ours 0% 11.2 3.2⇥/1.0⇥ 33.6 1.0⇥
ours 30% 12.1 3.5⇥/1.1⇥ 40.7 1.2⇥
ours 50% 14.9 4.3⇥/1.3⇥ 50.4 1.5⇥
ours 70% 18.1 5.2⇥/1.6⇥ 54.8 1.6⇥

370M
llama.cpp 0% 1.5 1.0⇥ - -

ours 0% 6.1 4.1⇥/1.0⇥ 19.6 1.0⇥
ours 30% 6.9 4.6⇥/1.1⇥ 21.5 1.1⇥
ours 50% 7.9 5.5⇥/1.3⇥ 25.4 1.3⇥
ours 70% 9.8 6.5⇥/1.6⇥ 31.3 1.6⇥

790M
llama.cpp 0% 0.7 1.0⇥ - -

ours 0% 3.1 4.5⇥/1.0⇥ 12.8 1.0⇥
ours 30% 3.3 4.7⇥/1.1⇥ 14.1 1.1⇥
ours 50% 4.3 6.3⇥/1.4⇥ 16.6 1.3⇥
ours 70% 5.0 7.0⇥/1.6⇥ 20.4 1.6⇥

1.4B

llama.cpp 0% 0.6 1.0⇥ - -
ours 0% 2.1 3.5⇥/1.0⇥ 10.1 1.0⇥
ours 30% 2.5 4.1⇥/1.2⇥ 10.9 1.1⇥
ours 50% 2.9 4.8⇥/1.4⇥ 13.1 1.3⇥
ours 75% 3.3 5.8⇥/1.6⇥ 17.2 1.7⇥

2.8B

llama.cpp 0% 0.4 1.0⇥ - -
ours 0% 1.9 4.0⇥/1.0⇥ 7.7 1.0⇥
ours 30% 2.2 4.7⇥/1.2⇥ 9.1 1.2⇥
ours 50% 2.6 5.5⇥/1.4⇥ 11.5 1.5⇥
ours 75% 3.0 6.5⇥/1.6⇥ 13.0 1.7⇥
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Table 4: Ablation analysis with or
without weight compensation.
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Table 5: Ablation analysis of uniform
and mixed kernels strategies.

and layout transformation elimination, our compiler (dense) achieves up-to 4.5⇥ speedup compared
to llama.cpp (dense since llama.cpp does not yet support sparse models) on mobile CPU. It is also
worth pointing out that our compiler works efficiently on mobile GPU, achieving approximately
3⇥ to 5⇥ speedup compared our CPU version. GPU results are not included for llama.cpp as it
is not yet supported. Meanwhile, we present other hardware results including the peak memory
during inference and energy consumption in Table A5 and Table A6, respectively. We observe that
our sparse models require only a slight increase in memory while achieving notable energy savings
and significant inference acceleration, demonstrating the efficiency of our method. Additionally, the
results tested on another edge device, Xiaomi 6, which is equipped with a Snapdragon 835, featuring
an octa-core CPU and an Adreno GPU with 6GB of memory, are included in Table A7.

6.4 ABLATION STUDY

We conduct the ablation study in terms of weight compensation, and the results are shown in Fig-
ure 4. We experiment with two settings: with or without weight compensation, for each scale of the
Mamba model on the LAMBDA dataset. The consistent better task performance with our weight
compensation technique demonstrates its effectiveness.

To verify the effectiveness of sparse learning, we also employ a uniform kernel strategy for the
ablation as shown in Figure 5. The perplexity results are evaluated with Mamba-2.8B model on the
LAMBADA dataset, and the latency results are tested on mobile CPU. Compared with the uniform
kernel strategy, our mixed kernel strategy with sparse learning achieves better task performance
while maintaining similar latency performance, especially when the sparsity exceeds 25%.

7 CONCLUSION

In this paper, we propose a sparse learning framework with special compiler kernels for the accel-
eration of Mamba models on mobile devices. We introduce the Cn

4 kernel designed to prune n
elements from every four contiguous weights. Then, we propose the sparse learning framework to
explore the optimal pruning strategy with kernels for the weights in Mamba models. Besides, we
propose the weight compensation method to rectify the weights in sparse models with the pruned
weights. Finally, we implement the sparse strategy with kernels on mobile devices with the C

n
4 -

specific optimizations and the layout transformation elimination strategy. Experiments show the
effectiveness of our method for the acceleration of Mamba models on mobile devices.
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REPRODUCIBILITY STATEMENT

Our problem formulation in Equation (5) and Theorem 5.1 do not rely on any assumptions. The
theorem is the optimal solution to Problem (5) with a detailed proof in Appendix A. We discuss
certain practical issues to implement this solution in the following remarks, including the matrix
inversion and the possibility to obtain the optimal mask. For the hardware optimization, we describe
our detailed implementation for compiler optimizations in Section 5.6 and Appendix B, covering
the general optimization (Appendix B.1) and the layout transformation elimination (Appendix B.2).
The detailed experimental settings and testing bed are introduced in Section 6.1.
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