
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE LEARNING FOR STATE SPACE MODELS ON
MOBILE

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer models have been widely investigated in different domains by pro-
viding long-range dependency handling and global contextual awareness, driv-
ing the development of popular AI applications such as ChatGPT, Gemini, and
Alexa. State Space Models (SSMs) have emerged as strong contenders in the field
of sequential modeling, challenging the dominance of Transformers. SSMs in-
corporate a selective mechanism that allows for dynamic parameter adjustment
based on input data, enhancing their performance. However, this mechanism
also comes with increasing computational complexity and bandwidth demands,
posing challenges for deployment on resource-constraint mobile devices. To ad-
dress these challenges without sacrificing the accuracy of the selective mecha-
nism, we propose a sparse learning framework that integrates architecture-aware
compiler optimizations. We introduce an end-to-end solution–Cn

4 kernel spar-
sity, which prunes n elements from every four contiguous weights, and develop a
compiler-based acceleration solution to ensure execution efficiency for this spar-
sity on mobile devices. Based on the kernel sparsity, our framework generates
optimized sparse models targeting specific sparsity or latency requirements for
various model sizes. We further leverage pruned weights to compensate for the
remaining weights, enhancing downstream task performance. For practical hard-
ware acceleration, we propose Cn

4 -specific optimizations combined with a layout
transformation elimination strategy. This approach mitigates inefficiencies aris-
ing from fine-grained pruning in linear layers and improves performance across
other operations. Experimental results demonstrate that our method achieves su-
perior task performance compared to other semi-structured pruning methods and
achieves up-to 7⇥ speedup compared to llama.cpp framework on mobile devices.

1 INTRODUCTION

Recent research advancements have significantly heightened interest in State Space Models (SSMs).
Building on the foundation of the Kalman filter model (kal, 1960), SSMs have been further improved
to address long-range dependencies with parallel training. Works (Gu et al., 2021a;b; 2022; Gupta
et al., 2022) propose SSM-based models designed to process sequence data across a variety of tasks
and modalities. Recent work, Mamba (Gu & Dao, 2023b), integrates time-varying parameters into
the SSM, enabling the model to selectively propagate or forget information. Additionally, Mamba
introduces a hardware-aware parallel algorithm designed to accelerate training and inference. Com-
pared to quadratic attention, which becomes prohibitively expensive with longer sequence lengths,
Mamba’s subquadratic-time architecture is more efficient and better suited for handling long se-
quences. Mamba’s exceptional scaling performance highlights its potential as an effective alterna-
tive to the Transformer model (Vaswani et al., 2017) for generative language modeling tasks.

To make advanced language processing accessible to more people and address privacy concerns, de-
ploying Mamba models on mobile devices is a promising strategy to improve the accessibility and
usability of SSMs. A report indicates that by the end of 2020, nearly 6 billion smartphones were in
use worldwide, experiencing an annual growth rate of 4% (Samsung), and demonstrating increasing
processing capabilities (Huynh et al., 2017; Xu et al., 2018; Chen et al., 2023). Deploying Mamba
models on mobile devices ensures functionality in offline scenarios and reduces reliance on costly
cloud services. However, the hardware-aware parallel algorithm in Mamba models is specifically
optimized for GPUs, similar optimizations for mobile devices have yet to be explored. The com-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

putational complexity in Mamba poses significant challenge for resource-constraint mobile devices,
where bandwidth is limited compared to desktop-level GPUs (Huynh et al., 2017; Lee et al., 2019).
Moreover, the projection mechanism within Mamba demands high throughput memory. Unlike
powerful server platforms, mobile devices typically have less memory size and are constrained by
limited battery capacity, which restricts their computing performance and memory bandwidth. For
instance, state-of-the-art framework – llama.cpp (contributors, 2023a) takes over 2.5s to generate
one token with Mamba-2.8B model on a high-end mobile device (Qualcomm, 2017), highlighting
the need for further optimization to make Mamba models viable for mobile deployment.

To tackle the mentioned challenges on mobiles, we propose a sparse learning framework that in-
corporates architecture-aware compiler optimizations for the acceleration of Mamba models on mo-
bile devices. Inspired by the modern hardware architecture of Single Instruction Multiple Data
(SIMD) (Cypher & Sanz, 1989; Mitra et al., 2013; Khorasani et al., 2015) units, which are opti-
mized to load and process four-element vectors in parallel. We focus on investigating the sparse
patterns within every four elements to improve the hardware efficiency with the support of our
compiler optimization. We first introduce the Cn

4 kernels which prune n elements from every four
contiguous weights. We further propose a sparse learning framework to thoroughly optimize the
pruning strategy for these kernels, i.e., determine the value of n for each kernel (four-element vec-
tor) and the corresponding pruned n elements. To preserve task performance while applying sparsity
and achieving significant acceleration, we profile the effectiveness loss (as an accuracy predictor),
sparsity loss and latency loss for each choice of n for each kernel. With the detailed profiling,
given the specific sparsity or latency goals, our sparse learning framework targets to learn a mask
to choose a value of n for each kernel, so that the accuracy loss is minimized while satisfying the
sparsity/latency constraint. In detail, to render the sparse learning process differentiable, we define
the pruning strategy (mask) through probabilities assigned to different kernels for every set of four
consecutive weights throughout the entire model. Finally, we introduce a compensation algorithm
to rectify the remaining weights by utilizing the pruned weights, optimizing overall model function-
ality. The compensation is mainly based on the classic OBS update (Hassibi et al., 1993; Singh &
Alistarh, 2020; Frantar et al., 2021) for the weight reconstruction, leveraging calibration with only
128 training samples. Regarding hardware acceleration, we propose a unique design for C

n
4 -specific

optimizations that includes weight reordering and an efficient method for storing sparse weights. For
other operators with intensive memory movement, we design a layout transformation elimination to
decrease the bandwidth demands without the need for data layout changes. These optimizations
are crucial to mitigate the performance degradation associated with fine-grained C

n
4 pruning versus

structured pruning or dense configurations. Experiments show that our algorithmic approaches can
achieve better performance with the same sparsity on different scales of Mamba models compared
to other semi-structure pruning methods with fixed sparsity patterns. Specifically, we reduce the per-
plexity from 212.9 to 28.97 and enhance the accuracy from 35.6% to 41.0% on Mamba-130M model
compared to Wanda (Sun et al., 2023) with 2:4 pattern. Our comprehensive ablation study demon-
strates the effectiveness of our mixed kernel design and the compensation methods. We implement
the sparse model with our proposed kernels on mobile devices and achieve a practical on-device
speedup of up to 7⇥ compared to llama.cpp. We summarize our contribution as follows,

1. We design a special kernel Cn
4 and with a set of comprehensive compiler optimizations, includ-

ing C
n
4 -specific optimizations and layout transformation elimination strategy on mobile devices.

2. We propose the sparsity-oriented and/or latency-oriented sparse learning framework to explore
the optimal pruning strategy with the proposed kernels for Mamba models.
3. We propose the weight compensation algorithm for the rectification of the sparse model weights
by calibrating with only 128 samples, thereby further enhancing the model effectiveness.
4. Experiments show that our framework can achieve better task performance than other semi-
structure pruning methods and achieve pratical on-device speedup up to 7⇥ compared to llama.cpp.

2 RELATED WORK

2.1 STATE SPACE MODELS

The work (Gu et al., 2021a) initially models long sequences using structured state spaces rather than
Transformers (Vaswani et al., 2017) or Convolutional Neural Networks (CNNs), sparking interest in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

exploring state space models. The memory usage in Transformer increases with the context length,
making it difficult to efficiently process long-context windows or multiple parallel batches without
substantial hardware resources. Meanwhile, the attention mechanism in Transformer grows quadrat-
ically as the sequence length increases, resulting in slower throughput since each token relies on the
entire preceding sequence. Recently, the work (Fu et al., 2022) fills the performance gap between
SSMs and Transformers in language modeling, and Mamba (Gu & Dao, 2023a) introduces a new
Mamba structure as the general sequence model backbones. Mamba introduces an input-dependent
selection mechanism into SSMs and benefits from linear scaling in sequence length, surpassing tra-
ditional Transformers across multiple model sizes on large-scale language data. Beyond the realm
of language research, SSMs have been successfully adapted for a variety of vision tasks, including
image classification (Zhu et al., 2024; Liu et al., 2024b), image segmentation (Liu et al., 2024a; Ma
et al., 2024; Ruan & Xiang, 2024; Wang & Ma, 2024; Xing et al., 2024), and video understanding (Li
et al., 2024; Yang et al., 2024b). However, these studies have not fully investigate the redundancy
inherent in SSMs and hardware acceleration on resource-constraint mobile devices, leaving this
research area largely under-explored.

2.2 DNN INFERENCE ACCELERATION ON MOBILE

As machine learning applications on mobile devices continue to grow, there is a strong em-
phasis on optimizing frameworks of deep neural network (DNN) inference on mobile. Efforts
such as MCDNN (Han et al., 2016), DeepX (Lane et al., 2016), DeepMon (Huynh et al., 2017),
DeepSense (Yao et al., 2017), and DeepCache (Xu et al., 2018) have primarily focused on accelerat-
ing traditional CNNs. General inference frameworks that support both server and mobile platforms
for different neural networks, such as TensorFlow-Lite (TensorFlow, 2017), Pytorch-Mobile (Py-
Torch, 2019), TVM (Chen et al., 2018), and MNN (Alibaba, 2020), offer advanced features in-
cluding operator fusion, memory planning, shape inference, quantization, and tensor offloading.
More recently, there has been a trend towards working with large models like llama.cpp (con-
tributors, 2023a), exLLaMa (exllama contributors, 2023), MLC-LLM (contributors, 2023b), and
fastLLM (The fastllm contributors, 2023). Yet many of these efforts either overlook model pruning
techniques or fail to support SSMs on mobile platforms.

3 MOTIVATION AND BACKGROUND

0

5

10

15

20

25

30

35

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Higher Throughput with
Larger Model Size

Log of Parameters (M)

Throughput (Tokens/s)

Mamba
OpenELM
Qwen2.5
BLOOM

Figure 1: Throughput v.s. Log of Parameters (M)

To showcase the superior efficiency and
mobile-friendliness of Mamba models over
Transformers, we conduct a throughput com-
parison between them. As shown in Figure 1,
by comparing the model size and throughput
(tested on a Oneplus 11 mobile phone) un-
der the same configuration (such as the same
batch size and input sequence length), Mamba
models can achieve a higher throughput with
a model size similar or even larger than the
Transformer models from various LLM fam-
ilies (Mehta et al., 2024; Yang et al., 2024a;
Le Scao et al., 2023), leading to a better trade-off between throughput and model size.

Besides, in practice, under the same memory usage, Mamba models typically can use a larger batch
size, resulting in 4-5⇥ higher inference throughput than a Transformer of similar size. The reason is
that, unlike Transformers, Mamba models don’t require the KV cache (Gu & Dao, 2023a), reducing
memory usage and allowing for larger batch sizes with higher throughput.

Furthermore, because of Mamba’s ability to selectively remember the relevant token while ignoring
everything else in between, it can even use extremely long context with length up to 1M. On induc-
tion heads task (Olsson et al., 2022), it generalizes perfectly to million-length sequences, or 4000⇥
longer than it saw during training, while no other method goes beyond 2⇥ (Gu & Dao, 2023a).

Due to the efficiency and mobile-friendliness of Mamba models over Transformers, we focus on
optimizing Mamba models for superior on-mobile performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 PRELIMINARY

State Space Models (SSMs) are sequential models that can map a 1-dimensional function or se-
quence x(t) 2 R to the output sequence y(t) 2 R through a hidden state h(t) 2 RN as follows,

h0(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where N denotes the representation number, A 2 RN⇥N is evolution parameter, B 2 RN⇥1 and
C 2 R1⇥N are projection parameters.

The Mamba model (Gu & Dao, 2023b) represents the discrete version of the continuous system
for SSMs and incorporates a timescale parameter � to facilitate the transformation of continuous
parameters with the zero-order hold (ZOH) as follows,

A = exp(�A),

B = (�A)�1(exp(�A)� I) ·�B.
(2)

After getting the discretized A and B, the discretization of Equation (1) can be rewritten as follows,

ht = Aht�1 +Bxt,

yt = Cht.
(3)

At last, the Mamba model computes the output through a global convolution as follows,

K = (CB,CAB, · · · ,CA
L�1

B),

y = x ⇤K
(4)

where y denotes the output sequence, L denotes the length of the input sequence x and K 2 RL

denotes one structured convolutional kernel.

5 METHODOLOGY

In this section, we start by exploring the design philosophy for sparse patterns on mobile devices.
Next, we present a sparse learning framework aimed at optimizing the model’s sparse structure
through effective loss, sparsity loss, and latency loss for each layer. We then introduce a compen-
sation method that leverages pruned weights to further optimize the remaining weights. Finally, we
illustrate a set of comprehensive compiler-enabled optimizations for proposed kernels.

5.1 SPARSE KERNEL DESIGN

Rationality of our sparse kernels We split the weights into multiple non-overlapping groups and
each group has 4 adjacent weights. Our kernel is designed as C

n
4 , which removes n elements from

every group with four adjacent weights. This approach is inspired by the architecture of modern
hardware’s Single Instruction Multiple Data (SIMD) units that process groups of four elements at
once (Cypher & Sanz, 1989; Mitra et al., 2013; Khorasani et al., 2015). Utilizing SIMD’s ability to
handle vectors of four elements in parallel boosts computational efficiency and performance (Chen
et al., 2018; Alibaba, 2020). By tailoring our pruning kernels to fit the SIMD architecture, we en-
hance the inference computations to fully leverage hardware capabilities, leading to higher efficiency
with faster speed. Details are further explained in Section 5.6.

Table 1: Latency profiling for different kernels.
Kernel C0

4 C1
4 C2

4 C3
4 C4

4

Sparisty 0% 25% 50% 75% 100%
Latency (ms) 37.14 29.66 22.71 19.05 5.74

Latency profiling In our sparse kernels with
C

n
4 , n can be different values leading to vari-

ous sparsity and latency. To get a deeper under-
standing for our C

n
4 and n, we collect latency

data from various kernels for our next sparse
learning process. A synthesized model with
random weights is utilized for profiling on a mobile CPU since the weight values barely affect
latency. The representative profiling results are shown in Table 1. We can establish the latency func-
tion FT (·) using Table 1. This function is then used in the latency loss, as detailed in Section 5.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5.2 EFFECTIVENESS LOSS

Next we perform sparse learning for the SSM model to apply our sparse kernels for the whole model.
To mitigate the accuracy degradation, it is essential to develop an accuracy predictor for our sparse
learning, given that evaluating model performance on the full testing dataset is resource-intensive
and not conducive to model generalization. To address this problem, we introduce an effectiveness
loss LE based on the weight removal error, as the accuracy predictor. Considering the computational
constraints, a global analysis of weight removal error presents significant challenges. Consequently,
a layer-wise investigation emerges as a viable approach under these limitations.

Given the input X 2 RDin⇥L⇥B for one layer with weight W 2 RDout⇥Din , where B denotes the
batch size, L is the sequence length, and Din/Dout denote the input/output dimensions, to mitigate
the performance loss, the difference of outputs before and after pruning is minimized as follows,

minM,cW L = kWX� (cW �M)Xk22, (5)

where k·k22 denotes the `2 norm, M 2 RDout⇥Din is the sparse mask indicating the pruned locations,
� denotes the element-wise multiplication, and cW denotes the optimized weights. To make the
problem tractable, we assume that the sparse mask is given and fixed during the optimization, and
we can have the following solution with detailed proof in Appendix A.
Theorem 5.1. The optimal solution to Problem (5) with a fixed M can be obtained by the following,

cW⇤ = W�

X

i

eqie
T
qiWMi[M

T
i (2XXT)�1Mi]

�1MT
i

!
⇥ (2XXT)�1. (6)

and the minimal loss can be expressed as

L⇤ =
1

2

X

i

eTqiWMi[M
T
i (2XXT)�1Mi]

�1MT
i W

T eqi . (7)

The sparse locations are distributed in a total of k rows in W, and their row indices can be denoted

by eqi 2 {0, 1}Dout⇥1, i = 1, ..., k, where eqi is a one-hot vector with the qthi element as 1 and all

others as 0. There are ki elements pruned in the qthi row and their indices can be represented by

epj qi 2 {0, 1}Din⇥1, j = 1, ..., ki, which are also one-hot vectors similar to eqi . Mi 2 RDin⇥ki ,

where the jth column of Mi is [Mi]:,j = epj qi , 8j.

Remark 5.2. If 2XXT is not full rank with difficulties for the inversion (2XXT)�1, the dampening
technique is adopted to compute (2XXT + �I)�1 instead, with � as the dampening ratio.
Remark 5.3. Although M is fixed during the optimization, the optimal M can be obtained by min-
imizing the loss in Equation (7), i.e., each mask corresponds to a loss in Equation (7) and the mask
with the minimal loss is the optimal one. But it typically incurs unaffordable complexity to find the
optimal mask by comparing the losses of all masks.

Kernel-wise effectiveness loss Based on the optimal loss, we can obtain the effectiveness loss to
estimate the weight removal error for each kernel. For example, for C2

4 which has 2 zero elements
among 4 elements, there are 6 combinations to select 2 elements from 4, and we compute the loss
for each combination following Equation (7). Then we sort the 6 losses and find out the minimal
loss as the effectiveness loss with the corresponding two pruned elements. We can perform the same
process for other cases such as C3

4 with 3 zeros among 4 weights. In this way, the effectiveness loss
for all cases (C0

4, C1
4, C2

4, C3
4, C4

4) of each kernel can be obtained. Note that once the effectiveness
loss is determined, the corresponding pruning locations or weights for each kernel are also obtained
as other combinations lead to larger weight removal error.

Effectiveness loss of the layer For the weight subset wi,j 2 R1⇥4 with i = 1, ..., Dout and
j = 1, ..., dDin/4e where d·e denotes rounding up to the nearest integer, the weight effectiveness
EW 2 RDout⇥dDin/4e according to the removal strategy NW 2 {0, 1, 2, 3, 4}Dout⇥dDin/4e can be
defined as follows,

[EW]i,j = FL(wi,j , [N
W]i,j), (8)

where FL(·, k) denotes the function to generate the effectiveness loss for each kernel with k pruned
elements according to Equation (7) and [NW]i,j denotes the number of pruned elements in wi,j .
Thus, we deliver the effectiveness loss LE by accumulating weight removal errors of all kernels:

LE(E
W) =

X

i,j

[EW]i,j . (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.3 SPARSITY AND LATENCY LOSS

In our proposed sparse learning framework, the optimization of the sparse structure can be driven by
accuracy or latency considerations. Thus, apart from the effectiveness loss, we include the additional
sparsity loss LS or the latency loss LT , to learn the sparse mask.

We first deliver the discrete sparsity SW 2 RDout⇥dDin/4e of the subset weight wi,j with the
removal strategy NW as follows,

[SW]i,j = [NW]i,j / 4 (10)

Subsequently, we define the sparsity loss LS with the target sparsity ratio St as follows,

LS(S
W, St) =

⇢
St � avg(SW), if St > avg(SW)

0, otherwise (11)

where avg(·) is the average function. We denote the discrete latency TW 2 RDout⇥dDin/4e of the
sparse model using FT (·) defined in Section 5.1 with the look up table as follows,

[TW]i,j = FT ([N
W]i,j) (12)

Then, the latency loss LT can be defined with the target latency Tt as follows,

LT (T
W, Tt) =

⇢ P
i,j T

W � Tt, if
P

i,j T
W > Tt

0, otherwise (13)

5.4 SPARSE LEARNING

To optimize the removal strategy [NW]i,j for each sparse kernel wi,j in one layer, we define the
trainable probability mask as MW 2 RDout⇥dDin/4e⇥5 with its subset mW

i,j 2 R1⇥5 for each kernel.
Each kernel has its unique effectiveness loss, sparsity loss and latency loss, corresponding to differ-
ent pruned number, i.e, 0,1,2,3, or 4 with a total of 5 cases. The probability mask mW

i,j is designed
to learn the number of pruned weights in wi,j (choosing one from the 5 cases), and it is randomly
initialized with the Gaussian distribution for the probability of removing 0,1,2,3, or 4 weights. We
minimize the sum of the weight effectiveness and sparsity (or latency) losses with the sparse kernel
selection denoted by the trainable mask MW with softmax operation to learn the appropriate spar-
sity configuration for each kernel. The algorithm for sparse learning is presented in Algorithm 1,
featuring re as the effectiveness loss ratio and rt as the target loss ratio. The ‘max index’ retrieves
the index of the maximum value along a specified dimension. The output Noutput generated by the
algorithm represents the optimal sparse structure using the proposed kernel. Note that although we
only find the number of pruned elements in each kernel for the sparse learning, the pruned locations
corresponding to each choice of pruned number is already determined as discussed in Section 5.2.
Thus, once MW is learned, the pruned weights in each kernel are also obtained immediately.

Algorithm 1: Sparse Learning
Input: W 2 RDin⇥Dout , re, rt, St or Tt,
Create trainable mask MW 2 RDout⇥dDin/4e⇥5.
Initialize all mW

i,j ✓ MW with Gaussian distribution.
[Nu] = {u}Dout⇥dDin/4e, u = 0, 1, 2, 3, 4
[Eu]i,j = FL(wi,j , [Nu]i,j), u = 0, 1, 2, 3, 4, 8i, j
Su = Nu/4, u = 0, 1, 2, 3, 4 or Tu = FT ([Nu]i,j), u = 0, 1, 2, 3, 4, 8i, j
for e in [1, steps] do

M0 = softmax(MW, dim=-1)
L = re ⇤ LE(sum(M0 � [E0,E1,E2,E3,E4], dim=-1))
+rt ⇤ LS(sum(M0 � [S0,S1,S2,S3,S4], dim=-1), St)
or
+rt ⇤ LT (sum(M0 � [T0,T1,T2,T3,T4], dim=-1), Tt)

Backward L
Update MW with SGD
Decay learning rate

end

Output: Noutput = max index(softmax(MW), dim=-1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.5 COMPENSATION

After learning the sparse mask for each kernel in previous steps, we adjust the unpruned weights to
offset the accuracy loss from pruning. Specifically, we update the unpruned weights according to
Equation (6). Since eqi is a one-hot vector, eqi ⇥A only has non-zero values in the qthi row with all
zeros for all other rows. Thus, in Equation (6), each term with the index i in the sum just computes
the qthi row in the outputs and the computation of the qthi row does not affect the qths row, 8s 6= i.
Specifically, based on Theorem 5.1, we have the following,

[cW⇤]qi,: = [W]qi,: � eT
qiWMi[M

T
i (2XXT)�1Mi]

�1MT
i (2XXT)�1 (14)

Thus, we can perform optimal adjustments row by row. For each row, Equation (14) incorporates
the pruned locations across all kernels in the same row and considers their connections, as shown by
[MT

i (2XXT)�1Mi]�1.

5.6 HARDWARE IMPLEMENTATION

For Mamba models utilizing C
n
4 pruning, our compiler aims for maximum hardware efficiency

during inference by implementing advanced optimizations and code generation. The optimization
strategy consists of two primary approaches: (1) General optimizations, which includes operator
fusion, static memory planning, and parameter tuning for Mamba models. (2) Cn

4 -specific opti-

mizations aimed at enhancing performance uniquely for the C
n
4 . Our compiler takes a model (in

the form of computational graph) as input and generates source code output. Specifically, it pro-
duces C++/Assembly code for mobile CPUs and OpenCL code for mobile GPUs. Due to the space
limitations, our general compiler optimizations details in Appendix B.1.

C
n
4 -specific Optimizations The irregular data access and computation patterns in pruned models

significantly contribute to the inefficient execution of sparse DNNs (Sun et al., 2023; Frantar & Alis-
tarh, 2023). Our compiler tackles this inefficiency through two strategies: (1) reordering the weights
offline to remove computational uncertainty and balance load disparities in sparse computation. (2)
developing an efficient sparse weight storage method that utilizes the kernel information to further
reduce extra storage needs.

Figure 2 (a) and (b) illustrate examples of matrix multiplication with and without reordering. In
Figure 2 (a), without reordering, the process encounters typical challenges of sparse matrix mul-
tiplication: control-flow divergence among threads, load imbalance across threads, and irregular
memory access patterns. In Figure 2 (b), we initially group rows with similar numbers of non-
zero elements in the weights to minimize load imbalance since different threads in a warp access
contiguous rows. This approach reduces the number of idle threads caused by load imbalances.
Within each row, we further reorder the same pattern of non-zero elements together to minimize the
control-flow divergence. In Figure 2 (a) and (b), prior to reordering, the nested loop for computation
induces if-else divergence, which is not hardware-friendly for parallel computing units, particularly
in mobile GPUs. However, after reordering, we employ a regular for loop that can perform identical
computations for identical patterns contiguously, thereby eliminating branch divergence.

After reordering the matrix, we store the model in a compact format using our C
n
4 -specific format,

named C
n
4 Compact as shown in Figure 2 (c). Unlike CSR (Buluç et al., 2009), which only elim-

inates zero weights, C
n
4 Compact achieves a higher compression ratio through a hierarchical index

structure that removes redundant column indices resulting from pruning with C
n
4 . This method effi-

ciently conserves the limited memory bandwidth of mobile devices. The primary advantage of C
n
4

Compact over CSR is its ability to store column indices more compactly. This efficiency comes
from recognizing that multiple rows may share identical column indices after applying C

n
4 kernels

for pruning. To accomplish this, it utilizes three arrays: Ro Idx, Rc Idx, and K Idx, to represent the
row and column index for each kernel after reordering, and pattern style, respectively. As we don’t
need to store the column/row information for each non-zero elements, this compact storage saves
significant memory usage ranging from 25% to 75% (the number depends on the pruning ratio in
the sparse weights) compared with the CSR format.

Layout Transformation Optimization Our previous optimizations are dedicated for the sparse
model, targeting computational intensive operators, e.g., Conv, MatMul. However, Mamba’s archi-
tecture (computational graph), which relies heavily on layout transformation operators for tensor
reshaping and transposing, demands high bandwidth memory (Gu & Dao, 2023a). This issue is par-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 0 1 1 1 4
0 0 1 1 1 4

1 0 4 1 1 0
1 2 2 3 1 4
0 1 1 1 4 0
2 1 2 3 4 1

𝐶41 1 1 2 2 3 4
1 1 2 2 3 4

𝐶40
𝐶42

For i in 0 to matrix_a_h:
For j in 0 to matrix_b_w:

For k in 0 to matrix_a_w step 4:
block_a = matrix_a[i, k:k+4]
// compute according to pattern
If (block_a is 𝐶40)
else if (𝐶41)
else if (𝐶42)
……

For i in 0 to matrix_a_h step s: // s=2 in the example
For j in 0 to matrix_b_w:

For k in 0 to matrix_a_w step 4:
block_a_1 = matrix_a[Ro_Idx[i], Rc_idx[i] [k:k+4]]
……

block_a_s = matrix_a[Ro_Idx[i+s], Rc_idx[i+1][k:k+4]]
For b in K_Idx[i] to K_Idx[i+1]:

// compute 𝐶40 blocks
……

For b in K_Idx[i+3] to K_Idx[i+4]:
// compute 𝐶43 blocks

Ro_Idx:

Rc_Idx:

K_Idx: 0 0 2 4 5 0 2 5 5 51 3 0 2

0 4 1 2 3 5 … 0 5 1 2 3 4

(a) Before Reorder (b) After Reorder

(c) Sparse Storage

Figure 2: Weight reorder and sparse storage. Numbers in (a) and (b) represent the pattern styles.
Three extra indexes will be utilized during execution. Ro Idx represents the original row index after
reordering, while Rc Idx denotes the original column index for each reordered kernel. And K Idx
represents the stride information for kernels with identical patterns.

ticularly critical on mobile devices, where bandwidth is limited compared to desktop GPUs (Huynh
et al., 2017; Lee et al., 2019), leading to significant overhead. To further improve the performance,
we propose a layout transformation elimination strategy to fully eliminate the layout transformation
operators while maintain the same accuracy. The key insight is that requiring the producer to create
a layout based on the consumer’s reduction dimension results in relatively low additional overhead
compared to other options. First, our compiler extract the operator information (e.g., operator types,
input feature sizes) and select the optimal layouts for each individual operator. Then, we eliminate
the layout transformation operator in the computational graph (i.e., Transpose and Reshape). Fi-
nally, we align the data layout produced by one operator to the needs of the subsequent operator
during computation, and the layout transformation elimination technique minimizes the overhead
associated with explicit data transformations. The detailed formalized algorithm for layout trans-
formation elimination is provided in Appendix B.2. This approach significantly benefits mobile
devices with limited bandwidth by enhancing data locality and reducing memory access costs, as
reflected in Table 3 (our dense vs. llama.cpp).

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Sparse learning recipe We use Mamba models to test the effectiveness of our method. Our approach
covers a variety of Mamba models, with parameters ranging from 130M to 2.8B. The selective SSM
architecture in Mamba primarily uses linear projections for both input and output in each block,
with a significantly smaller number of SSM parameters (projections for �, B, C, and A). We
apply sparsity to all these parameters. For sparse learning, we train over 1000 steps using the SGD
optimizer at a starting learning rate of 0.1, decaying it by 0.1 every 200 steps. The original model
weights are frozen and sparse learning for Mamba-2.8B takes 50 mins on a A6000 GPU. We generate
optimal sparse mask for each layer with sparsity-oriented sparse learning independently. The results
generated with latency-oriented sparse learning are included in Appendix C. We prune the model in
one-shot and evaluate the task performance on multiple common sense reasoning datasets including
LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Arc-
easy (Clark et al., 2018), Arc-challenge (Clark et al., 2018), and WinoGrade (Sakaguchi et al., 2021).
Perplexity on LAMBADA dataset and average accuracy on all mentioned datasets are provided.

Testing bed The latency evaluations are conducted on a Oneplus 11 mobile device equipped with
Snapdragon 8 Gen 2 SoC, featuring an octa-core Kryo CPU and Qualcomm Adreno 740 GPU with
16GB memory. Tests utilize all threads on mobile CPUs and all pipelines on mobile GPUs. We
report the performance comparison against llama.cpp (contributors, 2023a), as it is the only open-
source framework to support Mamba on mobile devices yet. The GPU runs use 16-bit floating points
while the CPU runs use 32-bit floating points. The data types used in the evaluation are aligned with
llama.cpp’s support for Mamba. Each experiment is repeated 50 times. Due to small variance, only
average results are reported. The batch size is set to 1 for all models unless otherwise specified.

6.2 MAIN RESULTS

We show our main results of zero-shot performance with Mamba models with 130M, 370M, 790M,
1.4B, and 2.8B in Table 2. We compare our method against other semi-structure pruning methods,
including SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), with 2:4 and 4:8
patterns which can accelerate the sparse networks (Mishra et al., 2021). As observed, our proposed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Main results of zero-shot performance with all scales of Mamba models. We compare
against semi-structure pruning methods, including SparseGPT and Wanda, with 2:4 pattern.

Method Sparsity LAMBDA HellaSwag PIQA Arc-E Arc-C WinoGrade Avg.
Ratio PPL # Acc " Acc " Acc " Acc " Acc " Acc " Acc "

Mamba-130M \ 16.07 44.3 35.3 64.5 48.0 24.3 51.9 44.7

SparseGPT 2:4 50% 69.80 26.1 29.8 58.8 37.5 22.7 52.4 37.9
Wanda 2:4 50% 212.91 15.4 29.4 56.8 38.7 21.1 52.5 35.6

Ours 30% 17.47 42.1 34.5 64.0 47.1 23.8 53.6 44.2
Ours 50% 28.97 35.2 32.2 60.8 41.6 24.2 51.9 41.0
Ours 70% 57.29 27.7 29.9 58.9 36.4 22.9 50.1 37.8

Mamba-370M \ 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0

SparseGPT 2:4 50% 27.93 35.8 34.7 61.5 40.6 23.1 51.8 41.2
Wanda 2:4 50% 82.52 22.6 31.9 60.1 40.3 22.4 51.7 38.1

Ours 30% 8.55 54.6 44.9 68.8 52.7 27.5 55.3 50.6
Ours 50% 12.33 47.9 40.2 64.7 47.6 26.5 54.3 46.9
Ours 70% 22.09 38.9 35.2 61.4 40.5 23.7 51.6 41.9

Mamba-790M \ 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1

SparseGPT 2:4 50% 13.69 46.2 40.1 64.0 45.0 24.7 55.3 45.9
Wanda 2:4 50% 43.76 28.5 36.9 62.8 43.3 22.6 55.3 41.5

Ours 30% 6.21 60.7 53.6 71.8 58.7 28.4 56.2 54.9
Ours 50% 7.87 56.0 48.0 68.9 51.6 26.3 55.9 51.1
Ours 70% 11.85 48.9 41.8 64.7 44.5 25.8 55.4 46.9

Mamba-1.4B \ 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7

SparseGPT 2:4 50% 8.87 54.3 44.5 66.5 49.1 24.3 54.5 48.9
Wanda 2:4 50% 32.72 31.6 38.2 63.9 46.8 22.8 53.7 42.8

Ours 30% 5.08 65.1 58.2 73.2 64.0 32.4 60.7 58.9
Ours 50% 5.65 62.5 52.7 70.7 58.6 29.0 59.0 55.4
Ours 60% 7.30 57.5 46.0 68.3 51.6 26.3 57.4 51.2
Ours 70% 17.40 43.2 31.7 62.5 43.4 19.5 55.1 42.6
Ours 75% 19.65 42.0 35.7 61.1 41.2 22.9 54.4 42.9

Mamba-2.8B \ 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3

SparseGPT 2:4 50% 5.11 65.6 52.1 70.0 56.0 27.6 59.8 55.2
Wanda 2:4 50% 10.49 50.0 48.0 65.8 54.9 26.3 56.2 50.2

Ours 30% 4.18 69.4 65.2 75.6 69.2 36.4 62.6 63.1
Ours 50% 4.26 68.9 60.2 72.6 65.2 31.5 61.1 59.9
Ours 60% 4.72 66.7 54.0 71.1 57.3 28.4 59.4 56.1
Ours 70% 7.51 58.8 43.3 64.6 46.6 25.2 58.3 49.5
Ours 75% 15.86 46.6 36.2 61.0 40.7 22.8 56.2 43.9

pruning method shows a consistently significant improvement over SparseGPT and Wanda at the
same sparsity ratio in terms of the average accuracy across the six datasets. Taking Mamba-1.4B
as an example, our method with a sparsity ratio of 50% increases the average accuracy by at least
3% compared with all baseline methods. Besides, compared to other methods with fixed 2:4 or
4:8 patterns, our method can achieve flexible sparsity ratios, such as a 30% sparsity ratio with an
accuracy comparable to the dense model. Full results are provided in Appendix D. Compared with
the dense Mamba-370M model with an average accuracy of 50.0%, our method reaches an average
accuracy of 50.6%. In summary, the results achieved by our method indicate the effectiveness of
our pruning technique in maintaining performance across different model scales and tasks. Fur-
thermore, we provide the comparison to the transformer-based models in Table A3 and Table A4.,
and we achieve superior task performance in terms of perplexity and average accuracy compared to
transformer-based models under the same model size.

6.3 LATENCY RESULTS

We conduct the latency measurements of our method under different model scales on both the CPU
and GPU of the Snapdragon 8 Gen 2 mobile platform to show the actual acceleration performance.
The generation latency results are shown in Table 3. Our results demonstrate that, compared with the
dense model, our method achieves approximately 1.1⇥ to 1.2⇥ acceleration at 30% sparsity, 1.3⇥ to
1.5⇥ acceleration at 50% sparsity and nearly 1.6⇥ to 1.7⇥ acceleration at 70% and 75% sparsity, on
both mobile CPU and GPU. To demonstrate the performance gains from our general optimizations

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Latency results of Mamba with different scales
and 64 sequence length. SPD stands for speedup over
llama.cpp (red) and our dense baseline (blue).

Mamba Method Sparsity Mobile CPU Mobile GPU
Token/s SPD Token/s SPD

130M
llama.cpp 0% 3.5 1.0⇥ - -

ours 0% 11.2 3.2⇥/1.0⇥ 33.6 1.0⇥
ours 30% 12.1 3.5⇥/1.1⇥ 40.7 1.2⇥
ours 50% 14.9 4.3⇥/1.3⇥ 50.4 1.5⇥
ours 70% 18.1 5.2⇥/1.6⇥ 54.8 1.6⇥

370M
llama.cpp 0% 1.5 1.0⇥ - -

ours 0% 6.1 4.1⇥/1.0⇥ 19.6 1.0⇥
ours 30% 6.9 4.6⇥/1.1⇥ 21.5 1.1⇥
ours 50% 7.9 5.5⇥/1.3⇥ 25.4 1.3⇥
ours 70% 9.8 6.5⇥/1.6⇥ 31.3 1.6⇥

790M
llama.cpp 0% 0.7 1.0⇥ - -

ours 0% 3.1 4.5⇥/1.0⇥ 12.8 1.0⇥
ours 30% 3.3 4.7⇥/1.1⇥ 14.1 1.1⇥
ours 50% 4.3 6.3⇥/1.4⇥ 16.6 1.3⇥
ours 70% 5.0 7.0⇥/1.6⇥ 20.4 1.6⇥

1.4B

llama.cpp 0% 0.6 1.0⇥ - -
ours 0% 2.1 3.5⇥/1.0⇥ 10.1 1.0⇥
ours 30% 2.5 4.1⇥/1.2⇥ 10.9 1.1⇥
ours 50% 2.9 4.8⇥/1.4⇥ 13.1 1.3⇥
ours 75% 3.3 5.8⇥/1.6⇥ 17.2 1.7⇥

2.8B

llama.cpp 0% 0.4 1.0⇥ - -
ours 0% 1.9 4.0⇥/1.0⇥ 7.7 1.0⇥
ours 30% 2.2 4.7⇥/1.2⇥ 9.1 1.2⇥
ours 50% 2.6 5.5⇥/1.4⇥ 11.5 1.5⇥
ours 75% 3.0 6.5⇥/1.6⇥ 13.0 1.7⇥

0

25

50

75

100

125

150

175

200

130M 370M 790M 1.4B 2.7BSize

Perplexity

w/o Compensation
w/ Compensation

Table 4: Ablation analysis with or
without weight compensation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0
2
4
6
8
10
12
14
16
18

Token/sPerplexity

C!" / 25% C!# / 50% C!$ / 75%

Token/sPPL
Uniform
Mix

C!% / Sparsity

Table 5: Ablation analysis of uniform
and mixed kernels strategies.

and layout transformation elimination, our compiler (dense) achieves up-to 4.5⇥ speedup compared
to llama.cpp (dense since llama.cpp does not yet support sparse models) on mobile CPU. It is also
worth pointing out that our compiler works efficiently on mobile GPU, achieving approximately
3⇥ to 5⇥ speedup compared our CPU version. GPU results are not included for llama.cpp as it
is not yet supported. Meanwhile, we present other hardware results including the peak memory
during inference and energy consumption in Table A5 and Table A6, respectively. We observe that
our sparse models require only a slight increase in memory while achieving notable energy savings
and significant inference acceleration, demonstrating the efficiency of our method. Additionally, the
results tested on another edge device, Xiaomi 6, which is equipped with a Snapdragon 835, featuring
an octa-core CPU and an Adreno GPU with 6GB of memory, are included in Table A7.

6.4 ABLATION STUDY

We conduct the ablation study in terms of weight compensation, and the results are shown in Fig-
ure 4. We experiment with two settings: with or without weight compensation, for each scale of the
Mamba model on the LAMBDA dataset. The consistent better task performance with our weight
compensation technique demonstrates its effectiveness.

To verify the effectiveness of sparse learning, we also employ a uniform kernel strategy for the
ablation as shown in Figure 5. The perplexity results are evaluated with Mamba-2.8B model on the
LAMBADA dataset, and the latency results are tested on mobile CPU. Compared with the uniform
kernel strategy, our mixed kernel strategy with sparse learning achieves better task performance
while maintaining similar latency performance, especially when the sparsity exceeds 25%.

7 CONCLUSION

In this paper, we propose a sparse learning framework with special compiler kernels for the accel-
eration of Mamba models on mobile devices. We introduce the Cn

4 kernel designed to prune n
elements from every four contiguous weights. Then, we propose the sparse learning framework to
explore the optimal pruning strategy with kernels for the weights in Mamba models. Besides, we
propose the weight compensation method to rectify the weights in sparse models with the pruned
weights. Finally, we implement the sparse strategy with kernels on mobile devices with the C

n
4 -

specific optimizations and the layout transformation elimination strategy. Experiments show the
effectiveness of our method for the acceleration of Mamba models on mobile devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Our problem formulation in Equation (5) and Theorem 5.1 do not rely on any assumptions. The
theorem is the optimal solution to Problem (5) with a detailed proof in Appendix A. We discuss
certain practical issues to implement this solution in the following remarks, including the matrix
inversion and the possibility to obtain the optimal mask. For the hardware optimization, we describe
our detailed implementation for compiler optimizations in Section 5.6 and Appendix B, covering
the general optimization (Appendix B.1) and the layout transformation elimination (Appendix B.2).
The detailed experimental settings and testing bed are introduced in Section 6.1.

REFERENCES

A new approach to linear filtering and prediction problems. 1960.

Alibaba. Mnn: A universal and efficient inference engine. https://github.com/alibaba/
MNN, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson. Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks.
In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architec-

tures, pp. 233–244, 2009.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An automated end-to-end optimizing
compiler for deep learning. In OSDI, pp. 578–594, 2018.

Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang, Chuo-Ling Chang, Andrei Kulik, and
Matthias Grundmann. Speed is all you need: On-device acceleration of large diffusion models
via gpu-aware optimizations. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 4650–4654, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

LLaMA.CPP contributors. LLaMA.CPP. https://github.com/ggerganov/llama.cpp,
2023a. URL https://github.com/ggerganov/llama.cpp.

MLC contributors. MLC-LLM. https://github.com/mlc-ai/mlc-llm, 2023b. URL
https://github.com/mlc-ai/mlc-llm.

Robert Cypher and Jorge LC Sanz. Simd architectures and algorithms for image processing and
computer vision. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12):2158–
2174, 1989.

exllama contributors. exllama. https://github.com/turboderp/exllama, 2023. URL
https://github.com/turboderp/exllama.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-fac: Efficient matrix-free approximations of
second-order information. Advances in Neural Information Processing Systems, 35, 2021.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint

arXiv:2212.14052, 2022.

11

https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/mlc-llm
https://github.com/turboderp/exllama
https://github.com/turboderp/exllama

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv

preprint arXiv:2312.00752, 2023a.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv

preprint arXiv:2312.00752, 2023b.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-

vances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Kr-
ishnamurthy. Mcdnn: An approximation-based execution framework for deep stream processing
under resource constraints. In Proceedings of the 14th Annual International Conference on Mo-

bile Systems, Applications, and Services (MobiSys), pp. 123–136. ACM, 2016.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, pp. 293–299 vol.1, 1993. doi: 10.1109/
ICNN.1993.298572.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. In Proceedings of the 15th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 82–95. ACM, 2017.
doi: 10.1145/3081333.3081360.

Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. Scalable simd-efficient graph processing on
gpus. In 2015 International Conference on Parallel Architecture and Compilation (PACT), pp.
39–50. IEEE, 2015.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar. Deepx:
A software accelerator for low-power deep learning inference on mobile devices. In 2016 15th

ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp.
1–12. IEEE Press, 2016.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and Nicholas D Lane.
Mobisr: Efficient on-device super-resolution through heterogeneous mobile processors. In The

25th annual international conference on mobile computing and networking, pp. 1–16, 2019.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024.

Jiarun Liu, Hao Yang, Hong-Yu Zhou, Yan Xi, Lequan Yu, Yizhou Yu, Yong Liang, Guangming
Shi, Shaoting Zhang, Hairong Zheng, and Shanshan Wang. Swin-umamba: Mamba-based unet
with imagenet-based pretraining. arXiv preprint arXiv:2402.03302, 2024a.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024b.

Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
image segmentation. arXiv preprint arXiv:2401.04722, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, and Mohammad Raste-
gari. OpenELM: An Efficient Language Model Family with Open Training and Inference Frame-
work. arXiv.org, April 2024. URL https://arxiv.org/abs/2404.14619v1.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint

arXiv:2104.08378, 2021.

Gaurav Mitra, Beau Johnston, Alistair P Rendell, Eric McCreath, and Jun Zhou. Use of simd vector
operations to accelerate application code performance on low-powered arm and intel platforms.
In 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and

Phd Forum, pp. 1107–1116. IEEE, 2013.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

PyTorch. https://pytorch.org/mobile/home, 2019.

Qualcomm. Snapdragon 845. https://en.wikipedia.org/wiki/List_of_
Qualcomm_Snapdragon_systems_on_chips, 2017.

Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unet for medical image segmentation.
arXiv preprint arXiv:2402.02491, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Samsung. https://insights.samsung.com/2021/08/19/
your-phone-is-now-more-powerful-than-your-pc-3.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 18098–18109. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

TensorFlow. Tensorflow: A system for large-scale machine learning. https://www.
tensorflow.org/mobile/tflite/, 2017.

The fastllm contributors. fastllm. https://github.com/ztxz16/fastllm, 2023. URL
https://github.com/ztxz16/fastllm.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-

tion processing systems, 30, 2017.

Ziyang Wang and Chao Ma. Semi-mamba-unet: Pixel-level contrastive cross-supervised vi-
sual mamba-based unet for semi-supervised medical image segmentation. arXiv preprint

arXiv:2402.07245, 2024.

Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba: Long-range sequential
modeling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560, 2024.

13

https://arxiv.org/abs/2404.14619v1
https://pytorch.org/mobile/home
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems_on_chips
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems_on_chips
https://insights.samsung.com/2021/08/19/your-phone-is-now-more-powerful-than-your-pc-3
https://insights.samsung.com/2021/08/19/your-phone-is-now-more-powerful-than-your-pc-3
https://proceedings.neurips.cc/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://github.com/ztxz16/fastllm
https://github.com/ztxz16/fastllm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. Deepcache: Princi-
pled cache for mobile deep vision. In Proceedings of the 24th Annual International Conference

on Mobile Computing and Networking, MobiCom ’18, pp. 129–144, New York, NY, USA, 2018.
ACM, Association for Computing Machinery. ISBN 9781450359030.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint

arXiv:2407.10671, 2024a.

Yijun Yang, Zhaohu Xing, and Lei Zhu. Vivim: a video vision mamba for medical video object
segmentation. arXiv preprint arXiv:2401.14168, 2024b.

Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. Deepsense: A uni-
fied deep learning framework for time-series mobile sensing data processing. In Rick Barrett,
Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (eds.), Proceedings of the 26th In-

ternational Conference on World Wide Web, WWW ’17, pp. 351–360, Republic and Canton of
Geneva, CHE, 2017. International World Wide Web Conferences Steering Committee. ISBN
9781450349130. doi: 10.1145/3038912.3052577. URL https://doi.org/10.1145/
3038912.3052577.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv

preprint arXiv:2401.09417, 2024.

14

https://doi.org/10.1145/3038912.3052577
https://doi.org/10.1145/3038912.3052577

	Introduction
	Related Work
	State Space Models
	DNN inference acceleration on mobile

	Motivation and Background
	Preliminary
	Methodology
	Sparse Kernel Design
	Effectiveness Loss
	Sparsity and Latency Loss
	Sparse Learning
	Compensation
	Hardware Implementation

	Experiments
	Experiment Setup
	Main Results
	Latency Results
	Ablation Study

	Conclusion
	Proof of Theorem 4.1
	Compiler Optimizations
	General Optimizations
	Algorithm for Layout Transformation Elimination

	Latency-Oriented Sparse Learning
	Full Results
	Memory and Energy Consumption Comparison
	Portability Evaluation
	Compare with Transformers
	LLaMA Results
	Ablation for Dampening Ratio
	Peak Memory on Mobile
	Energy Consumption on Mobile
	Benchmark on Other Edge Devices

