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ABSTRACT

Large Language Model (LLM) based agents have proved their ability to perform complex
tasks like humans. However, there is still a large gap between open-sourced LLMs and
commercial models like the GPT series. In this paper, we focus on improving the agent
generalization capabilities of LLMs via instruction tuning. We first observe that the exist-
ing agent training corpus exhibits satisfactory results on held-in evaluation sets but fails to
generalize to held-out sets. These agent-tuning works face severe formatting errors and are
frequently stuck in the same mistake for a long while. We analyze that the poor general-
ization ability comes from overfitting to several manual agent environments and a lack of
adaptation to new situations. They struggle with the wrong action steps and can not learn
from the experience but just memorize existing observation-action relations. Inspired by
the insight, we propose a novel AgentRefine framework for agent-tuning. The core idea
is to enable the model to learn to correct its mistakes via observation in the trajectory.
Specifically, we propose an agent synthesis framework to encompass a diverse array of
environments and tasks and prompt a strong LLM to refine its error action according to
the environment feedback. AgentRefine significantly outperforms state-of-the-art agent-
tuning work in terms of generalization ability on diverse agent tasks. It also has better
robustness facing perturbation and can generate diversified thought in inference. Our find-
ings establish the correlation between agent generalization and self-refinement and provide
a new paradigm for future research.

1 INTRODUCTION
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Figure 1: Overall progress score
among 5 tasks. Agent-FLAN has
been trained on Held-in task.

Language agents (Mialon et al., 2023; Sumers et al., 2023), which
harness the powerful capabilities of large language models (LLMs)
to perceive environments, make decisions, and take actions, have
emerged as an effective solution to complex real-world problems.
Plenty of agent projects such as AutoGPT (Sig), GPT-Engineer
(gpt), and BabyAGI (yoh) have employed LLMs as the core con-
trollers, showing potential for practical applications. Both prompt
engineering (Yao et al., 2022; Fu et al., 2024; Zhao et al., 2024)
and framework practice (Yao et al., 2024; Shinn et al., 2024) have
been proposed to enhance the agent capability of top-tier commer-
cial LLMs like GPT-4. Recently, open-sourced LLMs (Dubey et al.,
2024; Jiang et al., 2023) are emerging as effective alternatives to
GPT models and show promising results.

Many efforts have been made to enhance the agent capability of
open-sourced LLMs via finetuning. Deng et al. (2024); Qin et al.
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(2023) carefully define single task schema and collect agent data for specific vertical fields. Further, Zeng
et al. (2023); Chen et al. (2024); Hu et al. (2024) extend to diverse agent tasks and cover high-quality Chain-
of-Thought (CoT) rationale (Yao et al., 2022) to enhance the agent performance on unseen tasks. Although
these works achieve admirable performance on held-in agent tasks where the collected training data share
the same environment, their generalizability to more held-out sets is poor (shown in Figure 1). To solve
the generalization issue of agent-tuning, (Zeng et al., 2023; Chen et al., 2024) mix general alignment data,
ShareGPT (Chiang et al., 2023) with their agent data. They conclude that the general capabilities of LLMs
are necessary for the generalization of agent tasks and training solely on agent data always leads to a decline
in held-out agent performance.

In this work, we revisit the hypothesis that training solely on agent data can’t generalize to new environments
and delve into the reasons behind agent capability generalization. We first investigate the errors of the
existing agent-tuning work in the new agent environments and most of them are formatting errors, illogical
reasoning, and duplicated generation. While the integration of general data ratios can partially mitigate these
errors, we find current agent models struggle with the same mistake and repeat erroneous actions, even when
the environment provides explicit negative feedback. Inspired by (Shinn et al., 2024; Madaan et al., 2024),
we connect the generalization of agent capability with self-refinement (Madaan et al., 2024) according to
the feedback signals from the agent environment. We argue a good agent should recognize its mistakes and
refine the previous actions by interacting with the environment. The self-refinement ability enables the agent
to learn from its mistakes, avoiding getting trapped in a specific predicament, and allows it to discover the
correct sequence of actions through reasonable exploration.

Expanding on the aforementioned insight, our objective is to develop generalized agent-tuning data and es-
tablish the correlation between agent generalization and self-refinement. To this end, we first propose an
agent synthesis framework to encompass a diverse array of environments and tasks drawing upon extensive
human persona data (Chan et al., 2024) that reflects various professional roles and personal interests. The
diversity of agent environments prevents the model from overfitting to a single scenario. Then for each gen-
erated agent environment and corresponding task, we ask a strong LLM to simulate a multi-turn interaction.
After generating each turn, we use a verifier to detect whether it contains format or logical errors. We keep
the error turn and prompt LLM to refine its action according to the observation. The final agent data will
undergo self-refinement processes and ultimately lead to a correct result. We find that agent-tuning on the
self-refinement data, which we call Refinement Tuning, enhances the agent to explore more viable
actions while meeting bad situations, thereby resulting in better generalization to new agent environments.

In this paper, we present AgentRefine, which investigates the self-refinement in agent-tuning to enhance
agent generalization. We perform refinement tuning using our synthesis data on the LLaMA3 (Dubey et al.,
2024) and Mistral-v0.3 (Jiang et al., 2023). Our experiments in terms of five agent evaluation tasks demon-
strate that AgentRefine significantly outperforms state-of-the-art agent-tuning work. The key findings are
summarized as follows:

• While existing agent-tuning work improve held-in agent performance, they hardly generalize the
ability to new agent tasks. In contrast, our AgentRefine does not depend on memorizing training
trajectories but learns to self-refine its mistakes and explore more actions.

• Our experiments demonstrate that agent-tuning on normal trajectories performs poorly to the small
perturbation of agent environments, like the action description. Refinement tuning exhibits greater
robustness to environmental changes.

• Further analysis indicates the diversity of agent environments and thoughts contributes to refine-
ment tuning.

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

a) Alfworld

Goal: : put a cool tomato in microwave… 
Available actions: … take {obj} from {recep} …

… 
Action 3: go to countertop 1. 
…
Action 4: take tomato 1 from countertop 1
Observation 4: You pick up the tomato 1 from the 
countertop 1.
…

b) Alfworld (action changed)
Goal: : put a cool tomato in microwave…
Available actions: … from {recep} take {obj} …

c) SciWorld

Goal: ... metal fork, which is located around the bedroom...
Available actions: ... go {obj} ..., 
…
Thought 6: the fork .. might be in the drawer …
Action 6: go to drawer
…
Action 12: task restart
…
Action 13: task restart
…
Action 14: task restart
…

…
Action 2: take tomato 1 from countertop 1
Observation 2: Nothing happens
Thought 3: …
Action 3: take tomato 1 from countertop 1
…
Action 4: take tomato 1 from countertop 1

Figure 2: Example of parameter memorization in Agent-FLAN.

2 RETHINK THE GENERALIZATION OF AGENT-TUNING

Current agent-tuning works lack generalization to new agent tasks. Figure 1 compares the performance
between held-in and held-out agent tasks, where Agent-FLAN utilizes the Alfworld environment to gather
training data and subsequently makes direct predictions for the held-out tasks. We observe a clear perfor-
mance drop between the two settings.

Agent-Gym Agent-FLAN AgentRefine
Su
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s R
at

e

w/o Perturbation
w Perturbation

Figure 3: The success rate variation
via perturbation

Memorizing true trajectories leads to overfitting. To further figure
out the reason behind the poor generalization, we employ a study on
the robustness of Agent-FLAN. Figure 2 displays the different out-
put results in three evaluation settings where (a) denotes the origi-
nal output in the held-in Alfworld task, (b) represents the modified
Alfworld task with only reordering the action description, and (c)
means the held-out SciWorld task. Agent-FLAN fits well into the
held-in agent environment but fails to recognize subtle perturbations
or handle new tasks (§4.3). Moreover, we analyze the bad cases of
existing agent-tuning work in the held-out tasks and observe that
once the model outputs an error action, the entire process will be
stuck in the same error mode for a while, regardless of the observation (§4.5). These experimental results in-
dicate that traditional approaches merely memorize the correct trajectory information, fundamentally leading
to a lack of generalization capability.

Not memorize but self-refine. Inspired by recent work (Shinn et al., 2024; Madaan et al., 2024), we connect
the generalization of agent capability with self-refinement based on environment feedback. We hypothesize
that self-refinement ability enables the agent to learn from its mistakes and discover the correct sequence of
actions through reasonable exploration (§4.2).

3 METHODOLOGY

3.1 DATA CONSTRUCTION

Inspired by the Tabletop Role-playing game (TRPG), AgentRefine data’s construction process can be divided
into three parts: script generation, trajectory generation, and verification, as shown in Figure 4. The script
generation requires the LLM to generate a script with the environment, tasks, and available actions based
on the persona. In the trajectory generation phase, the LLM is required to simultaneously play the roles of
both Dungeon Master (DM) and player to generate multi-turn agent data containing errors and refine steps
based on the script. The verification will verify the script and trajectory, giving LLM the mistake it has made
within a given persona and the LLM will regenerate the script/trajectory based on the verifier’s response.

3
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Persona Hub
Pi

LLM

Script Generation

"Environment":
{..."documents": {"info.txt": {...}, ...},
"Goal": "Navigate to and edit the 
config.cfg file to set 'mode=on'.",
"Completion Conditions": [...],
"Available Actions":
{..."cd {path}": 
{..."verification code":         

"^\\s*cd\\s+(.*?)\\s*$",
"parameters": 

{"path": ["home","user",...]}
}, ...
}

Script

LLM

Trajectory Generation

...
{

"turn": 7,
"role": "Player",
"Thought": "...I should ...",
"Action": "ls config.cfg"

},
{

"turn": 8,
"role": "DM",
"Thought": "The player's action format 

is incorrect...",
"Observation": "Error: Invalid command 

format.",
"parameter_error": true,
"place_error": false,
"logic_error": false

},
...

Trajectory

Verification

Trajectory Rule-based
Action Check Rule-based

Quantity Check

The number of error-refine turns 
in the trajectory is less than two.

The number of error-refine turns 
in the trajectory is at least two.

AgentRefine

A recent graduate joining 
the IT department and 
eager to learn UNIX 
administration

Available 
actions

Regenerate 
Script

Regenerate 
Trajectory

Figure 4: The pipeline of AgentRefine data generation.

Script Generation We first sample a persona pi from diverse personas (Chan et al., 2024), and prompt the
LLM to generate a script with the environment, tasks, and available actions based on pi. The environment
will include locations, items, and player information that may appear in the interaction. To assist the LLM
in understanding the environment, we prompt the LLM to display the hierarchical relationships between
locations/items in JSON format. We also require the LLM to generate some interfering locations/items,
to ensure that some erroneous steps are likely to occur during trajectory generation. After generating the
environment, the LLM will generate a clear and specific task. Finally, the LLM will generate a series of
available actions. For each action, we require the LLM to generate an action name, validation code (a
regular expression), and valid parameters. The structure of the script can be seen in Appendix O.

Trajectory Generation Given a script, the LLM can simulate multi-turn interactions between the DM and
the player within one call. Specifically, the DM’s turn is divided into three stages: thinking, observing, and
evaluating. In the thinking stage, we require the LLM to evaluate the player’s state and known information
so far and analyze the observations the player can obtain based on the last action. The observing stage will
provide the observations the player can obtain, while in the evaluating stage, the DM will assess whether
the player’s last action contains parameter errors, logical errors, and location errors (act in the wrong place).
The player’s turn is similar to ReAct, requiring the LLM to analyze the current state through thought and
then propose an action. The structure of the trajectory can be found in Appendix P.

Verification The verifier will check both the script and the trajectory. In script part, to ensure the validity
of the action names, we apply the validation code on the action names and only save the script if all actions
pass the validation 1. In the trajectory part, if the generated trajectory has: (1) JSON format error at a certain
turn t, (2) The task is not completed in the final turn t− 1 (3) In the player’s t turn its action can not match
any validation code with corresponding parameters and the DM does not provide a parameters error in turn
t + 1, we will save all previous turns up to t − 1 and prompt the LLM to continue generating. If the DM
evaluates that the task is completed but the number of error-refine turns in the trajectory is less than two, we

1Due to the near-infinite parameter space of actions in virtual environments such as code editing, answering, and
searching, these actions will not be verified in both script generation and trajectory generation

4
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will provide all turns to the LLM and require it to regenerate the trajectory from the beginning. Detailed
verification steps can be seen in Appendix R.

3.2 GENERATION SETUP

We use gpt-4o-2024-05-13 to generate the script and trajectory. We will save all trajectories that can pass
verification in 4 LLM calls (including script generation and trajectory generation). We primarily adopt the 1-
shot trajectory example approach in trajectory generation and the 3-shot script examples in script generation
to help LLM follow the format and give a diversified result. In Appendix I, we use deepseek-v2.5 (Liu et al.,
2024) as the open-source LLM to generate the script and trajectory.

3.3 REFINEMENT TUNING

After generating the complete trajectory, we convert the trajectory into a Refinement Tuning dataset DRT ,
specifically, the user turn is the DM’s observation, while the assistant turn is the Player’s thought and action,
in ReAct (Yao et al., 2022) format. To prevent interference from error turns generated by the LLM, we
changed the loss function J(θ), as shown in Equation 1 where Nx is the total turn number of a given data x,
Tj , Aj , Oj is the thought, action, and observation in turn j. If Aj is correct 1(Aj) = 1 else 1(Aj) = 0.

J(θ) = Ex∼DRT

(
Nx∑
i=1

log (πθ (Ti, Ai|I, {Tj , Aj , Oj}j=0,...,i−1)1(Aj))

)
(1)

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Training We use the LLaMA3-base series models (Dubey et al., 2024) for most of our experiments. For
mistral (Jiang et al., 2023), we use mistral-v0.3. We applied the original llama3 (or mistral)’s multi-turn chat
template. We use LLaMA-Factory (Zheng et al., 2024) to train our models. The training hyperparameter
details can be seen in Appendix D.

Tasks We select 5 tasks: SciWorld (Wang et al., 2022), Alfworld (Shridhar et al., 2020), BabyAI (Chevalier-
Boisvert et al., 2018), PDDL (Vallati et al., 2015), and Jericho (Hausknecht et al., 2020), all of them are
testing models’ decision-making ability. We use the AgentBoard (Ma et al., 2024) framework for experi-
ments, this framework can determine whether the agent has completed all tasks (success rate) and whether
the agent has reached key nodes (progress rate). The Held-in task refers to Alfworld, while the Held-out tasks
are the results obtained by the weighted average of other tasks based on AgentBoard (Ma et al., 2024) We
change AgentBoard’s prompts from Act-only to ReAct and the historical thought, action, and observation
will be transformed into the chat format instead of plaintext. We adjusted the example prompts on Llama-
3-8B-Instruct and never changed them during this work. (except §4.3). The max turn is 30 for all tasks in
inference. During inference, we will only use environment feedback instead of using GPT4’s judgement.

Baseline For the close-source model, we choose GPT-4o (gpt-4o-2024-05-13) and GPT4o-mini (gpt-4o-
mini-2024-07-18). For the open source model, we choose Meta-Llama-3-8B-Instruct, Meta-Llama-3-70B-
Instruct, and Mistral-7B-Instruct-v0.3. For fine-tuned mode, we choose Agent-FLAN (Chen et al., 2024),
AgentGym (Xi et al., 2024), and AgentGen (Hu et al., 2024) as the baseline. They are all trying to solve
the agent generalization problem. Agent-FLAN is an improvement of AgentTunning (Zeng et al., 2023),
focusing on training ”thought” in ReAct. AgentGym uses lots of environments to ensure generalization
and AgentGen uses LIMA (Zhou et al., 2024) to synthesize diversified agent-tuning data. Agent-FLAN
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Method Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

GPT Series

GPT-4o 66.4 79.9 48.2 64.1 40 76.9 61.7 69.8 10.0 34.0
GPT-4o-mini 37.3 65.0 36.6 51.9 23.3 49.8 25.0 49.1 10.0 28.5

LLaMA-3-8B Series

LLaMA-3-8B-Instruct 22.4 46.1 45.5 56.5 7.8 41.1 10.0 38.4 0.0 24.3
AgentGen 29.1 47.6 20.5 35.0 - - 11.7 23.0 - -
AgentGym 61.9 76.9 47.3 61.4 18.9 47.5 1.7 16.6 0.0 12.9
Agent-FLAN 67.2 79.7 25.0 35.3 1.1 10.9 8.3 25.5 0.0 10.1
AgentRefine 44.8 63.8 37.5 50.4 14.4 42.6 16.6 37.8 10.0 32.3

Mistral Series

Mistral-7B-Instruct-v0.3 12.4 35.9 36.6 45.8 6.7 24.7 13.3 27.8 0.0 17.3
AgentGym 76.9 86.7 40.2 56.3 15.6 48.3 1.7 7.3 0.0 13.0
Agent-FLAN 77.6 87.6 15.2 21.0 0 6.7 0 3.2 0.0 0.7
AgentRefine 51.4 68.8 25.9 42.4 4.4 22.4 11.7 32.8 5.0 28.8

LLaMA-3-70B Series

LLaMA-3-70B-Instruct 67.2 75.2 48.2 61.8 42.2 75.4 55.0 79.8 25.0 46.4
Agent-FLAN 80.5 86.8 32.1 41.2 5.5 16.4 25.0 53.7 0.0 13.6
AgentRefine 67.2 72.1 44.6 59.7 17.7 46.4 38.3 58.6 15.0 37.2

Table 1: Main Results. The underlined text indicates that the training data is sampled in the same envi-
ronment as the task and is considered as held-in evaluation. We use the original result in AgentGen and
reproduce AgentGym and Agent-FLAN’s results.

includes Alfworld in its training set. AgentGym includes Alfworld, BabyAI, and SciWorld in its training
set. These datasets will be seen as Held-in test tasks for the corresponding method. Since Agent-FLAN and
AgentGym’s original model is LLaMA2-Chat, for a fair comparison, we reproduce them under LLaMA3
and Mistral. Since AgentGym has not open sourced, we only report the result in (Hu et al., 2024)

4.2 MAIN RESULTS

Table 1 shows the performance comparison of AgentRefine and other methods across different families and
sizes. It is important to emphasize that some methods sample training data in the same environment as the
task; in such cases, we consider this task for these methods to be held-in. We identify the held-in metrics
for each method with an underscore. It can be observed that compared to other agent works, our method
shows significant advantages in held-out tasks. For example, it leads Agent-FLAN by 13.3% in Sciworld
Success Rate. Notably, in some tasks, AgentRefine can even match the performance of the GPT-4o series.
This demonstrates the strong generalization capability of AgentRefine. 2 We also observe that AgentRefine
can not outperform held-in training methods. However, in § 4.3, we will demonstrate that these held-in
methods simply memorize the mapping between observation and action, and a very small perturbation can
render these methods ineffective. Furthermore, we also notice that LLaMA-3-8B-Instruct exhibits very
strong performance in many tasks. We attribute this to its extensive use of Alignment data and additional
RL training. In subsequent experiments, we also mix alignment data and AgentRefine and achieve further
gains.

Effect of Refinement Tuning To further investigate the effectiveness of Refinement Tuning, we mask the
loss of refinement trajectory tokens. Table 2 shows that after masking the refinement, the model’s per-
formance over 5 tasks drops dramatically. For instance, there is approximately 43% performance drop in

2To prove the generalization capability is not totally from GPT-4o, we add an experiment in Appendix I where the
script and trajectory are generated by open-source LLM.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Method Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

AgentRefine 48.5 61.5 37.1 51.7 7.7 33.1 21.7 37.4 5.0 26.2
- w/o refinement loss 40.3 58.8 34.8 45.6 4.4 22.7 20.0 37.4 0.0 16.1
- w/o refinement data 49.3 65.2 30.4 43.1 5.5 21.3 11.7 32.5 0.0 13.8
- w erroneous loss 29.9 43.9 23.2 31.6 3.3 19.0 8.3 28.3 5.0 18.4

Table 2: Ablation study of Refinement Tuning. This experiment is in the data size of 8000.

Sciworld which, to some extent, reflects the necessity of Refinement Tuning for Agent tasks. we also re-
generated a training set without error and refinement trajectories, which completely eliminates the impact
of Refinement Tuning. From Table 2, we can observe that the model trained on data without refinement
trajectories experiences a similar magnitude of performance drop across all tasks.

4k 8k 16k 32k 64k
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57.4
Average Success and Progress by Size

Success
Progress

Figure 5: The model’s performance as the
AgentRefine train data scales up.

In our proposed Refinement Tuning, we mask the loss of erro-
neous turn tokens to prevent the model from learning incorrect
thought processes. To verify whether this process is necessary,
we train a model learning all assistant turn tokens on the same
data. Table 2 shows that the model learned erroneous tokens
results in very adverse consequences, with nearly a 75% drop
in Sciworld. This conclusion is contrary to (Ye et al., 2024).
In fact, we find that the model’s performance on these tasks
can continue to drop to a low level with the continued learn-
ing of data with erroneous trajectories. We believe that at least
for agent Refinement Tuning, eliminating the loss of erroneous
turns is crucial. Otherwise, models will learn incorrect reason-
ing processes, leading to poor performance on held-out tasks.

Scaling AgentRefine We experiment and analyze the relation-
ship between the data size of the AgentRefine training set and model performance, with the results shown in
Figure 5. From the results, we can observe that the model demonstrates significant gains in performance as
the data size increases from 4k to 64k, which illustrates the effectiveness of the AgentRefine data.

4.3 ROBUSTNESS ANALYSIS

Previous work has extensively trained on held-in tasks but shows poor performance on held-out tasks. One
possible reason is that models simply memorize the key-value pairs between observation and actions from
training data, rather than learning to infer correct actions based on the task and observation. To test the
hypothesis above, we conduct data perturbation experiments on a held-in task. Specifically, we select the
Alfworld, which belongs to the held-in category for both AgentGym and Agent-FLAN. We perturb the
candidate actions in Alfworld ensuring that the perturbed ones consist of different tokens (or token order)
but express the same semantic information. The detail perturbation rules are shown in Appendix N.

Model Alfworld Perturbation 1 Perturbation 2 Perturbation 3 Perturbation 4 Perturbation 5 Average Std
Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress

LLaMA3-8B-Instruct 22.4 46.1 23.1 45.6 24.6 45.0 17.9 45.1 17.9 45.1 22.4 46.1 21.4 45.5 2.68 0.47
AgentGym 61.9 76.9 29.1 59.2 49.2 65.3 32.8 53.9 38.8 48.2 5.9 28.7 36.3 55.4 19.97 16.66
Agent-FLAN 67.2 79.7 21.6 58.8 51.4 71.3 27.6 53.5 52.2 67.9 1.5 19.7 36.9 58.5 21.98 22.53
AgentRefine 44.8 63.8 50.0 66.5 51.5 66.7 54.5 70.0 45.5 60.6 44.8 63.8 48.5 65.2 3.73 3.56

Table 3: Performance for different models across various perturbations.
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Table 3 shows the experimental results. It can be observed that simple data perturbation leads to a significant
performance drop on the original held-in task. For example, under the average score, AgentGym’s Success
Rate drops by 25.6%, while Agent-FLAN experiences an even more severe performance decline of 30.4%.
Their standard deviation is close to 20%. In comparison, Our AgentRefine has a 3.7% increase in the
average and low standard deviation, 3.73%, indicating that it learns decision-making capabilities rather than
just simple memorization.

4.4 DIVERSITY ANALYSIS

Figure 6: The t-SNE figure among
Agent-FLAN, AgentGym, and Agen-
tRefine’s Thought.

Thought Diversity Figure 6 illustrates the distribution of chain-
of-thought diversity across three agent datasets. We extracted the
thought content from all ReAct rounds and vectorized them. We
randomly sampled 8100 data from all thoughts and visualized them
via dimensionality reduction using t-SNE (Van der Maaten & Hin-
ton, 2008). Compared to Agent-FLAN and AgentGym, the data of
AgentRefine are more widely distributed and numerous in Figure 6,
indicating a higher diversity of thoughts in AgentRefine. This sug-
gests that the AgentRefine data can better teach the model to think
diversely, achieving a broader exploration space.

Environment Diversity Figure 7 shows the similarity relationship
between the AgentRefine environment and the test datasets. We
randomly selected the instructions from 100 data (50 from Agen-
tRefine and 10 from each test set) and removed the one-shot exam-
ples from the test sets. As shown in Figure 3, the similarity between
the AgentRefine environment and the test environments is less than
0.5 (bottom left and top right sections), indicating a certain degree
of difference between our environment and the test environments.

Figure 7: The similarity heatmap between
different environments in 6 sources.

Best-of-N Table 4 presents the performance of the three agents
on Best-of-N (BoN). We set the decoding temperature to 1, ex-
ecuted each target task ten times, and took the highest score as
the progress rate. If there was at least one successful result
among the ten executions, the success rate would be 1; oth-
erwise, it would be 0. The results in Table 4 show that the
BoN performance using any training data is always better than
greedy, with the improvement of AgentRefine being particu-
larly notable, averaging over 25%. The marked improvement
of AgentRefine compared to the other two datasets is likely
due to its higher diversity and quality of chain-of-thought. It
also demonstrates that existing agent-tuning models have great
potential. To gradually improve the model’s performance, this
result suggests that we should construct better reinforcement
learning agent data towards generalization in future work.

4.5 CASE STUDY

Figure 8 presents examples of Agent-FLAN and AgentRefine in Jericho and Sciworld. The cases show that
Refinement Tuning can enhance the diversity and quality of the model’s thinking, which helps improve the
model’s exploration breadth and efficiency and avoid always getting stuck in loops in a new environment.
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Model Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

AgentGym-greedy 61.9 76.9 47.3 61.4 18.9 47.5 1.7 16.6 0.0 12.9
AgentGym-BoN 99.3 99.3 73.2 87.2 58.9 85.6 16.6 42.1 5.0 22.2
∆ 37.4 22.4 25.9 25.8 40.0 38.1 14.9 25.5 5.0 9.3

Agent-FLAN-greedy 67.2 79.7 25.0 35.3 1.1 10.9 8.3 25.5 0.0 10.1
Agent-FLAN-BoN 85.5 98.1 43.8 56.7 10.0 33.5 11.7 39.8 5.0 22.2
∆ 28.3 18.4 18.8 21.4 8.9 22.6 3.4 14.3 5.0 12.1

AgentRefine-greedy 44.8 63.8 37.5 50.4 14.4 42.6 16.6 37.8 10.0 32.3
AgentRefine-BoN 93.3 96.6 67.0 81.5 40.0 71.0 30.0 57.3 25 52.5
∆ 48.5 32.8 29.5 31.1 25.6 28.4 13.4 19.5 15.0 20.2

Table 4: Best-of-N results among three methods.

a) Jericho
Goal: : You are prisoner on ship Zenon, locked in your cell. You need to 
get out of your cell out into the corridor without getting caught. You could 
use a distraction.

Agent-Flan AgentRefine

…
Thought n: There are no actions 
available to escape from the ship. I 
should go back to the cell and try to 
find the key again.
Action n: go to cell
Observation n: You can't see any 
such thing.
Thought n+1: I can't find the key in 
the cell anymore. It seems I've lost 
it. …
Action n+1: check valid actions

(repeat above action to the end)

…
Thought 13: Looks like I got caught. I 
need to try again. Perhaps a different 
approach might work.
Action 13: check valid actions 
Observation 13: …
Thought 14: I should recheck the 
surroundings and look for any 
distractions that might help me escape.
Action 14: Look 
Observation 14: …
…
Thought 26: I'm being caught again. I 
need to use some sort of distraction. I 
should interact with the pressure gauge.
Action 26: push guage

(Both 2 agents have found a key after some turns)

b) SciWorld

Goal: : metal fork, which is located around the bedroom. You can find the 
thermometer in the kitchen… If the metal fork is above 0.0 degrees celsius, 
place it in the orange box. …

Agent-Flan AgentRefine

…
Thought 6: I need to find the fork 
in the kitchen. It might be in the 
drawer or on the countertop.
Action 6: go to drawer
…
Action 7: go to countertop 
…
Action 8: inventory. 
…
Thought 12: The fork is not in the 
inventory either. I've run out of 
places to check. I'll have to give up 
and restart the task.
Action 12: task restart
…

… 
Action 2: go bedroom
Observation 2: No known action…
…
Thought 5:  I see that 'go bedroom' is 
not a valid action. I should try navigating 
to another location related to the task. 
Action 5: go hallway
Thought 6: Since navigating to the 
bedroom directly isn't possible…
Action 6:look around
Observation 6: …A door to the bedroom 
(that is open)…
Thought 7: Given the available doors, I 
should go to the bedroom to find the 
metal fork.
Action 7: go bedroom
…

(Both 2 agents are located in the kitchen after some turns)

Figure 8: Comparison case study on Jericho and SciWorld between Agent-FLAN and AgentRefine.

In Jericho, Agent-FLAN mistakenly believes it is not in the cell and attempts to go to cell. After fail-
ing, it chooses to check valid actions. Although check valid actions is a correct choice, Agent-
FLAN does not correct its erroneous decision based on the returned results and repeats the go to cell
and check valid actions error loop. In contrast, AgentRefine, upon realizing its actions are not achieving
the goal, tries various new methods instead of endlessly repeating previously tried incorrect actions.

In Sciworld, Agent-FLAN ignores the hint in the Goal that the fork is in the bedroom and chooses to
search in the kitchen. Additionally, Agent-FLAN, having memorized the Alfworld dataset, attempts to out-
put locations can only be found in Alfworld (drawer, countertop, and the action format go to {place}),
which do not exist in SciWorld. Conversely, AgentRefine can clearly find the thermometer and decide
to go bedroom to search for the fork. After go bedroom fails, it decides to go hallway based on sev-
eral rounds of observation. In Thought 6, although AgentRefine mistakenly believes it cannot reach the
bedroom, its judgement shows it can revise its decisions using short-term memory (from turn 2). When
Observation 6 provides clear information about the bedroom, AgentRefine can correct its wrong decision
in Thought 6 and reach the bedroom. This indicates that AgentRefine’s improvement in results is not due
to memorizing prior knowledge from training data but rather its ability to efficiently utilize and integrate
multiple key pieces of information from short-term memory to correct errors in historical decisions.
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4.6 GENERALIZATON BETWEEN GENERAL DATA AND AGENT DATA

Agent-FLAN AgentRefine

Su
cc

es
s R

at
e

w/o ShareGPT
w ShareGPT

Figure 9: The success rate by in-
corporating ShareGPT

Both Agent-FLAN and AgentTuning have found that incorporating gen-
eral data can enhance the model’s generalization ability. This improve-
ment arises from the improvement of instruction-following capability.
Figure 9 shows the changes in model performance after incorporating
ShareGPT. Aligned with them, we also found that general data like
ShareGPT can continually improve the model’s Held-out task perfor-
mance.

5 RELATED WORK

Agent Finetuning To enhance the decision-making capabilities of open-source models, a series of works
currently focus on training Agent trajectories. A small number of models choose the decompose-then-
execution paradigm (Yin et al., 2024), while the majority opt for using ReAct (Yao et al., 2022). Most
works sample from the dataset and train the model using methods such as SFT or DPO (Rafailov et al.,
2024) to improve their ability to handle Held-in problems(Zeng et al., 2023; Hu et al., 2024; Xi et al.,
2024; Chen et al., 2024). AgentTuning, Agent-FLAN, and AgentGen attempt to train generalizable agent
models. AgentTuning and Agent-FLAN have found that using general data like ShareGPT can improve
generalization. AgentGym aims to enhance generalization by enabling the model to continuously learn
new tasks and treating all tasks as Held-in. AgentGen is the first to attempt direct environment synthesis,
improving generalization by enhancing the diversity of training data.

Data Synthesis Due to the impending depletion of web data, the use of synthetic data has become a research
hotspot. The synthesis can be divided into query synthesis and response synthesis. Most agent-tuning
approaches synthesize the response in different ways like the plan (Yin et al., 2024), ReAct format (Zeng
et al., 2023), JSON format (Zhang et al., 2024), chat format (Chen et al., 2024), pair format (Xiong et al.,
2024), or evaluation of the state knowledge (Qiao et al., 2024), etc. The other way is to synthesize queries,
like evolving a given query (Xu et al., 2023) or using pre-train data as a seed to generate new data (Chan et al.,
2024). Among agent research, only AgentGen explores query synthesis. AgentRefine tries to synthesize
queries and responses at the same time and uses a verifier to supervise the quality of the responses.

Self-Refine Self-refine refers to the process where a model iteratively generates better results through feed-
back. SELF-REFINE (Madaan et al., 2024; Huang et al., 2023) finds GPT-4 can find and correct mistakes
itself with a refinement pipeline. AgentRefine trains models to develop step-level refinement abilities. This
means the model can spontaneously adjust its decision processes based on feedback from the environment,
rather than relying on compulsory guidance from a pipeline at instance-level. AgentRefine is also the first
approach to identify the connection between step-level refinement and agent generalization.

6 CONCLUSION

In this work, we study the generalized agent abilities for open-source LLMs via agent tuning. Current work
performs well on held-in evaluation sets but fails to generalize to held-out sets because of overfitting to sev-
eral manual agent environments. We present the AgentRefine approach to enable the model to correct its
mistakes based on the environment feedback. Experiments demonstrate that AgentRefine significantly out-
performs state-of-the-art agent-tuning work in terms of generalization ability on diverse agent benchmarks.
Our analysis shows that self-refinement enables the robustness of agent capability and the diversity of agent
environments and thoughts further enhances the performance. We hope to provide new insight for future
agent research.
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ETHICS STATEMENT

When using a large amount of open-source resources for data synthesis, an important issue is the generation
of harmful and malicious data. In our work, we use Persona-Hub, a synthesized dataset that has undergone
security processing. We use it to synthesize tasks and environmental information, which pass our secondary
review and are safe to use. However, our method may have potential risks of misuse, such as enhancing
LLM’s capabilities in malicious agent tasks, like generating attack codes. Therefore, adhering to ethical
guidelines is crucial to ensuring the responsible use of this technology.

A TASKS STATISTIC

Table 5 presents the number of test data and domains in the 5 tasks. These number calculates the Held-out
Task score. Specifically, Held-out Task score =(BabyAIscore∗112+SciWorldscore∗90+PDDLscore∗
60 + Jerichoscore ∗ 20)/282

task Alfworld BabyAI SciWorld PDDL Jericho
#num 134 112 90 60 20

Domain Science Experiment Household Tasks Robot Exploration Strategy Games Long Text Games

Table 5: tasks statistic in AgentBoard. #num refers to the number of data for testing.

B THE HISTORY OF AGENT-TUNING

In recent years, LLM-Based Agents have become a popular paradigm. However, improving LLM per-
formance on agent tasks during the post-training phase remains a challenging issue. Previous work typ-
ically sampled and trained in fixed environments (with Held-in data that is distributionally similar to the
test data)(Xi et al., 2024), which significantly improved performance on specific tasks (test sets that are
distributionally similar to the training data). However, performance drops sharply once the task changes.

AgentTuning (Zeng et al., 2023) was the first to recognize this issue by adding a portion of general alignment
data to the single-agent data, alleviating the problem and demonstrating initial generalization capabilities.
Agent-FLAN (Chen et al., 2024) further improved the single-agent data, enhancing the model’s generaliza-
tion in agent tasks.

In our work, we demonstrate that the above approaches still have significant limitations in terms of general-
ization, specifically in terms of easily overfitting on single data sets, getting stuck in reasoning, and learning
incorrect reasoning patterns (as discussed in Figure 2, Figure 8, and Section 4.3, etc.). To address this is-
sue, we increased the diversity of training agent data through synthetic data, significantly alleviating the
model’s overfitting problem. Additionally, we add refinement steps in the trajectory. We show that whether
the training data includes the refinement process affects the model’s reasoning pattern, and adding synthetic
refinement processes greatly enhances the generalization performance of LLMs.
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C SYNTHESIS DATA WITH PERSONA TO MAINTAIN DIVERSITY

Persona represents diverse and rich information content. Persona hub (Chan et al., 2024) contains
1,000,000,000 personas after filtering via diverse. If the filter cosine similarity is 0.5, it can still gener-
ate 1 million diverse personas. The persona hub also demonstrated that the data generated via the persona
hub has similar diversity to the persona data and its scaling experience shows that data generated via the
persona hub is not yet saturated at the size of 1M under math problem.

D TRAINING HYPER PARAMETER

For all models, the learning rate is 5e-6 with a cosine learning rate scheduler and no warm-up steps. The
batch size is 64. The max length is 8192 for 7/8b models and 4096 for 70b models due to limited storage for
DeepSpeed (Rasley et al., 2020) usage. Aligned with Agent-FLAN, we choose AgentRefine with 32000 data
for the default training setting. Aligned with AgentGen (Hu et al., 2024), we train our model for 10 epochs
and select the checkpoint with the best average results to report. We also modified the LLaMA-Factory’s
SFT loss to Equation 1. Other settings are aligned with LLaMA-Factory’s default settings.

E COMPARISON AMONG AGENT DATASETS

Table 6 compares the number of trajectories, the methods to obtain environments and trajectories, the held-in
tasks in the AgentBoard benchmark, and the availability of refinement steps among Agent-FLAN, Agent-
Gym, AgentGen, and AgentRefine. AgentRefine can easily scale its data and includes refinement steps in
the training set. AgentGen and our work are contemporary. Our commonality lies in synthesizing diverse
environments, but we place more emphasis on enhancing refinement abilities.

Method Trajectory num Environment construction Trajectory construction Held-in environment Refinement step
Agent-FLAN 34440 manual sampled Alfworld No
AgentGym 14485 manual sampled Alfworld, BabyAI, SciWorld No
AgentGen 7246 synthetic sampled N/A No

AgentRefine (max) 64000 synthetic synthetic N/A Yes

Table 6: Comparison of AgentRefine with other method covers several aspects: the number of trajectories,
the way to get environment, the way to get trajectory, the held-in task in AgentBoard, availability of refine-
ment step

F IND FILTERING EXPERIMENTS

To remove the interference from IND data, we perform an experiment where we train model using data that
excludes all IND training data. Agent-FLAN removes 672 samples out of 34440 samples, and AgentGym
removes 5350 samples out of 14485 samples. The result in Table 7 shows that AgentRefine outperforms
the other two methods in all tasks. This demonstrates that our method significantly improves over previous
methods.

G REFLEXION EXPERIMENT

Table 8 presents the results with Reflexion (Shinn et al., 2024). It shows that AgentRefine outperforms other
methods when adding Reflexion, especially in Alfworld, since AgentRefine isn’t trained on any Alfworld
data, yet it outperforms AgentGym, and Agent-FLAN, whose models are trained on Alfworld data. This
indicates that AgentRefine can utilize Reflexion more effectively than other methods.
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Method Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

LLaMA-3-8B-Instruct 22.4 46.1 45.5 56.5 7.8 41.1 10.0 38.4 0.0 24.3
AgentGen 29.1 47.6 20.5 35.0 - - 11.7 23.0 - -
AgentGym w/o ind data 5.9 28.7 27.7 40.0 2.2 14.3 8.2 18.8 5.0 13.7
Agent-FLAN w/o ind data 1.5 19.7 32.1 45.0 2.2 12.1 6.6 23.6 0.0 14.5
AgentRefine 44.8 63.8 37.5 50.4 14.4 42.6 16.6 37.8 10.0 32.3

Table 7: IND Filtering Experiments

Method Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

LLaMA-3-8B-Instruct + Reflexion 41.2 56.2 45.5 56.5 7.8 39.4 10.0 38.4 5.0 20.9
AgentGym + Reflexion 86.5 91.8 47.3 60.9 23.3 50.6 1.7 16.6 0.0 12.1
Agent-FLAN + Reflexion 83.1 89.4 32.1 42.3 5.5 13.1 10.0 24.8 0.0 9.7
AgentRefine + Reflexion 90.3 95.6 37.5 50.4 16.6 44.5 16.6 37.8 10.0 32.7

Table 8: Reflexion Experiment. The underlined text indicates that the training data is sampled in the same
environment as the task and is considered as held-in evaluation

H REASONING TASK

Method EM F1
LLaMA-3-8B-Instruct 29.3 36.6
AgentGym 28.0 37.4
Agent-FLAN 24.6 32.4
AgentRefine 37.0 44.6

Figure 10: Model Performance on reasoning
task, Hotpot QA.

Figure 10 presents the results on HotpotQA (Yang et al.,
2018), a reasoning task. We use Wikipedia search in LATS
(Zhou et al., 2023) as the environment, randomly sample 300
questions from HotpotQA, and test the exact match (EM)
and F1 score of those methods. The result shows that Agen-
tRefine outperforms other methods on HotpotQA. It proves
that AgentRefine’s generalization still works on reasoning
problems.

I SYNTHESIS FROM OPEN SOURCE MODEL

In the main experiment, we use GPT-4o to synthesize the
AgentRefine data. In this chapter, we attempt to replace it with open-source models to complete the data
synthesis process. Table 9 shows our results under 4000 training data. It can be observed that, compared
to Agent-FLAN, which used GPT-4 for data synthesis, the AgentRefine data synthesized with the open-
source model DeepSeek-v2.5 exhibits significant advantages on the held-out tasks. For example, it leads
Agent-FLAN by 11.6% in the BabyAI Success Rate metric, further proving the advantages of AgentRefine.
Additionally, we observe a noticeable gap between the data synthesized with DeepSeek and the data syn-
thesized with GPT-4o. This indicates that using more capable models for data synthesis does indeed yield
higher-quality training data and results in greater performance gains.

J STANDARD DEVIATIONS

Table 10 shows the average and standard deviation for each task. We use the results from Table 4 (decoding
temperature = 1.0 with 10 sample times). AgentRefine’s average performance exceeds that of other meth-
ods by at least 2 standard deviations in most OOD tasks. This demonstrates that our method represents a
significant improvement over previous methods.
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Model Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

Agent-FLAN 67.2 79.7 25.0 35.3 1.1 10.9 8.3 25.5 0.0 10.1
AgentRefine-DeepSeek 32.0 44.2 36.6 48.1 2.2 21.6 16.6 36.7 5.0 29.0
AgentRefine-GPT-4o 36.6 55.9 33.9 44.1 11.1 31.4 18.3 37.9 10.0 28.8

Table 9: Performance on Different Synthesis Models, we synthesize 4000 data via deepseek-v2.5. The un-
derlined text indicates that the training data is sampled in the same environment as the task and is considered
as held-in evaluation

Model Alfworld BabyAI SciWorld PDDL Jericho

Success Progress Success Progress Success Progress Success Progress Success Progress

AgentGym 64.3±3.3 78.0±3.1 48.2±3.3 64.2±2.3 25.5±4.7 55.4±3.2 4.5±1.8 16.9±3.1 0.0±0.0 15.3±1.5

Agent-FLAN 54.7±3.9 71.6±2.5 31.4±3.0 41.4±3.1 1.2±1.0 11.1±1.2 3.8±1.6 16.4±2.7 0.0±0.0 10.5±1.9

AgentRefine 60.1±2.6 72.9±2.4 37.6±1.3 52.2±1.9 10.4±3.2 35.0±3.2 13.2±2.0 37.4±2.2 11.0±4.6 30.9±3.2

Table 10: Model’s average performance and standard deviations on different data. We used a high temper-
ature and randomly sampled 10 times. The underlined text indicates that the training data is sampled in the
same environment as the task and is considered as the held-in evaluation.

K MODEL’S INSTRUCTION-FOLLOWING ABILITY

Method MT-bench
Agent-FLAN 3.73
+ShareGPT 5.71

AgentRefine 3.96
+ShareGPT 5.91

Figure 11: Model Performance on Different
Tasks

We use MT-bench (Zheng et al., 2023) to test models’
instruction-following ability and use gpt-4o-2024-05-13 to
judge the score.

The score of AgentRefine is approximately 0.2 points higher
than that of Agent-FLAN regardless of whether ShareGPT is
incorporated. After incorporating ShareGPT, both show an
improvement of about 2 points.

L GPT-4 JUDGEMENT’S RELIABILITY

Human
GPT-4 Right Wrong

Right 47 9
Wrong 3 41

Figure 12: The comparison of GPT-4’s
judgement and human’s judgement. The
right column/line means it considers this
turn doesn’t need to be refined. The wrong
column/line means it considers this turn
needs to be refined.

Figure 12 shows the comparison of GPT-4 and human judge-
ment on whether a turn needs to be refined. We randomly
sampled 50 trajectories from the generated trajectory. In
each trajectory, we randomly sampled 1 right turn and 1
wrong turn. We asked the human annotator to label the cor-
rectness of the turn. The human annotator receives the histor-
ical thought, action, and observation before the right/wrong
turn as well as the right/wrong turn’s thought, and action in
ReAct format. The results show that in the turns that GPT-4
labeled right, 94% are aligned with human judgment, and in
the turns that GPT-4 labeled wrong, 82% are aligned with
human judgment. This indicates that GPT-4’s judgement is
reasonable.
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Model Alfworld Perturbation 1 Perturbation 2 Perturbation 3 Perturbation 4 Average STD
Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress Success Progress

AgentRefine 48.5 61.5 56.7 67.7 51.5 63.1 40.2 65.1 45.5 60.6 48.48 63.60 5.78 2.71
- w half training data 36.6 55.9 41.8 59.0 37.3 58.4 26.1 43.2 13.4 24.2 31.04 48.14 10.79 13.50
- w/o refinement data 49.3 65.2 53.7 69.7 49.2 65.0 52.9 65.6 38.8 59.7 48.78 65.04 5.47 3.39
- w/o verification 25.4 36.1 39.5 49.2 23.9 34.9 23.9 34.0 15.6 27.3 25.66 36.30 6.24 7.08

Table 11: Ablation study across various perturbations. We experimented with small data size (i.e.8000) and
in ”w half training data” setting, we use 4000 data. The w/o verification setting contains data in 3 styles: 1.
The data that does not contain a refinement step. 2. The data with wrong parameter/action name but is not
identified by the GPT-4. 3. The data is correct and has the refinement step (i.e. a subset of the AgentRefine
data). We remove incomplete data or the data that can not be parsed into the training data

M ROBUSTNESS ANALYSIS WITH DIFFERENT COMPONENTS

Table 11 presents the contribution to robustness among different components. When training on 4000 data,
the standard deviation of the success score is almost double that of the baseline which means the number of
the training data is the most important factor for the model’s robustness.

N PERTURBATION DETAILS

We have made 5 perturbation in Alfworld:

· Perturbation 1: change clean {obj} with {recep}, cool {obj} with {recep}, heat {obj}with {recep}
to clean {obj} using {recep}, cool {obj} using {recep}, heat {obj} using {recep} in the instruction

· Perturbation 2: change go to {recep} to move to {recep} in the instruction

· Perturbation 3: change take {obj} from {recep} to from {recep} take {obj} in the instruction

· Perturbation 4: delete all space between item name and item number in the instruction.

· Perturbation 5: remove all IND data in the training set and retrain the model.

We also revise the environment to adjust to these changes.

O SCRIPT GENERATION

Script Generation Format

{
"Thought" : (string, compulsory) "The design of the

environment, goal and available actions of the player
to achieve.",

"Environment" : {
"initial state" : (string, compulsory) "The initial

state of the environment.",
"places and objects" : {

"<The name of the place or object>" : {
"information" : (string, optional) "The

information of the place or object, which
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will only be shown to player when the
object is examined/opened/looked or the
player have just step in its receptacle etc
.",

"<The information of the place or object>" : (
string, optional) "The information of the
place or object, which will only be provide
to DM",

"<The name of the place or object>" : {
"information" : (string, optional) "The

information of the place or object,
which will only be shown to player when
the object is examined/opened/looked
or the player have just step in its
receptacle etc. It must be concrete (
for example, if you add information in
a document, you need to give the
important part of the document context
instead of a brief introduction.).",

"location" : (string, optional) "The
relative location between the object/
place and its json upper level object/
place (i.e. receptacle).",

"relative location" : (list of string,
optional) ["The relative location of
the places or objects in the same json
level."]

}
},
"relative location" : (list of string, optional)

["The relative location of the places or
objects in the same json level."]

},
"player":{

"information": (string, compulsory) "The player’s
restrictions."

}
},
"Goal" : (string, compulsory) "The goal of the player to

achieve. It need to be clear(has unique and concrete
completion conditions), achievable and can be finished
by one person.",

"Completion Conditions" : (list of string, compulsory) [
"The specific conditions that the player must meet

to complete the task."
],

"Available Actions" : {
"<The name of the action>" : {
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"description" : (string, optional) "The
description of the action.",

"special format" : (string, optional) "The special
format of the action. Only when the parameter

is not in the place/object and their
information above can use this key. (This key
is compulsory when answering the question and
editing the code.)",

"verification code" : (string, compulsory) "The
regular expression of the action.",

"parameters" : {
"<The name of the parameter>" : (list of

string, optional) ["The value of the
parameter if action has placeholder.
Remember all possible parameter (the
possible place, possible object or the
possible item/text in the \"information\"
of place/object or the imformation in the
completion conditions) should be in the
list. DM will strictly check the player’s
actions according to the given parameters.
So you should give all possible parameters
with correct name"]

}
}

}
}

P TRAJECTORY GENERATION

Trajectory Generation Format

[
{

"turn": (int, compulsory) "The turn number, the first
turn number should be 0, DM’s turn number should be
even.",

"role": (compulsory) "DM",
"Thought": (string, compulsory) "The thought of the DM

, contains the analyze of the knowledge the player
have known and the chain-of-thought to decide the
observation.",

"Observation": (string, compulsory) "The observation
of the DM, contains the information the player
should know.",
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"parameter_error": (bool, compulsory) "The error log
of the DM, if the player’s last action did not
match the format of the available actions",

"place_error": (bool, compulsory) "The error log of
the DM, if the player’s last action act at a wrong
place",

"logic_error": (bool, compulsory) "The error log of
the DM, if the player’s last action matches the
available action but the observation is not changed
under the action or went back to the sitiuation

that history has been. (for example, go north then
go south)",

"progress_rate": (float, compulsory) "The progress
rate of the task, the max value should be 1.0 which
means task finsihed.",

"finished": (bool, compulsory) "The flag of the task,
if the task is finished, the value should be true."

},
{

"turn": (int, compulsory) "The turn number, the first
turn number should be 1, Player’s turn number
should be odd.",

"role": (compulsory) "Player",
"Thought": (string, compulsory) "The thought of the

Player, contains the chain-of-thought to decide the
action. You should remove the \"Thought:\" at the

beginning of this string in the json output,
although DM should ask for this format in the first
turn.",

"Action": (string, compulsory) "The action of the
Player, its format and the parameter MUST follow
the script. You should remove the \"Action:\" at
the beginning of this string in the json output,
although DM should ask for this format in the first
turn."

}
]

Q ERROR TURN STATISTICS
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Figure 13: The statistics of Continuous Er-
ror Turns in AgentRefine

Figure 13 presents the error turn statistics in AgentRefine
(32000). Most of the error-refine pairs consist of one turn,
which accounts for about 16% among all turns. However,
AgentRefine also includes error-refine pairs whose lengths ex-
ceed three turns.
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R TRAJECTORY VERIFICATION

Algorithm 1 presents the Trajectory Verification pipeline.

Algorithm 1 Trajectory Verification

1: Input: Available Actions, Trajectory, Verified Trajectory
2: # The Verified Trajectory will be set to an empty list if this is the first verification of the persona or the

last generation’s fault is error num ≤ 1
3: Initialize: error num=0
4: if JSON format verification does not pass then
5: JSON format verification does not pass
6: end if
7: for turn in Trajectory do
8: if JSON keys in turn do not match the requirement then
9: return Verified Trajectory and the signal

10: end if
11: if Player’s turn then
12: # We only check the action when DM considers it correct.
13: if not next DM turn shows error signal then
14: if Player’s action doesn’t match any actioni (and its parameter) in Available Actions then
15: return Verified Trajectory and the signal
16: end if
17: end if
18: end if
19: if DM’s turn then
20: if Error signal then
21: error num += 1
22: end if
23: if This is the last turn then
24: # The last turn should not have any error
25: if Error signal then
26: return Verified Trajectory and the signal
27: end if
28: # The last turn should finish the task
29: if No ’Task Succeed’ in Observation then
30: return Verified Trajectory and the signal
31: end if
32: # We need at least 2 error-refine turns.
33: if error num ≤ 1 then
34: return Verified Trajectory and the signal
35: end if
36: end if
37: end if
38: Verified Trajectory← Verified Trajectory + turn
39: end for
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