
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMORY MOSAICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory Mosaics are networks of associative memories working in concert to
achieve a prediction task of interest. Like transformers, memory mosaics possess
compositional capabilities and in-context learning capabilities. Unlike transform-
ers, memory mosaics achieve these capabilities in comparatively transparent way
(“predictive disentanglement”). We illustrate these capabilities on a toy example
and also show that memory mosaics perform as well or better than transformers
on medium-scale language modeling tasks.

1 Introduction
This paper presents a learning system architecture, Memory Mosaics, in which multiple associative
memories work in concert to carry out a prediction task of interest. Such systems are closely re-
lated to memory networks (Weston et al., 2014; Sukhbaatar et al., 2015) and resemble transformers
(Vaswani et al., 2017) despite significant differences. Like transformers, Memory Mosaics pos-
sesses some of the disentanglement and compositional capabilities that have long eluded machine
learning systems (Lake & Baroni, 2018). Unlike transformers whose internal mechanism are hard
to decipher (Olsson et al., 2022; Bietti et al., 2024), Memory Mosaics achieve these capabilities in
comparatively transparent ways.
The three main contributions of this work are (a) defining an architecture that exploits the direct
similarity between self-attention and associative memories implemented with kernel regression, (b)
identifying and illustrating the predictive disentanglement principle which explains how training
decomposes the overall task in interesting ways, and (c) showing that this comparatively transparent
architecture matches the i.i.d. performance of decoding transformers on a language modeling task,
and outperforms them on o.o.d. tasks such as in-context learning.
Section 2 reviews related work. Section 3 describes simple associative memory units than can be
inserted in a deep network. Section 4 explains how training such a network splits a prediction task
into disentangled sub-tasks. Section 5 illustrates this “predictive disentanglement” using a network
with only 54 parameters, showing that this is not a mysterious effect of scale but a property of the
architecture. Section 6 extends these ideas to fully formed memory mosaics. Section 7 reports on
medium-scale language modeling experiments.

2 Related Work
Several recent papers (e.g., Katharopoulos et al., 2020; Peng et al., 2023; Sun et al., 2023; Gu &
Dao, 2023) propose transformer alternatives that use efficient recurrences to cut the quadratic com-
putational cost of transformers. Closer to our interests, other authors (e.g., Ramsauer et al., 2020;
Krotov, 2023; Hoover et al., 2024) rethink transformers with Hopfield-style associative memories
and their associated energy function. In contrast, we leverage elementary associative memories that
interpolate stored key/value pairs with a kernel regression (therefore incurring a quadratic runtime
cost) in order to construct an architecture that remains very close to standard transformers but cast a
new light on properties that play an important role in their compositional learning capabilities.
Closely related to predictive disentanglement, (Bengio et al., 2019) proposes a meta-learning train-
ing objective that achieves causal disentanglement by seeking quick adaptation to new distributions.
We argue that a similar effect happens in our architecture as a consequence of the normal training
process interpreted as a meta-learning process, revealing an important aspect of the still mysterious
compositional learning abilities of transformer-like architectures.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

!""#$%&'%()*+),#-.

/)&'0-)*12'-&$'#-

!!

"!

#! $!

!"#$%&%'()&*)+')*

,$%#$%&%'()&*)+')*

!%&'()*+$","#$!%&'!"(&&)$*+"

,&-#.-/"$*!&"0!"1"2'!"'3$*+"

454&-6"4.!7%538""

-).&%'()&*)+')*

-59-535*!3"!%5"-575*!"9.3!"

&,"!%5"$*9'!"!$45"35-$538

#" - .#+!" / !"$%/ 0 ,

/01$)&%'()&*)+')*

-59-535*!3"!%5"*5.-",'!'-5"&,"

!%5"$*9'!"!$45"35-$538

$" - 1#+!"&%/ !" / !"$%/ 0 ,

2**34'0%'5)&()(3+.

-5!-$5:53"9.3!"9.$-3" #! / $!
#$!%"2+#" / #!,"34.((8

Figure 1: Elementary memory unit. The keys kT are computed as a function of past observations
(xt)t≤T . The values vT peek into the future. In this example, the value also depend on the next
observation xT+1. At time T , the associative memory uses the known key kT to retrieve an approx-
imation yT of the yet unknown value vT using the previously stored pairs (kt, vt). At time T + 1,
the value vT can be computed, and the pair (kT , vT) can be stored into the memory.

3 Memories
Associative memory Generally speaking, an associative memory is a device that can store key-
value pairs and retrieve values given a corresponding key. This definition omits important details
about dealing with duplicate keys and approximate matches. For our purposes, both keys and values
shall be vectors in Rd. The retrieval process can then be represented as a function of the queried key
k and all the stored pairs (k1, v1) . . . (kn, vn).{

Rd → Rd
k 7→ f

(
k; {(k1, v1) . . . (kn, vn)}

)
Except perhaps when duplicate keys are involved, an associative memory stores key-value pairs
without consideration for their temporal ordering. Therefore the retrieval function can be assumed
invariant with respect to any permutation of the stored pairs. This exchangeability property suggests
that we can also view an associative memory as a device that estimates a conditional probability
distribution P (V |K) on the basis of the sample (k1, v1) . . . (kn, vn) of key-value pairs. The retrieval
function is then a conditional expectation over this estimated distribution:

f
(
k; {(k1, v1) . . . (kn, vn)}

)
= E(V |K = k) . (1)

Such a conditional expectation can be constructed with Gaussian kernel regression,1

f
(
k; {(k1, v1) . . . (kn, vn)}

)
=

n∑
i=1

1

Z
e−β∥k−ki∥

2

vi with Z =

n∑
i=1

e−β∥k−ki∥
2

. (2)

The close connection between this Gaussian kernel smoothing and attention (Bahdanau et al., 2015)
is obvious when all key vectors ki share a same squared norm because expression (2) becomes

f
(
k; {(k1, v1) . . . (kn, vn)}

)
=

n∑
i=1

e β k
⊤ki∑n

j=1 e
β k⊤kj

vi . (3)

There are of course more advantageous ways to implement associative memories. Although some
will certainly prove useful in the future, this paper only relies on associative memories implemented
with Gaussian kernel smoothing, not least because that makes it easy to compute gradients.

Predicting with associative memories Consider now a sequence (xt) of observations, discrete
tokens or continuous values. We would like to leverage the past observations (xt)t≤T to predict
some useful property of the future observations (xt)t>T . For instance we might want to predict the
next observation xT+1 to construct an auto-regressive model of the sequence.

1Expression (2) is known as the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964). It converges
to the true conditional expectation E(K|V) when n → ∞ and β =

√
n.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our elementary memory unit (Figure 1) consists of an associative memory and a trainable feature
extractor that computes suitable keys and values for the memory. The keys kT are computed as a
function of the past observations (xt)t≤T and trainable weights w,

kT = φ(xT , xT−1, . . . ;w) . (4)

In contrast, the values vT are allowed to peek in the future because they represent what the memory
module aims to predict. For instance, the systems described in this paper merely allow values to
depend on the next observation xT+1,

vT = ψ(xT+1, xT , xT−1, . . . ;w) . (5)

The memory units operate independently at inference time. The memory start empty at the beginning
of each input sequence. At time step T , each memory receives a key vector kT computed from the
recent inputs (xT , xT−1, . . .) and interpolates a response yt on the basis of the previously stored
key/value pairs. The value vT is computed one time step later when the next input xT+1 is revealed
and the pair (kT , vT) is added to the memory.
Although the value vT depends on the near future, the output yT does not depend on vT but merely
leverages the previously stored key/value pairs to estimate vT . Therefore there is no leak of future
information: each memory unit is a little machine that predicts a bit of future information (described
by vT) on the basis of recent information (described by kT) and previously stored key/values pairs.
The exact form of the feature extraction functions can vary in complexity. For instance, when each
observation xT carries sufficient information, the keys kT and values vT can be computed as linear
functions of respectively xT and xT+1, that is kT =Wφ xT and vT =Wψ xT+1. However we find
useful to consider feature extraction functions that summarize the recent past using short convolu-
tions or quickly vanishing leaky averages. For instance, the language experiments of Section 7 use
feature extractors of the following form:2

kT = Norm
(
k̄T

)
with

leaky average over t = T, T-1. . . , 1︷ ︸︸ ︷
k̄T = k̃T + λφk̄T−1 k̃T =Wφ xT

vT = Norm
(
v̄T

)
with v̄T = ṽT + λψ ṽT+1 ṽT =Wψ xT︸ ︷︷ ︸

convolution over t=T and T+1

(6)

Since this expression produces keys with unit norm (Norm(x) = x/∥x∥), the effective kernel band-
width is determined by the trainable parameter β in equation (3).

Training networks of memory units Consider now a deep network whose architecture includes
layers of associative memory units. When the associative memories are implemented with differen-
tiable kernel smoothing mechanisms, training such a deep network is simply a matter of unrolling
the network in time and back-propagating the gradients, in ways that users of modern deep learn-
ing software will find very familiar. Unsurprisingly, unrolling equation (3) along an input sequence
(x1 . . . xD) of duration D yields an expression that very much resembles masked self-attention
(Vaswani et al., 2017).

∀T ∈ {1 . . . D} yT =

T−1∑
i=1

eβ k
⊤
T ki∑T−1

j=1 e
β k⊤T kj

vi , (7)

Implementing associative memories with kernel smoothing therefore provides a particularly direct
illustration of the connection between self-attention and associative memories (e.g., (Ramsauer et al.,
2020)). However, Memory Mosaics differ because the value extraction function is allowed to peek
into the near future of the input time series (xt). This slight change has important consequences

• Each memory unit operates as a little predictor whose outputs yT can be interpreted as a condi-
tional expectation (1) that estimates features of the near future (vT) of the input time series on the
basis of its past observations (kT). The parameters of the value extraction function (ψ) specify
what is being predicted and the parameters of the key extraction function (φ) specify how it is
predicted.

2The leaking average in expression (6) is far too simple to effectively encode long range dependencies as
demonstrated in (Voelker et al., 2019; Peng et al., 2023; Gu & Dao, 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The curve plots the prediction losses for all training sequence indices t ∈ {1 . . . D} in
the training sequence. Minimizing their sum —the area under the curve— favors memories that
produce useful value estimates after fewer time steps.

• Equation (7) must therefore account for the number of future time steps needed to compute vT .
In our experiments, for example, vT can look one step ahead in the future. This amounts to
having a more aggressive attention mask. Therefore the main diagonal must be excluded from
the attention mask, justifying the T − 1 upper bound in the sum (7)).3

• Because each memory unit acts as a predictor, a single layer of memory units is sufficient to
address the induction head problem of Bietti et al. (2024). In contrast, a decoding transformer
needs at least two self-attention layers for the same task.

• Equation (7) makes no provision for position encoding and no distinction between query and
key vectors. In other words, we are betting that these transformers complications are no longer
needed because our associative memory units do not need them to implement induction heads.

4 Predictive Disentanglement
Training and meta-learning The training process determines which future bit of information is
predicted by each associative memory unit (through the parameters that control the computation of
the values vT) and which kernels are used to perform the predictions (through the parameters of that
control the computation of the keys kT). In contrast, the relation between keys and predicted values
is determined for each input sequence at inference time through the memorization of key/values
pairs specific to each sequence. The training procedure should therefore be seen as a meta-learning
process, distinct from the memory-based learning that occurs at inference time when new key/value
pairs are added into the memories.

Predictive disentanglement This meta-learning interpretation reveals a remarkable phenomenon
that we call predictive disentanglement : the gradient training algorithm splits the overall prediction
task (e.g., predicting the next token in a natural language sentence) into disentangled prediction
sub-tasks assigned to each memory unit.
Consider a training set composed of long enough sequences (x1, . . . xD) extracted from underlying
time series governed by possibly different stationary processes. The goal of our network is to pre-
dict each xT+1 using the previous observations x1 . . . xT . Unrolling the network in time along each
sequence (x1 . . . xD) and collecting the prediction losses measured at each position t can be sum-
marized by a curve that shows the prediction cost (or loss) at each time step 1 . . . D, as illustrated
in Figure 2. We can expect that the prediction cost observed at position T becomes smaller when T
increases because more information (x1 . . . xT) is available to predict each xT+1.
The training process minimizes the total prediction cost, that is the area under the curve in Figure 2
viewed as a collection of vertical slices. We can also view this area as a collection of horizontal
slices, each representing the context length required to drive the prediction cost below a certain
threshold. Therefore the training process can also be viewed as minimizing the context length needed
to produce good enough predictions.
Because the associative memory retrieval function (2) is known to converge to stationary condi-
tional expectations E(V |K), each memory unit is driven to produce a good conditional expectation
estimate as soon as possible. This can be achieved in two ways:

• Let us first assume that each memory unit has a frozen value extraction function ψ. The training
procedure can still make each memory unit statistically more efficient by tuning the parameters

3One could of course use a more aggressive masking to allow vT peeking several time steps in the future.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of the key extraction function φ, that is, by learning how to compare the current prediction
context (xT , xT−1, xT−2 . . .) with past prediction contexts (xt, xt−1, xt−2 . . .) for t < T .
Learning a similarity metric (a kernel) is a well known way to make non-parametric estimators
more efficient (e.g., Bach et al., 2004). For instance, the training procedure can construct keys
that summarize the relevant contextual information, discarding noise factors that could increase
the distance between keys associated with similar values. It can also adjust the effective kernel
bandwidth, for instance, using parameter β in equation (7).

• When multiple memory units are available, the training procedure can also distribute the overall
prediction task among the available memory units. As long as the memory units outputs can
still be combined to address the overall task, the training algorithm can optimize the parameters
of the value extraction functions ψ to produce values vT that more efficiently modeled by their
respective memory units.
Because each memory unit operates independently at inference time, this works best when the
overall prediction task is disentangled into smaller prediction sub-tasks that can be modeled
independently and efficiently. More precisely, the sub-tasks must be chosen so that each memory
can carry out its assigned modeling task at inference time without having to account for the
combined impact of the operation of all memory units. Their outputs can then be recombined to
provide predictions for inputs that are globally very different from the training inputs, but whose
disentangled components are individually predictable, as illustrated in Section 5.

Disentanglement has long been recognized as desirable (Bengio, 2013) but has been hard to pinpoint
(Comon, 1994; Roth et al., 2022; Thomas et al., 2018). Predictive disentanglement is closely related
to the meta-transfer objective of Bengio et al. (2019) but arises as a side effect of a specific predictive
architecture trained with the usual gradient procedure. Although predictive disentanglement is easier
to understand in the case of a network of associative memory units, we conjecture that something
similar also occurs in standard transformers.

5 Tracking three moons
We give an illustrative example of predictive disentanglement: three moons orbit a remote planet.
Although the local astronomers are very far from understanding celestial mechanics,4 they neverthe-
less observe periodic motions and debate how to predict future moon positions. A first astronomer
proposes to compile a single table containing the daily positions of all three moons, arguing that
if the current set of moon positions matches a previous observation, the future moon positions will
match the following observations. A second astronomer suggests instead to make three tables, one
for each moon, arguing that the future positions of each moon can be independently predicted by
matching its current position with a previously observed one.
To make reliable predictions, the first astronomer needs a table that contains at least one record for
each of the possible moon configurations. Our astronomer therefore needs to log the daily moon
positions until all three moons return to their original configuration, after a number of days equal to
the least common multiple lcm(p1, p2, p3) of the individual moon periods. In contrast, the second
astronomer only needs to log daily moon positions until each of the moons returns to a previously
observed position, for a number of days equal to the period max(p1, p2, p3) of the slowest moon.
One could argue that the proposal of the second astronomer is obviously superior because the three
moons are distinct objects, well separated in space and time. One could instead argue that we
view the moons as separate objects precisely because their respective futures can in general be
independently predicted. Space and time separation merely suggests the possibility of independent
predictions, as long as the moons do not collide.

Model For our purposes, each observation xt consists of three complex numbers eiθk that encode
the angular positions θk of the three moons inside their respective orbital plane. We consider two
single layer models (Figure 3) with either Nh = 1 or Nh = 3 memory units whose added dimen-
sions match the input dimension. The trainable parameters of the linear key and value extraction are
collected in two 3× 3 complex matrices Wφ and Wψ . The memory unit follow equation (3) with a
fixed parameter β = 50. A third 3× 3 complex matrix Wz combines the memory unit predictions
into an output zT that hopefully predicts xT+1. Both networks share an interesting analytic solu-

4We do not seek to discuss subtleties such as elliptical orbits or multi-body problems. Our astronomers are
best compared to the ancient sky watchers whose efforts eventually gave the Ptolemaic model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Nh = 1 or 3

Stack
h=1...Nh

[
k
(h)
T

]
= Wφ xT Wφ ∈ C3×3

Stack
h=1...Nh

[
v
(h)
T

]
= Wψ xT+1 Wψ ∈ C3×3

y
(h)
t =

1

ZT

∑
t<T

eβ k
(h)
T

·k(h)
t v

(h)
t

zt = Wz Stack
h=1...Nh

[
y
(h)
T

]
Wz ∈ C3×3

Figure 3: An architecture for the three moons problem. We consider single-layer networks with
either Nh = 1 or Nh = 3 memory units whose keys and values belong to either C3 (Nh = 1) or C1

(Nh = 3). Both nets have 3×3×2×3 = 54 trainable real parameters that determine how to predict
the moon positions using either a single 6-dimensional memory or three 2-dimensional memories.

Figure 4: Single head network prediction er-
ror versus context length. The prediction error
shows a sharp transition after lcm(p1, p2, p3) ob-
servations (red vertical line), when the network
switches from predicting the future moon posi-
tion by repeating the last observation to predict-
ing by find a matching memorized configuration.

Figure 5: Three-heads network prediction er-
ror versus context length. The prediction error
improves whenever the context length reaches
the period of a new moon (black vertical lines),
yielding accurate predictions after the last one,
well before having seen the full set of moon
configurations (red vertical line).

tion: setting all three matrices Wφ, Wψ , and Wz to the identity yields optimal predictions once the
associative memories have seen enough samples.

Training The networks are trained using randomly generated sequences (xt) of length 800. Each
sequence features three moons whose periods are related by randomly chosen ratios and are scaled
to ensure that the 800 observation sequence contains at least three full periods lcm(p1, p2, p3) of the
moon system. Validation sequences are constructed similarly using a set of moon periods that does
not appear in the training set.
Figure 4 and 5 show the prediction errors of both networks as a function of the context length,
that is, the number of observations stored into the memories. More precisely, for each sequence
(xt) and each time index T , we compute the average absolute deviation between the next 25 true
moon positions xT+1 . . . xT+25 and the next 25 auto-regressive predictions (in which the successive
predictions are looped back into the network input.) The plots show curves averaged over 512
sequences sharing the same set of moon periods taken from either the training or validation set.

• For the single head network (Figure 4), the plots show a sharp transition after lcm(p1, p2, p3)
observations, that is, when the memory contains a full set of moon configurations (red vertical
line). Before this threshold, predictions are performed by repeating the last observation. Af-
ter this threshold, predictions are performed by finding a matching moon configuration in the
memory, just as suggested by the first astronomer.

• For the three-heads network (Figure 5), the prediction error curve drops after seeing exactly p1,
p2, and p3 observations (black lines), that is whenever the orbit of an additional moon has been
memorized. The learned weight matrices are shown Figure 10 in the Appendix. Observe how
the network produces accurate predictions after a time equal to the period max(p1, p2, p3) of the
slowest moon (last black line), long before the combined period lcm(p1, p2, p3) (red line) of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

moon system. In this interval, accurate predictions are returned for moon configurations that
can be very different from the previously observed ones. Instead the network combines individual
moon predictions, each well supported by the past observations.

Predictive disentanglement and compositional learning in language models Consider a chat-
bot assisted creative writing scenario in which the human uses dialogue to repeatedly introduce
new ideas into an evolving story that the chat-bot reprints at each step. The user can drive such a
story arbitrarily far from the training data and into the distant tail of its distribution. Although no
training example resembles the story, the chat-bot keeps producing syntactically correct language
and coherent stories because it has learned some of the mathematical structures of language (Harris,
1968) and can recombine pieces of information coming from either the context or the training data.
This phenomenon is fundamentally similar to that illustrated in Figure 5, where moon configurations
unlike any previously seen configurations are accurately predicted because the network has learned
how to combine individual moon predictions. This similarity casts a useful light on the otherwise
mysterious compositional learning abilities of transformer-like models.

6 Layered memories
We of course envision deeper networks of memory units. In order to make meaningful comparisons,
we also would like to remain as close as possible to the classic transformer architecture which
alternates self-attention layers with fully connected feed-forward networks (FFNs).

Persistent memories Sukhbaatar et al. (2019) shows that FFNs in a transformer can be inter-
preted as persistent memories that augment the self-attention layers and provide means to represent
information that persists across input sequences. Besides the contextual memory units (Figure 1),
we therefore introduce persistent memory units (Figure 12 in the Appendix) that contain a prede-
fined number of key value pairs (ki, vi)i=1...Nm

determined at training time through gradient back-
propagation. Persistent memory units no longer need an explicit value extraction function because
the memory content is not updated at inference time. As pointed out by Sukhbaatar et al., they also
can be viewed as fully connected neural networks with a single hidden layer that uses a soft-max
non-linearity instead of a component-wise transfer function. Yet, we find conceptually useful to still
view the persistent memory output yt as the conditional expectation E(V |K) of an implicit value
function that is not explicitly parameterized, but can be figured out after training.

Routing Interleaving layers of contextual and persistent memory units can then be understood as
means to increase the effective complexity of either the feature extractors or the combining layers
of contextual memories (see Figure 6 for a spoiler). Therefore persistent memory units can also be
seen as tool for routing information between successive layers of contextual memory units. Such a
circuitry can implement routes that depend on the data, just like the gating modules of a mixture of
expert (Jacobs et al., 1991). Since all the parameters of such a circuitry are determined at training
time, all the possible routes would have to be determined at training time. However the learning
algorithm can overcome this limitation by also recruiting contextual memory units from adjacent
layersy. Because the contents of contextual memory units are updated at inference time, recruiting
some of them into the routing circuitry provides the means to create new routes on the basis of the
first observations of a new sequence, suggesting an efficient alternative to capsule networks (Sabour
et al., 2017).

Memory Mosaics In such a complex network, the division of labor between contextual memory
units is still determined by the predictive disentanglement principle. During training, the steamroller
of Figure 2 pushes the contextual memory units towards functions that more easily memorized
independently than in aggregation. This does not only hold for memory units that record primary
pieces of information such as the moon positions of Section 5, but also for those that affect the
routing circuitry and those that operate on the information produced by earlier memory units.
Therefore, under the pressure of the predictive disentanglement principle, a network of memory
units does not only memorize disentangled fragments of information, but also memorizes how they
fit together and how their combinations can be again broken into new disentangled fragments and
recombined in myriad ways. This is why we call such networks Memory Mosaics.

7 Modeling language with memories
We have so far described Memory Mosaics as an architecture that resembles transformers in impor-
tant way but offers additional insights such as predictive disentanglement. We now provide evidence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

that Memory Mosaics can handle the most successful application of decoding transformers, that is,
language modeling.

Language modeling task The TINYSTORIES work of Eldan & Li (2023) shows how to study
large language modeling questions using small language models. This is achieved by limiting the
scope to tiny stories written in simple english and taking place in the simple world that a three years
old child could understand. A small language model trained on such data generates continuations
with far better language quality and narrative consistency than those a much larger model (1.5B
parameters) trained on a generic text.
Following both the lead of Eldan & Li and the advice of our legal department, we leverage the
Mixtral-8x7B open language model (Jiang et al., 2024) to generate a new corpus of tiny stories dubbed
BABISTORIES. This corpus and its generation are detailed in Appendix B.

!
!
"!
"
#
"
$
%"
&
'(
)*
+
,
-

.$/"!'0*!1

2%%"0%3*0'

4"$&-

556

7"+*&308')$/"!

.$/"!'0*!1

9*-3%3*0':0+*&308

Figure 6: Left: Classic GPT2-small transformer. Right: GPT2-like Memory Mosaic

Architecture To put our experiments into context, we design a Memory Mosaic architecture that
closely matches the classic GPT2-small transformer architecture (Radford et al., 2018; 2019). Both
architectures, shown side-by-side in Figure 6, use the same GPT2 tokenizer, the same embedding
dimension (d = 768), and the same number of heads (Nh = Nc = Np = 12). Both architectures
are trained and tested using sequences of length 512, that is, one to three stories long.
There are three major differences between these two architectures. First, the Memory Mosaic does
not use positional encoding. Second, unlike the Nh = 12 attention heads of each transformer
block, the Nc = 12 contextual memory units in each block do not distinguish keys from queries
(Figure 1) but instead use the key and value extraction functions described in Equation 6. The
keys are formed with a leaky average of past inputs, and the values can peek one time step ahead.5
Accordingly, the attention mask excludes the main diagonal to avoid breaking causality. Finally,
the feed forward networks (FFNs) of the classic transformers blocks are replaced by a layer of
Np = 12 persistent memory units, complete with a key extraction functions (6) and combining
layer. These persistent memory units are sized to ensure that the per-block parameter count of the
Memory Mosaic architecture closely matches GPT2-small.6

Training and validation Figure 7 shows the training and validation curves of both transformers
and Memory Mosaics of different depth trained on BABISTORIES. The Memory Mosaic slightly
outperforms the transformer for small depth networks,7 but this effect disappears when the depth
increases and both the training and validation losses become indistinguishable. Additional results
are presented in Appendix D.2.

5The key idea here is to define key and value extraction functions that combine a couple successive inputs xt
instead of just one as in the three moons example. Many variations perform more or less equivalently.

6Compared with GPT2-small, we save 768× 512 position encoding weights and Nb × 7682 query projec-
tion weights, but add 2×Nb × 7682 weights for the persistent memory key extraction and mixing layer. The
total number of persistent memory unit slots is therefore close to the total number of FFN hidden units.

7This is not surprising because Memory Mosaics only need a single block to implement induction heads,
whereas transformers need at least two for the same task.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4 6 8
iterations 1e4

1.6

1.8

2.0

2.2

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=1

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=8

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=12

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=18
GPT2 train loss
GPT2 val loss
Memory Mosaic train loss
Memory Mosaic val loss

Figure 7: Training and validation loss of the transformer and Memory Mosaic architectures trained
on BABISTORIES for different model depths. The horizontal axis represents the number of training
iterations. All hyper-parameters have been tuned on the transformer architecture and transferred
verbatim to the Memory Mosaic architecture. The Memory Mosaic slightly outperforms the trans-
former for small depth networks, but that effect disappears when the depth increases. Additional
results are presented in Appendix D.2.

0 100 200 300 400 500
token positions

7.50

7.75

8.00

8.25

8.50

8.75

9.00

cr
os

s-
en

tro
py

 lo
ss

 o

n
Si

m
pl

e
W

ik
ip

ed
ia

GPT2
Memory Mosaic

102 103 104

train environments

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

In-Context Language Learning

Memory Mosaic
Transformer
Mamba

Linear Transformer
Hyena
H3

LSTM
RWKV
S4

RetNet
GLA

102 103 104

train environments

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
ta

l V
ar

ia
tio

n
Di

st
an

ce

In-Context Language Learning

Figure 8: Prediction performance on the
Simple English Wikipedia dataset using
models trained on BABISTORIES. The plot
shows the per-token average loss as a func-
tion of the position of the generated token in
the 512-token long input window. Memory
Mosaics outperform transformers after about
50 tokens, suggesting superior in-context
learning abilities.

Figure 9: Memory Mosaics performance on
the REGBENCH in-context learning benchmark
(Akyürek et al., 2024). Since REGBENCH
includes an hyper-parameter search, Memory
Mosaics and transformers use the same search
space with the same parameter counts. Memory
mosaics outperform all previously tested archi-
tectures in this benchmark.

Importantly, all hyper-parameters were tuned for the transformer architectures (Appendix C) and
transferred verbatim to the Memory Mosaics. This choice might explain why the training curves
track each other so well. It also leaves the Memory Mosaics at a slight disadvantage.

Qualitative evaluation In order to compare the quality of the text generated by models trained on
tiny stories, Eldan & Li designed twenty-four prompts that exercise the factual, logical, and consis-
tency properties of the generated continuations. Table 4 in the Appendix compares the continuation
generated on these prompts by a transformer and a Memory Mosaic, both Nb = 18 blocks deep.
Both models perform very similarly on this task.

Out-of-distribution evaluation The Simple English Wikipedia8 is a version of Wikipedia written
in a language that is easier to understand. Despite the intended simplicity, the articles are substan-
tially longer and more sophisticated than our BABISTORIES. Predicting Simple English Wikipedia
articles using models trained on BABISTORIESis therefore a challenging out-of-distribution task.
Figure 8 shows the per-token average loss as a function of the position of the generated token in
the input window. Both the transformer and the Memory Mosaic are Nb = 12 blocks deep. In this
experiment, the token prediction is expected to improve when the increasing context size reveals that
the distribution is different. The transformer performance plateaus after 100 to 150 tokens, which is

8https://simple.wikipedia.org/wiki/Simple_English_Wikipedia, https:
//huggingface.co/datasets/wikipedia#20220301simple

9

https://simple.wikipedia.org/wiki/Simple_English_Wikipedia
https://huggingface.co/datasets/wikipedia#20220301simple
https://huggingface.co/datasets/wikipedia#20220301simple

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a bit shorter than a typical tiny story. Memory Mosaics substantially outperform transformers after
about 50 tokens, suggesting superior in-context learning abilities.

In-context learning evaluation In order to rigorously compare the in-context learning abilities of
various architectures, the REGBENCH benchmark (Akyürek et al., 2024) constructs random artificial
languages defined by probabilistic finite automata (PFA). Each input sequence is composed of 10
to 20 strings drawn from a same PFA and delimited separator tokens. The competing architectures
are trained on a variable number of input sequences, then evaluated on their ability to predict the last
token of testing sequences generated using held out PFAs.
Since REGBENCH performs a hyper-parameter searches, we use the Memory Mosaic architec-
ture of Figure 6 with the same search space as transformers, ensuring that both transformers and
Memory Mosaics have the same parameter count for the same architectural hyper-parameters. We
sweep over depth Nb ∈ {2, 4, 8}, number of heads Nh=Nc=Np ∈ {2, 4, 8}, embedding dimension
in d ∈ {64, 128, 256}, weight decay in {10−2, 10−1}, and training epochs in {1, 2, . . . 200}.
Figure 9 compares Memory Mosaic on REGBENCH with the results previously reported by Akyürek
et al.. The left plot shows the prediction accuracy for the test string last token. The right plot
compares the predicted last token distribution with the exact distribution implied by PFA. Mem-
ory Mosaics dominate this benchmark, substantially outperforming transformers, recurrent neural
networks, and state-space models for training set sizes covering three orders of magnitude.9

8 Discussion
The starting point of this work is made of two very old ideas. The first one is augment a deep
network with explicit memories. The second one is to let the learning process decide what gets
memorized and how it gets retrieved. Although such ideas have been explored in memory networks
(Weston et al., 2014; Joulin & Mikolov, 2015; Sukhbaatar et al., 2015), the importance of having
lots of independent memories had not been fully appreciated.
This contribution focuses on networks of associative memories implemented with kernel smoothing,
therefore amenable to gradient-based learning algorithms. Such learning machines not only resem-
ble decoding transformers (Section 3) but also perform very much like decoding transformers on the
sort of language modeling task that made them famous (Section 7). Although much work is needed
to replicate our observations at far greater scale, Memory Mosaics satisfy narrative constraints as
well as transformers (Table 4), and generally behave in very encouraging ways (Figures 8 to 15).
Most importantly, we understand what Memory Mosaics do far better than we understand what
transformers do. First, the value extraction functions of the associative memory units precisely
describe what each memory seeks to memorize. Second, the predictive disentanglement principle
explains why training a Memory Mosaic breaks the overall prediction task into pieces that are more
efficiently memorized when they are considered independently (Section 5). Therefore, Memory
Mosaics are not just a transformer-like architecture, but also a model10 for compositional learning
systems that break knowledge into independently memorized fragments, then reassemble them as
needed using combination strategies that can themselves be viewed as memorized knowledge frag-
ments (Section 6).
The focus on memorization allow us to formulate new questions. Could memories operate inde-
pendently on different time scales? Could we envision a richer memory hierarchy than simply
distinguishing persistent memories from contextual memories? Can intermediate memory tiers be
trained like contextual memories, that is, without gradients? Can the persistent knowledge be then
reduced to a compact high order bias?
Memory Mosaics also offer an array of engineering opportunities. Limited storage contextual mem-
ories could leverage least-recently used eviction schemes (e.g., Xiao et al., 2023), and associative
memories could be implemented using a wide spectrum of techniques, either classical (e.g., Green-
gard & Strain, 1991; Spring & Shrivastava, 2017), or neural (e.g., Krotov, 2023), which could rede-
fine the computing requirements of contemporary artificial intelligence systems.

9Although the baseline methods trained with small training sets (e.g. 100) perform poorly on the REG-
BENCH task, they perform very well when tested in-distribition (see Table 3 in the Appendix). Therefore they
learned to model the training languages but did not acquire the ability to learn new languages in context.

10Not as in “statistical model” but as in “model used to describe and explain a phenomenon.”

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-

tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic duality,
and the smo algorithm. In Proceedings of the twenty-first international conference on Machine
learning, pp. 6, 2004.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015.

Yoshua Bengio. Deep learning of representations: Looking forward. In Statistical Language and
Speech Processing: First International Conference, SLSP 2013, Tarragona, volume 7978, pp. 1.
Springer, 2013.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bila-
niuk, Anirudh Goyal, and Christopher Pal. A meta-transfer objective for learning to disentangle
causal mechanisms. arXiv preprint arXiv:1901.10912, 2019.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2024.

Pierre Comon. Independent Component Analysis, a new concept? Signal Processing, 36:287–314,
April 1994.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Leslie Greengard and John Strain. The fast Gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94, 1991.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Zellig Harris. Mathematical Structures of Language. John Wiley & Sons, 1968.

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng
Chau, Mohammed Zaki, and Dmitry Krotov. Energy transformer. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Dmitry Krotov. A new frontier for hopfield networks. Nature Reviews Physics, 5(7):366–367, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

E. Nadaraya. On estimating regression. Theory of Probability and Its Applications, 9:141–142,
1964. URL https://api.semanticscholar.org/CorpusID:120067924.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. RWKV: Reinventing RNNs
for the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield
networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

Karsten Roth, Mark Ibrahim, Zeynep Akata, Pascal Vincent, and Diane Bouchacourt. Disentan-
glement of correlated factors via hausdorff factorized support. In The Eleventh International
Conference on Learning Representations, 2022.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In Parallel distributed processing: Explorations in the microstructure of cognition,
volume I, pp. 318–362. Bradford Books, Cambridge, MA, 1986.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based samplers
and estimators for partition function computation in log-linear models, 2017.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory, 2019.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin, Hugo
Larochelle, Joelle Pineau, Doina Precup, and Yoshua Bengio. Disentangling the independently
controllable factors of variation by interacting with the world. arXiv preprint arXiv:1802.09484,
2018.

12

https://api.semanticscholar.org/CorpusID:120067924

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series
A, pp. 359–372, 1964.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Memory Mosaics– Appendix

A Tracking three moons
Figure 10 shows how the training process yields parameter matricesWφ, Wψ , andWz , that dedicate
one memory unit to each moon.
Training the three-heads network can be quite challenging in a manner that resembles the XOR
networks of the early times (Rumelhart et al., 1986). We obtained reliable convergence using two
tricks. First, we slightly restrict the linear operations by using 3 × 3 complex matrices (18 real
parameters) instead of 6 × 6 real matrices (36 real parameters) operating on the 3-dimensional
complex vectors as 6-dimensional real vectors. Second, we clip the mean squared loss in order to
prevent the training algorithm from trying to optimize the prediction error when the memories are
nearly empty.11

Reliable convergence could also be achieved by making any ofWφ,Wψ , orWz equal to the identity.
Doing so would of course bias the network toward the disentangled solution, something we wanted
to avoid. Yet it is not unreasonable to believe that disentanglement can often be achieved in the
canonical basis. For instance, objects well separated in space often appear in different image regions,
and therefore along different pixels axes.

Wϕ Wψ Wz

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 10: Visualization of the disentangledWφ, Wψ , andWz matrices in the 3-heads network. The
color scale represents the moduli of the complex matrix coefficients.

11The steamroller metaphor (Figure 2) makes more sense when the loss is bounded.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B BabiStories
The TINYSTORIES dataset (Eldan & Li, 2023) is composed of stories written in a simple language
and taking place a narrow world. Such stories can be used to train relatively small language models
that still must address some of the broader language modeling challenges such as obeying narrative
necessity and maintaining logical consistency. This dataset is a wonderful way to study big problems
with acceptable computation and quick turn around.
The experiments of Section 7 were carried out using a dataset generated using a similar methodology
but using the MIXTRAL-8X7B open language model in order to generate unencumbered data. We
call this dataset BABISTORIES. All the scientific credit is still due to the remarkable work of Eldan
& Li. Table 1 provides basic statistics for this newly generated BABISTORIESdataset, essentially
matching those of the original TINYSTORIES dataset of Eldan & Li (2023). We had to increase the
diversity of the generated stories by expanding the prompt to specify first names and by providing
opening words for the story, in addition to required words and story features used by Eldan & Li
(Figure 11). We also removed the few generated stories containing URLs.

Figure 11: Generation of BABISTORIES. In order to improve the diversity of the generations, each
story is generated by a prompt that provides a list of required words and story features (as in Eldan
& Li, 2023) and additionally provides first names and opening words.

Table 1: BABISTORIES statistics.

dataset partition #stories #tokens (GPT2 tokenizer) #char per story (average)

train 2.2M 474,704,907 888
valid 2.2k 4,749,107 889

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C GPT2 baseline and hyperparameters
Table 2 showcases the hyper-parameters searching process of GPT2 transformer baseline on the
BABISTORIES dataset, where we use AdamW optimizer Loshchilov & Hutter (2017), batch-size
512, context-size 512, and a cosine learning rate scheduler with minimum learning rate 1e − 4 for
all training.

Table 2: Hyperparameters searching on GPT2 transformer with Nb = 12. “dropout”, if any, is
applied on attention score, attention heads output (before combining layer), and FFN output.

learning rate dropout L2 weight decay warm-up iters training iters train loss valid loss

5e-3 0.05 0.1 2000 80000 1.336 1.494
1e-3 0.05 0.1 2000 80000 1.350 1.524
5e-3 0 0.1 2000 80000 1.281 1.556
5e-3 0.05 0.01 2000 80000 1.322 1.516
5e-3 0.05 0.1 200 80000 fail fail
5e-3 0.05 0.1 2000 40000 1.325 1.532
5e-3 0.05 0.1 2000 160000 1.314 1.497

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D Memory Mosaics for language modeling
D.1 PERSISTENT MEMORY UNITS

Persistent memory units produce their outputs using the same key extraction function
φ(xT , xT−1, . . .) and the same retrieval function(3) as contextual memory units. They differ be-
cause, following Sukhbaatar et al. (2019), they use a fixed array of key/values pairs that are de-
termined at training time by gradient descent. Since these stored key/value pairs do not change at
inference time, there is no need for a value extraction function ψ(xT+1, xT , . . .)

!"#$%$&"'&(

)$$*+%,&%-"(."/*#0

1",&2#"(34&#,+&*#

!!

"!

#!

!"#$%&%'()&*)+')*

,$%#$%&%'()&*)+')*

!"#$%&'()*+)#,&!-./0)&-')

1'+)#")2.&-),33)4&"5'()$,.546)

-).&%'()&*)+')*

5'$5'4'/&4)&-')5'!'/&)$,4&)

"7)&-')./$%&)&.#')4'5.'46

#" $ %#&!" ' !"$%' ()

/0&123$)&%'()&*)+')*

8./!')&-')$,.54),5')&5,./'()*+)

05,(.'/&9)&-'5').4)/")/''()7"5)

':$3.!.&);,3%'46

4)+*'*%)"%&2**05'2%'1)&()(0+.

2.&-)*+$,.54) #& ' ,& '(%))*)

&5,./'()*+)*,!1<$5"$,0,&./0)

05,(.'/&46)

Figure 12: Persistent memory unit. The persistent associative memory contains a fixed number
of key-value pairs (ki, vi)i=1...m whose values are determined by back-propagating gradients at
training time. Since the memory contents do not change at inference time, there is no need for
explicit values.

D.2 TRAINING AND VALIDATION

Figure 13 plots the training and validation curves for both Transformer and Memory Mosaic in a
manner similar to Figure 7 but showing additional block depths.

0 2 4 6 8
iterations 1e4

1.6

1.8

2.0

2.2

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=1

0 2 4 6 8
iterations 1e4

1.6

1.8

2.0

2.2

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=2

0 2 4 6 8
iterations 1e4

1.6

1.8

2.0

2.2

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=4

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=8

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0

cr
os

s-
en

tro
py

 lo
ss

(depth) Nb=12

0 2 4 6 8
iterations 1e4

1.2

1.4

1.6

1.8

2.0
cr

os
s-

en
tro

py
 lo

ss
(depth) Nb=18

GPT2 train loss
GPT2 val loss
Memory Mosaic train loss
Memory Mosaic val loss

Figure 13: Additional training and validation curves for the transformer and Memory Mosaic archi-
tectures trained on BABISTORIES for more model depths than Figure 7.

Several comments can be made:

• The Memory Mosaic has a small advantage for very small depths (Nb = 1 andNb = 4) but
this advantage does not persist when the number of blocks increases. We believe this is due
to the fact that a single layer Memory Mosaic can implement an induction head whereas a
Transformer needs two layers. This amounts to saying that a n block deep Mosaic has the
same number of parameters than a n block deep Transformer, its performance is closer to
that of a n+ 1 block Transformer. This is not much of an advantage when n gets large.

• The Memory Mosaic training uses the hyper-parameters that worked best for the Trans-
former and operates on the same mini-batches of examples in the same order. However, for
small block depths, the Memory Mosaic training curve shows initial instability, suggesting
that it might benefit from a smaller stepsize.

• The similarity of the Transformer and Memory Mosaic curves is especially striking when
one recalls that the Memory Mosaic does not use position encoding. In fact Memory Mo-
saic have two mechanisms for dealing with positions. The first one is the fact that the values
vT peek one time position ahead. The second one is the leaky integration in (6). These two

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

mechanisms are useful to implement bigram or n-gram induction heads in a single layer, but
they do not allow a head to selectively address a token by position (we use a single scalar
leaky average coefficient per head). This suggests that position encoding in Transformers
is mostly useful to implement an initial induction head in the first two blocks.

D.3 QUALITATIVE EVALUATION

Table 5 provides a variant of Table 4 in Section 7, with Nb = 1.

D.4 DIFFERENCES IN ATTENTION AND THE LEAKY AVERAGE COEFFICIENT λφ

Because Memory Mosaics lack position encoding and do not distinguish keys and queries, we in-
vestigate how their attention patterns differ from those of transformers. Figure 14 shows attention
scores for each head of either a one-block deep transformer using absolute position encoding (left
plot) or a one-block deep Memory Mosaic (right plot). The scores are averaged on 5000 BABIS-
TORIES sequences and show how the last position attends to earlier positions in the 512 token long
context window. The transformer attention patterns are noisy, with a strong “attention sink” at posi-
tion 0 (Xiao et al., 2023). In contrast, the Memory Mosaic attention pattern is mostly flat, save for
higher scores for the most recent tokens.12

Figure 15 show the attention patterns for contexts extended to 1536 tokens, using models trained
on 512 token long sequences. Because the absolute position encoding scheme cannot be extended
to longer contexts, we provides a comparison with transformers using ROPE (Su et al., 2024) and
ALIBI (Press et al., 2022). The ROPE attention patterns do not extend nicely beyond the training
context length. The ALIBI attention patterns show the vanishing contribution of distant tokens. In
contrast the Memory Mosaic attention patterns remain mostly flat.
Figure 16 shows the relationship between attention map and leaky average coefficient λφ.

0 100 200 300 400 500
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

GPT2
per head
average over head

0 100 200 300 400 500
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

Memory Mosaic
per head
average over head

Figure 14: Average attention scores of the last token attending previous tokens (evaluated on an in-
distribution validation dataset). Each solid line indicates one head in either the transformer attention
block or the Memory Mosaic contextual memory block. The dotted line averages the attention of all
heads. All models are trained with context length 512.

D.5 IN-CONTEXT LANGUAGE LEARNING EVALUATION

Table 3 provides the IID test performance of various architectures trained on REGBENCH (Akyürek
et al., 2024) with 100 training environments. We keep the training process, including hyperparameter
searching space, to be the same as the one in Figure 9. But sample validation and test sets from the
same 100 probabilistic finite automatons (training environments) as the training set. This table,
together with Figure 9, show that baseline methods learned the training environments (good IID)
but not the meta-learning ability (poor OOD).

12This effect is connected to the leaky average coefficient λφ, as shown in Figure 16.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000 1200 1400 1600
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

Memory Mosaic
per head
average over head

0 200 400 600 800 1000 1200 1400 1600
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

RoPE
per head
average over head

0 200 400 600 800 1000 1200 1400 1600
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

AliBi
per head
average over head

Figure 15: Average attention scores on an extended context window (3 × 512 tokens). Models are
still training with a 512 token long context window. Because the GPT2 absolute position encoding
does not extend, we compare with ROPE (Su et al., 2024) and ALIBI (Press et al., 2022).

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.112

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.321

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.466

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.809

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.816

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.817

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.823

0 200 40010 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.892

0 200 400
token positions

10 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.911

0 200 400
token positions

10 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.964

0 200 400
token positions

10 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.972

0 200 400
token positions

10 7

10 4

10 1

at
te

nt
io

n
sc

or
e λϕ=0.986

Figure 16: Attention map and leaky average coefficient λφ. As λφ increases, kt in Eq 6 effectively
takes a longer history into the account, and thus the pick at the end of attention map becomes wider.

Table 3: In-distribution (IID) performance of various architectures trained on REGBENCH (Akyürek
et al., 2024) with only 100 training environments. Both training, validation, and test set (100 sam-
ples) are sampled from the same 100 random probabilistic finite automatons (PFA). Compared with
the poor OOD accuracy (∼0.45) / TVD (∼0.75) of baseline methods in Figure 9, All baseline meth-
ods perform well in the IID test set (even with only 100 training environments).

Memory Mosaic tf Mamba S4 RWKV linear tf H3 GLA Hyena LSTM RetNet
Accuracy (↑) 0.959 0.856 0.929 0.846 0.967 0.816 0.794 0.870 0.953 0.849 0.876

TVD (↓) 0.417 0.308 0.268 0.350 0.183 0.348 0.425 0.284 0.244 0.343 0.296

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E Computing Resources
Models were trained on 64 NVidia V100 GPUs over 80k epochs. From conception to finalization of
this paper we trained about 200 models. To create the BabiStories dataset via Mistral, we ran with
128 NVidia V100 GPUs for 3 days. The supporting machines contain Intel(R) Xeon(R) Gold 6230
CPUs. The 3 moons result took negligible resources and were trained on Apple M1 laptops.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Continuations generated for the 24 prompts designed by Eldan & Li (2023) to investigate
the factual, reasoning, and consistency capabilities of language models trained on BABISTORIES.
Both the transformer and the Memory Mosaic were Nb = 18 blocks deep. Colors green and red
respectively indicate correct and incorrect answers. The text was generated with a beam search of
width 2 and manually truncated to the shortest length that answers or fails to answer the question.

Prompt Transformer (Nb = 18) Memory Mosaic (Nb = 18)

Alice was so tired when she got back home so she went to sleep. straight to bed.

Jack and Lily saw a rainbow after a rainy day. They were
amazed by the colors. Jack said, “Look, Lily. A rainbow
has

many colors!” many colors!”

Jack and Lily liked to watch the moon at night. They noticed
that the moon changed its shape every night. Sometimes the
moon was big and round, and sometimes it was

small and thin. One night, Jack said,
“Lily, look! The moon is changing.”

small and thin. One night, Jack had
an idea. He said, “Let’s make a pic-
ture of the moon!”

Jack wanted to read a book, so he went to the library. the library.

“Can cows fly?”, Alice asked her mother Her mother laughed and said, “No,
Alice. Only birds and planes can fly.”

“No, dear. Only birds can fly,” her
mother replied with a smile.

“What do birds like to eat?”, Tom asked his mother. “Birds like to eat worms and bugs,”
his mother replied.

“Birds like to eat worms and bugs,
Tom,” his mother replied.

“What language do they speak in France?”, Tom asked his
mother

His mother smiled and said, “We all
speak different languages, Tom. It’s
what makes us unique and special.”

His mother smiled and said, “They
speak in different languages, Tom.
But we can learn some of them.”

If I throw a ball up in the air, eventually it will come down and I can catch it. come down.

It was winter and cold outside so his mother told him, “You
should

wear your warm coat, dear.” wear your warm coat and hat.”

Lily likes cats and dogs. She asked her mom for a dog and
her mom said no, so instead she asked

for a toy. her dad.

Jack told Mary, ”If you give me your banana, I’ll give you
my apple”. Mary gave Jack her banana so

he could eat it. that he could eat it.

On weekends Jack went to visit his grandmother whereas
on weekdays he would go to school. Last weekend, when
Jack was on his way to

school, school,

Lily and Ben were having an argument. Ben said that cake
is much better than ice cream and Lily said that

ice cream is the best. she likes ice cream

Lily and Ben are having an argument. They are trying to
decide between the park and the swimming pool. Ben says,
“I want to go to the park”. Lily says

, “No, “No,

Jack’s mother was not home, and his father was at home.
When Jack came home, he said hello to

his mother. his mother

Lily doesn’t like swimming. When her father wants to take
her to the swimming pool, she says

, “No, daddy. I don’t want to go.” , “No, thank you.”

Both Ben and Lily wanted cake. Father said that there was
only one piece of cake left. They

both wanted to eat it, but there was
only one.

all wanted to eat it, so they began to
fight.

Ben went to visit Lily in her house, but she was not at home.
Ben knocked on the door,

and Lily’s mom answered. and Lily’s mom opened it.

“Hi Jane, have you seen Alice? I can’t find her anywhere”,
said Jack.

Jane shook her head. “No, I haven’t.
But I will help you look.”

Jane shook her head. “No, I haven’t
seen Alice. But I can help you look!”

Max had two dogs. One was white and the other was black.
Max walked up the street and saw a kid with a dog. He told
the kid, “I see you have a brown dog. I also have

a white dog.” a brown dog.”

Anne had a piece of candy in her left pocket and a piece
of chocolate in her right pocket. Anne’s mom asked her,
“Anne, what is that you have in your left pocket?”

Anne smiled and said, “It’s a candy Anne opened her hand to show her
mom the candy

Alice had both an apple and a carrot in her bag. She took
the apple out of the bag and gave it to Jack. She reached
into the bag again and took

out the carrot. out another apple.

Alice and Jack walked up the street and met a girl in a red
dress. The girl said to them, “Hi, I’m Jane. What are your
names?”

Alice replied, “I’m Alice. This is
Jack. We came to see you.”

Alice smiled and said, “I’m Alice.
This is Jack. We are going to the park
to play.”

Diva was hungry, and wanted to bake a cake, but she didn’t
have any sugar at home, so she decided to go ask around.
She started walking and met a squirrel. She asked the squir-
rel, “Would you happen

to know where I can find some
sugar?”

to see any sugar around here?”

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Continuations generated for the 24 prompts designed by Eldan & Li (2023) to investigate
the factual, reasoning, and consistency capabilities of language models trained on BABISTORIES.
Both the transformer and the Memory Mosaic were Nb = 1 blocks deep.

Prompt Transformer Memory Mosaic

Alice was so tired when she got back home so she went to sleep to bed

Jack and Lily saw a rainbow after a rainy day. They were
amazed by the colors. Jack said, “Look, Lily. A rainbow
has

come!” come to us!”

Jack and Lily liked to watch the moon at night. They noticed
that the moon changed its shape every night. Sometimes the
moon was big and round, and sometimes it was

just a big, round moon. too big.

Jack wanted to read a book, so he went to find his friend, a wise old owl named
Hoot.

find his best friend, Timmy.

“Can cows fly?”, Alice asked her mother Her mother smiled and said, “Of
course, dear.

Her mother smiled and said, ”Sure,
honey.

“What do birds like to eat?”, Tom asked his mother. “I don’t know, but it looks yummy!”
Tom replied. “Let’s find out!”

His mother smiled and said, “That’s
a good idea, Tom.

“What language do they speak in France?”, Tom asked his
mother

France smiled and said, “It’s a lan-
guage, Tom. It helps us talk to each
other.”

“Mom, what is that?” France asked.

If I throw a ball up in the air, eventually it will go far away. come back.

It was winter and cold outside so his mother told him, “You
should

go outside and play in the snow.” stay in your warm, warm home.”

Lily likes cats and dogs. She asked her mom for a dog and
her mom said no, so instead she asked

, “Can we keep it, mom?” Her mom
said, “Yes, but we need to keep it
safe.”

her mom if they could keep the dog.
Her mom said yes, and they named
the dog Sparky.

Jack told Mary, “If you give me your banana, I’ll give you
my apple”. Mary gave Jack her banana so

he could have it. she could eat it.

On weekends Jack went to visit his grandmother whereas on
weekdays he would go to school. Last weekend, when Jack
was on his way to

school, school,

Lily and Ben were having an argument. Ben said that cake
is much better than ice cream and Lily said that

they could both have fun. it was the best cake they ever had.

Lily and Ben are having an argument. They are trying to
decide between the park and the swimming pool. Ben says,
“I want to go to the park”. Lily says

, “No, “No,

Jack’s mother was not home, and his father was at home.
When Jack came home, he said hello to

his mother, Jack.

Lily doesn’t like swimming. When her father wants to take
her to the swimming pool, she says

“Lily, you can do it! , “Mommy, I want to swim too!”

Both Ben and Lily wanted cake. Father said that there was
only one piece of cake left. They

all sat down to enjoy the yummy
treat.

both felt sad.

Ben went to visit Lily in her house, but she was not at home.
Ben knocked on the door,

and the door opened. A kind lady
came out

and when Ben opened the door,

“Hi Jane, have you seen Alice? I can’t find her anywhere”,
said Jack.

Alice smiled and said, “Sure, I will
help you find your way home.”

“I don’t know, Jack.

Max had two dogs. One was white and the other was black.
Max walked up the street and saw a kid with a dog. He told
the kid, “I see you have a brown dog. I also have

a black dog.” a brown dog.”

Anne had a piece of candy in her left pocket and a piece
of chocolate in her right pocket. Anne’s mom asked her,
”Anne, what is that you have in your left pocket?”

Anne smiled and said, ”Yes,
mommy. I found it in the park.”

Anne smiled and said, ”I found it on
the ground. It’s mine!”

Alice had both an apple and a carrot in her bag. She took the
apple out of the bag and gave it to Jack. She reached into
the bag again and took

out the apple. out the apple.

Alice and Jack walked up the street and met a girl in a red
dress. The girl said to them, ”Hi, I’m Jane. What are your
names?”

Jane smiled and said, ”I’m Timmy, Jane replied, ”I’m Jane.

Diva was hungry, and wanted to bake a cake, but she didn’t
have any sugar at home, so she decided to go ask around.
She started walking and met a squirrel. She asked the squir-
rel, ”Would you happen

to my house, little one?” to my cake?”

22

	Introduction
	Related Work
	Memories
	Predictive Disentanglement
	Tracking three moons
	Layered memories
	Modeling language with memories
	Discussion
	Tracking three moons
	BabiStories
	GPT2 baseline and hyperparameters
	Memory Mosaics for language modeling
	Persistent memory units
	Training and validation
	Qualitative evaluation
	Differences in Attention and the leaky average coefficient lambda
	In-context language learning evaluation

	Computing Resources

