AGENTREFINE: ENHANCING AGENT GENERALIZATION THROUGH REFINEMENT TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Model (LLM) based agents have proved their ability to perform complex tasks like humans. However, there is still a large gap between open-sourced LLMs and commercial models like the GPT series. In this paper, we focus on improving the agent generalization capabilities of LLMs via instruction tuning. We first observe that the existing agent training corpus exhibits satisfactory results on held-in evaluation sets but fails to generalize to held-out sets. These agent-tuning works face severe formatting errors and are frequently stuck in the same mistake for a long while. We analyze that the poor generalization ability comes from overfitting to several manual agent environments and a lack of adaptation to new situations. They struggle with the wrong action steps and can not learn from the experience but just memorize existing observation-action relations. Inspired by the insight, we propose a novel AgentRefine framework for agent-tuning. The core idea is to enable the model to learn to correct its mistakes via observation in the trajectory. Specifically, we propose an agent synthesis framework to encompass a diverse array of environments and tasks and prompt a strong LLM to refine its error action according to the environment feedback. AgentRefine significantly outperforms state-of-the-art agenttuning work in terms of generalization ability on diverse agent tasks. It also has better robustness facing perturbation and can generate diversified thought in inference. Our findings establish the correlation between agent generalization and self-refinement and provide a new paradigm for future research.

029 030 031

000

001

002 003 004

005

006 007 008

010 011

012

013

014

015

016

017

018

019

021

023

024

027

1 INTRODUCTION

Language agents (Mialon et al., 2023; Sumers et al., 2023), which 033 harness the powerful capabilities of large language models (LLMs) to perceive environments, make decisions, and take actions, have 035 emerged as an effective solution to complex real-world problems. 036 Plenty of agent projects such as AutoGPT (Sig), GPT-Engineer 037 (gpt), and BabyAGI (yoh) have employed LLMs as the core con-038 trollers, showing potential for practical applications. Both prompt engineering (Yao et al., 2022; Fu et al., 2024; Zhao et al., 2024) 040 and framework practice (Yao et al., 2024; Shinn et al., 2024) have been proposed to enhance the agent capability of top-tier commer-041 cial LLMs like GPT-4. Recently, open-sourced LLMs (Dubey et al., 042 2024; Jiang et al., 2023) are emerging as effective alternatives to 043 GPT models and show promising results. 044

Many efforts have been made to enhance the agent capability of open-sourced LLMs via finetuning. Deng et al. (2024); Qin et al.

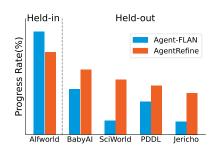


Figure 1: Overall progress score among 5 tasks. Agent-FLAN has been trained on Held-in task.

047 (2023) carefully define single task schema and collect agent data for specific vertical fields. Further, Zeng 048 et al. (2023); Chen et al. (2024); Hu et al. (2024) extend to diverse agent tasks and cover high-quality Chain-049 of-Thought (CoT) rationale (Yao et al., 2022) to enhance the agent performance on unseen tasks. Although 050 these works achieve admirable performance on held-in agent tasks where the collected training data share 051 the same environment, their generalizability to more held-out sets is poor (shown in Figure 1). To solve 052 the generalization issue of agent-tuning, (Zeng et al., 2023; Chen et al., 2024) mix general alignment data, ShareGPT (Chiang et al., 2023) with their agent data. They conclude that the general capabilities of LLMs 053 are necessary for the generalization of agent tasks and training solely on agent data always leads to a decline 054 in held-out agent performance. 055

056 In this work, we revisit the hypothesis that training solely on agent data can't generalize to new environments 057 and delve into the reasons behind agent capability generalization. We first investigate the errors of the existing agent-tuning work in the new agent environments and most of them are formatting errors, illogical 058 reasoning, and duplicated generation. While the integration of general data ratios can partially mitigate these 059 errors, we find current agent models struggle with the same mistake and repeat erroneous actions, even when 060 the environment provides explicit negative feedback. Inspired by (Shinn et al., 2024; Madaan et al., 2024), 061 we connect the generalization of agent capability with self-refinement (Madaan et al., 2024) according to 062 the feedback signals from the agent environment. We argue a good agent should recognize its mistakes and 063 refine the previous actions by interacting with the environment. The self-refinement ability enables the agent 064 to learn from its mistakes, avoiding getting trapped in a specific predicament, and allows it to discover the 065 correct sequence of actions through reasonable exploration. 066

Expanding on the aforementioned insight, our objective is to develop generalized agent-tuning data and es-067 tablish the correlation between agent generalization and self-refinement. To this end, we first propose an 068 agent synthesis framework to encompass a diverse array of environments and tasks drawing upon extensive 069 human persona data (Chan et al., 2024) that reflects various professional roles and personal interests. The 070 diversity of agent environments prevents the model from overfitting to a single scenario. Then for each gen-071 erated agent environment and corresponding task, we ask a strong LLM to simulate a multi-turn interaction. 072 After generating each turn, we use a verifier to detect whether it contains format or logical errors. We keep 073 the error turn and prompt LLM to refine its action according to the observation. The final agent data will 074 undergo self-refinement processes and ultimately lead to a correct result. We find that agent-tuning on the 075 self-refinement data, which we call Refinement Tuning, enhances the agent to explore more viable actions while meeting bad situations, thereby resulting in better generalization to new agent environments. 076

In this paper, we present AgentRefine, which investigates the self-refinement in agent-tuning to enhance agent generalization. We perform refinement tuning using our synthesis data on the LLaMA3 (Dubey et al., 2024) and Mistral-v0.3 (Jiang et al., 2023). Our experiments in terms of five agent evaluation tasks demonstrate that AgentRefine significantly outperforms state-of-the-art agent-tuning work. The key findings are summarized as follows:

- While existing agent-tuning work improve held-in agent performance, they hardly generalize the ability to new agent tasks. In contrast, our AgentRefine does not depend on memorizing training trajectories but learns to self-refine its mistakes and explore more actions.
- Our experiments demonstrate that agent-tuning on normal trajectories performs poorly to the small perturbation of agent environments, like the action description. Refinement tuning exhibits greater robustness to environmental changes.
- Further analysis indicates the diversity of agent environments and thoughts contributes to refinement tuning.
- 093

091

082 083

084

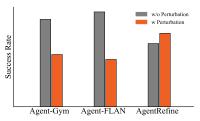
085

Figure 2: Example of parameter memorization in Agent-FLAN.

2 RETHINK THE GENERALIZATION OF AGENT-TUNING

Current agent-tuning works lack generalization to new agent tasks. Figure 1 compares the performance
 between held-in and held-out agent tasks, where Agent-FLAN utilizes the Alfworld environment to gather
 training data and subsequently makes direct predictions for the held-out tasks. We observe a clear performance
 drop between the two settings.

112 Memorizing true trajectories leads to overfitting. To further figure out the reason behind the poor generalization, we employ a study on 113 the robustness of Agent-FLAN. Figure 2 displays the different out-114 put results in three evaluation settings where (a) denotes the origi-115 nal output in the held-in Alfworld task, (b) represents the modified 116 Alfworld task with only reordering the action description, and (c) 117 means the held-out SciWorld task. Agent-FLAN fits well into the 118 held-in agent environment but fails to recognize subtle perturbations 119 or handle new tasks (§4.3). Moreover, we analyze the bad cases of 120



existing agent-tuning work in the held-out tasks and observe that once the model outputs an error action, the entire process will be

Figure 3: The success rate variation via perturbation

stuck in the same error mode for a while, regardless of the observation (§4.5). These experimental results in dicate that traditional approaches merely memorize the correct trajectory information, fundamentally leading
 to a lack of generalization capability.

Not memorize but self-refine. Inspired by recent work (Shinn et al., 2024; Madaan et al., 2024), we connect the generalization of agent capability with self-refinement based on environment feedback. We hypothesize that self-refinement ability enables the agent to learn from its mistakes and discover the correct sequence of actions through reasonable exploration (§4.2).

- 3 Methodology
- 131 132 133

129 130

121

104 105

106 107

3.1 DATA CONSTRUCTION

Inspired by the Tabletop Role-playing game (TRPG), AgentRefine data's construction process can be divided
into three parts: script generation, trajectory generation, and verification, as shown in Figure 4. The script
generation requires the LLM to generate a script with the environment, tasks, and available actions based
on the persona. In the trajectory generation phase, the LLM is required to simultaneously play the roles of
both Dungeon Master (DM) and player to generate multi-turn agent data containing errors and refine steps
based on the script. The verification will verify the script and trajectory, giving LLM the mistake it has made
within a given persona and the LLM will regenerate the script/trajectory based on the verifier's response.

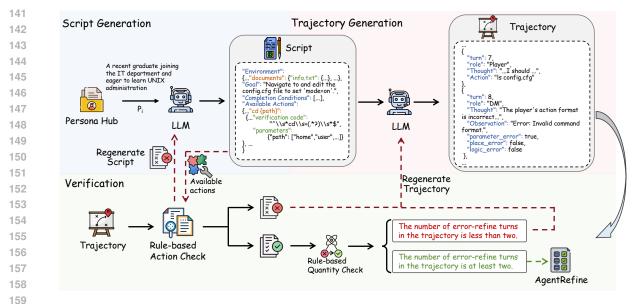


Figure 4: The pipeline of AgentRefine data generation.

162 **Script Generation** We first sample a persona p_i from diverse personas (Chan et al., 2024), and prompt the 163 LLM to generate a script with the environment, tasks, and available actions based on p_i . The environment 164 will include locations, items, and player information that may appear in the interaction. To assist the LLM 165 in understanding the environment, we prompt the LLM to display the hierarchical relationships between 166 locations/items in JSON format. We also require the LLM to generate some interfering locations/items, 167 to ensure that some erroneous steps are likely to occur during trajectory generation. After generating the environment, the LLM will generate a clear and specific task. Finally, the LLM will generate a series of 168 available actions. For each action, we require the LLM to generate an action name, validation code (a 169 regular expression), and valid parameters. The structure of the script can be seen in Appendix O. 170

171 Trajectory Generation Given a script, the LLM can simulate multi-turn interactions between the DM and 172 the player within one call. Specifically, the DM's turn is divided into three stages: thinking, observing, and 173 evaluating. In the thinking stage, we require the LLM to evaluate the player's state and known information so far and analyze the observations the player can obtain based on the last action. The observing stage will 174 provide the observations the player can obtain, while in the evaluating stage, the DM will assess whether 175 the player's last action contains parameter errors, logical errors, and location errors (act in the wrong place). 176 The player's turn is similar to ReAct, requiring the LLM to analyze the current state through thought and 177 then propose an action. The structure of the trajectory can be found in Appendix P. 178

Verification The verifier will check both the script and the trajectory. In script part, to ensure the validity of the action names, we apply the validation code on the action names and only save the script if all actions pass the validation ¹. In the trajectory part, if the generated trajectory has: (1) JSON format error at a certain turn t, (2) The task is not completed in the final turn t - 1 (3) In the player's t turn its action can not match any validation code with corresponding parameters and the DM does not provide a parameters error in turn t + 1, we will save all previous turns up to t - 1 and prompt the LLM to continue generating. If the DM evaluates that the task is completed but the number of error-refine turns in the trajectory is less than two, we

¹Due to the near-infinite parameter space of actions in virtual environments such as code editing, answering, and searching, these actions will not be verified in both script generation and trajectory generation will provide all turns to the LLM and require it to regenerate the trajectory from the beginning. Detailed verification steps can be seen in Appendix R.

3.2 GENERATION SETUP

191

192

198 199

200

201

202

203

204

211 212

213

We use gpt-4o-2024-05-13 to generate the script and trajectory. We will save all trajectories that can pass verification in 4 LLM calls (including script generation and trajectory generation). We primarily adopt the 1-shot trajectory example approach in trajectory generation and the 3-shot script examples in script generation to help LLM follow the format and give a diversified result. In Appendix I, we use deepseek-v2.5 (Liu et al., 2024) as the open-source LLM to generate the script and trajectory.

3.3 REFINEMENT TUNING

After generating the complete trajectory, we convert the trajectory into a Refinement Tuning dataset D_{RT} , specifically, the user turn is the DM's observation, while the assistant turn is the Player's thought and action, in ReAct (Yao et al., 2022) format. To prevent interference from error turns generated by the LLM, we changed the loss function $J(\theta)$, as shown in Equation 1 where N_x is the total turn number of a given data x, T_j, A_j, O_j is the thought, action, and observation in turn j. If A_j is correct $\mathbf{1}(A_j) = 1$ else $\mathbf{1}(A_j) = 0$.

$$J(\theta) = \mathbb{E}_{x \sim D_{RT}} \left(\sum_{i=1}^{N_x} \log \left(\pi_\theta \left(T_i, A_i | I, \{ T_j, A_j, O_j \}_{j=0, \dots, i-1} \right) \mathbf{1}(A_j) \right) \right)$$
(1)

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Training We use the LLaMA3-base series models (Dubey et al., 2024) for most of our experiments. For mistral (Jiang et al., 2023), we use mistral-v0.3. We applied the original llama3 (or mistral)'s multi-turn chat template. We use LLaMA-Factory (Zheng et al., 2024) to train our models. The training hyperparameter details can be seen in Appendix D.

Tasks We select 5 tasks: SciWorld (Wang et al., 2022), Alfworld (Shridhar et al., 2020), BabyAI (Chevalier-219 Boisvert et al., 2018), PDDL (Vallati et al., 2015), and Jericho (Hausknecht et al., 2020), all of them are 220 testing models' decision-making ability. We use the AgentBoard (Ma et al., 2024) framework for experi-221 ments, this framework can determine whether the agent has completed all tasks (success rate) and whether 222 the agent has reached key nodes (progress rate). The Held-in task refers to Alfworld, while the Held-out tasks 223 are the results obtained by the weighted average of other tasks based on AgentBoard (Ma et al., 2024) We 224 change AgentBoard's prompts from Act-only to ReAct and the historical thought, action, and observation 225 will be transformed into the chat format instead of plaintext. We adjusted the example prompts on Llama-226 3-8B-Instruct and never changed them during this work. (except §4.3). The max turn is 30 for all tasks in 227 inference. During inference, we will only use environment feedback instead of using GPT4's judgement.

Baseline For the close-source model, we choose GPT-40 (gpt-40-2024-05-13) and GPT40-mini (gpt-40-mini-2024-07-18). For the open source model, we choose Meta-Llama-3-8B-Instruct, Meta-Llama-3-70B-Instruct, and Mistral-7B-Instruct-v0.3. For fine-tuned mode, we choose Agent-FLAN (Chen et al., 2024), AgentGym (Xi et al., 2024), and AgentGen (Hu et al., 2024) as the baseline. They are all trying to solve the agent generalization problem. Agent-FLAN is an improvement of AgentTunning (Zeng et al., 2023), focusing on training "thought" in ReAct. AgentGym uses lots of environments to ensure generalization and AgentGen uses LIMA (Zhou et al., 2024) to synthesize diversified agent-tuning data. Agent-FLAN

Method	Alfv	vorld	Bal	oyAI	SciV	Vorld	PD	DL	Jer	icho
	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress
				GPT Se	ries					
GPT-40	66.4	79.9	48.2	64.1	40	76.9	61.7	69.8	10.0	34.0
GPT-4o-mini	37.3	65.0	36.6	51.9	23.3	49.8	25.0	49.1	10.0	28.5
			1	LaMA-3-8	B Series					
LLaMA-3-8B-Instruct	22.4	46.1	45.5	56.5	7.8	41.1	10.0	38.4	0.0	24.3
AgentGen	29.1	47.6	20.5	35.0	-	-	11.7	23.0	-	-
AgentGym	<u>61.9</u>	76.9	<u>47.3</u>	<u>61.4</u>	18.9	47.5	1.7	16.6	0.0	12.9
Agent-FLAN	67.2	79.7	25.0	35.3	1.1	10.9	8.3	25.5	0.0	10.1
AgentRefine	44.8	63.8	37.5	50.4	14.4	42.6	16.6	37.8	10.0	32.3
				Mistral S	eries					
Mistral-7B-Instruct-v0.3	12.4	35.9	36.6	45.8	6.7	24.7	13.3	27.8	0.0	17.3
AgentGym	76.9	86.7	40.2	56.3	15.6	48.3	1.7	7.3	0.0	13.0
Agent-FLAN	77.6	87.6	15.2	21.0	0	6.7	0	3.2	0.0	0.7
AgentRefine	51.4	68.8	25.9	42.4	4.4	22.4	11.7	32.8	5.0	28.8
			L	LaMA-3-70	B Series					
LLaMA-3-70B-Instruct	67.2	75.2	48.2	61.8	42.2	75.4	55.0	79.8	25.0	46.4
Agent-FLAN	80.5	86.8	32.1	41.2	5.5	16.4	25.0	53.7	0.0	13.6
AgentRefine	67.2	72.1	44.6	59.7	17.7	46.4	38.3	58.6	15.0	37.2

Table 1: Main Results. The underlined text indicates that the training data is sampled in the same environment as the task and is considered as held-in evaluation. We use the original result in AgentGen and reproduce AgentGym and Agent-FLAN's results.

includes Alfworld in its training set. AgentGym includes Alfworld, BabyAI, and SciWorld in its training set. These datasets will be seen as Held-in test tasks for the corresponding method. Since Agent-FLAN and AgentGym's original model is LLaMA2-Chat, for a fair comparison, we reproduce them under LLaMA3 and Mistral. Since AgentGym has not open sourced, we only report the result in (Hu et al., 2024)

4.2 MAIN RESULTS

253

254

255

256 257

258

259

260

261 262

263

264 Table 1 shows the performance comparison of AgentRefine and other methods across different families and 265 sizes. It is important to emphasize that some methods sample training data in the same environment as the 266 task; in such cases, we consider this task for these methods to be held-in. We identify the held-in metrics 267 for each method with an underscore. It can be observed that compared to other agent works, our method shows significant advantages in held-out tasks. For example, it leads Agent-FLAN by 13.3% in Sciworld 268 Success Rate. Notably, in some tasks, AgentRefine can even match the performance of the GPT-40 series. 269 This demonstrates the strong generalization capability of AgentRefine. ² We also observe that AgentRefine 270 can not outperform held-in training methods. However, in § 4.3, we will demonstrate that these held-in 271 methods simply memorize the mapping between observation and action, and a very small perturbation can 272 render these methods ineffective. Furthermore, we also notice that LLaMA-3-8B-Instruct exhibits very 273 strong performance in many tasks. We attribute this to its extensive use of Alignment data and additional 274 RL training. In subsequent experiments, we also mix alignment data and AgentRefine and achieve further 275 gains. 276

Effect of Refinement Tuning To further investigate the effectiveness of Refinement Tuning, we mask the loss of refinement trajectory tokens. Table 2 shows that after masking the refinement, the model's performance over 5 tasks drops dramatically. For instance, there is approximately 43% performance drop in

^{280 &}lt;sup>2</sup>To prove the generalization capability is not totally from GPT-40, we add an experiment in Appendix I where the 281 script and trajectory are generated by open-source LLM.

Method	Alfv	vorld	Bał	oyAI	SciV	Vorld	PD	DL	Jericho	
	Success	Progress								
AgentRefine	48.5	61.5	37.1	51.7	7.7	33.1	21.7	37.4	5.0	26.2
- w/o refinement loss	40.3	58.8	34.8	45.6	4.4	22.7	20.0	37.4	0.0	16.1
- w/o refinement data	49.3	65.2	30.4	43.1	5.5	21.3	11.7	32.5	0.0	13.8
- w erroneous loss	29.9	43.9	23.2	31.6	3.3	19.0	8.3	28.3	5.0	18.4

Table 2: Ablation study of Refinement Tuning. This experiment is in the data size of 8000.

Sciworld which, to some extent, reflects the necessity of Refinement Tuning for Agent tasks. we also regenerated a training set without error and refinement trajectories, which completely eliminates the impact of Refinement Tuning. From Table 2, we can observe that the model trained on data without refinement trajectories experiences a similar magnitude of performance drop across all tasks.

In our proposed Refinement Tuning, we mask the loss of erro-296

neous turn tokens to prevent the model from learning incorrect 297 thought processes. To verify whether this process is necessary, 298 we train a model learning all assistant turn tokens on the same data. Table 2 shows that the model learned erroneous tokens 300 results in very adverse consequences, with nearly a 75% drop 301 in Sciworld. This conclusion is contrary to (Ye et al., 2024). 302 In fact, we find that the model's performance on these tasks 303 can continue to drop to a low level with the continued learn-304 ing of data with erroneous trajectories. We believe that at least 305 for agent Refinement Tuning, eliminating the loss of erroneous turns is crucial. Otherwise, models will learn incorrect reason-306 ing processes, leading to poor performance on held-out tasks. 307

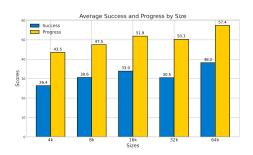


Figure 5: The model's performance as the AgentRefine train data scales up.

308 Scaling AgentRefine We experiment and analyze the relation-

309 ship between the data size of the AgentRefine training set and model performance, with the results shown in 310 Figure 5. From the results, we can observe that the model demonstrates significant gains in performance as 311 the data size increases from 4k to 64k, which illustrates the effectiveness of the AgentRefine data.

312 313 314

315

321

289 290 291

292

293

294

295

4.3 **ROBUSTNESS ANALYSIS**

Previous work has extensively trained on held-in tasks but shows poor performance on held-out tasks. One 316 possible reason is that models simply memorize the key-value pairs between observation and actions from 317 training data, rather than learning to infer correct actions based on the task and observation. To test the 318 hypothesis above, we conduct data perturbation experiments on a held-in task. Specifically, we select the 319 Alfworld, which belongs to the held-in category for both AgentGym and Agent-FLAN. We perturb the 320 candidate actions in Alfworld ensuring that the perturbed ones consist of different tokens (or token order) but express the same semantic information. The detail perturbation rules are shown in Appendix N. 322

323																	
0-0	Model	Alfv	vorld	Pertur	oation 1	Pertur	bation 2	Perturb	pation 3	Perturb	pation 4	Perturb	pation 5	Ave	rage	S	Std
324		Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress
005	LLaMA3-8B-Instruct	22.4	46.1	23.1	45.6	24.6	45.0	17.9	45.1	17.9	45.1	22.4	46.1	21.4	45.5	2.68	0.47
325	AgentGym	61.9	76.9	29.1	59.2	49.2	65.3	32.8	53.9	38.8	48.2	5.9	28.7	36.3	55.4	19.97	16.66
326	Agent-FLAN AgentRefine	67.2 44.8	79.7 63.8	21.6 50.0	58.8 66.5	51.4	71.3 66.7	27.6 54.5	53.5 70.0	52.2 45.5	67.9 60.6	1.5 44.8	19.7 63.8	36.9 48.5	58.5 65.2	21.98 3.73	22.53 3.56
520	AgentKenne	44.0	05.8	50.0	00.5	51.5	00.7	54.5	70.0	45.5	00.0	44.0	05.8	46.5	05.2	5.75	5.50

Table 3: Performance for different models across various perturbations.

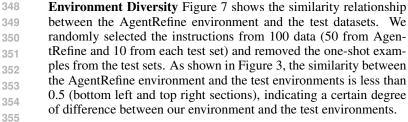
329 Table 3 shows the experimental results. It can be observed that simple data perturbation leads to a significant 330 performance drop on the original held-in task. For example, under the average score, AgentGym's Success 331 Rate drops by 25.6%, while Agent-FLAN experiences an even more severe performance decline of 30.4%. 332 Their standard deviation is close to 20%. In comparison, Our AgentRefine has a 3.7% increase in the 333 average and low standard deviation, 3.73%, indicating that it learns decision-making capabilities rather than 334 just simple memorization.

335 336

337

4.4 DIVERSITY ANALYSIS

338 Thought Diversity Figure 6 illustrates the distribution of chain-339 of-thought diversity across three agent datasets. We extracted the 340 thought content from all ReAct rounds and vectorized them. We 341 randomly sampled 8100 data from all thoughts and visualized them 342 via dimensionality reduction using t-SNE (Van der Maaten & Hinton, 2008). Compared to Agent-FLAN and AgentGym, the data of 343 AgentRefine are more widely distributed and numerous in Figure 6, 344 indicating a higher diversity of thoughts in AgentRefine. This sug-345 gests that the AgentRefine data can better teach the model to think 346 diversely, achieving a broader exploration space. 347



Best-of-N Table 4 presents the performance of the three agents 356 on Best-of-N (BoN). We set the decoding temperature to 1, ex-357 ecuted each target task ten times, and took the highest score as 358 the progress rate. If there was at least one successful result 359 among the ten executions, the success rate would be 1; oth-360 erwise, it would be 0. The results in Table 4 show that the 361 BoN performance using any training data is always better than 362 greedy, with the improvement of AgentRefine being particu-363 larly notable, averaging over 25%. The marked improvement 364 of AgentRefine compared to the other two datasets is likely 365 due to its higher diversity and quality of chain-of-thought. It 366 also demonstrates that existing agent-tuning models have great potential. To gradually improve the model's performance, this 367 result suggests that we should construct better reinforcement 368 learning agent data towards generalization in future work. 369

- 370
- 371 4.5 CASE STUDY
- 372

Figure 6: The t-SNE figure among Agent-FLAN, AgentGym, and AgentRefine's Thought.

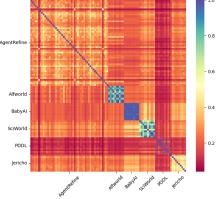


Figure 7: The similarity heatmap between different environments in 6 sources.

373 Figure 8 presents examples of Agent-FLAN and AgentRefine in Jericho and Sciworld. The cases show that 374 Refinement Tuning can enhance the diversity and quality of the model's thinking, which helps improve the model's exploration breadth and efficiency and avoid always getting stuck in loops in a new environment. 375

387 388

390

405 406 407

Model	Alfv	vorld	Bał	oyAI	SciV	World	PD	DL	Jer	icho
-	Success	Progress								
AgentGym-greedy	61.9	76.9	47.3	61.4	18.9	47.5	1.7	16.6	0.0	12.9
AgentGym-BoN	99.3	99.3	73.2	87.2	58.9	85.6	16.6	42.1	5.0	22.2
Δ	37.4	22.4	25.9	25.8	40.0	38.1	14.9	25.5	5.0	9.3
Agent-FLAN-greedy	67.2	79.7	25.0	35.3	1.1	10.9	8.3	25.5	0.0	10.1
Agent-FLAN-BoN	85.5	98.1	43.8	56.7	10.0	33.5	11.7	39.8	5.0	22.2
Δ	28.3	18.4	18.8	21.4	8.9	22.6	3.4	14.3	5.0	12.1
AgentRefine-greedy	44.8	63.8	37.5	50.4	14.4	42.6	16.6	37.8	10.0	32.3
AgentRefine-BoN	93.3	96.6	67.0	81.5	40.0	71.0	30.0	57.3	25	52.5
Δ	48.5	32.8	29.5	31.1	25.6	28.4	13.4	19.5	15.0	20.2

Table 4: Best-of-N results among three methods.

a) Je	richo	(b) Sc	iWorld
get out of your cell out into the corri use a distraction.	non, locked in your cell. You need to dor without getting caught. You could a key after some turns) AgentRefine	thermometer in the kitchen If the place it in the orange box	around the bedroom. You can find the metal fork is above 0.0 degrees celsius, in the kitchen after some turns) AgentRefine
 Thought n: There are no actions available to escape from the ship. I should go back to the cell and try to find the key again. Action n: go to cell Observation n: You can't see any such thing. Thought n+1: I can't find the key in the cell anymore. It seems I've lost it Action n+1: check valid actions (repeat above action to the end)	 Thought 13: Looks like I got caught. I need to try again. Perhaps a different approach might work. Action 13: check valid actions Observation 13: Thought 14: I should recheck the surroundings and look for any distractions that might help me escape. Action 14: Look Observation 14: Thought 26: I'm being caught again. I need to use some sort of distraction I should interact with the pressure gauge. Action 26: push guage	Thought 6: I need to find the fork In the kitchen. It might be in the drawer or on the countertop. Action 6: go to drawer Action 7: go to countertop Thought 12: The fork is not in the inventory either. Yve run out of places to check. [II have to give up and restart the task. Action 12: task restart	Action 2: go bedroom Observation 2: No known action Thought 5: I see that 'go bedroom' is not a valid action. I should ity navigating to another location related to the task. Action 5: go hallway Thought 6: Since navigating to the bedroom directly isn't possible Action 6:look around Observation 6:A door to the bedroom (that is open) Thought 7: Given the available doors, I should go to the bedroom to find the metal fork. Action 7: go bedroom

Figure 8: Comparison case study on Jericho and SciWorld between Agent-FLAN and AgentRefine.

In Jericho, Agent-FLAN mistakenly believes it is not in the cell and attempts to go to cell. After failing, it chooses to check valid actions. Although check valid actions is a correct choice, Agent-FLAN does not correct its erroneous decision based on the returned results and repeats the go to cell and check valid actions error loop. In contrast, AgentRefine, upon realizing its actions are not achieving the goal, tries various new methods instead of endlessly repeating previously tried incorrect actions.

In Sciworld, Agent-FLAN ignores the hint in the Goal that the *fork is in the bedroom* and chooses to 413 search in the *kitchen*. Additionally, Agent-FLAN, having memorized the Alfworld dataset, attempts to out-414 put locations can only be found in Alfworld (drawer, countertop, and the action format go to $\{place\}$), 415 which do not exist in SciWorld. Conversely, AgentRefine can clearly find the *thermometer* and decide 416 to go bedroom to search for the fork. After go bedroom fails, it decides to go hallway based on sev-417 eral rounds of observation. In Thought 6, although AgentRefine mistakenly believes it cannot reach the 418 bedroom, its judgement shows it can revise its decisions using short-term memory (from turn 2). When 419 Observation 6 provides clear information about the bedroom, AgentRefine can correct its wrong decision 420 in *Thought* 6 and reach the *bedroom*. This indicates that AgentRefine's improvement in results is not due 421 to memorizing prior knowledge from training data but rather its ability to efficiently utilize and integrate 422 multiple key pieces of information from short-term memory to correct errors in historical decisions.

423 4.6 GENERALIZATON BETWEEN GENERAL DATA AND AGENT DATA

Both Agent-FLAN and AgentTuning have found that incorporating general data can enhance the model's generalization ability. This improvement arises from the improvement of instruction-following capability.
Figure 9 shows the changes in model performance after incorporating
ShareGPT. Aligned with them, we also found that general data like
ShareGPT can continually improve the model's Held-out task performance.

Figure 9: The success rate by incorporating ShareGPT

5 RELATED WORK

435 Agent Finetuning To enhance the decision-making capabilities of open-source models, a series of works 436 currently focus on training Agent trajectories. A small number of models choose the decompose-then-437 execution paradigm (Yin et al., 2024), while the majority opt for using ReAct (Yao et al., 2022). Most 438 works sample from the dataset and train the model using methods such as SFT or DPO (Rafailov et al., 439 2024) to improve their ability to handle Held-in problems(Zeng et al., 2023; Hu et al., 2024; Xi et al., 440 2024; Chen et al., 2024). AgentTuning, Agent-FLAN, and AgentGen attempt to train generalizable agent 441 models. AgentTuning and Agent-FLAN have found that using general data like ShareGPT can improve 442 generalization. AgentGym aims to enhance generalization by enabling the model to continuously learn new tasks and treating all tasks as Held-in. AgentGen is the first to attempt direct environment synthesis, 443 improving generalization by enhancing the diversity of training data. 444

445 Data Synthesis Due to the impending depletion of web data, the use of synthetic data has become a research 446 hotspot. The synthesis can be divided into query synthesis and response synthesis. Most agent-tuning 447 approaches synthesize the response in different ways like the plan (Yin et al., 2024), ReAct format (Zeng et al., 2023), JSON format (Zhang et al., 2024), chat format (Chen et al., 2024), pair format (Xiong et al., 448 2024), or evaluation of the state knowledge (Qiao et al., 2024), etc. The other way is to synthesize queries, 449 like evolving a given query (Xu et al., 2023) or using pre-train data as a seed to generate new data (Chan et al., 450 2024). Among agent research, only AgentGen explores query synthesis. AgentRefine tries to synthesize 451 queries and responses at the same time and uses a verifier to supervise the quality of the responses. 452

Self-Refine Self-refine refers to the process where a model iteratively generates better results through feedback. SELF-REFINE (Madaan et al., 2024; Huang et al., 2023) finds GPT-4 can find and correct mistakes
itself with a refinement pipeline. AgentRefine trains models to develop step-level refinement abilities. This
means the model can spontaneously adjust its decision processes based on feedback from the environment,
rather than relying on compulsory guidance from a pipeline at instance-level. AgentRefine is also the first
approach to identify the connection between step-level refinement and agent generalization.

- 6 CONCLUSION
- 461 462

459 460

432 433

434

In this work, we study the generalized agent abilities for open-source LLMs via agent tuning. Current work performs well on held-in evaluation sets but fails to generalize to held-out sets because of overfitting to several manual agent environments. We present the AgentRefine approach to enable the model to correct its mistakes based on the environment feedback. Experiments demonstrate that AgentRefine significantly outperforms state-of-the-art agent-tuning work in terms of generalization ability on diverse agent benchmarks. Our analysis shows that self-refinement enables the robustness of agent capability and the diversity of agent environments and thoughts further enhances the performance. We hope to provide new insight for future agent research.

470 REFERENCES

478

494

510

- 472 Significant-gravitas/autogpt: Autogpt is the vision of accessible ai for everyone, to use and to build on.
 473 our mission is to provide the tools, so that you can focus on what matters. https://github.com/
 474 Significant-Gravitas/AutoGPT. (Accessed on 09/29/2024).
- gpt-engineer-org/gpt-engineer: Platform to experiment with the ai software engineer. terminal based.
 note: Very different from https://gptengineer.app. https://github.com/gpt-engineer-org/
 gpt-engineer. (Accessed on 09/29/2024).
- yoheinakajima/babyagi. https://github.com/yoheinakajima/babyagi. (Accessed on 09/29/2024).
- Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.
- Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language models. <u>arXiv</u> preprint arXiv:2403.12881, 2024.
- Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded
 language learning. arXiv preprint arXiv:1810.08272, 2018.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/
 blog/2023-03-30-vicuna/.
- Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
 Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing Systems, 36, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. <u>arXiv preprint</u>
 arXiv:2407.21783, 2024.
- Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran Xu. Preact:
 Predicting future in react enhances agent's planning ability. <u>arXiv preprint arXiv:2402.11534</u>, 2024.
- Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interactive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 7903–7910, 2020.
- Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, Saravan Rajmohan, and Dongmei Zhang. Agentgen: Enhancing planning abilities for large language model based agent via environment and task generation. arXiv preprint arXiv:2408.00764, 2024.

 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. <u>arXiv preprint arXiv:2310.01798</u>, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

547

548

- Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. <u>arXiv preprint arXiv:2405.04434</u>, 2024.
- Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
 Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents. arXiv
 preprint arXiv:2401.13178, 2024.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
 Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
 Advances in Neural Information Processing Systems, 36, 2024.
- Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann Le-Cun, and Thomas Scialom. Augmented language models: a survey. <u>Trans. Mach. Learn. Res.</u>, 2023, 2023. URL https://api.semanticscholar.org/CorpusID:256868474.
- Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model, 2024. URL https: //arxiv.org/abs/2405.14205.
- Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
 Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. <u>arXiv</u>
 preprint arXiv:2307.16789, 2023.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
 Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
 Information Processing Systems, 36, 2024.
- Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations
 enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM
 SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.
 - Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. <u>Advances in Neural Information Processing Systems</u>, 36, 2024.
- Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint
 arXiv:2010.03768, 2020.
- Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architectures for language agents. <u>Trans. Mach. Learn. Res.</u>, 2024, 2023. URL https://api.semanticscholar. org/CorpusID:261556862.
- Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, Scott Sanner, et al. The
 2014 international planning competition: Progress and trends. Ai Magazine, 36(3):90–98, 2015.
- Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
 research, 9(11), 2008.
- Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is your
 agent smarter than a 5th grader? arXiv preprint arXiv:2203.07540, 2022.

- Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based agents across diverse environments. <u>arXiv preprint arXiv:2406.04151</u>, 2024.
- Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng, and
 Sujian Li. Watch every step! Ilm agent learning via iterative step-level process refinement. arXiv preprint
 arXiv:2406.11176, 2024.
- Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions. <u>arXiv preprint</u> <u>arXiv:2304.12244</u>, 2023.
- Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering.
 <u>arXiv preprint arXiv:1809.09600</u>, 2018.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. <u>arXiv preprint arXiv:2210.03629</u>, 2022.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. <u>Advances in Neural Information</u> Processing Systems, 36, 2024.
- Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.2, how to learn from mistakes on grade-school math problems, 2024. URL https://arxiv.org/abs/2408. 16293.
- Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
 Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents. In
 Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
 Long Papers), pp. 12380–12403, 2024.
- Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
 Enabling generalized agent abilities for llms. <u>arXiv preprint arXiv:2310.12823</u>, 2023.
- Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liangwei
 Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline for effective
 agent learning. arXiv preprint arXiv:2402.15506, 2024.
- Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 19632–19642, 2024.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
 Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
 Advances in Neural Information Processing Systems, 36:46595–46623, 2023.
- Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified efficient fine-tuning of 100+ language models. <u>arXiv preprint arXiv:2403.13372</u>, 2024.
- Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent tree search unifies reasoning acting and planning in language models. <u>arXiv preprint arXiv:2310.04406</u>, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. <u>Advances in Neural Information Processing</u> Systems, 36, 2024.

ETHICS STATEMENT

When using a large amount of open-source resources for data synthesis, an important issue is the generation of harmful and malicious data. In our work, we use Persona-Hub, a synthesized dataset that has undergone security processing. We use it to synthesize tasks and environmental information, which pass our secondary review and are safe to use. However, our method may have potential risks of misuse, such as enhancing LLM's capabilities in malicious agent tasks, like generating attack codes. Therefore, adhering to ethical guidelines is crucial to ensuring the responsible use of this technology.

A TASKS STATISTIC

Table 5 presents the number of test data and domains in the 5 tasks. These number calculates the Held-out Task score. Specifically, Held-out Task score =(BabyAIscore*112+SciWorldscore*90+PDDLscore*60+Jerichoscore*20)/282

task	Alfworld	BabyAI	SciWorld	PDDL	Jericho
#num	134	112	90	60	20
Domain	Science Experiment	Household Tasks	Robot Exploration	Strategy Games	Long Text Games

Table 5: tasks statistic in AgentBoard. #num refers to the number of data for testing.

B THE HISTORY OF AGENT-TUNING

In recent years, LLM-Based Agents have become a popular paradigm. However, improving LLM performance on agent tasks during the post-training phase remains a challenging issue. Previous work typically sampled and trained in fixed environments (with Held-in data that is distributionally similar to the test data)(Xi et al., 2024), which significantly improved performance on specific tasks (test sets that are distributionally similar to the training data). However, performance drops sharply once the task changes.

AgentTuning (Zeng et al., 2023) was the first to recognize this issue by adding a portion of general alignment
 data to the single-agent data, alleviating the problem and demonstrating initial generalization capabilities.
 Agent-FLAN (Chen et al., 2024) further improved the single-agent data, enhancing the model's generalization in agent tasks.

In our work, we demonstrate that the above approaches still have significant limitations in terms of general ization, specifically in terms of easily overfitting on single data sets, getting stuck in reasoning, and learning
 incorrect reasoning patterns (as discussed in Figure 2, Figure 8, and Section 4.3, etc.). To address this is sue, we increased the diversity of training agent data through synthetic data, significantly alleviating the
 model's overfitting problem. Additionally, we add refinement steps in the trajectory. We show that whether
 the training data includes the refinement process affects the model's reasoning pattern, and adding synthetic
 refinement processes greatly enhances the generalization performance of LLMs.

C SYNTHESIS DATA WITH PERSONA TO MAINTAIN DIVERSITY

Persona represents diverse and rich information content. Persona hub (Chan et al., 2024) contains 1,000,000,000 personas after filtering via diverse. If the filter cosine similarity is 0.5, it can still generate 1 million diverse personas. The persona hub also demonstrated that the data generated via the persona hub has similar diversity to the persona data and its scaling experience shows that data generated via the persona hub is not yet saturated at the size of 1M under math problem.

D TRAINING HYPER PARAMETER

For all models, the learning rate is 5e-6 with a cosine learning rate scheduler and no warm-up steps. The
batch size is 64. The max length is 8192 for 7/8b models and 4096 for 70b models due to limited storage for
DeepSpeed (Rasley et al., 2020) usage. Aligned with Agent-FLAN, we choose AgentRefine with 32000 data
for the default training setting. Aligned with AgentGen (Hu et al., 2024), we train our model for 10 epochs
and select the checkpoint with the best average results to report. We also modified the LLaMA-Factory's
SFT loss to Equation 1. Other settings are aligned with LLaMA-Factory's default settings.

E COMPARISON AMONG AGENT DATASETS

Table 6 compares the number of trajectories, the methods to obtain environments and trajectories, the held-in
tasks in the AgentBoard benchmark, and the availability of refinement steps among Agent-FLAN, AgentGym, AgentGen, and AgentRefine. AgentRefine can easily scale its data and includes refinement steps in
the training set. AgentGen and our work are contemporary. Our commonality lies in synthesizing diverse
environments, but we place more emphasis on enhancing refinement abilities.

Method	Trajectory num	Environment construction	Trajectory construction	Held-in environment	Refinement step
Agent-FLAN	34440	manual	sampled	Alfworld	No
AgentGym	14485	manual	sampled	Alfworld, BabyAI, SciWorld	No
AgentGen	7246	synthetic	sampled	N/A	No
AgentRefine	(max) 64000	synthetic	synthetic	N/A	Yes

Table 6: Comparison of AgentRefine with other method covers several aspects: the number of trajectories, the way to get environment, the way to get trajectory, the held-in task in AgentBoard, availability of refinement step

F IND FILTERING EXPERIMENTS

To remove the interference from IND data, we perform an experiment where we train model using data that excludes all IND training data. Agent-FLAN removes 672 samples out of 34440 samples, and AgentGym removes 5350 samples out of 14485 samples. The result in Table 7 shows that AgentRefine outperforms the other two methods in all tasks. This demonstrates that our method significantly improves over previous methods.

G REFLEXION EXPERIMENT

Table 8 presents the results with Reflexion (Shinn et al., 2024). It shows that AgentRefine outperforms other
 methods when adding Reflexion, especially in Alfworld, since AgentRefine isn't trained on any Alfworld
 data, yet it outperforms AgentGym, and Agent-FLAN, whose models are trained on Alfworld data. This
 indicates that AgentRefine can utilize Reflexion more effectively than other methods.

705	Method	Alfv	vorld	Bał	oyAI	SciV	World	PD	DL	Jer	icho
706		Success	Progress								
707	LLaMA-3-8B-Instruct	22.4	46.1	45.5	56.5	7.8	41.1	10.0	38.4	0.0	24.3
708	AgentGen	29.1	47.6	20.5	35.0	-	-	11.7	23.0	-	-
709	AgentGym w/o ind data	5.9	28.7	27.7	40.0	2.2	14.3	8.2	18.8	5.0	13.7
	Agent-FLAN w/o ind data	1.5	19.7	32.1	45.0	2.2	12.1	6.6	23.6	0.0	14.5
710	AgentRefine	44.8	63.8	37.5	50.4	14.4	42.6	16.6	37.8	10.0	32.3

Table 7: IND Filtering Experiments

714	Method	Alfv	world	Bat	уAI	SciV	Vorld	PD	DL	Jericho	
715		Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress
716	LLaMA-3-8B-Instruct + Reflexion AgentGym + Reflexion	41.2 86.5	56.2 91.8	45.5 47.3	56.5 60.9	7.8 23.3	39.4 50.6	10.0 1.7	38.4 16.6	5.0 0.0	20.9 12.1
717	Agent-FLAN + Reflexion	83.1	89.4	32.1	$\frac{00.9}{42.3}$	$\frac{25.5}{5.5}$	$\frac{30.0}{13.1}$	10.0	24.8	0.0	9.7
718	AgentRefine + Reflexion	90.3	95.6	37.5	50.4	16.6	44.5	16.6	37.8	10.0	32.7

Table 8: Reflexion Experiment. The underlined text indicates that the training data is sampled in the same environment as the task and is considered as held-in evaluation

H REASONING TASK

725 Figure 10 presents the results on HotpotQA (Yang et al., 726 2018), a reasoning task. We use Wikipedia search in LATS 727 (Zhou et al., 2023) as the environment, randomly sample 300 728 questions from HotpotQA, and test the exact match (EM) 729 and F1 score of those methods. The result shows that Agen-730 tRefine outperforms other methods on HotpotQA. It proves 731 that AgentRefine's generalization still works on reasoning problems. 732

Method	EM	F1
LLaMA-3-8B-Instruct	29.3	36.6
AgentGym	28.0	37.4
Agent-FLAN	24.6	32.4
AgentRefine	37.0	44.6

Figure 10: Model Performance on reasoning task, Hotpot QA.

I SYNTHESIS FROM OPEN SOURCE MODEL

⁷³⁶ In the main experiment, we use GPT-40 to synthesize the

737 AgentRefine data. In this chapter, we attempt to replace it with open-source models to complete the data 738 synthesis process. Table 9 shows our results under 4000 training data. It can be observed that, compared 739 to Agent-FLAN, which used GPT-4 for data synthesis, the AgentRefine data synthesized with the open-740 source model DeepSeek-v2.5 exhibits significant advantages on the held-out tasks. For example, it leads Agent-FLAN by 11.6% in the BabyAI Success Rate metric, further proving the advantages of AgentRefine. 741 Additionally, we observe a noticeable gap between the data synthesized with DeepSeek and the data syn-742 thesized with GPT-40. This indicates that using more capable models for data synthesis does indeed yield 743 higher-quality training data and results in greater performance gains. 744

745 746

747

711 712

713

719

720

721

723

724

733 734

735

J STANDARD DEVIATIONS

Table 10 shows the average and standard deviation for each task. We use the results from Table 4 (decoding temperature = 1.0 with 10 sample times). AgentRefine's average performance exceeds that of other methods by at least 2 standard deviations in most OOD tasks. This demonstrates that our method represents a significant improvement over previous methods.

758

759

768

769

770 771 772

773 774 775

776

777

778

779

780

781

782 783 784

785

Model	Alfv	vorld	Bał	oyAI	SciV	Vorld	PD	DL	Jer	icho	
	Success	Progress									
Agent-FLAN	67.2	79.7	25.0	35.3	1.1	10.9	8.3	25.5	0.0	10.1	
AgentRefine-DeepSeek	32.0	44.2	36.6	48.1	2.2	21.6	16.6	36.7	5.0	29.0	
AgentRefine-GPT-40	36.6	55.9	33.9	44.1	11.1	31.4	18.3	37.9	10.0	28.8	

Table 9: Performance on Different Synthesis Models, we synthesize 4000 data via deepseek-v2.5. The underlined text indicates that the training data is sampled in the same environment as the task and is considered as held-in evaluation

Model	Alfv	vorld	Bab	oyAI	SciV	Vorld	PD	DL	Jericho		
	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	
AgentGym	$64.3_{\pm 3.3}$	$78.0_{\pm 3.1}$	$48.2_{\pm 3.3}$	$64.2_{\pm 2.3}$	$25.5_{\pm 4.7}$	$55.4_{\pm 3.2}$	$4.5_{\pm 1.8}$	$16.9_{\pm 3.1}$	$0.0_{\pm 0.0}$	$15.3_{\pm 1.5}$	
Agent-FLAN	$54.7_{\pm 3.9}$	$71.6_{\pm 2.5}$	$31.4_{\pm 3.0}$	$41.4_{\pm 3.1}$	$1.2_{\pm 1.0}$	$11.1_{\pm 1.2}$	$3.8_{\pm 1.6}$	$16.4_{\pm 2.7}$	$0.0_{\pm 0.0}$	$10.5_{\pm 1.9}$	
AgentRefine	$\overline{60.1_{\pm 2.6}}$	$72.9_{\pm 2.4}$	$37.6_{\pm 1.3}$	$52.2_{\pm 1.9}$	$10.4_{\pm 3.2}$	$35.0_{\pm 3.2}$	$13.2_{\pm 2.0}$	$37.4_{\pm 2.2}$	$11.0_{\pm 4.6}$	$30.9_{\pm 3.2}$	

Table 10: Model's average performance and standard deviations on different data. We used a high temperature and randomly sampled 10 times. The underlined text indicates that the training data is sampled in the same environment as the task and is considered as the held-in evaluation.

K MODEL'S INSTRUCTION-FOLLOWING ABILITY

We use MT-bench (Zheng et al., 2023) to test models' instruction-following ability and use gpt-4o-2024-05-13 to judge the score.

Method	MT-bench
Agent-FLAN	3.73
+ShareGPT	5.71
AgentRefine	3.96
+ShareGPT	5.91

The score of AgentRefine is approximately 0.2 points higher than that of Agent-FLAN regardless of whether ShareGPT is incorporated. After incorporating ShareGPT, both show an improvement of about 2 points.

Figure 11: Model Performance on Different Tasks

L GPT-4 JUDGEMENT'S RELIABILITY

Figure 12 shows the comparison of GPT-4 and human judge-787 ment on whether a turn needs to be refined. We randomly 788 sampled 50 trajectories from the generated trajectory. In 789 each trajectory, we randomly sampled 1 right turn and 1 790 wrong turn. We asked the human annotator to label the cor-791 rectness of the turn. The human annotator receives the histor-792 ical thought, action, and observation before the right/wrong 793 turn as well as the right/wrong turn's thought, and action in 794 ReAct format. The results show that in the turns that GPT-4 795 labeled right, 94% are aligned with human judgment, and in 796 the turns that GPT-4 labeled wrong, 82% are aligned with human judgment. This indicates that GPT-4's judgement is reasonable.

Human	GPT-4	Right	Wrong
Right		47	9
Wrong		3	41

Figure 12: The comparison of GPT-4's judgement and human's judgement. The right column/line means it considers this turn doesn't need to be refined. The wrong column/line means it considers this turn needs to be refined.

799	Model	Alfworld		Perturbation 1		Perturbation 2		Perturbation 3		Perturbation 4		Average		STD	
800		Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress	Success	Progress
	AgentRefine	48.5	61.5	56.7	67.7	51.5	63.1	40.2	65.1	45.5	60.6	48.48	63.60	5.78	2.71
801	- w half training data	36.6	55.9	41.8	59.0	37.3	58.4	26.1	43.2	13.4	24.2	31.04	48.14	10.79	13.50
000	 w/o refinement data 	49.3	65.2	53.7	69.7	49.2	65.0	52.9	65.6	38.8	59.7	48.78	65.04	5.47	3.39
802	 w/o verification 	25.4	36.1	39.5	49.2	23.9	34.9	23.9	34.0	15.6	27.3	25.66	36.30	6.24	7.08

Table 11: Ablation study across various perturbations. We experimented with small data size (i.e.8000) and in "w half training data" setting, we use 4000 data. The w/o verification setting contains data in 3 styles: 1. The data that does not contain a refinement step. 2. The data with wrong parameter/action name but is not identified by the GPT-4. 3. The data is correct and has the refinement step (i.e. a subset of the AgentRefine data). We remove incomplete data or the data that can not be parsed into the training data

808 809 810

811 812

813

814

815 816

817 818

819

820

821 822

823

824

825 826

827

803

804

805

806

807

Μ **ROBUSTNESS ANALYSIS WITH DIFFERENT COMPONENTS**

Table 11 presents the contribution to robustness among different components. When training on 4000 data, the standard deviation of the success score is almost double that of the baseline which means the number of the training data is the most important factor for the model's robustness.

Ν PERTURBATION DETAILS

We have made 5 perturbation in Alfworld:

• Perturbation 1: change clean {obj} with {recep}, cool {obj} with {recep}, heat {obj} with {recep} to $clean \{obj\} using \{recep\}, cool \{obj\} using \{recep\}, heat \{obj\} using \{recep\} in the instruction$

- · Perturbation 2: change go to $\{recep\}$ to move to $\{recep\}$ in the instruction
- Perturbation 3: change take $\{obj\}$ from $\{recep\}$ to from $\{recep\}$ take $\{obj\}$ in the instruction
- · Perturbation 4: delete all space between item name and item number in the instruction.
- · Perturbation 5: remove all IND data in the training set and retrain the model.

We also revise the environment to adjust to these changes.

to achieve.",

"Environment" : {

SCRIPT GENERATION 0

Script Generation Format

{

"Thought" : (string, compulsory) "The design of the

state of the environment.",

"places and objects" : {

environment, goal and available actions of the player

"initial state" : (string, compulsory) "The initial

"information" : (string, optional) "The

information of the place or object, which

"<The name of the place or object>" : {

846	
847	will only be shown to player when the
848	object is examined/opened/looked or the
849	player have just step in its receptacle etc
850	•",
851	" <the information="" object="" of="" or="" place="" the="">" : (</the>
852	string, optional) "The information of the
853	place or object, which will only be provide to DM",
854	" <the name="" object="" of="" or="" place="" the="">" : {</the>
855	"information" : (string, optional) "The
856	information of the place or object,
857	which will only be shown to player when
858	the object is examined/opened/looked
859	or the player have just step in its
860	receptacle etc. It must be concrete (
861	for example, if you add information in
862	a document, you need to give the
863	important part of the document context
864	instead of a brief introduction.).",
865	"location" : (string, optional) "The relative location between the object/
866	place and its json upper level object/
867	place (i.e. receptacle).",
868	"relative location": (list of string,
869	optional) ["The relative location of
870	the places or objects in the same json
871	level."]
872	}
873	}, "relative location" : (list of string, optional)
874	["The relative location of the places or
875	objects in the same json level."]
876	},
877	"player":{
878	"information": (string, compulsory) "The player's
879	restrictions."
880	}
881	}, "Goal" : (string, compulsory) "The goal of the player to
882 883	achieve. It need to be clear (has unique and concrete
884	completion conditions), achievable and can be finished
885	by one person.",
886	"Completion Conditions" : (list of string, compulsory) [
887	"The specific conditions that the player must meet
888	to complete the task."
889], "Arrailable Detiene", . (
890	"Available Actions" : { " <the action="" name="" of="" the="">" : {</the>
891	
892	

("description" : (string, optional) "The
	description of the action.",
	"special format" : (string, optional) "The special
	format of the action. Only when the parameter
	is not in the place/object and their
	information above can use this key. (This key
	is compulsory when answering the question and
	editing the code.)",
	"verification code" : (string, compulsory) "The
	regular expression of the action.",
	"parameters" : {
	" <the name="" of="" parameter="" the="">" : (list of</the>
	string, optional) ["The value of the
	parameter if action has placeholder.
	Remember all possible parameter (the
	possible place, possible object or the possible item/text in the \"information\"
	of place/object or the imformation in the
	completion conditions) should be in the
	list. DM will strictly check the player's
	actions according to the given parameters.
	So you should give all possible parameters
	with correct name"]
	}
	}
}	
}	

P TRAJECTORY GENERATION

Trajector	y Generation Format
[
- {	
· ·	"turn": (int, compulsory) "The turn number, the first
	turn number should be 0, DM's turn number should be
	even.",
	"role": (compulsory) "DM",
	"Thought": (string, compulsory) "The thought of the DM
	, contains the analyze of the knowledge the player
	have known and the chain-of-thought to decide the
	observation.",
	"Observation": (string, compulsory) "The observation
	of the DM, contains the information the player
	should know.",

	<pre>the DM, if the player's last place", "logic_error": (bool, compulsory the DM, if the player's last available action but the obse under the action or went bac that history has been. (for e</pre>) "The error log of action matches the rvation is not changed k to the sitiuation
}	<pre>go south)", "progress_rate": (float, compulse rate of the task, the max val means task finsihed.", "finished": (bool, compulsory) "' if the task is finished, the ,</pre>	ue should be 1.0 which The flag of the task,
{	<pre>"turn": (int, compulsory) "The tr turn number should be 1, Play should be odd.", "role": (compulsory) "Player", "Thought": (string, compulsory) Player, contains the chain-of action. You should remove th beginning of this string in t although DM should ask for th turn.", "Action": (string, compulsory) "" Player, its format and the pa the script. You should remove the beginning of this string although DM should ask for th turn."</pre>	"The thought of the "The thought to decide the e \"Thought:\" at the he json output, is format in the first The action of the trameter MUST follow the \"Action:\" at in the json output,
Q Erro	DR TURN STATISTICS	e international and a second an

R TRAJECTORY VERIFICATION

Algorithm 1 presents the Trajectory Verification pipeline.

991	Alg	gorithm 1 Trajectory Verification
992		
993		
994		Input: Available Actions, Trajectory, Verified Trajectory
995	2:	# The Verified Trajectory will be set to an empty list if this is the first verification of the persona or the
996		last generation's fault is $error_num \le 1$
997		Initialize: error_num=0
998	4:	if JSON format verification does not pass then
999	5:	· · · · · · · · · · · · · · · · · · ·
		end if
1000	7:	for turn in Trajectory do
1001	8:	if JSON keys in turn do not match the requirement then
1002	9:	return Verified Trajectory and the signal
1003	10:	
1004	11:	
1005	12:	
1006	13:	$\partial \partial $
1007	14:	if Player's action doesn't match any $action_i$ (and its parameter) in Available Actions then
1008	15:	return Verified Trajectory and the signal
1009	16:	end if
	17:	end if
1010	18:	end if
1011	19:	if DM's turn then
1012	20:	if Error signal then
1013	21:	$\operatorname{error_num} += 1$
1014	22:	end if
1015	23:	if This is the last turn then
1016	24:	# The last turn should not have any error
1017	25:	if Error signal then
1018	26:	return Verified Trajectory and the signal
1019	27:	end if
	28:	# The last turn should finish the task
1020	29:	if No 'Task Succeed' in Observation then
1021	30:	return Verified Trajectory and the signal
1022	31:	end if
1023	32:	# We need at least 2 error-refine turns.
1024	33:	if $error_num \leq 1$ then
1025	34:	return Verified Trajectory and the signal
1026	35:	end if
1027	36:	end if
1028	37:	end if
1029	38:	Verified Trajectory \leftarrow Verified Trajectory + turn
	39:	end for
1030		
1031		
1032		