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ABSTRACT

Multi-scale information is crucial for multivariate time series modeling. How-
ever, most existing time series multi-scale analysis methods treat all variables in
the same manner, which is not well adaptive to Irregular Multivariate Time Se-
ries (IMTS), where different variables have distinct original scales/sampling rates.
Therefore, extracting temporal and inter-variable dependencies at multiple scales
in IMTS remains challenging. To fill this gap, we propose a hierarchical patch
graph network Hi-Patch. The key components of Hi-Patch are an intra-patch
graph layer and several inter-patch graph layers. The intra-patch graph layer flex-
ibly represents and fully captures both the local temporal and inter-variable de-
pendencies of densely sampled variables at the original scale by employing fully
connected graph networks within each patch, and obtains patch-level node repre-
sentations through aggregation. Subsequently, several inter-patch graph layers
are stacked to form a hierarchical architecture, where each layer updates spe-
cific patch-level nodes through scale-specific graph networks, progressively rep-
resenting and extracting more global temporal and inter-variable features of both
sparsely and densely sampled variables, and further aggregating to produce the
next patch-level node representations. The output of the last inter-patch graph
layer is fed into task-specific decoders to adapt to different downstream tasks.
Experimental results on 8 datasets show that Hi-Patch outperforms a range of
state-of-the-art models in both IMTS forecasting and classification tasks.

1 INTRODUCTION

Time series analysis has important applications in various fields such as healthcare (Lan et al., 2024),
climate forecasting (Verma et al., 2024) and traffic planning (Li et al.). Due to the complexity and
non-stationarity of real-world systems (Wang et al., 2024a), multivariate time series often exhibit
different variations and fluctuations at different scales (Chen et al., 2024a). Previous studies (Wang
et al., 2024b; Chen et al., 2024a; Cai et al., 2024) have demonstrated that effectively capturing
multi-scale features of multivariate time series is essential for time series modeling.

Due to sensor malfunctions, varying sampling sources, or human factors, the final sampled time
series often exhibits irregularities in real-world applications, resulting in Irregular Multivariate Time
Series (IMTS). The peculiarity of IMTS lies in two aspects: firstly, the sampling interval within
each variable is uneven. Secondly, asynchronous observations of different variables have distinct
sampling rates. The subgraph in the bottom left corner of Figure 1 illustrates an IMTS example with
two variables.

As a unique type of multivariate time series, IMTS also exhibits the inherent multi-scale characteris-
tics of time series. Unfortunately, many of the existing multi-scale analysis methods have limitations
in mining the multi-scale characteristics of IMTS. The mainstream approach of these methods is to
downsample or segment the original series based on several fixed time steps (Challu et al., 2023;
Shabani et al., 2023), thereby forming several views that reflect features at different scale levels, as
shown in the top row of Figure 1. On this basis, global temporal and inter-variable dependencies
are extracted from coarse-grained views, while local dependencies are extracted from fine-grained
views. This approach assumes that all variables have a consistent original scale so that each down-
sampled view consistently reflects the features of all variables at the same granularity level, thereby
achieving consistent separation of multi-scale patterns for all variables.
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Fine-grained Features Coarse -grained Features

Figure 1: Comparison of downsampling results of two variables for a regular (top row) and an irreg-
ular (bottom row) multivariate time series with step sizes of 1 (left column), 2 (middle column) and
4 (right column). Regular time series exhibit a consistent feature level at a specific downsampling
scale, while irregular time series contain mixed feature levels at a specfic downsampling scale.

However, in IMTS, some variables have only a few sampling points and do not possess fine-grained
features themselves, making their downsampled view meaningless (e.g., the variable V0 in Figure
1). Some other variables are densely sampled and require multiple downsampling steps to reflect
global patterns (e.g., the variable V1 in Figure 1). In such cases, it is difficult to determine a con-
sistently suitable downsampling level for all variables, making existing methods infeasible from the
beginning. Furthermore, in IMTS, a downsampled view can contain mixed granularity features, as
shown in the bottom row of Figure 1, but existing methods tend to extract and analyze a consistent
feature at a specific scale, which are difficult to handle mixed features. Additionally, despite the dis-
tinct scales/sampling rates occurring among variables in IMTS, they are not entirely independent but
exhibit correlations(Zhang et al., 2022). Specifically, variables in MTS may display different inter-
variable correlations at different time scales (Cai et al., 2024). How to extract multi-scale temporal
dependencies while considering inter-variable correlations across different scales in IMTS, where
variables have distinct original scales, remains a major challenge in IMTS modeling.

To address this gap, we propose Hi-Patch, a hierarchical patch graph network. Hi-Patch is based
on the concept of patching, which has been recently proven to be effective in capturing local tem-
poral dependencies (Nie et al., 2023; Chen et al., 2024a; Zhang et al., 2024). Hi-Patch first divides
the original observation set into multiple patches based on a short time span. Then, an intra-patch
graph layer flexibly represents and fully captures local temporal dependencies of densely sampled
variables and their correlations with other variables at the original scales by employing a fully con-
nected graph network within each patch. Subsequently, to capture dependencies at a larger scale,
the nodes are aggregated to obtain patch-level feature nodes as inputs for several inter-patch graph
layers. Each inter-patch graph layer receives specific patch-level nodes which are obtained through
node aggregation of the previous layer, thereby forming a hierarchical architecture. These inter-
patch graph layers gradually extract more global temporal and inter-variable dependencies that both
densely and sparsely sampled variables possess through scale-specific graph networks. The output
of the last inter-patch graph layer is finally fed into specific task decoders to adapt to different down-
stream tasks. During this process, each intra/inter-patch graph layer handles features at a specific
scale. Fine-grained features of densely sampled variables are extracted in the lower layers, while
coarse-grained features of all variables are extracted in the upper layers, achieving complete ex-
traction of mixed multiple granularities temporal and inter-variable correlations in IMTS. Our main
contributions are summarized as follows:

• We introduce the intra-patch/inter-patch graph layers to flexibly represent and fully extract
features of specific variables in IMTS at specific scales.

• We propose Hi-Patch, using hierarchical architecture to effectively achieve multi-scale
modeling of IMTS from fine-grained to coarse-grained.

• We conduct experiments on IMTS forecasting and classification on 8 datasets, and the
evaluation results demonstrate that Hi-Patch outperforms existing methods in most cases.
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2 RELATED WORK

Irregular Multivariate Time Series Modeling Existing methods can be broadly categorized into
interpolation-based and raw-data-based methods. The former, employing methods such as kernel-
based approaches (Shukla & Marlin, 2019; Wu et al., 2021), Gaussian process (Tan et al., 2021) or
hourly aggregation (Ma et al., 2020), aims to obtain a set of regularly spaced observations. How-
ever, interpolation may lead to losing valuable information from the original series. Raw-data-based
methods learn directly from IMTS. (Che et al., 2018) improve recurrent neural networks to accom-
modate uneven time intervals, while (Horn et al., 2020; Shukla & Marlin, 2021) introduce time
embeddings to represent arbitrary sampling timestamps. (Rubanova et al., 2019; De Brouwer et al.,
2019; Biloš et al., 2021; Schirmer et al., 2022; Chen et al., 2024b) use neural ordinary differential
equations to handle irregularities. Recent research has also introduced attention (Jhin et al., 2021) or
graph neural networks (Zhang et al., 2022; Yalavarthi et al., 2024; Zhang et al., 2024) to account for
inter-variate correlations in IMTS. Despite these advancements, most of these methods focus only
on single-scale characteristics of IMTS, and how to fully capture multi-scale features within IMTS
remains a challenge.

Multi-scale Modeling for Time Series Multi-scale information has proven to be crucial for time
series modeling. TAMS-RNNs (Chen et al., 2021) use different frequencies to update several sub-
hidden states of RNNs to capture multi-scale information. Pyraformer (Liu et al., 2022) introduces
pyramid attention to extract features at varying temporal scales. N-HiTS (Challu et al., 2023) em-
ploys multi-rate data sampling and hierarchical interpolation to extract features at different reso-
lutions. Scaleformer (Shabani et al., 2023) allocates forecasting models across different temporal
scales. Pathformer (Chen et al., 2024a) proposes a multi-scale Transformer with adaptive paths,
while TimeMixer (Wang et al., 2024a) achieves complementary predictive capabilities by disentan-
gling variation at multiple scales. However, these methods are designed for regular MTS and are
not adaptive for IMTS. Although Warpformer (Zhang et al., 2023) presents a multi-scale approach
for IMTS, its original goal is to balance the differences in sampling densities across variables and it
involves upsampling interpolation for sparse variables, which may distort the original data distribu-
tion.

Graph Neural Networks for Multivariate Time Series A series of studies have integrated GNN
with various time series modeling frameworks to effectively capture inter-variable dependencies in
MTS (Jin et al., 2024). These approaches have been widely applied in diverse domains, includ-
ing transportation (Rahmani et al., 2023), healthcare (Wang et al., 2022), economics (Wang et al.,
2021), demonstrating promising results. However, many of these methods are primarily designed for
modeling synchronous correlations among variables, lacking sufficient extraction of asynchronous
dependencies widely present in IMTS.

3 PROBLEM DEFINITION

Definition 1 (Irregular Multivariate Time Series) We consider a dataset D consisting of n IMTS
sample. Each sample of D is a tuple, i.e., D := {(S1, y1), . . . , (Sn, yn)}, where Si denotes the
i-th time series sample and yi ∈ {1, . . . , C} is the class label (C is the number of categories). We
describe i-th sample Si as a set of M = |Si| observations such that Si := {o1, . . . , oM}. Each
observation oj is a tuple (tj , zj , vj), consisting of a timestamp tj ∈ R+, an observed value zj ∈ R
and a variable indicator vj ∈ {1, . . . , V }, where V represents the total number of variables. An
IMTS sample can thus be represented as:

Si := {(tj , zj , vj)|j = 1, ...,M}, (1)

Problem 1 (Irregular Multivariate Time Series Classification). Given an IMTS sample Si, the
problem is to correctly predict its class label yi:

C(Si)→ yi, (2)

where C(·) denotes the classification model we aim to learn.

Problem 2 (Irregular Multivariate Time Series Forecasting). Given a split timestamp tS , each
sample Si is segmented into a historical window Xi := {(tj , zj , vj)|j = 1, ...,M, tj ≤ tS} and
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a forecasting window Yi := {[(tj , vj), zj ]|j = 1, ...,M, tj > tS}. Elements tj and vj of j-th
observation tuple in the set of forecasting windows are combined into a forecasting query qj ∈ Qi.
The problem is to accurately predict the corresponding observation values Zi correspondence to
forecasting query Qi based on the historical window Xi:

F(Xi,Qi)→ Zi, (3)

where F(·) denotes the forecasting model we aim to learn.
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Figure 2: The model framework of Hi-Patch. The example input is an IMTS with three variables and
a historical window of 0-40s which is divided into N = 4 patches with a patch size P = 10s. First,
each observation is encoded into a graph node through an observation encoder. Then, fine-grained
features of densely sampled variables within each patch are extracted via an intra-patch graph layer
and nodes are aggregated into patch-level nodes as inputs for multiple stacked inter-patch graph
layers. After passing through ⌈log2 N⌉ = 2 inter-patch graph layers, coarse-grained features of
all variables are progressively extracted and a single node embedding for each variable is obtained.
Finally, the task decoder computes the downstream task output based on these node embeddings.

4 METHODOLOGY

In this section, we will take the i-th sample Si with M historical observations as an example for
introducing our method. We introduce the observation encoder in Section 4.1, followed by the
introduction of the single intra-patch graph layer and inter-patch graph layer in Sections 4.2 and 4.3,
respectively. Section 4.4 describes how the hierarchical architecture is implemented, and Section
4.5 covers the task decoder. Figure 2 presents the overall architecture of our model.

4.1 OBSERVATION ENCODER

First, we introduce how to encode each observation into an dmodel-dimensional graph node embed-
ding. The j-th historical observation oj of Si corresponds to the tuple (tj , vj , zj), representing the
observation value zj of variable vj at timestamp tj . We encode these three parts separately.

For time encoding, we adopt continuous time embedding (Shukla & Marlin, 2021), which is de-
signed specifically for IMTS. The d-th dimension of dmodel-dimensional time embedding ϕ(tj) for
tj is calculated by:

ϕ(tj)[d] =

{
ω0 · t+ α0, if d = 0

sin(ωd · t+ αd), if 0 < d < dmodel
, (4)

where ω0, α0, ωd and αd are learnable parameters. For variable encoding, we randomly ini-
tialize a learnable variable embedding for each variable, forming a variable embedding matrix
E ∈ RV×dmodel , the embedding corresponding to variable vj is Evj . For value encoding, a linear
layer f(·) is used to map the observation value zj into dmodel-dimensional embedding.

4
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With these three embeddings, the graph node embedding for j-th observation oj is calculated as:

hj = σ1[ϕ(tj) +Evj + f(zj)] ∈ Rdmodel , (5)
where σ1(·) is ReLU activation function.

4.2 INTRA-PATCH GRAPH LAYER

In this section, we will introduce how to extract fine-grained features of densely sampled variables
through an intra-patch graph layer. First, we divide the historical observation nodes into several
non-overlapping patches based on a short time span P . Given a total historical time span of T , it
can be divided into N =

⌈
T
P

⌉
patches. The n-th patch includes observation nodes of all variables

within the period from (n− 1) · P to n · P , the index set of observation nodes in n-th patch is:
In = {j | j = 1, 2, ...,M, (n− 1) · P < tj ≤ n · P}. (6)

The corresponding set of node states isHn = {hj | j ∈ In}, initialized by node embeddings. Each
patch, divided based on a short time span, primarily consists of observation nodes from densely
sampled variables, with a few or no observation nodes from sparsely sampled variables, thus forming
a fine-grained view of the densely sampled variables.

4.2.1 UPDATE

After obtaining several patches as fine-grained views of the densely sampled variables, each pair of
nodes within a patch is connected by an edge to form a fully connected graph (intra-patch graph) for
flexible representation of three types of local dependencies in IMTS, namely: 1) the same variable
at different times (SVDT), 2) different variables at the same time (DVST) and 3) different variables
at different times (DVDT). The set of edges in n-th patch is:

En = {(u, v) | u ∈ In, v ∈ In}. (7)
We use graph attention network (GAT) (Veličković et al., 2018) to update the node states within
each intra-patch graph for sufficiently extracting these dependencies. The formula for updating the
state of node v is:

hv = hv +
∑

u∈N (v)

MHA(hv, hu, hu), (8)

where N (v) denotes the set of neighboring nodes of node v and MHA denotes the multi-head
attention mechanism (Vaswani et al., 2017):

MHA(hv, hu, hu) = Softmax(
(Wkhu)

T
(Wqhv)√

dmodel
) ·Wvhu, (9)

Due to the existence of three different types of dependencies, we adopted three sets of {Wq , Wk,
Wv} parameters to handle them separately. Compared to conventional methods that separately
extract features along the time and variable dimensions, our intra-patch graph more comprehensively
accounts for the asynchronous characteristics of IMTS. After the L-layer state update with Eq.(8),
the local dependencies of the densely sampled variables at the original scale are fully extracted.

4.2.2 AGGREGATION

To further extract features at a larger scale, we aggregate nodes of the same variables within each
patch to create the overall feature nodes of variables during the period of each patch. Specifically, for
the nodes of the v-th variable in the n-th patch, the index set of nodes is In,v = {j | j ∈ In, vj = v}
. We first calculate the average observation timestamp as a reference time t̄

(0)
n,v = 1

|In,v|
∑

j∈In,v
tj ,

and then use multi-time attention (Shukla & Marlin, 2021) to aggregate the nodes to t̄
(0)
n,v:

h(0)
n,v =

∑
j∈In,v

MHA(ϕ(tj), ϕ(t̄
(0)
n,v), hj). (10)

When a variable has no observation within a patch, no aggregation node is created, thus preserv-
ing the irregularities of the original series. We use a mask indicator m(0)

n,v to indicate whether the
aggregation node exists of the v-th variable at the n-th patch. If |In,v| = 0, m(0)

n,v is set as 0, else
m

(0)
n,v = 1. The new set of node states for all N patches of all V variables after aggregation is
H(0) = {h(0)

n,v | n = 1, 2, ..., N, v = 1, 2, ..., V,m
(0)
n,v = 1}.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 INTER-PATCH GRAPH LAYER

After passing through an intra-patch graph layer, fine-grained features with time scales less than P
of the original series have been extracted. In this section, we aim to extract features with time scale
P based on the aggregated node setH(0) through an inter-patch graph layer.

4.3.1 UPDATE

Each node in the set H(0) represents the overall feature within time span P , and the reference
time interval between nodes in adjacent patches is approximately equal to P . We connect the nodes
located in adjacent patches pairwise in node setH(0) by an edge to form a P -scale graph (inter-patch
graph). This inter-patch graph flexibly represents the temporal and inter-variable dependencies of
densely sampled variables and some sparsely sampled variables with a sampling interval less than
P at scale P . We continue to update the node states in this P -scale graph using GAT to extract the
dependencies at scale P . The formula for updating is:

h(0)
n,v = h(0)

n,v +
∑

n′∈{n−1,n+1}

∑
v′∈{1,2,...,V }

MHA(h(0)
n,v, h

(0)
n′,v′ , h

(0)
n′,v′), (11)

4.3.2 AGGREGATION

After the node state update, the features at scale P are extracted. Subsequently, to extract features at
scale 2P , we aggregate every two nodes located on adjacent patches of the same variable by multi-
time attention again to obtain the input of the next inter-patch graph layer. Specifically, we calculate

the average timestamp between two adjacent nodes as the reference time t̄
(1)
n,v =

t̄
(0)
2n−1,v+t̄

(0)
2n,v

m
(0)
2n−1,v+m

(0)
2n,v

,

where n = 1, 2, ..., N/2, and then we aggregate the adjacent nodes to this reference time through
multi-time attention to obtain feature nodes of 2P scale:

h(1)
n,v =

∑
j∈{2n−1,2n}

MHA(ϕ(t̄
(0)
j,v), ϕ(t̄

(1)
n,v), h

(0)
j,v). (12)

The node state set after aggregating isH(1) = {h(1)
n,v | n = 1, 2, ..., N/2, v = 1, 2, ..., V,m

(1)
n,v = 1},

which is served as input for the next inter-patch graph layer (2P -scale).

4.4 HIERARCHICAL ARCHITECTURE

Section 4.3 describes the first inter-patch graph layer (P -scale). This layer takes H(0) as input,
updates the node states, and aggregates them toH(1) as the input of next inter-patch graph layer (2P
scale). Generalizing to the general case, the formula for the l-th inter-patch graph layer is:

H(l) = Aggregation(Update(H(l−1))), (13)

where H(l) = {h(l)
n,v | n = 1, 2, ..., N/2l, v = 1, 2, ..., V,m

(l)
n,v = 1} and H(l−1) = {h(l−1)

n,v | n =

1, 2, ..., N/2l−1, v = 1, 2, ..., V,m
(l−1)
n,v = 1}. The recursive form of Eq.(13) allows us to build

a hierarchical architecture by stacking inter-patch graph layers, thereby further extracting features
at scales of 2P , 4P , 8P , 16P , .... Until l = ⌈log2 N⌉, the output of this layer is H(⌈log2 N⌉) =

{h(⌈log2 N⌉)
n,v | n = 1, v = 1, 2, ..., V,m

(⌈log2 N⌉)
n,v = 1}, where a single node embedding is obtained

for each variable. This process involves a total of ⌈log2 N⌉ inter-patch graph layers, and fine-
grained features of relatively densely sampled variables are extracted in the lower layers, while
coarse-grained features of both densely and sparsely sampled variables are extracted in the upper
layers. The node embedding of the v-th variable isH(⌈log2 N⌉)

v ∈ Rdmodel .

4.5 TASK DECODER

4.5.1 CLASSIFICATION

We simply calculate the sum of dmodel channels for each variable’s node embedding to get
a V-dimensional vector C and use this to predict the final classification probabilities: ŷ =

6
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Softmax(W yC + by). The training objective is to minimize the cross-entropy loss between ŷ and
the ground truth y.

4.5.2 FORECASTING

Given a query qj = (tj , vj), we follow (Zhang et al., 2024) by concatenating the node embedding
of the query variable vj with the embedding of the query time tj , and then pass it through an MLP
projection layer to generate the forecasting result: ẑj = MLP([H(⌈log2 N⌉)

vj ∥ ϕ(tj)]). The training
objective is to minimize the mean squared error loss between ẑj and the ground truth zj . The
pseudo-code for Hi-Patch is presented in Appendix A (Algorithm 1).

5 EXPERIMENT

In this section, we present forecasting and classification experiments using a range of models and 8
datasets.

5.1 EXPERIMENTAL SETTING

5.1.1 DATASETS AND BASELINES

For the forecasting task, we follow (Zhang et al., 2024) and use four datasets: PhysioNet (Silva
et al., 2012), MIMIC-III (Johnson et al., 2016), Human Activity, and USHCN (Menne et al., 2015),
covering the fields of healthcare, biomechanics, and climate science. We compare our method with
seventeen relevant baselines, covering the SOTA models from (1) MTS forecasting: iTransformer
(Liu et al., 2024), ModernTCN(Luo & Wang, 2024), TimesNet (Wu et al., 2023), PatchTST (Nie
et al., 2023), (2) multi-scale MTS forecasting: Pathformer (Chen et al., 2024a) , TimeMixer (Wang
et al., 2024b), MSGNet (Cai et al., 2024), MICN (Wang et al., 2023), (3) IMTS classification:
Warpformer (Zhang et al., 2023), Raindrop (Zhang et al., 2022), GRU-D (Che et al., 2018), (4) IMTS
forecasting: tPatchGNN (Zhang et al., 2024), GraFITi (Yalavarthi et al., 2024), CRU (Schirmer et al.,
2022), mTAND (Shukla & Marlin, 2021), Neural Flows (Biloš et al., 2021), Latent ODEs (Rubanova
et al., 2019).

For the classification task, we conduct experiments on four datasets in medical field where IMTS
is most widely used, namely P19 (Reyna et al., 2020), PhysioNet (Silva et al., 2012), MIMIC-III
(Johnson et al., 2016) and P12 (Goldberger et al., 2000) where PhysioNet is a reduced version of
P12 considered by prior work (Shukla & Marlin, 2021). We compare our method with the state-of-
the-art methods for irregular time series classification, including GRU-D (Che et al., 2018), ODE-
RNN (Rubanova et al., 2019), IP-Net (Shukla & Marlin, 2019), SeFT (Horn et al., 2020), mTAND
(Shukla & Marlin, 2021), Raindrop (Zhang et al., 2022), StraTS (Tipirneni & Reddy, 2022), DuETT
(Labach et al., 2023), ViTST (Li et al., 2024) and Warpformer (Zhang et al., 2023). In addition,
we also compare our method with two approaches initially designed for forecasting tasks, namely
DGM2-O (Wu et al., 2021) and MTGNN (Wu et al., 2020). The implementation and hyperparameter
settings of these baselines are kept consistent with the optimal settings of the original paper. More
details of datasets and baselines can be found in Appendix B and C.

5.1.2 EVALUATION SETUP

For the forecasting task, we follow the data pre-processing method described in (Zhang et al., 2024)
and randomly divide all the instances among each dataset into training, validation, and test sets
according to ratios of 6:2:2. We use Mean Square Error (MSE) and Mean Absolute Error (MAE) to
evaluate forecasting performance.

For the classification task, we follow the method described in (Harutyunyan et al., 2019) and di-
vide the dataset into three parts for training, validation, and testing with the ratio of 70%,15%,15%
on the MIMIC-III dataset. For the remaining three datasets, we adhered to (Zhang et al., 2022)’s
approaches, and the ratio of training, validation, and testing set is 8:1:1. We measure the classi-
fication performance with the Area Under the Receiver Operating Characteristic Curve (AUROC)
and Area Under the Precision-Recall Curve (AUPRC) since all the four datasets are binary classifi-
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cation datasets with highly imbalanced class distribution. More details of metrics can be found in
Appendix D.

5.1.3 IMPLEMENTATION DETAILS

We adopt the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.001, stopping it when
the validation loss doesn’t decrease over 10 epochs. All experiments are conducted with five random
seeds, and the average and standard deviation are reported. All the models are experimented using
the PyTorch library on 2 GeForce RTX-3090-24G GPUs. The detailed settings of hyperparameters
can be found in Appendix E.

5.2 MAIN RESULTS

For the forecasting task, we test the model’s performance under 3 varying observations and forecast
horizons on each dataset. Table 1 shows the results of the default horizon, and the complete results
are presented in Table 4, 5, 6 and 7 (Appendix F.1). Table 2 reports the models’ classification
performance on the other four datasets. In addition, to demonstrate the robustness of our method,
we test whether Hi-Patch can achieve good classification performance when a subset of variables is
completely missing. We uniformly discard 10%, 20%, 30%, 40%, and 50% of the variables, hiding
all their observations in both validation and test sets. Table 8 (Appendix F.2) reports the results. In
summary, Hi-Patch achieves the best performance in 62 out of 72 metrics across 8 datasets for both
classification and forecasting tasks.

Furthermore, regular MTS forecasting models, including single-scale and multi-scale approaches,
do not demonstrate competitive performance in IMTS forecasting. This is because regular MTS
methods have limited capability to handle the irregularities within and between variables in IMTS,
leading to suboptimal performance when directly applied to IMTS. Among methods specifically
designed for IMTS, Warpformer is the only method that considers the multi-scale characteristics
of IMTS and it achieves the most competitive performance. However, Warpformer involves in-
terpolation of sparse variables, which may distort the original distribution of IMTS. In addition,
Warpformer employs attention separately in the time and variable dimensions, limiting its ability to
capture asynchronous dependencies. In contrast, our Hi-Patch flexibly represents and extracts both
synchronous and asynchronous dependencies of IMTS under different scales through an intra-patch
graph layer and several inter-patch graph layers. Moreover, Hi-Patch only handles actually observed
points, avoiding the accumulation of imputation errors, particularly in cases of higher missing ratios,
exhibiting a degree of robustness. We also provide efficiency analysis in Appendix F.3.

Table 1: Method benchmarking on IMTS forecasting. The best results are highlighted in bold, and
the second-best results are in underlined. The results in the table are presented in the form of (Mean
± Std). ‘-’ indicates numerical overflow error.

Methods Human Activity (3000ms → 1000ms) USHCN (24months → 1month) PhysioNet (24h → 24h) MIMIC-III (24h → 24h)

MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

iTransformer 3.97 ± 0.10 4.30 ± 0.08 6.17 ± 0.07 4.18 ± 0.55 53.55 ± 19.59 16.87 ± 4.51 7.24 ± 0.50 21.24 ± 0.97
ModernTCN 3.99 ± 0.05 4.32 ± 0.04 5.83 ± 0.13 3.58 ± 0.09 28.99 ± 11.06 5.94 ± 0.20 10.07 ± 9.79 10.76 ± 1.10

TimesNet 3.79 ± 0.05 4.28 ± 0.04 5.62 ± 0.12 3.56 ± 0.12 9.30 ± 0.70 5.50 ± 0.34 2.34 ± 0.54 8.09 ± 0.10
PatchTST 5.21 ± 0.33 5.10 ± 0.20 5.88 ± 0.10 3.66 ± 0.13 25.56 ± 4.42 10.90 ± 1.08 7.24 ± 0.65 19.80 ± 0.87

Pathformer 3.40 ± 0.16 3.65 ± 0.08 – – 6.75 ± 0.41 4.61 ± 0.20 – –
TimeMixer 4.97 ± 0.31 5.02 ± 0.16 5.88 ± 0.10 3.59 ± 0.07 13.98 ± 0.31 6.88 ± 0.09 4.78 ± 0.09 14.29 ± 0.06
MSGNet 6.32 ± 0.16 6.06 ± 0.09 5.75 ± 0.06 3.64 ± 0.09 9.84 ± 0.29 5.79 ± 0.10 2.65 ± 0.18 9.10 ± 0.27
MICN 6.93 ± 0.12 6.04 ± 0.06 5.99 ± 0.11 3.69 ± 0.08 10.34 ± 0.24 6.00 ± 0.14 2.36 ± 0.06 8.43 ± 0.11

Warpformer 2.61 ± 0.02 3.12 ± 0.01 5.19 ± 0.06 3.12 ± 0.10 5.04 ± 0.14 3.72 ± 0.06 1.76 ± 0.30 7.27 ± 0.15
Raindrop 4.42 ± 0.25 4.65 ± 0.14 5.64 ± 0.10 3.29 ± 0.03 10.63 ± 0.29 6.02 ± 0.19 2.31 ± 0.07 8.61 ± 0.12
GRU-D 3.94 ± 0.29 4.37 ± 0.21 5.17 ± 0.06 3.21 ± 0.05 5.76 ± 0.34 4.53 ± 0.15 2.35 ± 0.06 8.34 ± 0.22

tPatchGNN 2.79 ± 0.09 3.24 ± 0.06 5.00 ± 0.03 3.07 ± 0.05 5.06 ± 0.10 3.75 ± 0.07 1.97 ± 0.05 7.76 ± 0.22
GraFITi 3.20 ± 0.50 3.56 ± 0.32 5.07 ± 0.03 2.97 ± 0.04 5.32 ± 0.27 4.00 ± 0.14 1.76 ± 0.04 7.34 ± 0.23

CRU 3.03 ± 0.04 3.60 ± 0.04 5.15 ± 0.50 3.18 ± 0.03 6.43 ± 0.62 4.51 ± 0.16 2.23 ± 0.03 7.99 ± 0.22
mTAND 3.14 ± 0.09 3.71 ± 0.06 5.03 ± 0.05 3.00 ± 0.06 6.18 ± 0.31 4.44 ± 0.19 2.15 ± 0.05 8.00 ± 0.06

NeuralFlow 4.29 ± 0.63 4.61 ± 0.43 5.41 ± 0.05 3.35 ± 0.06 7.68 ± 0.37 4.84 ± 0.19 2.34 ± 0.05 8.09 ± 0.09
Latent-ODE 3.32 ± 0.10 3.91 ± 0.08 5.16 ± 0.04 3.21 ± 0.07 6.85 ± 0.28 4.77 ± 0.17 2.11 ± 0.15 7.76 ± 0.08

Hi-Patch 2.57 ± 0.02 3.11 ± 0.03 4.94 ± 0.05 2.96 ± 0.04 4.86 ± 0.03 3.62 ± 0.07 1.75 ± 0.26 7.24 ± 0.18
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Table 2: Method benchmarking on IMTS classification. The best results are highlighted in bold,
and the second-best results are in underlined. The results in the table are presented in the form of
(Mean ± Std %).

Methods P19 PhysioNet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D 88.7 ± 1.2 57.6 ± 2.3 79.1 ± 6.9 42.7 ± 7.2 82.2 ± 1.8 43.3 ± 2.1 79.6 ± 0.6 41.7 ± 1.8
ODE-RNN 87.1 ± 1.0 52.6 ± 3.2 75.5 ± 2.8 33.7 ± 4.1 81.0 ± 0.6 42.3 ± 0.7 78.8 ± 0.6 37.4 ± 2.6

IP-Net 90.2 ± 0.2 58.6 ± 0.8 86.8 ± 0.6 55.8 ± 1.4 84.1 ± 0.1 47.1 ± 0.9 83.7 ± 0.3 46.3 ± 1.3
SeFT 84.0 ± 0.3 49.3 ± 0.5 75.5 ± 0.2 29.4 ± 0.9 67.9 ± 0.2 23.2 ± 0.4 78.1 ± 0.5 35.9 ± 0.8

MTGNN 88.5 ± 1.0 55.8 ± 1.5 77.1 ± 4.4 35.4 ± 7.3 78.5 ± 2.3 35.2 ± 3.1 82.1 ± 1.5 41.8 ± 2.1
mTAND 82.9 ± 0.9 32.2 ± 1.5 86.8 ± 1.3 52.5 ± 1.3 83.8 ± 0.3 46.6 ± 0.5 85.3 ± 0.3 49.3 ± 1.0

DGM2-O 91.6 ± 0.5 60.0 ± 1.3 85.8 ± 0.7 50.4 ± 3.2 80.4 ± 0.5 36.0 ± 0.8 85.8 ± 0.1 48.3 ± 0.7
Raindrop 87.6 ± 2.7 61.1 ± 1.4 81.2 ± 0.9 37.3 ± 2.0 79.8 ± 1.3 35.2 ± 1.1 82.0 ± 0.6 42.7 ± 1.7
StraTS 91.2 ± 0.3 58.4 ± 1.4 84.9 ± 1.5 47.3 ± 5.3 84.4 ± 0.4 46.4 ± 0.8 86.7 ± 0.7 52.1 ± 1.5
DuETT 88.2 ± 0.5 56.0 ± 3.9 81.3 ± 1.4 44.9 ± 1.4 78.8 ± 0.8 34.3 ± 1.0 83.4 ± 1.2 45.4 ± 1.5
ViTST 91.7 ± 0.1 57.5 ± 0.7 81.3 ± 1.9 37.4 ± 2.9 81.8 ± 0.3 39.6 ± 1.3 86.3 ± 0.1 50.8 ± 1.5

Warpformer 91.8 ± 0.4 60.6 ± 2.6 83.3 ± 0.7 43.5 ± 2.3 84.6 ± 0.3 46.6 ± 0.9 85.4 ± 0.5 50.4 ± 1.5

Hi-Patch 92.1 ± 0.4 61.1 ± 2.1 86.8 ± 0.9 57.3 ± 1.9 84.8 ± 0.2 47.2 ± 1.0 86.9 ± 0.7 53.3 ± 0.9

Table 3: Ablation results of Hi-Patch on four datasets. The results in the table are presented in the
form of (Mean ± Std).

Methods Hunam Activity USHCN PhysioNet MIMIC-III

MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1 MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2

Hi-Patch 2.57 ± 0.02 3.11 ± 0.03 4.94 ± 0.05 2.96 ± 0.04 4.86 ± 0.03 3.62 ± 0.07 1.75 ± 0.26 7.24 ± 0.18

w/o Hie 2.70 ± 0.04 3.13 ± 0.03 5.35 ± 0.13 3.26 ± 0.13 4.96 ± 0.07 3.68 ± 0.08 1.77 ± 0.30 7.30 ± 0.13
w/o DVDT 2.68 ± 0.04 3.12 ± 0.01 5.21 ± 0.03 3.11 ± 0.12 4.88 ± 0.05 3.67 ± 0.04 1.80 ± 0.04 7.41 ± 0.18

w/o 3W 2.60 ± 0.01 3.17 ± 0.03 4.99 ± 0.03 3.08 ± 0.10 4.98 ± 0.07 3.74 ± 0.04 1.79 ± 0.04 7.38 ± 0.09
w/o TEAGG 2.77 ± 0.02 3.22 ± 0.03 5.23 ± 0.04 3.13 ± 0.03 6.34 ± 0.60 4.44 ± 0.36 1.92 ± 0.07 7.63 ± 0.26

5.3 ABLATION STUDY

In this section, we investigate the performance benefits generated by each key component of the
proposed method on forecasting task. We compare the Hi-Patch with its four variants: (1) w/o
Hie: We remove the hierarchical multi-scale architecture and set the patch size to the time span
of the entire historical window, only extracting features at the original scale. (2) w/o DVDT: We
removed the asynchronous edges of different variables at different times, retaining only the edges
between nodes of the same variable at different times (SVDT) and different variables at the same
time (DVST); (3) w/o 3W: We use only one set of attention parameter matrices {Wq , Wk, Wv}
for three types of edges; (4) w/o TEAGG: We aggregate nodes with the same variables within a
patch using mean aggregation rather than multi-time attention aggregation. The results demonstrate
that all model components are necessary. w/o DVDT and w/o 3W demonstrate the importance
of fully representing and capturing the temporal dependencies as well as both synchronous and
asynchronous correlations among variables in IMTS. w/o TEAGG shows the effectiveness of multi-
time attention in feature aggregation at the patch level, while w/o Hie highlights the necessity of
considering the multi-scale characteristics in IMTS.

5.4 EFFECT OF SCALE QUANTITY

(a) Human Activity (b) USHCN (c) PhysioNet (d) MIMIC-III

Figure 3: Effect of different scale quantities on four datasets.
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(a) Human Activity (b) USHCN (c) PhysioNet (d) MIMIC-III

Figure 4: Distribution of sample length and time span on four datasets. Each blue dot represents a
sample, with its x-coordinate indicating the sample length, and the left y-axis representing its time
span. The red curve is the distribution curve of sample length, corresponding to the right y-axis,
representing the proportion of samples at a certain length.

Figure 3 illustrates the impact of different scale quantities across four datasets. Generally, increasing
the number of scales improves performance within a certain range. However, beyond a certain
point, further increasing the number of scales has a negative effect. This is because the number
of scales is inversely related to patch size in our method: as the number of scales increases, the
patch size decreases. A Patch that is too small may not contain enough observations to extract
local patterns effectively. Additionally, we observe that on the PhysioNet and MIMIC-III datasets,
performance with too many scales is even worse than with a single scale. To further investigate,
we visualize the distribution of sample lengths and time spans across the four datasets in Figure 4.
We find that samples in PhysioNet and MIMIC-III exhibit a ‘short length, long span’ characteristic,
which indicates that samples in these two datasets predominantly show coarse-grained patterns with
few fine-grained local features. In cases where the samples themselves contain few scale levels of
features, using too many scales becomes redundant and can significantly degrade performance. We
provide visualizations of the multi-scale views at different layers in our model in Appendix G.

5.5 EFFECT OF PATCH SIZE

(a) USHCN (b) PhysioNet

Figure 5: Effect of different patch size

The impact of patch size on our model’s per-
formance on two real-world datasets, USHCN
(climate) and PhysioNet (clinical), is illustrated
in Figure 5. For the USHCN dataset, the opti-
mal model performance is achieved at the patch
size of 1.5 months. At this patch size, our hier-
archical architecture extracts features at scales
of 1.5 months, 3 months, 6 months, and 12
months, which precisely cover several impor-
tant observational scales in climatology, includ-
ing the seasonal (Doblas-Reyes et al., 2013)
cycle (3 months), monsoonal (Clift & Plumb,
2008) cycle (6 months) and annual (Almazroui et al., 2012) cycle (12 months). For the PhysioNet
dataset, the optimal model performance is achieved at the patch size of 6 hours. At this patch size,
our model extracts features at 6-hour, 12-hour and 24-hour scales, which align with actual cycles
in clinical medicine. Among them, 6 hours is a common clinical monitoring period used in medi-
cal practice (Seymour et al., 2017), while 12-hour and 24-hour cycles reflect circadian rhythms and
daily cycles, which are crucial for assessing patients’ physiological changes and disease fluctuations
(Klerman et al., 2022). This alignment with real-world periodicity enables it to better capture the
inherent temporal dynamics in diverse applications. By aligning with critical observational and di-
agnostic timeframes, our model enhances its predictive power and interpretability, making it highly
adaptable and effective across practical scenarios that require nuanced temporal understanding.

6 CONCLUSION

In this paper, we propose Hi-Patch for modeling IMTS. The proposed method leverages the intra-
patch/inter-patch graph neural network to flexibly represent and fully extract features at specific
scales in IMTS. Based on this, the hierarchical architecture is used to effectively achieve multi-scale
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modeling of IMTS in a bottom-up manner (from local features to global ones). Our experimen-
tal results demonstrate that Hi-Patch outperforms existing methods in both IMTS forecasting and
classification tasks. Our future work will focus on adaptive multi-scale modeling of IMTS, which
selects the most suitable scales based on the specific temporal characteristics and dynamics of each
sample to further improve performance.
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A ALGORITHM OF HI-PATCH

Algorithm 1 The pseudo-code of Hi-Patch for forecasting
Input: An IMTS sample Si with M observations, a split time tS historical window Xi :=
{(tj , zj , vj)|j = 1, ...,M, tj ≤ tS}, forecasting query Qi := {[(tj , vj)]|j = 1, ...,M, tj > tS},
patch size P , total time span T

Output: Predicted value set Ẑi

1: ▷ Observation Encoder
2: for j = 1, 2, ..., |Xi| do
3: encode observation tuple oj = (tj , zj , vj) as graph node embedding hj using Eq.(5), getH(0)

4: end for
5: ▷ Intra-Patch Graph Layer
6: for p = 1, 2, ...,

⌈
T
P

⌉
do

7: construct intra-patch graph in patch p using Eq.(6) and (7)
8: update states of intra-patch graph nodes in patch p through GAT using Eq.(8) and Eq.(9)
9: aggregate nodes of the same variable in patch p through multi-time attention using Eq.(10),

getH(0)

10: end for
11: ▷ Inter-Patch Graph Layers
12: for l = 1, 2, ..., ⌈log2

⌈
T
P

⌉
⌉ do

13: construct P -scale inter-patch graph
14: update states of P -scale inter-patch graph nodes through GAT using Eq.(11)
15: aggregate nodes of every two adjacent nodes of the same variable in P -scale inter-patch graph

through multi-time attention using Eq.(12), getH(l)

16: end for
17: ▷ Task Decoder
18: for j = 1, 2, ..., |Qi| do

19: ẑj = MLP([H(⌈log2 ⌈ T
P ⌉⌉)

vj ∥ ϕ(tj)])
20: Ẑi ← Ẑi ∪ {ẑj}
21: end for
22: return Ẑi

B DATASETS

B.1 FORECASTING

For the forecasting task, we use four datasets and follow (Zhang et al., 2024)’s data preprocessing
program. Here is the detailed information of these datasets. We use three historical/forecasting
horizons on each dataset.

PhysioNet (Silva et al., 2012) This dataset includes 12000 IMTS from different patients, each
with 41 clinical signals collected irregularly during the first 48 hours of ICU admission. We use the
first 24/36/12 hours as the observed data to predict the queried values in the subsequent 24/12/36
hours.

MIMIC-III (Johnson et al., 2016) MIMIC-III is a clinical database containing IMTS data from
23457 patients, each with 96 variables recorded during the first 48 hours of ICU admission. We
use the first 24/36/12 hours as the observed data to predict the queried values in the subsequent
24/12/36 hours.

Human Activity This dataset consists of 12 irregularly measured 3D positional variables from
sensors worn on the ankles, belts, and chests of five individuals performing various activities. To
better align with realistic forecasting scenarios, the original time series is chunked into 5400 IMTS,
each spanning 4000 milliseconds. The first 3000/2000/1000 milliseconds are used as observed data
to predict the sensor positions for the next 1000/2000/3000 milliseconds.
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USHCN (Menne et al., 2015) The USHCN dataset includes over 150 years of climate data from
multiple U.S. stations, covering 5 climate variables. Following established preprocessing methods,
we focus on data from 1114 stations between 1996 and 2000, resulting in 26736 IMTS. Each in-
stance uses data from the previous 24 months to predict the next 1/6/12 month’s climate conditions.

B.2 CLASSIFICATION

P19 (Reyna et al., 2020) The PhysioNet Sepsis Early Prediction Challenge 2019 dataset contains
medical records of 38,803 patients. Each record includes 34 variables and a static vector detailing
attributes such as age, gender, time between hospital and ICU admission, ICU type, and ICU length
of stay in days. Each patient also receives a binary label indicating whether sepsis occurs within the
next 6 hours. We exclude samples with excessively short or long time series following (Zhang et al.,
2022). Available at https://physionet.org/content/challenge-2019/1.0.0/.

P12 (Goldberger et al., 2000) The P12 dataset comprises data from 11,988 patients after removing
12 inappropriate samples identified by (Horn et al., 2020). Each record includes multivariate time
series data from the first 48 hours of ICU stay, consisting of 36 sensor measurements (excluding
weight) and a static vector with 9 elements, including age and gender. Patients are labeled based on
ICU stay duration: a negative label indicates three days or less, and a positive label indicates more
than three days. Available at https://physionet.org/content/challenge-2012/1.0.0/.

MIMIC-III (Johnson et al., 2016) MIMIC-III is a widely used dataset containing de-identified
EHRs of ICU patients admitted to Beth Israel Deaconess Medical Center from 2001 to 2012, orig-
inally with around 57,000 records covering variables such as medications and vital signs. We fo-
cus on the in-hospital mortality prediction task, using a subset established by (Harutyunyan et al.,
2019). After preprocessing, our dataset includes 16 features and 21,107 data points. Available at
https://physionet.org/content/mimiciii/1.4/.

PhysioNet (Silva et al., 2012) Physionet contains the data from the first 48 hours of ICU patients,
which is a reduced version of P12 considered by prior work. Therefore, we follow the same prepro-
cessing methods used for the P12 dataset. The processed data set includes 3997 labeled instances.
We focus on predicting in-hospital mortality.

C BASELINES

C.1 FORECASTING

C.1.1 METHODS FOR REGULAR MTS

For methods for regular MTS, we organize each sample into a V × Th history matrix and a V × Tf

forecasting matrix, where V represents the maximum number of variables and Th/Tf represents the
historical/forecasting length of the sample. Unobserved positions are filled with zeros, the sequence
length is set to the maximum historical length across all samples, and the forecasting length is set to
the maximum forecasting length across all samples.

iTransformer (Liu et al., 2024) uses inverted Transformers for time series forecasting. We use the
following setting in our experiment: elayers = 3, dlayers = 1, factor = 3, dmodel = 512, dff = 512.

TimesNet (Wu et al., 2023) analyses general time series through temporal 2D-Variation. We use
the following setting in our experiment: elayers = 2, dlayers = 1, factor = 3, dmodel = 256, dff = 512,
top-k = 5.

PatchTST (Nie et al., 2023) is a Transformer-based model using patch and channel independence
for long-term time series forecasting. We use the following setting in our experiment: elayers = 2,
dlayers = 1, factor = 3, patch len = 16, stride = 8.
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MICN (Wang et al., 2023) achieves multi-scale local and global context modeling for long-term
time series forecasting. We use the following setting in our experiment: elayers = 2, dlayers =
1, factor = 3, dmodel = 256, dff = 512, top k = 5, decomp kernel = 32, conv kernel = 24,
isometric kernel = [18, 6].

TimeMixer (Wang et al., 2024b) achieves complementary predictive capabilities by disentangling
variations in multi-scale series. We use the following setting in our experiment: elayers = 3, dlayers =
1, factor = 3, dmodel = 16, dff = 32, down sampling layers = 3, down sampling window = 2.

For the above 5 methods, we use the implementation in Time-Series-Library

ModernTCN (Luo & Wang, 2024) is a modern pure convolution structure designed for general
time series analysis. We use the implementation in https://github.com/luodhhh/ModernTCN and the
following setting in our experiment: ffn ratio = 8, patch size = 8, patch stride = 4, num blocks =
1, large size = 51, small size = 5, dims = 64

Pathformer (Chen et al., 2024a) is a multi-scale transformer architecture with
adaptive pathways for time series forecasting. We use the implementation in
https://github.com/decisionintelligence/pathformer and the following setting in our experiment:
k = 2, layer nums = 3, dmodel = 16, dff = 64.

MSGNet (Cai et al., 2024) learns multi-scale inter-series correlations for multivariate time series
forecasting. We use the implementation in https://github.com/YoZhibo/MSGNet and the following
setting in our experiment: elayers = 2, dmodel = 512, dff = 64, n heads = 8, top k = 5, dropout =
0.1, nums kernels = 6, conv channel = 32, skip channel = 32, gcn depth = 2, propalpha = 0.3,
node dim = 10, gcn dropout = 10.

C.1.2 METHODS FOR IMTS

IMTS forecasting methods can directly make predictions. For IMTS classification methods, we use
them as encoders to extract variable-level representations for each sample, followed by forecasting
using the decoder described in Section 4.5.2.

Warpformer (Zhang et al., 2023) A transformer-based network that captures features at different
scales in IMTS using warping modules and dual attention mechanisms. We use three scales with
normalized length L̃(0) = 0, L̃(1) = 0.2 and L̃(2) = 1. The dimension of representations D is set as
32. The attention heads and the layers of the warpformer are set as 1 and 2, respectively. We use the
implementation at https://github.com/imJiawen/Warpformer.

Raindrop (Zhang et al., 2022) A graph neural network that embeds IMTS while learning the
dynamics of sensors purely from observation data. We use the following setting in our experi-
ment: dob = 4, pt = 16, rv = 16, L = 2, dk = 20, da = V . We use the implementation at
https://github.com/mims-harvard/Raindrop.

GRU-D (Che et al., 2018) GRU-D takes two representations of missing patterns, i.e., masking
and time interval, and effectively incorporates them into a deep model architecture. The number
of hidden states of GRU-D is set as 49. We use the implementation from https://github.com/Han-
JD/GRU-D.

tPatchGNN (Zhang et al., 2024) is a transformable patching graph neural network for IMTS fore-
casting. We use the implementation in https://github.com/usail-hkust/t-PatchGNN and use the hy-
perparameters specified in their scripts.

GraFITi (Yalavarthi et al., 2024) use bipartite graph for representing and forecasting of IMTS.
We use the following setting in our experiment: latent dim = 128, n layers = 4, nheads = 1. We use
the implementation at https://github.com/yalavarthivk/GraFITi.
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CRU (Schirmer et al., 2022) models IMTS with continuous recurrent units. We use the following
setting in our experiment: latent state dim = 20, hidden units = 50, bandwidth = 10, num basis =
20, trans covar = 0.1. We use the implementation at https://github.com/boschresearch/Continuous-
Recurrent-Units.

mTAND (Shukla & Marlin, 2021) A deep learning framework for IMTS data that learns an embed-
ding of continuous time values and uses an attention mechanism to produce a fixed-length represen-
tation. We set the latent dimension and the hidden size of GRU to 32. The number of reference points
and the dimension of time embedding is 128. We use the implementation at https://github.com/reml-
lab/mTAN.

NeuralFlows (Biloš et al., 2021) use neural networks to model ODE solution curves to
mitigate the expensive numerical solvers in neural ODEs. We use the implementation at
https://github.com/mbilos/neural-flows-experiments and the following setting in our experiment:
flow model=‘CouplingFlow’, hidden dim = 50, hidden layers = 3, latents = 20, rec dims = 40.

Latent-ODEs (Rubanova et al., 2019) is an ODE-based model that improves RNNs with
continuous-time hidden state dynamics specified by neural ODEs. We use the implementation in
https://github.com/YuliaRubanova/latent ode and the following setting in our experiment: latents =
20, units = 50, gen layers = 3, rec dims = 40, rec layers = 3, gru units = 50.

C.2 CLASSIFICATION

ODE-RNN (Rubanova et al., 2019) ODE-RNN uses neural ODEs to model hidden state dynamics
and an RNN to update the hidden state in the presence of a new observation. The latent dimen-
sion is set as 40, and the ODE function has 3 layers with 50 units. We use the implementation at
https://github.com/YuliaRubanova/latent ode

SEFT (Horn et al., 2020) A set function approach where all the observations are modeled individu-
ally before pooling them together using an attention-based approach. We use a constant architecture
for the attention network f ′ with 2 layers, 4 heads and dimensionality of the dot product space d
of 128. In addition, the attention network f ′ was always set to use mean aggregation. We use the
implementation from https://github.com/BorgwardtLab/SeFT.

IP-Net (Shukla & Marlin, 2019) A model architecture for IMTS data based on several semi-
parametric interpolation layers organized into an interpolation network followed by a prediction
network GRU. The number of reference points is set as 192. The hidden size of GRU is 100. We
take the source code at https://github.com/mlds-lab/interp-net.

DGM2-O (Wu et al., 2021) A generative model, which tracks the transition of latent clusters
instead of isolated feature representations, achieves robust sparse time series modeling. We use the
DGM2-O and set both the hidden dimension and the cluster num as 10. We use the source code at
https://github.com/thuwuyinjun/DGM2.

MTGNN (Wu et al., 2020) A general graph neural network framework designed for MTS data.
We use 5 graph convolution and 5 temporal convolution modules with the dilation exponential fac-
tor 2. The graph convolution and temporal convolution modules have 16 output channels. The
skip connection layers all have 32 output channels. The first layer of the output module has 64
output channels, and the second layer has 1 output channel. We use the implementation from:
https://github.com/nnzhan/MTGNN.

StraTS (Tipirneni & Reddy, 2022) is a self-supervised transformer for sparse IMTS. We use the
implementation at https://github.com/sindhura97/STraTS and the following setting in our experi-
ment: hidden dim = 64, num layers = 2, num heads = 16, dropout = 0.2.

DuETT (Labach et al., 2023) is a dual event time transformer for Electronic Health Records
(EHRs). We use the implementation at https://github.com/layer6ai-labs/DuETT and the default set-
tings of the model declaration in this repository.
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ViTST (Li et al., 2024): transforms IMTS into line graph images and adapts powerful vision
transformers to perform time series classification in the same way as image classification. We use
the implementation at https://github.com/Leezekun/ViTST.

Please refer to C.1.2 for details of GRU-D (Che et al., 2018), mTAND (Shukla & Marlin, 2021) ,
Raindrop (Zhang et al., 2022) and Warpformer (Zhang et al., 2023).

D PERFORMANCE METRICS

MSE MSE (Mean Squared Error) measures the average of the squared differences between pre-
dicted and actual values. The calculation formula is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (14)

where yi represents the actual value, ŷi represents the predicted value, and n is the number of
observations. A smaller MSE indicates better model performance. Since errors are squared, MSE is
sensitive to large errors or outliers.

MAE MAE (Mean Absolute Error) measures the average of the absolute differences between
predicted and actual values. The calculation formula is:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (15)

where yi represents the actual value, ŷi represents the predicted value, and n is the number of
observations. A smaller MAE indicates better model performance. Compared to MSE, MAE is less
sensitive to outliers and provides a straightforward average measure of error.

AUROC AUROC is commonly employed in binary classification tasks, where one class is des-
ignated as positive and the other as negative. It represents the area under the Receiver Operating
Characteristic (ROC) curve, constructed by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR). AUROC ranges from 0 to 1, with a higher value indicating better model perfor-
mance in accurately discriminating between positive and negative instances. An AUROC equal to
0.5 indicates a model’s performance equivalent to random guessing, while an AUROC greater than
0.5 signifies superiority over random guessing.

AUPRC The Area Under the Precision-Recall Curve is widely used as a performance metric
for imbalanced binary classification tasks. It provides a comprehensive assessment of a model’s
precision-recall trade-off. The Precision-Recall curve is constructed by plotting recall on the x-axis
and precision on the y-axis. AUPRC ranges from 0 to 1, and a higher value indicates better model
performance in achieving high precision and recall simultaneously. It has been suggested as a good
criterion for unevenly distributed classification problems (Davis & Goadrich, 2006).

E HYPERPARAMETERS SETTINGS

We search all hyperparameters in the grid to find the best hyperparameters for our proposed model
Hi-Patch. Specifically, our model has a total of 4 hyperparameters: patch size P , dimension of
node state dmodel, number of multi-head attention heads nheads, number of GAT layers L. Since
the number of patches N =

⌈
T
P

⌉
and the number of inter-patch graph layers equals to ⌈log2 N⌉

where T is the dataset-specific maximum time span, we search N over the range {2, 4, 8, 16, 32} to
maintain the number of inter-patch graph layers as an integer. Thus the patch size P of each dataset
is determined by P =

⌈
T
N

⌉
. Additionally, we search dmodel in {16, 32, 64, 128}, nheads in {1, 2, 4, 8}

and L in {1, 2, 3}. The best hyperparameters for each dataset are reported in the code.
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F ADDITIONAL EXPERIMENTS

F.1 VARYING OBSERVATION AND FORECAST HORIZONS

Table 4: Performance of varying observation and forecast horizons on Human Activity dataset. The
best results are highlighted in bold, and the second-best results are in underlined. The results in the
table are presented in the form of (Mean ± Std).

Horizon 2000ms → 2000ms 1000ms → 3000ms

Metric MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

iTransformer 7.49 ± 4.72 6.08 ± 2.17 5.58 ± 0.04 5.13 ± 0.05
ModernTCN 5.26 ± 0.06 4.96 ± 0.04 12.12 ± 1.01 5.72 ± 0.07

TimesNet 5.38 ± 0.30 5.32 ± 0.20 9.90 ± 0.42 7.34 ± 1.81
PatchTST 7.25 ± 0.29 6.26 ± 0.17 8.97 ± 1.96 6.94 ± 0.94

Pathformer 4.67 ± 0.22 4.58 ± 0.17 5.49 ± 0.12 5.05 ± 0.06
TimeMixer 5.39 ± 0.54 5.05 ± 0.38 5.96 ± 0.19 5.36 ± 0.10
MSGNet 7.90 ± 0.36 6.85 ± 0.13 8.29 ± 0.22 7.02 ± 0.12
MICN 7.57 ± 0.05 6.43 ± 0.02 8.16 ± 0.12 6.78 ± 0.05

Warpformer 3.60 ± 0.08 3.81 ± 0.03 4.26 ± 0.11 4.26 ± 0.04
Raindrop 5.57 ± 0.34 5.15 ± 0.11 5.75 ± 0.33 5.37 ± 0.22
GRU-D 5.93 ± 0.10 5.66 ± 0.66 6.14 ± 0.76 5.75 ± 0.49

tPatchGNN 3.71 ± 0.20 3.89 ± 0.16 4.56 ± 0.08 4.32 ± 0.06
GraFITi 4.59 ± 0.04 4.45 ± 0.04 4.91 ± 0.07 4.62 ± 0.03

CRU 4.12 ± 0.08 4.43 ± 0.06 4.85 ± 0.09 4.86 ± 0.07
mTAND 4.38 ± 0.37 4.59 ± 0.29 5.29 ± 0.32 5.12 ± 0.23

NeuralFlow 5.47 ± 0.49 5.35 ± 0.28 6.01 ± 0.91 5.66 ± 0.60
Latent-ODE 5.04 ± 0.46 5.11 ± 0.29 5.48 ± 0.21 5.33 ± 0.14

Hi-Patch 3.29 ± 0.04 3.70 ± 0.04 4.21 ± 0.08 4.25 ± 0.07

Table 5: Performance of varying observation and forecast horizons on USHCN dataset. The best
results are highlighted in bold, and the second-best results are in underlined. The results in the table
are presented in the form of (Mean ± Std).

Horizon 24months → 6months 24months → 12months

Metric MSE×10−1 MAE×10−1 MSE×10−1 MAE×10−1

iTransformer 6.05 ± 0.03 3.89 ± 0.14 6.19 ± 0.12 4.01 ± 0.12
ModernTCN 6.03 ± 0.10 3.68 ± 0.06 6.19 ± 0.07 3.75 ± 0.03

TimesNet 5.68 ± 0.05 3.66 ± 0.06 5.84 ± 0.06 3.78 ± 0.10
PatchTST 6.12 ± 0.03 4.01 ± 0.08 6.55 ± 0.12 4.20 ± 0.06

TimeMixer 5.89 ± 0.07 3.65 ± 0.05 6.06 ± 0.27 3.76 ± 0.04
MSGNet 5.76 ± 0.02 3.74 ± 0.08 5.93 ± 0.05 3.77 ± 0.03
MICN 6.02 ± 0.03 3.85 ± 0.04 6.00 ± 0.03 3.85 ± 0.03

Warpformer 5.12 ± 0.03 3.13 ± 0.08 5.10 ± 0.07 3.13 ± 0.12
Raindrop 7.01 ± 0.49 4.24 ± 0.33 7.61 ± 0.02 4.61 ± 0.05
GRU-D 5.29 ± 0.09 3.34 ± 0.09 5.36 ± 0.12 3.25 ± 0.07

tPatchGNN 5.23 ± 0.02 3.24 ± 0.19 6.23 ± 0.10 3.83 ± 0.60
GraFITi 5.12 ± 0.14 3.09 ± 0.10 5.01 ± 0.03 3.14 ± 0.06

CRU 6.77 ± 1.04 4.11 ± 0.61 6.64 ± 0.95 4.08 ± 0.51
mTAND 5.16 ± 0.10 3.10 ± 0.07 5.07 ± 0.03 3.09 ± 0.03

NeuralFlow 5.52 ± 0.05 3.46 ± 0.05 5.48 ± 0.37 3.56 ± 0.37
Latent-ODE 5.18 ± 0.04 3.36 ± 0.04 5.23 ± 0.04 3.35 ± 0.02

Hi-Patch 5.07 ± 0.17 3.06 ± 0.06 5.02 ± 0.05 3.07 ± 0.08
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Table 6: Performance of varying observation and forecast horizons on PhysioNet dataset. The best
results are highlighted in bold, and the second-best results are in underlined. The results in the table
are presented in the form of (Mean ± Std).

Horizon 36h → 12h 12h → 36h

Metric MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

iTransformer 56.83 ± 21.17 17.05 ± 5.21 54.17 ± 17.91 17.03 ± 4.18
ModernTCN 24.87 ± 9.44 6.58 ± 0.58 31.48 ± 3.96 6.73 ± 0.53

TimesNet 9.43 ± 0.53 5.55 ± 0.20 9.26 ± 0.18 5.58 ± 0.10
PatchTST 26.13 ± 1.75 11.25 ± 0.29 25.63 ± 1.51 10.70 ± 0.38

Pathformer 6.85 ± 0.42 4.61 ± 0.18 8.19 ± 0.28 5.03 ± 0.07
TimeMixer 12.52 ± 0.45 6.47 ± 0.21 19.86 ± 0.17 8.38 ± 0.18
MSGNet 10.44 ± 0.44 5.94 ± 0.08 9.91 ± 0.12 5.74 ± 0.08
MICN 10.98 ± 0.31 6.01 ± 0.11 10.24 ± 0.14 5.85 ± 0.06

Warpformer 4.17 ± 0.13 3.38 ± 0.08 6.51 ± 0.12 4.24 ± 0.04
Raindrop 10.67 ± 0.33 5.87 ± 0.20 10.24 ± 0.18 5.83 ± 0.10
GRU-D 6.85 ± 0.37 4.88 ± 0.18 7.80 ± 0.22 5.13 ± 0.13

tPatchGNN 4.22 ± 0.09 3.38 ± 0.04 6.45 ± 0.11 4.24 ± 0.09
GraFITi 4.58 ± 0.11 3.65 ± 0.05 6.30 ± 0.14 4.38 ± 0.12

CRU 6.74 ± 0.21 4.82 ± 0.11 7.66 ± 0.14 4.97 ± 0.05
mTAND 5.61 ± 0.31 4.15 ± 0.09 7.46 ± 0.19 4.85 ± 0.05

NeuralFlow 8.87 ± 1.00 5.43 ± 0.18 7.98 ± 0.57 5.08 ± 0.24
Latent-ODE 6.99 ± 0.24 4.74 ± 0.11 7.28 ± 0.13 4.83 ± 0.07

Hi-Patch 4.16 ± 0.08 3.31 ± 0.06 6.30 ± 0.06 4.12 ± 0.05

Table 7: Performance of varying observation and forecast horizons on MIMIC-III dataset. The best
results are highlighted in bold, and the second-best results are in underlined. The results in the table
are presented in the form of (Mean ± Std).

Horizon 36h → 12h 12h → 36h

Metric MSE×10−2 MAE×10−2 MSE×10−2 MAE×10−2

iTransformer 7.27 ± 0.04 21.52 ± 0.09 7.44 ± 0.21 21.47 ± 0.45
ModernTCN 5.12 ± 0.59 11.41 ± 0.30 3.96 ± 0.23 10.79 ± 0.39

TimesNet 2.02 ± 0.09 8.18 ± 0.22 2.39 ± 0.06 8.35 ± 0.20
PatchTST 8.81 ± 0.96 22.97 ± 1.32 7.11 ± 0.65 19.96 ± 1.24

Pathformer – – 2.45 ± 0.02 8.65 ± 0.09
TimeMixer 4.31 ± 0.29 13.44 ± 0.28 6.31 ± 0.04 18.41 ± 0.06
MSGNet 2.48 ± 0.12 9.42 ± 0.32 2.57 ± 0.03 9.02 ± 0.06
MICN 2.15 ± 0.13 8.66 ± 0.26 2.39 ± 0.06 8.58 ± 0.11

Warpformer 1.45 ± 0.10 6.74 ± 0.08 2.32 ± 0.04 8.14 ± 0.07
Raindrop 2.21 ± 0.37 9.17 ± 0.49 2.36 ± 0.03 8.63 ± 0.11
GRU-D 2.03 ± 0.13 8.14 ± 0.26 2.39 ± 0.02 8.43 ± 0.13

tPatchGNN 1.44 ± 0.08 6.78 ± 0.14 2.35 ± 0.03 8.23 ± 0.08
GraFITi 1.61 ± 0.27 7.16 ± 0.36 2.22 ± 0.05 8.13 ± 0.13

CRU 2.00 ± 0.13 8.16 ± 0.26 2.34 ± 0.05 8.32 ± 0.13
mTAND 2.01 ± 0.09 8.13 ± 0.23 2.29 ± 0.03 8.38 ± 0.08

NeuralFlow 1.97 ± 0.12 8.39 ± 0.25 2.26 ± 0.08 8.29 ± 0.10
Latent-ODE 1.90 ± 0.03 7.92 ± 0.17 2.38 ± 0.05 8.35 ± 0.13

Hi-Patch 1.56 ± 0.10 6.71 ± 0.16 2.32 ± 0.02 8.11 ± 0.08
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F.2 LEAVE-VARIABLES-OUT CLASSIFICATION

Table 8: Classification performance on samples with a fixed set of left-out variables. The best results
are highlighted in bold and the second best results are in underlined.

Dataset Methods
Discard ratio

10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

P12

GRU-D 68.6 ± 2.3 35.8 ± 2.2 68.2 ± 2.1 34.5 ± 2.9 66.8 ± 3.3 32.7 ± 4.6 65.8 ± 4.0 31.3 ± 5.2 65.1 ± 4.1 30.4 ± 5.5
mTAND 74.9 ± 0.6 37.7 ± 0.6 74.0 ± 1.3 36.5 ± 1.5 71.4 ± 3.8 34.1 ± 3.7 70.6 ± 3.6 33.2 ± 3.7 70.1 ± 3.5 32.5 ± 3.6
DGM2-O 76.3 ± 1.1 39.3 ± 1.5 76.1 ± 1.1 38.2 ± 1.7 74.8 ± 2.2 36.8 ± 2.6 72.0 ± 5.3 34.3 ± 5.0 70.4 ± 5.9 32.7 ± 5.7
MTGNN 71.2 ± 2.1 30.5 ± 1.5 70.3 ± 3.3 29.7 ± 2.8 68.9 ± 4.2 28.5 ± 3.3 68.1 ± 4.7 27.7 ± 3.6 67.6 ± 5.2 27.2 ± 3.8
Raindrop 73.2 ± 1.6 32.4 ± 0.9 73.0 ± 1.6 31.7 ± 1.1 72.2 ± 2.6 31.1 ± 2.7 71.5 ± 3.5 30.6 ± 3.5 70.8 ± 4.2 29.7 ± 4.3
StraTS 80.8 ± 0.4 42.4 ± 1.8 80.4 ± 0.7 41.8 ± 1.8 79.5 ± 1.6 40.2 ± 3.1 78.7 ± 1.9 38.4 ± 4.2 78.4 ± 2.0 37.5 ± 4.4
DuETT 73.9 ± 1.7 35.8 ± 2.3 74.7 ± 1.8 35.3 ± 2.0 73.6 ± 2.2 34.1 ± 2.4 72.8 ± 2.6 33.3 ± 2.7 72.3 ± 2.7 32.6 ± 2.8

Warpformer 75.9 ± 0.7 37.3 ± 2.2 75.6 ± 0.8 36.7 ± 2.3 73.8 ± 2.9 34.3 ± 4.1 72.8 ± 3.4 33.0 ± 4.6 72.1 ± 3.7 32.2 ± 4.7

Hi-Patch 80.1 ± 1.1 43.3 ± 2.2 79.7 ± 1.2 41.8 ± 2.7 79.1 ± 1.5 40.2 ± 3.4 78.8 ± 1.5 39.6 ± 3.2 78.7 ± 1.4 39.4 ± 3.0

P19

GRU-D 88.5 ± 2.3 54.6 ± 3.7 88.8 ± 2.1 54.2 ± 3.4 88.0 ± 2.5 50.4 ± 7.5 87.5 ± 2.8 49.6 ± 6.9 86.4 ± 3.5 47.2 ± 8.6
mTAND 79.6 ± 1.8 28.6 ± 1.9 79.2 ± 1.9 28.1 ± 2.1 78.0 ± 2.4 26.9 ± 2.9 77.2 ± 2.7 26.3 ± 2.9 76.2 ± 3.2 24.3 ± 4.8
DGM2-O 87.4 ± 0.6 53.4 ± 1.5 87.3 ± 0.8 53.2 ± 1.7 86.6 ± 1.6 49.9 ± 5.1 85.8 ± 1.9 47.7 ± 5.9 85.2 ± 2.2 45.7 ± 6.7
MTGNN 84.5 ± 1.4 48.9 ± 2.3 84.8 ± 1.7 49.8 ± 3.1 84.0 ± 1.9 47.2 ± 4.8 83.3 ± 2.2 45.5 ± 5.5 82.5 ± 2.9 42.7 ± 9.2
Raindrop 88.2 ± 1.5 59.7 ± 1.5 88.1 ± 1.3 59.8 ± 1.4 87.8 ± 1.2 59.1 ± 1.7 87.6 ± 1.1 58.5 ± 1.9 87.1 ± 1.5 57.7 ± 2.3
StraTS 90.6 ± 0.9 56.4 ± 3.0 91.0 ± 0.9 56.3 ± 2.3 91.0 ± 0.9 56.0 ± 2.4 90.8 ± 1.0 55.1 ± 3.0 90.4 ± 1.3 54.4 ± 3.3
DuETT 85.2 ± 1.0 53.7 ± 1.0 84.8 ± 1.1 53.9 ± 0.8 84.7 ± 1.0 53.3 ± 1.6 84.3 ± 1.4 52.7 ± 2.1 84.4 ± 1.3 52.5 ± 2.0

Warpformer 91.3 ± 0.8 55.2 ± 5.6 91.3 ± 0.8 55.1 ± 5.6 91.4 ± 0.8 56.0 ± 4.8 91.5 ± 0.7 56.4 ± 4.3 91.2 ± 0.8 56.2 ± 3.9

Hi-Patch 92.1 ± 0.4 60.7 ± 2.0 92.0 ± 0.4 60.6 ± 1.9 91.9 ± 0.5 60.3 ± 1.8 91.9 ± 0.5 60.0 ± 1.7 91.6 ± 0.8 59.5 ± 1.9

PhysioNet

GRU-D 70.0 ± 3.0 32.1 ± 4.1 69.5 ± 2.6 31.1 ± 3.6 69.2 ± 3.0 31.0 ± 4.4 68.3 ± 3.6 30.1 ± 5.3 68.1 ± 3.7 29.8 ± 5.3
mTAND 80.5 ± 2.1 42.8 ± 4.0 78.2 ± 3.4 40.5 ± 4.7 76.3 ± 4.0 37.7 ± 5.7 75.6 ± 3.9 36.6 ± 5.6 75.1 ± 3.9 36.1 ± 5.1
DGM2-O 80.2 ± 0.9 38.6 ± 2.8 80.4 ± 0.9 38.3 ± 2.8 79.3 ± 1.9 37.1 ± 3.4 77.5 ± 3.7 35.4 ± 4.4 75.6 ± 5.0 34.0 ± 4.8
MTGNN 68.9 ± 4.1 25.8 ± 4.8 69.3 ± 4.3 26.6 ± 4.5 69.0 ± 4.8 26.3 ± 5.2 68.3 ± 5.2 25.4 ± 4.8 67.2 ± 5.4 24.4 ± 4.8
Raindrop 76.5 ± 1.2 33.4 ± 2.2 76.5 ± 1.3 32.3 ± 2.3 75.6 ± 2.0 30.8 ± 3.2 74.7 ± 2.6 29.7 ± 3.5 73.6 ± 3.2 28.8 ± 3.9
StraTS 80.4 ± 2.4 40.8 ± 2.6 80.8 ± 2.3 40.5 ± 2.2 79.5 ± 2.8 39.5 ± 2.7 78.8 ± 3.0 38.2 ± 3.8 78.1 ± 3.4 37.6 ± 3.7
DuETT 78.2 ± 2.8 39.9 ± 3.5 78.3 ± 3.0 39.9 ± 3.7 76.7 ± 3.7 37.9 ± 4.5 75.9 ± 3.8 37.0 ± 4.6 74.9 ± 4.3 35.9 ± 5.0

Warpformer 78.2 ± 1.0 33.3 ± 2.1 77.7 ± 1.6 33.6 ± 1.8 75.8 ± 3.4 31.8 ± 3.0 73.8 ± 4.6 30.2 ± 4.1 72.7 ± 4.9 29.2 ± 4.2

Hi-Patch 81.2 ± 3.4 42.0 ± 7.6 80.6 ± 3.4 41.2 ± 7.2 79.8 ± 3.4 40.4 ± 6.3 79.3 ± 3.3 39.8 ± 5.8 78.7 ± 3.4 39.3 ± 5.5

MIMIC-III

GRU-D 81.0 ± 0.6 42.1 ± 0.8 80.3 ± 0.9 41.7 ± 1.0 79.2 ± 1.8 41.0 ± 1.4 78.5 ± 2.1 40.4 ± 1.6 77.9 ± 2.2 39.9 ± 1.8
mTAND 81.2 ± 0.2 42.1 ± 0.8 80.4 ± 1.1 41.9 ± 1.2 79.7 ± 1.4 41.0 ± 1.7 79.3 ± 1.4 40.4 ± 2.0 78.8 ± 1.6 39.8 ± 2.3
DGM2-O 78.8 ± 0.5 34.2 ± 0.9 78.3 ± 0.8 33.9 ± 1.1 77.6 ± 1.2 33.4 ± 1.2 77.3 ± 1.3 33.1 ± 1.2 76.8 ± 1.5 32.6 ± 1.4
MTGNN 78.8 ± 1.1 34.5 ± 1.4 78.0 ± 1.6 34.0 ± 1.3 77.1 ± 2.2 33.5 ± 1.5 76.3 ± 2.5 32.8 ± 1.9 75.6 ± 3.2 32.2 ± 2.4
Raindrop 78.2 ± 1.1 33.7 ± 0.9 77.5 ± 1.3 33.5 ± 0.9 76.4 ± 2.1 32.8 ± 1.4 76.0 ± 2.0 32.5 ± 1.4 75.7 ± 2.0 32.3 ± 1.4
StraTS 82.4 ± 0.7 43.3 ± 2.8 82.1 ± 0.6 43.7 ± 2.1 81.7 ± 0.8 43.1 ± 2.0 81.5 ± 0.8 42.6 ± 2.0 81.0 ± 1.3 41.9 ± 2.4
DuETT 78.0 ± 0.5 34.0 ± 0.9 77.2 ± 1.0 33.7 ± 0.8 76.6 ± 1.2 33.3 ± 1.0 76.4 ± 1.2 33.0 ± 1.0 76.1 ± 1.3 32.6 ± 1.3

Warpformer 82.5 ± 0.5 43.1 ± 0.8 81.7 ± 0.9 42.5 ± 1.2 81.2 ± 1.1 42.1 ± 1.2 80.6 ± 1.5 41.8 ± 1.3 80.0 ± 1.9 41.3 ± 1.6

Hi-Patch 82.8 ± 0.3 44.3 ± 1.2 82.3 ± 0.6 44.1 ± 1.3 81.7 ± 1.0 43.6 ± 1.4 81.1 ± 1.5 42.8 ± 2.2 80.5 ± 1.9 42.0 ± 2.6

F.3 EFFICIENCY COMPARISON

We compared 8 leading IMTS models: Warpformer, GRU-D, GraFITi, tPatchGNN, CRU, mTAND,
NeuralFlow, and Latent-ODE. All models are evaluated using the same batch size (32 for Human
Activity, 128 for USHCN, 64 for PhysioNet, and 8 for MIMIC-III) to assess their training time per
epoch and MSE. The results shown in Figure 6 indicate that the training time of our method ranks
5th on average across the four datasets. It is worth noting that our model employs a hierarchical
structure to extract features at multiple scales within the IMTS, with each layer inevitably adding to
the training time. In contrast, all the compared methods, except Warpformer, only extract features at
the original scale, which is why our model is not the fastest. Nonetheless, our model’s training time
remains in the same order of magnitude as the fastest models. In this context, We believe that the
trade-off of sacrificing some training time to extract richer features in IMTS is worthwhile.
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(a) Human Activity (b) USHCN

(c) PhysioNet (d) MIMIC-III

Figure 6: Comparison of IMTS models in terms of efficiency: training time per epoch against error
metric.

G VISUALIZATION OF MULTI-SCALE VIEWS

(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

Figure 7: Visualization of views on three scales on Human Activity dataset.
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(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

(d) Scale 4 (e) Scale 5

Figure 8: Visualization of views on five scales on USHCN dataset.

(a) Scale 1 (Origin) (b) Scale 2 (c) Scale 3

Figure 9: Visualization of views on three scales on PhysioNet dataset.

(a) Scale 1 (Origin) (b) Scale 2

Figure 10: Visualization of views on two scales on MIMIC-III dataset.
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