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ABSTRACT

The subject of the study is the problem of adapting language models to scientific subject
areas. The issues of expanding language models to mathematical subject areas are consid-
ered. It is proposed to use the knowledge graph of the subject area as a tool for ’tuning’
the language model. To build the knowledge graph, the ontology of the subject area of
the semantic library of mathematical subject areas and their applications LibMeta is used.
Navigation through the subject area is carried out using the knowledge graph and is lim-
ited by the terminology of the thesaurus and ontology links. This approach allows using
the knowledge graph to create a digital assistant in a recommender system, an agent for a
language model, and to feed mathematical text data to a language model.

1 INTRODUCTION

Modern large language models (LLM) are being implemented in various information systems to provide a
dialogue with the user in natural language. This radically changes the way information is extracted, accel-
erates the acquisition of necessary information and knowledge in certain cases. The influence of ChatGPT
and LLM is enormous. Meanwhile, the university community is discussing the problems of devaluation of
scientific work and plagiarism, in connection with the use of knowledge based on ChatGPT Ramil Malinka
& all (2023) in the process of obtaining education. The study in this paper is devoted to the acquisition of
knowledge in a specific mathematical subject area using LLM.

A well-known problem with using LLM is the difficulty of explaining and veracity of the conclusions, since
the answer does not indicate the sources on the basis of which the answer is formed. As a rule, such sources
cannot be specified even in principle, due to the complexity (closedness) of algorithms for processing large
volumes of data. This is especially important when it comes to scientific knowledge, especially mathematical
knowledge, which is needed in a wide range of classical and applied problems. In mathematical subject
areas, it is important to rely on proven sources, to identify LLM hallucinations from true search results.

Some search engines that use LLM provide source references. The most professional and sophisticated
product is Perplexity AI (https://www.perplexity.ai). Perplexity AI allows a question, including in Russian,
and gives an answer in English and Russian with a link to Wikipedia and articles from mathnet, matem.anrb,
diffjournal.spbu and other mathematical resources on the Internet. This version of the search engine, if we
do not talk about links to Wikipedia, certainly serves as an example of checking the authenticity (factuality)
of the LLM answer. Naturally, it does not assess the correctness of the answer, from a mathematical point of
view, but it does provide a link to the publication, which, as a rule, is the purpose of the search. The question
of the evidence of mathematical conclusions Zong & Krishnamachari (2023) is not considered by us in this
work.

However, despite the perfection of Perplexity AI, which works with the entire Internet space, there remains
the problem of working with special requests in a specific subject area, in particular in Russian, where
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clarification is required, and not general information, which, in principle, the user can find himself, spending,
of course, more time than with Perplexity AI.

As a rule, for scientific fields (and mathematics, of course), it is necessary to analyze a specific collection of
articles, including archived ones, full texts of which are not in the public domain. These articles need to be
collected in a digital library, processed, and only then can the result come to the attention of LLM. To extract
knowledge from these texts, previously not found in the public domain, it is necessary to provide them for
LLM training in a new subject area, i.e. to compile a corpus of articles and describe this set semantically.
This endless process is still relevant, since new subject areas appear, and new interdisciplinary studies with
new terminology are added to traditional ones, which means that language models need to be adapted.

In this paper, the problem of LLM adaptation is proposed to be solved by using the knowledge graph (KG)
MathSemanticLib of the semantic library LibMeta Olga Ataeva & Tuchkova (2024b), bypassing which,
LLM extracts the answer from the subject area of mathematics and its application. The result is achieved
due to the fact that the KG represents structured data, relies on the ontology and thesaurus of the subject
area.

The structure of the article is as follows: Introduction, Related works, Data model of the Kg MathSemanti-
cLib, Supervised knowledge extraction example LLM answer and Conclusion.

2 RELATED WORKS

The issues of joint consideration of the problems of constructing KG and LLM arose naturally, as a
continuation of the ideas of providing access to knowledge as structured data. The Awesome-LLM-KG
(https://github.com/RManLuo/Awesome-LLM-KG) page presents a collection of links to papers and re-
sources about unifying LLMs and KGs. It graphically displays the advantages and disadvantages of LLMs
and KGs in the context of their mutual complementarity. The main idea is that the KG structure contributes
to improving LLM reasoning, and the linguistic capabilities and generalizations of LLMs improve the un-
derstanding of the essence of knowledge in the KG. Awesome-LLM-KG also provides generalizations of
research directions and applications of the results of unifying LLMs and KGs in searching, building dia-
log systems and AI assistants, and research methods. The synergetic nature of unifying LLMs and KGs is
separately noted, which is based on the mutual enrichment of LLMs and KGs when they are combined.

In the work Shirui Pan (2024) a cyclic procedure of integration of the domain knowledge and LLM is
considered, as a result of which the LLM response and the domain knowledge itself are corrected, which is
closest to the idea of our research.

The authors Linhao Luo (2024) provide an overview of the weaknesses of LLM related to hallucinations.
The authors see an improvement in the quality of inference in the use of KG for training LLM, but they
note that this process is quite complex, since first a full KG must be constructed, and then LLM reasoning
with graph constraints. The work Linhao Luo (2024) proposes a procedure for transforming KG for further
traversal into LLM and for generating correct reasoning paths.

The option of creating a semantic description of mathematical concepts from school to university is con-
sidered in the work Samuel Debray (2025). Here Samuel Debray (2025) provides an overview of re-
search related to the attempt to reflect the process of cognition of mathematical subject areas and their
reflection in digital resources. This idea itself has haunted the scientific community, starting with the
GDML project Patrick Ion & Zheng (2019). The research Samuel Debray (2025) uses the GloVe
(https://nlp.stanford.edu/projects/glove/) algorithm on a large corpus of mathematical texts to identify the
frequency of use of terms and their relationships.

The comparison is made between Wikipedia terms in French and their English translations, and the use of
words from the dictionary by participants (https://osf.io/dxg2w) with different mathematical backgrounds. In
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this way, the GloVe algorithms were tested and a relatively good correspondence between the GloVe vectors
and human judgments was established. This study Samuel Debray (2025) is important for our discussions
in terms of the participation of experts in assessing the results of the semantic representation of subject areas
and the reflection of these representations in the processes of cognition of mathematical areas. Like the
authors of Samuel Debray (2025), we use the opinion of experts, but when creating semantic images of
subject areas, we rely on classical sources such as encyclopedias and monographs.

The research Ruiqing Ding (2023) is devoted to the description of subject areas. The data are given on
how individual examples trained on corpora of specific subject areas achieve good results. However, it is
noted that this is not enough to create a general approach for different subject areas. The authors propose the
KnowledgeDA tool, a unified domain language model development service that can automatically generate a
domain language model by performing three steps: (i) localize domain knowledge entities in texts using an
embedding-similarity approach; (ii) generate enriched samples by extracting exchangeable pairs of domain
entities from two representations of both the knowledge graph and the training data; (iii) select high-quality
enriched samples for fine-tuning using confidence-based scoring.

A KnowledgeDA prototype for learning language models for two domains: healthcare and software develop-
ment. This example of creating text corpora by subject area is quite problematic to extend to mathematical
subject areas, since the original sources may differ radically in structure and presentation features (for ex-
ample, the presence of formulas changes the process of text preprocessing).

The work Iz Beltagy (2019) is devoted to training the SciBERT (https://github.com/allenai/scibert/) model on
scientific texts, where the possibilities of improving BERT after unsupervised pre-training on a large multi-
domain corpus of scientific publications are demonstrated. The BERT model architecture Jacob Devlin
(2019) is based on a multilayer bidirectional Transformer Ashish Vaswani & Polosukhin (2017) is used.

Our work presents a technology for constructing KG, starting from arrays of texts of scientific mathematical
and interdisciplinary journals, to the integration of the obtained KG MathSemanticLib with LLM in the jour-
nal recommendation system in the environment of the semantic library LibMeta Olga Ataeva & Tuchkova
(2022).

3 DATA MODEL OF THE KG MathSemanticLib

The approach used in this work is that first an ontology and thesaurus of the subject area are built, then a
KG based on the ontology, and then LLM is used for communication in the library. The data structure and
ontology model of the LibMeta library for the KG MathSemanticLib are described in the works Olga Ataeva
& Tuchkova (2023a), Olga Ataeva & Tuchkova (2024a), here we will note only some of their properties,
namely: integration of various sources (encyclopedias, monographs, journals, classifiers, thesauri, dictionar-
ies, formulas) based on the ontology; construction of a KG based on the ontology; use of a KG for organizing
a dialogue in the library.

Thesauri contain the main terms of LibMeta subject areas, linked by hierarchical and horizontal relation-
ships. The data model in LibMeta is an ontology in OWL (which is represented as an RDF graph). Filling
the library is a process of completing the ontology by integrating data in accordance with their descrip-
tions and metadata. The subject area is defined by forming a thematic subspace in the library ontology and
establishing semantic links with the basic content of the library Olga Ataeva & Tuchkova (2023b).

The mathematical encyclopedia [ME] [EM], the encyclopedia of mathematical physics [MathPh], the the-
saurus of ordinary differential equations, the dictionary of special functions of mathematical physics and
other Russian-language sources and components of the library [Ataeva3] are used as external basic tax-
onomies with which publications are linked. The creation and development of the LibMeta library [Ataeva0]
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is based on the integration of mathematical knowledge, both in the retrospective and prospective direction,
by adding publications from various new subject areas of mathematics, related sciences and applications.

3.1 ONTOLOGY

The LibMeta digital library ontology defines the data structure. The concepts that make up the LibMeta
ontology are conventionally divided into concepts intended for:

– describing the content of a subject area;

– forming a thesaurus of any subject area;

– describing thematic collections;

– describing the task of integrating library content with source data from LOD.

Semantically significant connections are defined between these groups of concepts. The following formal
definitions are used to describe the ontology:

Definition 1. Library thesaurus TH = {T, R}, where T are terms and R are the relationships between them.

Definition 2. Library content C = {IR, A, IO}, where IR are types of information resources, a set of
attributes A {ai}, information objects {IO}.
Definition 3. Semantic labels M = {mi} of an information object are terms that are not included in the
thesaurus, but are necessary for thematic division of information objects IO within the subject area.

Definition 4. Semantically significant relationships of the library P = {Pi} are the following main relation-
ships:

P1(t, io) thesaurus term→ information object;

P2(io, t) information object→ thesaurus term;

P3(r, s) information resource→ class of source objects, where information resource is a general definition
for information objects stored in the system; thus, in fact, information objects are instances of information
resources;

P4(a, sa) information resource attribute→ property of source class;

P5(io, os) information object→ instance of class from data source;

P6(m, io) semantic label→ information object;

P7(io, m) information object→ semantic label.

In fact, the concepts are divided into three categories: the first includes definitions of the concepts of the
semantic library content, the second category refers to the definition of concepts necessary to support terms
in the thesaurus of the subject area, and the third includes definitions necessary to define the processes
of integrating the content of these resources. Based on these definitions, the main processes are described,
such as, for example, integrating data from different sources, categorization/classification, mapping different
models of source data to a given subject area, constructing equivalence classes, etc. Fig. 1 shows the diagram
of the article’s links in the LibMeta ontology.
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Figure 1: Diagram of LibMeta library data model.

3.2 COMPLETING THE ONTOLOGY AND INTEGRATING DATA

The task of adding new terms (new for this ontology) and links to the ontology arises during integration with
new sources (publication arrays). These are, as a rule, terms from new tasks or applications in interdisci-
plinary research. Integration of new data into LibMeta is implemented by completing the ontology.

When placing publications in a semantic library, they must undergo preliminary processing, diagram Fig. 2.

Figure 2: Stages of publication preprocessing.

Preprocessing options depend on the source data and may vary depending on the degree of structuring of
the articles. Characteristic structures are known for mathematical articles, but it is necessary to identify the
main terms and links Olga Ataeva & Tuchkova (2024a). At the Link Extraction stage (Fig. 2), semantically
significant links of the library P = {Pi, i = 1, .., 7} are identified. If preprocessing has shown the presence
of signs of belonging of the data to a certain subject area, then the publications are placed in the ontology
and thesaurus of the subject area.

The task of adding new terms (new for this LibMeta ontology) and links to the ontology arises during
integration with new sources (publication arrays). These are, as a rule, terms from new tasks or applications
in interdisciplinary research. One of such typical examples is applications in equations of mathematical
physics. Fig. 3 shows the scheme of adding terms from the journal MKMK Olga Ataeva & Tuchkova
(2023b), thanks to which a new subject area, ’elasticity theory’, was completed and integrated into the
ontology.

Completing the ontology, following the logic of the library data structure, affects the KG MathSemanti-
cLib. Since the KG reflects the ontology connections, then when a new subject area appears in the KG of
MathSemanticLib, a ’subgraph’ appears.
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Figure 3: Connection diagram when adding a new subject area to the LibMeta ontology.

3.3 KG MathSemanticLib

The LibMeta digital library ontology defines the structure of the library data. Each data element loaded
into the library can be associated with an ontology node, which defines the position of the data element
in the ontology. Based on the ontology links and the links defined at the design stage, a graph can be
constructed. The subject area data can thus be represented as a KG, the structure of which is defined by the
ontology, nodes (articles, terms, formulas) are instances of ontology elements, links are links of the subject
area thesaurus. This is shown schematically as a three-level ontology in Fig. 4.

The construction of KG MathSemanticLib can be described in two global stages. At the first stage, a ’zero’
version of KG is constructed from some source, and at the ’second’ stage, the integration of the graph of in-
coming data with the general graph of the library occurs by establishing links with the thesaurus Olga Ataeva
& Tuchkova (2024b). The ’zero’ version of the graph KG MathSemanticLib is the KG of the mathematical
encyclopedia Vinogradov (1977–1985), EM (2022), and the ’second’ stage is the integration of an array of
scientific articles. When completing the ontology, KG is also completed, that is, the ’second’ stage is each
subsequent stage.

The main stages of data processing for GC are closely related to the sources from which the data comes.
Often the data is presented in an unstructured or semi-structured form. In our case, we consider, among
other things, unstructured texts of Russian-language scientific articles. Nodes can be larger ontology objects
Fig. 4, or objects - publication, term, person, formula.
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Figure 4: Scheme of three levels of the LibMeta library ontology.

Figure 5: The central node of the MathSemanticLib thesaurus.

3.4 FORMULAS IN KG MathSemanticLib

The use of formula language in mathematical subject areas is a natural stage in modern dialog programs. One
of the most authoritative databases of scientific publications zbMATH (https://zbmath.org) has long allowed
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Figure 6: Fragment of the subgraph of the ME concept ’Lame Equation’, KG MathSemanticLib.

Figure 7: Subgraph fragment with MSC codes nodes, KG MathSemanticLib.

formula entry in the search line. Nevertheless, search by formulas remains one of the tasks in information
technology, since it is important to consider the meaning of their use in a scientific publication.

The LibMeta library accumulates and integrates formulas from the mathematical encyclopedia Vinogradov
(1977–1985), EM (2022), encyclopedia of mathematical physics Faddeev (1998), the thesaurus of ordinary
differential equations Olga Ataeva & Tuchkova (2017), Eugenii Moiseev & Tuchkova (2005), dictionary
of special functions and others into the ontology. The peculiarity of this integration is that the formula is
saved with the context, and thus, a dictionary of formulas with links is formed, that is, the semantic image
of the formula is saved. This approach allows you to include symbolic expressions in search queries. Since
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the formula is a semantic object in LibMeta, it can also be a KG node, for example, Fig. 5, which shows the
links of the formula with other KG objects of the MathSemanticLib library.

There are several types of work with formulas in the LibMeta library:

– selection of basic formulas related to concepts;

– selection of formulas related to the concept;

– selection of all formula links.

4 SUPERVISED KNOWLEDGE EXTRACTION EXAMPLE LLM ANSWER

Diving into the terminology of the subject area means accepting some non-standard terms established by
specialists. For mathematical subject areas, it is important to reflect the meaning of formulas and terms
when describing subject areas in digital libraries. Fig. 4–6 shows fragments of the MathSemanticLib KG for
a concept, formula, classifiers.

Below is a comparison of responses from some language models.

ChatGpt 4 and YandexGPT 4 Pro ( https://console.yandex.cloud/) coped with the query ’Lame equation’,
but gave only general information without links and formulas with an error, Perplexity and LLAMA (Large
Language Model Meta AI https://app.hyperbolic.xyz/models/llama-3-3-70b-instruct) did not cope at all (Fig.
7-9).

Figure 8: Perplexity answers to the query ’Lame equation’.

The language model + knowledge graph allow using the generalizing capabilities of the language model to
explore the domain graph in natural language. Questions formulated in natural language are transformed

9
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Figure 9: Yandex answers to the query ’Lame equation’.

into SPARQL queries based on the ontological model of the graph. The model’s answers are given based on
the mathematical encyclopedia articles and their connections Fig. 10.

The model Gemma2-9b-It was used with following 3 questions. Gemma is a family of lightweight, state-of-
the-art open models from Google, built from the same research and technology used to create the Gemini
models. They are text-to-text, decoder-only large language models, available in English, with open weights
for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of
text generation tasks, including question answering, summarization, and reasoning. Their relatively small
size makes it possible to deploy them in environments with limited resources such as a laptop, desktop
or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster
innovation for everyone (https://huggingface.co/google/gemma-2-9b-it ).

Question 1: How many publications?

• Generated SPARQL:
SE

LECT (COUNT(*) AS ?publications)

Question 2: How many concepts?

• SELECT (COUNT(DISTINCT ?concept) AS ?count)
WHERE
?concept a :Concept .

Question 3: How many concepts are connected with Lame formula?

10
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Figure 10: LLAMA Answers to the Query ’Lame Equation’.

• SELECT (COUNT(DISTINCT ?concept) AS ?count)
WHERE
?formula a :LameFormula .
?concept a :Concept .
?formula :connectedTo ?concept
Stages of generating a SPARQL query and response to it using a GPT like model.
Stage 1. Translation of text into SPARQL query.
General format of the prompt for a model to generate a SPARQL query includes:
Question (promt): in natural language
Scheme: The graph data model is specified as an rdfs scheme, which is annotated with the rdfs:label
and rdfs:comment properties, which contain a natural language description of the classes and prop-
erties of the ontology
Instructions:

– Generate a SPARQL SELECT query to query a graph database using the following ontology
schema in Turtle format: {schema}

– Use only the classes and properties specified in the schema.
– Do not include any that are not explicitly provided.
– Ensure that all required prefixes are included.
– Output only the SPARQL query without any backticks or additional text.
– The question is: {prompt}

11
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Example 1.
Question (promt): in natural laguage How many concepts are there?
Scheme (fragment):
....
http://libmeta.ru/thesaurus/concept/DE0002
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Concept .
http://libmeta.ru/thesaurus/ODU
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Thesaurus .
...
Answer
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SELECT (COUNT(?concept) AS ?conceptCount)
WHERE
?concept rdf:type ¡http://libmeta.ru/Concept¿ .
Stage 2. Graph query
Next comes the step of sending the generated query through the SPARQL access point and receiving
the response. For the query specified in the example, the response comes in the form
’conceptCount’: ’datatype’: ’http://www.w3.org/2001/XMLSchema#integer’, ’type’: ’literal’,
’value’: ’1221’
Stage 3. Translate the answer into humanreadable format
General format of the prompt to translate the response into humanreadable format includes:
Question (promt): in natural language
Scheme: The graph data model is specified as an rdfs scheme, which is annotated with the rdfs:label
and rdfs:comment properties, which contain a natural language description of the classes and prop-
erties of the ontology
Instructions:

– Create a natural language response based solely on the results of a SPARQL query.
– You are an assistant who produces clear, human-friendly answers.
– Use only the provided information to build your response.
– This information is authoritative
– Do not question or alter it with your own knowledge.
– Ensure your answer reflects an AI assistants tone without adding any extra details.
– If no information is available, simply state that you don’t know.
– Schema: {schema}
– Context: {context}
– Question: {prompt}

Example 2.
Question (promt): in natural laguage How many concepts are there?
Scheme (fragment): ....
http://libmeta.ru/thesaurus/concept/DE0002

12
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http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Concept .
http://libmeta.ru/thesaurus/ODU
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Thesaurus. Context:
{’conceptCount’: {’datatype’: ’http://www.w3.org/2001/XMLSchema#integer’, ’type’: ’literal’,
’value’: ’1221’}}
Answer
There are 1,221 concepts in total.
Stage 4. Correction of the query
If an invalid request was generated in response to the first step, an attempt is made to correct it
using the following instructions:
Question (promt): in natural laguage
Scheme (fragment):
....
http://libmeta.ru/thesaurus/concept/DE0002
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Concept .
http://libmeta.ru/thesaurus/ODU
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Thesaurus . Error:
Error text
SPARQL
wrong query
Instruction

– The SPARQL query below
{generated sparql}
is invalid.

– The error is: {error message}
– Provide a corrected version of the SPARQL query without altering its logic.
– Include only the corrected query.
– No explanations or additional text.
– Do not enclose the query in backticks.
– The ontology schema in Turtle format is provided below: {schema}

Example 3.
Question (promt): in natural laguage How many concepts are there?
Scheme (fragment):
....
http://libmeta.ru/thesaurus/concept/DE0002
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Concept .
http://libmeta.ru/thesaurus/ODU
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http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://libmeta.ru/Thesaurus .
Error:
400: Error MALFORMED QUERY: QName ’lbm:ThesaurusConcept’ uses an undefined prefix
SPARQL
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SELECT (COUNT(?concept) AS ?conceptCount)
WHERE
?concept rdf:type lbm:ThesaurusConcept .
Answer
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX lbm: http://libmeta.ru/
SELECT (COUNT(?concept) AS ?conceptCount)
WHERE
?concept rdf:type lbm:Concept .

Figure 11: Graph for ’Lame equation’, MathSemanticLib KG and answer.

Fig. 10 shows schematically T-T that the ’Lame equation’ is selected and that it is linked to various objects
of the library. These links arise because the formula in the LibMeta library is semantically linked through its
context object.

5 CONCLUSION AND FINDINGS

The proposed approach to adapting LLM to a specific mathematical area of scientific Russian-language
journals has been tested in the semantic digital library LibMeta. The experience of integrating LLM and the
MathSemanticLib KG allows us to conclude that it is possible to organize a user dialogue with the library
and create a digital assistant with the functions of a reader, author, editor, and reviewer of the journal.
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It should be noted that when completing the LibMeta digital library ontology, it will be possible to ensure
further integration of LLM and the MathSemanticLib KG, which means that the capabilities of a controlled
Russian-language dialogue on mathematical topics will develop. At the same time, the ability to check the
LLM output within the LibMeta content and external sources, which will continue to be integrated, will be
preserved. Further research will continue in the direction of developing dialogue and recommender systems.
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