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Abstract—In this study, we focus on developing efficient cali-
bration methods via Bayesian decision-making for the family of
compartmental epidemiological models. The existing calibration
methods usually assume the compartmental model is cheap in
terms of its output and gradient evaluation, which may not
hold in practice when extending them to more general settings.
Therefore, we introduce model calibration methods based on a
“graybox” Bayesian optimization (BO) scheme, more efficient
calibration for general epidemiological models. This approach
uses Gaussian processes as a surrogate to the expensive model,
and leverages the functional structure of the compartmental
model to enhance calibration performance. Additionally, we
develop model calibration methods via a decoupled decision-
making strategy for BO, which further exploits the decomposable
nature of the functional structure. The calibration efficiencies of
the multiple proposed schemes are evaluated based on various
data generated by a compartmental model mimicking real-world
epidemic processes. Experimental results demonstrate that our
proposed graybox variants of BO schemes can further improve
the calibration performance measured by the logarithm of mean
square errors and achieve faster performance convergence in
terms of BO iterations. We anticipate that the proposed calibra-
tion methods can be extended to enable fast calibration of more
complex epidemiological models, such as the agent-based models.

Index Terms—Compartmental Model, Bayesian Optimization,
Model Calibration, Gaussian Process, Knowledge Gradient

I. INTRODUCTION

Pandemics like the recent coronavirus disease (COVID-19)

have shown enormous impacts on public health worldwide.

The development of computational epidemiological models

is crucial for gaining better quantitative understanding of the

disease spread and enabling swift decision-making to design

effective mitigation strategies. In fact, well-calibrated epidemi-

ological models can serve as a useful guide for forecasting

and quantifying the epidemic risk and implementing effective

public health measures to control the spread of epidemic

diseases [2], [8].

This work was supported by the U.S. Department of Energy (DOE) Office
of Science under Award KJ0403010/FWP CC132.

Compartmental models, such as the the commonly adopted

SIR (Susceptible-Infectious-Recovered) model, constitute an

important family of population-based epidemiological models.

Models in this family take the form of Ordinary Differential

Equation (ODE) systems that capture the general trends and

dynamics in the subpopulations represented by different com-

partments. In this work, we focus on this family of models

while considering a new “Quarantined” state represented by

an additional compartment. This new state aims at better

mimicking the dynamic trajectories of the epidemic spreads,

typical in airborne diseases such as seasonal flu and COVID-

19, resulting in a four-compartment SIQR model [23].

To accurately model real-world physical processes, it is cru-

cial for computer models to fine-tune their model parameters

based on observed data to capture inherent attributes of the

physical processes, which can not be directly or easily mea-

sured by means of physical experiments. For instance, material

properties, such as porosity and permeability are important

computer inputs in computational material simulations, which

cannot be measured directly in physical experiments. In the

applied mathematics and computational science literature, the

methods used to identify those parameters are called model

calibration techniques and the resulting parameters are called

calibration parameters [20], [25]. The basic idea of calibration

is to find the combination of the calibration parameters, under

which the simulated computer outputs align with the observed

physical data. A well-calibrated SIQR model may allow people

to make more accurate predictions of pandemic risk and enable

them to make better-informed decisions on how to mitigate.

The existing method often assumes that the computer model

is cheap [30]. This means that: the explicit form of the opti-

mization objective f(x) for calibration parameters x is known

and we can evaluate the first- or second-order derivatives of

f(x) with respect to (w.r.t.) x. For an ODE system, deriving

the explicit form of f(x) and ∇xf(x) can be infeasible

when the ODE is non-linear. Recent advances show that

sensitivity analysis allows us to evaluate the gradient ∇xf(x)



and perform the gradient-descent optimization method for the

estimation of x [12], [18]. Correspondingly, physics-informed

machine learning [19] is drawing increasing attention as it

integrates data and mathematical models into deep neural

networks or other regression models by enforcing fundamental

physical laws.

In real-world scenarios when calibrating a computer simu-

lation software, we are usually blind to the explicit forms of

both f(x) and ∇xf(x) and we may be able to access only the

output of f(x). We classify this type of computer models as

expensive. Hence, it is valuable to pay attention to the calibra-

tion problem for such expensive computer models. Bayesian

Optimization (BO) is one conventional approach for such

scenario when evaluating f(x) is expensive, where we use

a surrogate model to approximate f(x) and the optimization

process is sequential. In each BO round, we make a Bayesian
decision so that some expected utility is maximized and then

the corresponding output is queried from the computer model

based on this decision to refine the surrogate model to guide

the optimization of the objective function f(x) [14], [17].

This paper concentrates specifically on the calibration of

the SIQR model based on BO and is organized as follows.

First, we explain the configurations of the SIQR model and

the model calibration setup. Then we introduce our calibration

methods based on a “graybox BO” approach, instead of the

usual “blackbox BO”, where the experts’ prior knowledge

about the computer models is integrated into the BO formu-

lation to improve its optimization performance. Finally, we

explain how the graybox BO works for decoupled decision-

making, accompanied by a new acquisition function. In our

experiments, we evaluate the performance of our proposed

graybox BO-based model calibration methods and compare

them with traditional blackbox BO-based implementations to

demonstrate the benefits of integrating prior model knowledge

into the calibration process.

II. PRELIMINARIES

A. SIQR model

In this model, people in a given population are classi-

fied into four compartments: Susceptible (S), Infectious (I),
Recovered (R), and Quarantined (Q). Those who have not

been infected are considered susceptible. Transmission occurs

between susceptible and infected individuals. The number of

symptomatic patients, equivalent to the number of infected

individuals, decreases through treatment and/or quarantine.

Recovered individuals are assumed to remain immune to

further infection. Therefore, all people will be in the recovered

group after an adequate period. The dynamics of the SIQR

model are given by the following set of ordinary differential

equations (ODEs) [23]:⎧⎪⎪⎨
⎪⎪⎩
∇tS(t) = −β(t)S(t)
∇tI(t) = β(t)S(t)− λ(t)I(t)− γI(t)
∇tR(t) = γI(t) + δQ(t)
∇tQ(t) = λ(t)I(t)− δQ(t)

(1)

where S(t), I(t), Q(t) and R(t) ∈ [0, N ] are the populations

of compartments ‘S’, ‘I’, ‘Q’ and ‘R’ respectively.It can be

verified that the ODEs guarantee the conservation of the pop-

ulation, S(t)+I(t)+Q(t)+R(t) = N . A schematic illustration

of such an SIQR model is shown in Figure 1. We note that

there are many compartmental epidemiological models based

on different extensions of the original SIR model [10], [24].

While we focus on SIQR model calibration in this paper, the

presented model calibration methods can be applied to all

these variants in a straightforward manner. More importantly,

calibration of more complicated epidemiology models based

on agent-based models (ABMs) can also leverage our proposed

methods if their critical parameters can be identified, where

calibration efficiency is even more important due to their

significantly higher computational complexity compared to the

ODE-based compartmental models [1], [4], [9].

B. Model Calibration

Most of the existing calibration methods [11], [13], [26],

[28], [29], [31] follow or adapt from the Bayesian approach

pioneered by Kennedy and O’Hagan (KOH) [20]. In practice,

we can only collect epidemiological data in the occurrence of

an epidemic. In other words, we can observe the population’s

dynamic trajectory only once, making model calibration more

challenging than in other statistical inference or machine

learning tasks. Supposing one such trajectory with time length

T are observed, we denote the observed epidemiological data

as {dt = (dt1, ..., d
t
4)}Tt=1 and make the following assumption:

dt = ζt + ε ≈ ηt(x) + ε, (2)

where ζ is the unknown ground-truth underlying epidemic

process, η is a computer model (e.g., SIQR model) that

we would like to calibrate to simulate the behavior of

ζ and fit the observed epidemiological data, x ∈ R
D

is the D-dimensional calibration parameter vector of η,

and ε ∼ N (0,Diag(1)) represents the observation noise.

In this work, ηt(x) = (ηt1(x), η
t
2(x), η

t
3(x)), η

t
4(x)) =

(S(t;x), I(t;x), Q(t;x), R(t;x)) corresponds to the output

of the SIQR model with x representing parameters of rate

functions {β(t;x), γ(t;x), δ(x), γ(x)}. By our assumption,

dt|ηt(x) ∼ N (ηt(x), 1), and the Maximum Log-likelihood

Estimation (MLE) of x corresponds to [28], [30]:

x∗ = argmaxx

T∑
t

g(ηt(x)),

g(ηt(x)) := − 1

T

4∑
i=1

(
dti − ηti(x)

)2
,

(3)

where g denotes the likelihood function as the negative Square

Error (SE) function based on the Gaussian assumption. For

notation compactness, we denote g(ηt(x)) as f t(x). The goal

of model calibration is the maximization of the corresponding

negative Mean Square Error (MSE),
∑

t f
t(x).
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Fig. 1: Diagram depicting an SIQR compartmental epidemio-

logical model. Each arrow indicates that the population rise of

the ending compartment is caused by the population decrease

of the starting compartment.
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Fig. 2: Function network structure of the SIQR model cali-

bration, where the two bold arrows indicate that x and g are

the parent node and child node of y1:4 respectively.

III. METHODOLOGY

Instead of following the traditional KOH Bayesian model

calibration scheme [20], we resort to a new model calibration

framework leveraging Bayesian Optimization (BO) [17]. Un-

der this framework, model calibration is formulated into the

optimization of the correspondingly designed utility function,

called acquisition function. In BO, Gaussian Processes (GPs)

have been typically used as cheap surrogates of f(x)1. In this

way, we circumvent the difficulties in optimizing f(x) directly.

To be more specific, the standard BO approach treats f(x) as

a blackbox function and starts modeling it by a set of GP prior

distributions, N (μ(x),Σ(x)). Then, it iteratively chooses the

next point at which to evaluate f with the procedure described

as follows.

Given n observations of the objective function customized

for model calibration, f(x(1)), . . . , f(x(n)), we first infer the

posterior distribution, N (μN (x),ΣN (x)), which conditions

on the {f(x(n)), x(n)}Nn=1. Then, this posterior distribution is

used to compute an acquisition function. Finally, we make a

Bayesian decision that chooses the next point to be evaluated,

x(n+1), as the point that maximizes this acquisition function.

After N iteration, the candidates xbest = argmaxxμN (x) is

the calibrated parameter choice.

A. Graybox BO

It is clear that given the simulated dynamics η(x), evaluation

of the model calibration performance metric g is cheap and

does not need to be approximated. Instead of directly modeling

f(x) as a blackbox objective function as typically done in BO,

for SIQR model calibration, we here first use a set of GPs,

denoted by y(x), as the surrogate to η(x). With that, we then

model f(x) as a graybox objective, by a Composite Function
(CF) [5]:

g(y(x)) =
1

T

∑
i

(di − yi(x))
2. (4)

1In the following text, we will consider the maximization of the acquisition
function f t(x) instead of

∑
t f

t(x) for notation compactness, and omit the
subscript t, where it does not introduce ambiguity.

Spared from the modeling of g, the model calibration perfor-

mance can be expected to be further improved. Furthermore,

as shown in Figure 1, the workflow of the SIQR model

encompasses a set of input-output structures between functions

of each compartment. For example, infectious population ‘I’

are exclusively transferred from susceptible population ‘S’,

and individuals in the recovery compartment ‘R’ only come

from compartments ‘I’ and ‘Q’. Therefore, one may expect

that leveraging these functional structures may lead to im-

proved calibration performance. Integrating these relationships

into the BO method gives rise to a Function Network (FN),
G(V, E), as shown in Figure 2. In the graph, the set of

nodes V = {v|y1, . . . , y4, x, g} denote four GP sets associated

with the four compartments ‘S’, ‘I’, ‘Q’ and ‘R’ respectively,

calibration parameters x, and performance metric g. The graph

also contains a set of edges E = {(v → v′)|v, v′ ∈ V}, where

(v → v′) means node v′ takes the output of nodes v as its

input [6]. Suppose we already have made queries from the

computer model η by simulating trajectories of compartments

(i.e., subpopulations in different states) at different settings

and obtain Dn =
{(

ŷl = η(xl), xl
)}n

l=1
at n calibration

parameter vectors. We have:

Pn(y(x)) =

4∏
i=1

Pn(yi(x, Pai)),

yi ∼ N (
μi
n(x, Pai), σ

i
n(x, Pai)

)
,

(5)

where Pai = {yj : (yj → yi) ∈ E} denotes the GPs that

are the parent nodes of yi in graph G, Pn(yi(x, Pai)) =
P
(
yi(x, Pai)|ŷ1:n(x1:n

)
denotes the posterior distribution of

GP yi with mean mi
n and variance σi

n. Given Dn, we

choose the GP prior P
(
y1:ni (x1:n, Pa1:ni )

)
to be multivari-

ate normal with a Matérn covariance kernel and a con-

stant mean, whose hyper-parameters are obtained by MLE

over P (ŷ1:ni (x1:n, P̂ a
1:n

i )). Then we infer the posterior from

P (ŷ1:ni (x1:n, P̂ a
1:n

i ), yi(x, Pai)) [15].

Taking the Knowledge Gradient (KG) [15], [16], a typical

formulation of acquisition functions as an example, we define



the graybox acquisition function according to the FN as:

αn(x) = EPn(y(x))

[
u∗
n+1(y, x)

]− u∗
n (6)

where u∗
n = maxx un(x), un(x) = EPn(y(x)) [g(y)],

u∗
n+1(y(x)) = maxx′ un+1(x

′;y(x)), and un+1(x
′;y(x)) =

EPn+1(y′(x′);y(x)) [g(y
′)]. On the right-hand side of the for-

mula above, the second term is the largest expected metric

value based on the current GPs, and the first term is the

largest expected metric value if the GPs are further conditioned

on predicted data (y(x), x). In comparison, the expectation

EPn [y] and EPn+1 [y] are computed in the original KG.

Due to the maximization operator within the expectation,

neither the original nor graybox versions of KG can be com-

puted explicitly. Thus, we resort to Monte Carlo estimation [3]

of the expectations and the reparametrization trick [21], so that

α̂ is an unbiased estimation of α and ∇xα̂ is feasible. To be

more specific, we estimate the acquisition function via:

α̂(x) =
1

K

K∑
k=1

û∗
n+1

(
x, ŷ(k)(x)

)− û∗
n,

û∗
n+1

(
x, ŷ(k)(x)

)
= max

x′

1

L

L∑
l=1

g
(
ŷ′
(l,k)(x

′;x)
)
,

û∗
n = max

x′′

1

L

L∑
l=1

g
(
ŷ′′
(l)(x

′′)
)
,

ŷi,(k)(x) = μi
n

(
x, P̂ ai,(k)(x)

)
+ σi

n

(
x, P̂ ai,(k)(x)

)
ε̂
(k)
i

ŷ′i,(l,k)(x
′;x) = μi

n+1

(
x′, P̂ a

′
i,(l,k)(x

′); ŷ(k)(x)
)

+ σi
n+1

(
x′, P̂ a

′
i,(l,k)(x

′); ŷ(k)(x)
)
ε̂
(l,k)
i

ŷ′′i,(l)(x
′′) = μi

n

(
x′′, Pa′′i,(l)(x

′′)
)
+ σi

n

(
x′′, Pa′′i,(l)(x

′′)
)
ε̂
(l)
i ,

(7)

where ε̂i denotes a sample of εi ∼ N (0, 1), K = 8, and

L = 128. The inference of Pn mainly takes account of the

computation cost, which is about O(n3) and does not scale

up with the dimension of GPs’ input (i.e. x or [x, Pai]) [27].

Thus, the computation complexity of the original and graybox

versions of KG are similar. The workflow of our calibration

method based on graybox BO is illustrated in Figure 3 with

the pseudo-code summarized in Algorithm 1.

B. Decoupled Decision-Making

In practice, epidemiological data d from the unknown

epidemic process ζ may not be observed at synchronized time

points. In other words, some observations at the corresponding

time point may be missing in practice. For example, when d =
{∅, d2, d3, d4}, where d1 is missing in the observed data, we

may only be able to compute g(y(x)) = 1
T

∑
i �=1(yi(x)−di)

2.

In such a scenario of decoupled observations, the function net-

work organization of GPs allows us to infer the function form

y1(x) by leveraging the ground-truth functional dependency

represented by G. To be more specific,

g �⊥ v, ∀v ∈ Ang, (8)

  Graybox BO 

Observation
Calibrated output
GP output 

y1

y2

y3

y4

g

Fig. 3: Schematic illustration of the model calibration work-

flow based on graybox BO, where we leverage expert knowl-

edge about functional dependency and metric function.

where v �⊥ v′ indicates that v and v′ are statistically dependent

so that P (v|v′) �= P (v) for any two random variables v and

v′ [22]. This mimics the functional dependency h(·) �⊥ h′(·),
which means that a perturbation in function h(·) will not

affect the solution space of function h′(·); Ang = {v|(v →
. . . → g) ∈ G}, denoting the ancestor nodes of g with a

directed path starting at the ancestor node and ending at g.

The corresponding graph with d = {∅, d2, d3, d4} will have

the edge (yi → g) removed, while g �⊥ y1 still holds.

Moreover, it is reasonable to assume that the approximation

of the computer model’s output {η1(x), . . . , η4(x)} by the four

GPs varies in computational complexity. The reason is that the

complexities of the chosen function forms of {η1, . . . , η4} are

different. Therefore, some GPs may need more queried data

from the computer model than others. Taking into account

of the decomposable structure of Pn(y(x)), we extend the

graybox acquisition function by decoupled decision-making

and define the acquisition function as:

αn(x, z) :=
1

1�z
EPn(y(x))

[
(u∗

n+1(z,y, x)
]− u∗

n

u∗
n+1(z,y, x) := max

x′
EPn(y′(x′);z,y,x)[g(y

′)]
(9)

where z ∈ {0, 1}4 and Pn(y
′(x′); z,y, x) is defined as:

4∏
i=1

Pn(y
′
i(x

′, Pa′i); yi, x)
ziPn(y

′
i(x

′, Pa′i))
(1−zi). (10)

New candidates x(n+1) is found by argmaxx,zαn(x, z). When

z = 1, Pn(y
′(x′); z,y, x) = Pn(y

′(x′);y, x). The proposed

objective can be seen as a generalization of the KG objective,



which measures expected improvement when GPs are condi-

tioned on predicted data (x,y). Here we further accommodate

the case when a subset of GPs is conditioned on predicted data.

Thus, candidates x(n+1) with higher expected improvement

can be expected by the proposed objective.

Due to the combinatorial nature of z, it is hard to optimize

w.r.t. z directly. The most naive approach is to optimize αn

w.r.t. x under every possible choice of z, and the resulting

computational cost is 2|z| times that of the non-decoupled

version. For the SIQR model in this paper, |z| = 4 and

the increased cost is acceptable. Besides, the non-decoupled

version is just a special case of the decoupled version,

where z = 1. Therefore, we can accelerate the computa-

tion by selecting a subset. In this paper, we choose {(z :
z1 = 1, z�=1 = 0), . . . , (z : z|z| = 1, z�=|z| = 0)} ∪ {z = 1},

resulting |z|+1 times computation cost of the non-decoupled

version.

Algorithm 1 Model Calibration Workflow

Require: Number of iteration N , Computer model η(x)
(X,Y ) ← (Xinit, {η(x)}x∈Xinit) //Xinit is a randomly

initialized set of calibration parameter vectors.

for n = {0, . . . , N − 1} do
Dn ← (X,Y )
Pn(yi(x)) ← N (μi

n(x), σ
i
n(x))

xn+1 ← argmaxxα̂n(x).
(X,Y ) ← X ∪ {xn+1}, Y ∪ {η(xn+1)}

end for
xbest ← argmaxxûN (x)

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate and

compare the performances of model calibration using various

Bayesian Optimization (BO) methods. We consider different

setups of observed epidemiological data generated from sim-

ulated “ground-truth” models. In our experiments, both the

ground-truth model ζ and the computer model to calibrate

η are SIQR models. Once a trial of epidemiological data d
is simulated, the ground-truth model is no longer accessible.

It is also assumed that we are only accessible to computer

models’ outputs. The goal is to validate the effectiveness of our

graybox BO methods for model calibration in expensive sce-

narios and investigate how our proposed acquisition functions

can improve the performance of graybox BO-based model

calibration.

To generate data based on the ground-truth SIQR model

ζ, we set β∗(t) = 0.9I(t), λ∗(t) = 0.1I(t), δ∗ = 0.2,

γ∗ = 0.2. The model to calibrate, η, takes the same form

with undetermined parameters x, that is, δ(t, x) = x1I(t),
λ(t, x) = x2I(t), δ = x3, and γ = x4. The initial conditions

for both ζ and η are: S(0) = 0.99 ∗ N , I(0) = 0.01 ∗ N ,

R(0) = 0 and Q(0) = 0. We consider two scenarios

representing the gap between the ground-truth model and the

computer model to calibrate. The first way is to add noise

to the ground-truth observations d. The second is to have

different setups of η from those of ζ. In our experiments,

we set λ∗(t) in ζ as a non-linear function, that is, λ∗(t) =
log([I(t), S(t), R(t)]�[0.3, 0.06, 0.12] + 1), while λ(t) in η
still takes the linear form mentioned above. The corresponding

plots for the 30-day simulations are shown in Figure 4.

We compare calibration performances based on the follow-

ing BO methods: (i) the standard Expected Improvement (EI)
in the blackbox BO framework without integrating functional

structures, (ii) the standard Knowledge Gradient (KG), (iii) the

Knowledge Gradient with composite function (KG-CF) , (iv)

Knowledge Gradient with function network (KG-FN), and (v)

the Decoupled Knowledge Gradient with composite function
(DG-CF). All algorithms have been implemented based on the

BOTorch package [7] while the latter three are all graybox BO

variants. In all our experiments, we have run each calibration

method five times from the different random seeds, where

each run starts with an initial dataset from the computer

model, D0 =
{(

yl = η(xl), xl
)}2D+1

l=1
, where xl is randomly

selected in [0, 1]D.

Experiments under all three ground-truth models are per-

formed in complete-observation and incomplete-observation

setups. In the latter setup, observations of compartment ‘S’

are assumed to be unknown, so d1 is not involved with the

calibration procedure. This helps to investigate whether the

function network organization of GPs allows more reliable

model calibration under incomplete (decoupled) observation

data d by leveraging the ground-truth functional dependency.

A. Complete Observations

The experimental results under the complete-observation

setting are shown in Figure 5. In all these experiments, it can

be observed that our graybox BO methods, including KG-CF,

perform significantly better than the blackbox BO methods,

EI and KG. This demonstrates that integrating knowledge

of g does help improve the calibration performance. The

performance of KG-FN is slightly worse than KG-CF. This

phenomenon can be ascribed to the following reasons. With

complete observations, all the updating of GPs, {y1, . . . , y4}
that approximate {η1, . . . , η4} are well-informed, making the

information propagating via introducing statistical dependency

less important. Besides, the function network organization of

GPs make the acquisition estimator α̂ more challenging to

calculate reliably. As shown in (7), inputs of each GP include

not only x but also random samples of Pa, which makes the

estimated α̂ unstable due to the stochastic nature of inputs,

and consequently increases the difficulty of finding the optimal

point of α̂(x) of in each BO iteration. Last but not least, our

proposed DG-CF performs better than KG-CF. This validates

that the decoupled acquisition can better inform decision-

making by conditioning on the predicted data of a subset of

GPs, rather than the whole set of GPs.

B. Incomplete Observations

The experimental results under the incomplete-observation

setting are shown in Figure 6. Again, our graybox BO methods

perform significantly better than the blackbox BO methods. It



(a) (b) (c)

Fig. 4: The simulated ground-truth population fraction trajectories (y-axis) of each compartment for 30 days. (a) Trajectories

from an SIQR model with linear derivation functions. (b) Trajectories corresponding to the case when derivation function λ∗(t)
is non-linear. (c) The trajectory of λ∗(t) when it is set to be non-linear.

(a) (b) (c)

Fig. 5: Calibration performance. The logarithm of the MSE is shown with respect to the number of BO iterations. For the nth

iteration, the MSE is computed as −∑
t f

t(x), where x = argmaxxûn(x). Solid lines show the mean values and the shaded

regions correspond to the standard deviations around the means. (a) Performance for a linear SIQR model. (b) Performance in

the presence of noise.(c) Performance for a non-linear SIQR model.

(a) (b) (c)

Fig. 6: Calibration performance under incomplete observations. (a) Performance for a linear SIQR model. (b) Performance in

the presence of noise. (c) Performance for a non-linear SIQR model. In all cases, we assume that the ground-truth trajectories

of the susceptible population (compartment ‘S’) are missing.

should be noted that KG-FN can outperform KG-CF when the

observations are noisy. This shows that integrating functional

dependency does help to inform the calibration process, while

the performance gain is not significant due to the accompanied

optimization difficulty that we mentioned above. Finally, our

proposed DG-CF performs better than KG-CF, validating again



(a) (b) (c)

(d) (e)

Fig. 7: Simulated population fraction trajectories (y-axis) from the computer model with the calibration parameters x =
argmaxxûN (x), calibrated by (a) KG-CF, (b) KG-FN, (c) DG-CF, (d) EI, and (e) KG, in the presence of noise. The solid lines

represent the mean trajectories simulated from the corresponding calibrated computer models and the shaded regions illustrate

the standard deviation intervals around the means. The dotted lines are the ground-truth population fraction trajectories.

the advantages of the decoupled acquisition function.

In Figure 7, We also visualize population fraction trajecto-

ries generated from the computer models under the calibrated

parameters derived by all methods in the setting with noisy and

incomplete observations. It can be observed that all methods

can provide non-trivial calibration results, showing that our

BO-based calibration methods have a promising potential

for epidemiological dynamic model calibration, when the

computed model is expensive. Among all the BO variants,

graybox BO variants KG-FN and DG-CF render the mean

trajectories with smaller bias to the ground-truth ones as

well as smaller variance, compared to KG-CF, EI, and KG.

This again confirms that utilizing the functional dependency

structure and decoupled acquisition functions can help better

inform decision-making during BO iterations, achieving higher

sample efficiency.

V. CONCLUSION & FUTURE WORK

In this work, we have proposed epidemiological model

calibration methods based on the Bayesian optimization (BO)

framework. To further improve calibration performance, we

have formulated the calibration problem as a customized

graybox BO task, where expert knowledge about functional

dependency and calibration performance metric function is

integrated into the new acquisition function. Furthermore, we

have also proposed a decoupled acquisition function mim-

icking the situations where data collection can be optimized.

We performed experiments under three types of ground-truth

models and two types of observation data to validate the model

calibration performance of our proposed BO-based methods.

The experimental results have demonstrated the efficacy of

our BO-based strategies with different variants for enabling

the calibration of expensive computer models. Within a small

number of BO iterations (≤ 50), the proposed graybox BO

strategies can achieve good performance, which is measured

by logarithm of MSEs, and faster convergence in terms of

the number of BO iterations than strategies based on standard

BO. While the experimental results have shown that utilizing

ground-truth functional dependency can help the calibration

process, the resulting formulation of the acquisition function

can lead to optimization difficulties in practice, which may

impair the overall calibration performance. Thus, future work

will focus on further investigation of the function network

organization of GPs in BO to achieve better performance.

Besides, in the current work, the function network is lim-

ited to a single system, where each node corresponds to an

element within that system. In a more general case, there

can be multiple sub-systems interacting with one another,

with each node in the network representing an entire sub-

system. Our future investigation will consider extending the



proposed calibration strategies to accommodate this more gen-

eral case. Finally, agent-based epidemiological models have a

much larger number of critical parameters than compartmental

models. Along with their significant computational complexity,

the underlying functional dependency are also more complex,

making their calibration tasks more challenging. Efficient cal-

ibration of ABMs for epidemiological modeling may require

developing and validating different approximate solutions for

BO acquisition functions, which remains an open problem for

future research.
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