
Under review as submission to TMLR

Differentiable Logic Machines

Anonymous authors
Paper under double-blind review

Abstract

The integration of reasoning, learning, and decision-making is key to build more general
artificial intelligence systems. As a step in this direction, we propose a novel neural-logic
architecture, called differentiable logic machine (DLM), that can solve both inductive logic
programming (ILP) and reinforcement learning (RL) problems, where the solution can be
interpreted as a first-order logic program. Our proposition includes several innovations.
Firstly, our architecture defines a restricted but expressive continuous relaxation of the
space of first-order logic programs by assigning weights to predicates instead of rules, in
contrast to most previous neural-logic approaches. Secondly, with this differentiable ar-
chitecture, we propose several (supervised and RL) training procedures, based on gradient
descent, which can recover a fully-interpretable solution (i.e., logic formula). Thirdly, to
accelerate RL training, we also design a novel critic architecture that enables actor-critic
algorithms. Fourthly, to solve hard problems, we propose an incremental training procedure
that can learn a logic program progressively. Compared to state-of-the-art (SOTA) differen-
tiable ILP methods, DLM successfully solves all the considered ILP problems with a higher
percentage of successful seeds (up to 3.5ˆ). On RL problems, without requiring an inter-
pretable solution, DLM outperforms other non-interpretable neural-logic RL approaches in
terms of rewards (up to 3.9%). When enforcing interpretability, DLM can solve harder RL
problems (e.g., Sorting, Path) than other interpretable RL methods. Moreover, we show
that deep logic programs can be learned via incremental supervised training. In addition
to this excellent performance, DLM can scale well in terms of memory and computational
time, especially during the testing phase where it can deal with much more constants (ą2ˆ)
than SOTA.

1 Introduction

Following the successes of deep learning and deep reinforcement learning, a research trend (Dong et al.,
2019; Jiang & Luo, 2019; Manhaeve et al., 2018), whose goal is to combine reasoning, learning, and decision-
making into one architecture has become very active. This research may unlock the next generation of
artificial intelligence (AI) (Lake et al., 2017; Marcus, 2018). Simultaneously, a second research trend has
flourished under the umbrella term of explainable AI (Barredo Arrieta et al., 2020). This trend is fueled by
the realization that solutions obtained via deep learning-based techniques are difficult to understand, debug,
and deploy. Notably, interpretability is crucial in high-stake domains (e.g., autonomous driving), where the
decisions made by a trained model should be understandable.

In this context, neural-logic approaches (see Section 2) have been proposed to integrate reasoning and learn-
ing, notably via first-order logic and neural networks. Recent works have demonstrated good achievements
by using differentiable methods to learn a logic program (Evans & Grefenstette, 2018) or by applying a
logical inductive bias to create a neural-logic architecture (Dong et al., 2019). The latter approach currently
obtains the best performance at the cost of interpretability, while the former can yield an interpretable
solution, but at the cost of scalability. Therefore, one important research problem regards the design of an
efficient method with good performance and better scalability while preserving interpretability. The main
motivation of our work is to provide such algorithm.

1

Under review as submission to TMLR

In this paper, we propose a novel neural-logic architecture (see Section 3 for background notions and Section 4
for our proposition) that offers a better tradeoff in terms of interpretability vs. performance and scalability.
This architecture defines a continuous relaxation over first-order logic expressions defined on input predicates.
In contrast to most previous approaches (see Section 2), one key idea is to assign learnable weights on
predicates instead of template rules, which allows for a much better scalability. This architecture can be
trained both in the supervised learning (SL) and reinforcement learning (RL) settings for which we introduce
several training techniques to find interpretable solutions. Notably, to accelerate the RL training, we propose
an adapted critic to train our architecture in an actor-critic scheme. In addition, to help scale further the
approach, we propose an incremental training methodology that can be applied to both SL and RL training.

We experimentally compare our proposition with previously-proposed neural-logic architectures in both the
SL and RL settings on inductive logic programming (ILP) and RL tasks respectively (see Section 5). Our
architecture can achieve state-of-the-art (SOTA) performances in both ILP and RL tasks while maintaining
interpretability and achieving better scalability. More precisely, our proposition is superior to all considered
interpretable methods in terms of success rates, computational time, and memory consumption. Compared
to non-interpretable ones, our method compares favorably, but can find fully-interpretable solutions (i.e.,
logic programs) that are faster and use less memory during the testing phase.

The contributions of this paper can be summarized as follows: (1) a novel neural-logic architecture that
can produce an interpretable solution and that can scale better than SOTA methods, (2) several training
algorithms to obtain an interpretable solution, and (3) a thorough empirical evaluation in both RL and ILP
tasks. Hence, to the best of our knowledge, our approach is the first neural-logic method able to output at
the end of training a fully-interpretable solution for complex tasks like Path or Blocksworld.

2 Related Work

The literature aiming at integrating reasoning, learning, and possibly decision-making is very rich. Our work
is related to statistical relational AI (De Raedt et al., 2016), which aims at combining relational reasoning
and learning. However, a key difference is that our focus is to learn a logic program, although we have a
probabilistic interpretation of predicate evaluations. Our work is also related to relational RL (Džeroski
et al., 2001; Tadepalli et al., 2004; van Otterlo, 2012), whose goal is to combine RL with First-Order Logic
(FOL) representation. To the best of our knowledge, such approach does not scale as well as those resorting
to neural networks. Thus, the investigation of neural approaches to tackle this integration has become very
active in recent years (de Raedt et al., 2020; d’Avila Garcez et al., 2019; Besold et al., 2017). For space
reasons, we focus on the recent work closest to ours below.

(Differentiable) ILP and their extensions to RL ILP (Muggleton, 1991; Cropper et al., 2020) aims
to extract lifted logical rules from examples. Since traditional ILP systems can not handle noisy, uncertain
or ambiguous data, they have been extended and integrated into neural and differentiable frameworks. For
instance, Evans & Grefenstette (2018) proposed BILP, a model based on a continuous relaxation of the
logic reasoning process, such that the parameters can be trained via gradient descent, by expressing the
satisfiability problem of ILP as a binary classification problem. This relaxation is defined by assigning
weights to templated rules. Jiang & Luo (2019) adapted BILP to RL problems using vanilla policy gradient.
Despite being interpretable, this approach does not scale well in terms of both memory and computation,
which is notably due to how the relaxation is defined.

Payani & Fekri (2019b) proposed differentiable Neural Logic ILP (dNL-ILP), another ILP solver where in
contrast to BILP, weights are placed on predicates like in our approach. Their architecture is organized as
a sequence of one layer of neural conjunction functions followed by one layer of neural disjunction functions
to represent expressions in Conjunctive Normal Form (CNF) or Disjunctive Normal Form (DNF), which
provides high expressivity. In this architecture, conjunctions and disjunctions are defined over all predicates
of any arity in contrast to DLM. Payani & Fekri (2019b) did not provide any experimental evaluation of
dNL-ILP on any standard ILP benchmarks. But, in our experiments, our best effort to evaluate it suggests
that dNL-ILP performs worse than BILP. We believe this is due to the too generic form imposed on the
logic program to be learned. Payani & Fekri (2020) extended their model to RL and showed that initial

2

Under review as submission to TMLR

predicates can be learned from images if sufficient domain knowledge under the form of auxiliary rules is
provided to the agent. However, they do not show that their approach can learn good policies without this
domain knowledge.

Another way to combine learning and logic reasoning is to introduce some logical architectural inductive
bias, as in Neural Logic Machine (NLM) (Dong et al., 2019). This approach departs from previous ones
by learning rules with multilayer perceptrons (MLPs), which prevent this method to provide any final
interpretable solution. NLM can generalize and its inference time is significantly reduced compared to BILP;
by avoiding rule templates as in traditional neural-symbolic approaches, it also gains in expressivity. Our
architecture is inspired by NLM, but we use interpretable modules instead of MLPs.

Other neural-symbolic approaches In order to combine probabilistic logic reasoning and neural net-
works, Manhaeve et al. (2018) proposed DeepProbLog, which extends ProbLog De Raedt et al. (2007), a
probabilistic logic language, with neural predicates. While this approach is shown to be capable of pro-
gram induction, it is not obvious how to apply it for solving generic ILP problems, since partially-specified
programs need to be provided.

Another line of work in relational reasoning specifically targets Knowledge-Base (KB) reasoning. Although
these works have demonstrated a huge gain in scalability (w.r.t. the number of predicates or entities), they
are usually less concerned about predicate invention1. Some recent works (Yang et al., 2017; Yang & Song,
2020) extend the multi-hop reasoning framework to ILP problems. The latter work is able to learn more
expressive rules, with the use of nested attention operators. In the KB completion literature, a recurrent idea
is to jointly learn sub-symbolic embeddings of entities and predicates, which are then used for approximate
inference. However, the expressivity remains too limited for more complex ILP tasks and these works are
typically more data-hungry.

3 Background

We present the necessary notions in ILP and RL. We also recall NLM, since our work is based on it.

3.1 Inductive Logic Programming (ILP)

ILP (Muggleton, 1991) refers to the problem of learning a logic program that entails a given set of positive
examples and does not entail a given set of negative examples. This logic program is generally written in (a
fragment of) FOL.

FOL is a formal language defined with several elements: constants, variables, functions, predicates, and
formulas. Constants correspond to the objects in the domain of discourse. Let C denote the set of m constants
(e.g., objects). They will be denoted in lowercase (e.g., o). Variables refer to unspecified constants. They will
be denoted in uppercase (e.g., X, Y , or Z). Functions allow to denote some constants using other constants
(e.g., sp0q may refer to 1). Like previous work, we consider a fragment of FOL without any functions. A
predicate can be thought of as a relation between constants, which can be evaluated as true T or false F. A
predicate is said to be r-ary if it is a relation between r constants. Note that a 0-ary predicate is simply a
Boolean value. Predicates will be denoted in uppercase (e.g., P or Q). Let P denote the set of predicates
used for a given problem. An atom is an r-ary predicate with its arguments P px1, ¨ ¨ ¨ , xrq where xi’s are
either variables or constants. For simplicity, we may refer to atoms as predicates when there is no risk
of confusion. A formula is a logical expression composed of atoms, logical connectives (e.g., negation ␣,
conjunction ^, disjunction _, implication Ð), and possibly existential D and universal @ quantifiers.

Since solving an ILP task involves searching an exponentially large space, this problem is generally handled
by focusing on formulas of restricted forms, such as a subset of if-then rules, also referred to as clauses. A
definite clause is a rule of the form:

H Ð A1 ^ . . .^Ak

1Typically, rules learned in KB reasoning are chain-like rules (i.e., paths on graphs), which form a subset of Horn clauses:
QpX, Y q Ð P1pX, Z1q ^ P2pZ1, Z2q ^ ¨ ¨ ¨ PrpZr´1, Zrq.

3

Under review as submission to TMLR

which means that the head atom H is implied by the conjunction of the body atoms A1, . . . , Ak. Horn
clauses extend definite rules by allowing H to be possibly negated. More general rules can be defined by
allowing logical operations (e.g., disjunction or negation) in the body. A ground rule (resp. ground atom) is
a rule (resp. atom) whose variables have been all replaced by constants.

In ILP tasks, given some initial predicates (e.g., for natural numbers, ZeropXq meaning “X “ 0”, SuccpX, Y q
meaning “X “ Y ` 1”), and a target predicate (e.g., EvenpXq meaning “X is even”), the goal is to learn
a logical formula defining the target predicate. Expressing directly this target predicate in terms of initial
ones may require a very long logical formula, which may therefore be hard to learn. A usual approach is to
rely on predicate invention, which consists in learning intermediate auxiliary predicates with which the target
predicate can be defined. Below, we show a simple example of such predicate invention with the created
auxiliary predicate Succ2 pX, Y q (meaning “X “ Y ` 2”):

EvenpXq Ð ZeropXq _
`

Succ2 pX, Y q ^ EvenpY q
˘

,

Succ2 pX, Y q Ð SuccpX, Zq ^ SuccpZ, Y q.

3.2 Reinforcement Learning (RL)

For any finite set X , let ∆pX q denote the set of probability distributions over X . The Markov Decision
Process (MDP) model (Bellman, 1957) is defined as a tuple pS, A, T, r, µ, γq, where S is a set of states, A is
a set of actions, T : SˆA Ñ ∆pSq is a transition function, r : SˆA Ñ R is a reward function, µ P ∆pSq is a
distribution over initial states, and γ P r0, 1q is a discount factor. A (stationary Markov) policy π : S Ñ ∆pAq
is a mapping from states to distributions over actions; πpa | sq stands for the probability of taking action a
given state s. We consider parametrized policies πθ with parameter θ (e.g., neural networks). The aim in
discounted MDP settings is to find a policy maximizing the expected discounted total reward:

Jpθq “ Eµ,T,πθ

”

8
ÿ

t“0
γtrpst, atq

ı

, (1)

where Eµ,T,πθ
is the expectation w.r.t. distribution µ, transition function T , and policy πθ. The state value

function of a policy πθ for a state s is defined by:

V θpsq “ ET,πθ

”

8
ÿ

t“0
γtrpst, atq | s0 “ s

ı

, (2)

where ET,πθ
is the expectation w.r.t. transition function T and policy πθ. The action value function is

defined by:

Qθps, aq “ ET,πθ

”

8
ÿ

t“0
γtrpst, atq | s0 “ s, a0 “ a

ı

, (3)

and the advantage function (Sutton & Barto, 2018) is defined by:

Aθps, aq “ Qθps, aq ´ V θpsq. (4)

RL (Sutton & Barto, 2018), which is based on MDP, is the problem of learning a policy that maximizes the
expected discounted sum of rewards without knowing the transition and reward functions. Policy Gradient
(PG) methods constitute a widespread approach for tackling RL problems in continuous or large state-action
spaces. They are based on iterative updates of the policy parameter in the direction of a (policy) gradient
expressed as:

∇θJpθq “ Eps,aq„dπθ rA
θps, aq∇θ log πθpa | sqs,

where the expectation is taken w.r.t. dπθ , the stationary distribution of the Markov chain induced by policy
πθ. Algorithms like REINFORCE (Williams, 1992) that estimate this gradient via Monte Carlo sampling
are known to suffer from high variance (due to the stochasticity of the environment and/or policy) Sutton
& Barto (2018). To address this issue, actor-critic (AC) schemes (Konda & Tsitsiklis, 2000) have been

4

Under review as submission to TMLR

(a) High-level architecture of NLM (and DLM) zoomed in
around breadth b, where boxes represent computation units
(except for layer 0), blue arrows correspond to reduction,
and yellow arrows to expansion. Permutation is applied on
the inputs of each computation unit.

(b) A DLM computation unit at breadth b and layer l. Af-
ter the NLM operations (i.e., reduction, expansion, and per-
mutation), negation (green arrow) and preservation (violet
arrow) with true (T) or false (F) are applied to generate the
inputs of the logic modules.

Figure 1: (Left) High-level architecture of NLM (and DLM), (Right) Computation unit in DLM.

proposed. In such a framework, both an actor (πθ) and a critic (e.g., depending on the AC algorithm, V θ

(Sutton & Barto, 2018; Schulman et al., 2017)or Qθ (Lillicrap et al., 2016; Mnih et al., 2016), from which
Aθ can be estimated) are jointly learned. Using a critic to estimate the policy gradient reduces variance,
but at the cost of introducing some bias.

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a SOTA AC algorithm, which optimizes a
clipped surrogate objective function JPPOpθq:

8
ÿ

t“0
minpωtpθqAθ̄pst, atq, clippωtpθq, ϵqAθ̄pst, atqq, (5)

where θ̄ is the parameter of the policy that generated the training data, ωtpθq “
πθpat|stq

πθ̄pat|stq
, and clipp¨, ϵq is

the function to clip between r1 ´ ϵ, 1 ` ϵs. This surrogate objective was motivated as an approximation of
that used in Trust Region Policy Optimization (TRPO) (Schulman et al., 2015), which was introduced to
ensure monotonic improvement after a policy parameter update. Some undeniable advantages of PPO over
TRPO lie in its simplicity and lower computational and sample complexity.

3.3 Neural Logic Machine (NLM)

NLMs (Dong et al., 2019) are neural networks designed with a strong architectural inductive bias to solve
ILP (and RL) problems. The NLM architecture is composed of MLPs organized in a hierarchical fashion.
Its input corresponds to the initial predicates and its output corresponds to the target predicate. The MLPs
approximate logic operations and define invented auxiliary predicates based on previously-created or initial
predicates. Thus, this architecture simulates forward chaining, a form of reasoning, which computes a target
predicate from the truth values of initial predicates via a sequence of invented ones. Training an NLM
therefore approximates the inductive definition of logic formulas.

More specifically, an NLM is comprised of learnable computation units organized into L successive layers,
each layer having a maximum breadth B (see Fig. 1a). A computation unit at layer l for a given breadth
b corresponds to some b-ary predicates and is connected to units at the previous and next layers. An NLM
processes atoms (i.e., predicates with all its arguments) represented as tensors. For any b-ary predicate P , its
corresponding tensor P , denoted in bold, is of order b with shape rm, . . . , ms (recall that m is the number of
constants present in the ILP problem). For instance, the tensor representation of a binary (b “ 2) predicate
would be P P r0, 1smˆm. A value P pi1, . . ., ibq P r0, 1s (with ij P t1, . . . , mu and j P t1, . . . , bu) is interpreted
as the probability of the truth value of the corresponding grounded atom.

Apart from layer 0, which directly corresponds to the initial predicates, a computation unit at breadth b P
t0, . . . , Bu and layer l P t1, . . . , Lu takes as inputs the b-ary predicates of a set Ql

b and then outputs a set

5

Under review as submission to TMLR

P l
b of newly-invented b-ary predicates. For l ą 0, the set Ql

b is obtained from the sets P l´1
b of the previous

layer according to three operations: expansion, reduction, and permutation:

Expansion: Any b-ary predicate P can be expanded into a pb`1q-ary predicate P̂ , where the last argument
does not play any role in its truth value, i.e., P̂ pX1, . . . , Xb`1q :“ P pX1, . . . , Xbq. The set of expanded
predicates obtained from P l´1

b is denoted pP l´1
b .

Reduction: Any pb`1q-ary predicate P can be reduced into a b-ary predicate P̌ by marginalizing out its last
argument with an existential (resp. universal) quantifier, i.e., P̌ pX1, . . . , Xbq “ DXb`1P pX1, . . . , Xb`1q
(resp. P̌ pX1, . . . , Xbq “ @Xb`1 P pX1, . . . , Xb`1q). Those operations on tensors are performed by a max
(resp. min) on the corresponding component, i.e., P̌ pi1, . . . , ibq “maxj P pi1, . . . , ib, jq (resp. P̌ pi1, . . . , ibq

“ minj P pi1, . . . , ib, jq). The set of reduced predicates obtained from P l´1
b`1 is denoted qP l´1

b`1.

Permutation: Let Sb be the set of all permutations of t1, . . . , bu for b P t1, . . . , Bu. For a given b-
ary predicate P and a given permutation σ P Sb, PσpX1, . . . , Xbq :“ P pXσp1q, . . . , Xσpbqq. Permuting
arguments allows to build more expressive formulas.

Example 1. In a blocks world environment, consider the Unstack task where the goal is to move all the
blocks on the floor. Therefore, a constant in C is a block. The current configuration of the blocks can be
described by the following initial predicates: IsF loorpXq (i.e., true if X is the floor), OnpX, Y q (i.e., true
if X is on Y), and ToppXq (i.e., true if there is no block on X). The target predicate MovepX, Y q to be
learned indicates which block X could be moved on Y so that the next configuration of the blocks is closer to
the goal specified by the Unstack task. A possible solution is:

MovepX, Y q Ð IsF loorpY q ^ ToppXq ^ DZ, P pX, Zq,

P pX, Y q Ð OnpX, Y q ^ DZ, OnpY, Zq,

where P is an invented predicate, which can be formulated thanks to those three previous operations. Indeed,
reduction applied on On can yield QpY q “ DZ, OnpY, Zq. Applying expansion on it yields @X, Q̂pY, Xq “
QpY q. Using permutation σ that swaps two arguments gives Q̂σpX, Y q “ Q̂pY, Xq. Finally, P can be
expressed with OnpX, Y q and Q̂σpX, Y q.

The input predicates of a computation unit at layer l and breadth b are therefore the elements of set
Ql
b “ tPσ | P P P l´1

b Y pP l´1
b´1 Y

qP l´1
b`1, σ P Sbu assuming pP l

0 “ H and qP l
B`1 “ H. A computation unit

outputs nO new predicates, which form the elements of set P l
b of b-ary predicates invented at layer l. For

each such predicate, a corresponding MLP computes its outputs: its evaluation for any given grounding (i.e.,
its arguments o1, . . . , ob) is computed with the same MLP using as inputs all predicates in Ql

b grounded on
o1, . . . , ob. Thus, the NLM architecture is independent of the number of constants and therefore a trained
network can be applied on new instances with any number of constants.

NLM offers an expressive neural network architecture, whose model complexity is controlled by setting the
number L of layers, breadth B, and number nO of output predicates of the computation units, in addition
to the MLP size. However, by using MLPs, NLM cannot provide an interpretable solution after training.

4 Differentiable Logic Machine (DLM)

We present our novel neural-logic architecture, called Differentiable Logic Machines (DLM), which offers a
good trade-off between expressivity and trainability. We first discuss its architecture, then present several
training methods, and finally explain how to extract interpretable solutions.

4.1 Architecture

At a high level, DLM has a similar architecture (Fig. 1a) as NLM (Dong et al., 2019), i.e., it contains
computation units organized into a hierarchical fashion with breadth B and L layers. In contrast to NLM,
the computation units correspond to soft logic operators, which means that DLM defines a continuous

6

Under review as submission to TMLR

relaxation over FOL programs. Next, we explain the three main innovations in DLM and compare its
computational complexity with respect to other related neural-logic methods. In Appendix A, we provide
further discussions about DLM, notably its interpretation, expressivity, and implementation details.

Innovations The first two innovations correspond to two novel operations, negation and preservation,
which we introduce to increase expressivity. They are used in addition to the three operations in NLM
(expansion, reduction, and permutation) to compute the input predicates of a computation unit. For the third
innovation, we replace the MLPs of NLM’s computation units by logic modules to promote interpretability.
We present the two operations next, and then describe the logic modules:

Negation: On any set of predicates P, this operation yields the set ηpPq containing the negation of the
predicates in P. On tensor representations, the negation is computed via the involutive function fpxq “
1´ x applied component-wisely.

Preservation: To add more flexibility in the architecture, we augment any set of predicates P with T or F,
which can be seen as a predicate that is always true or false respectively. The rationale for introducing
those constant predicates T and F is notably to allow a predicate at one layer to be preserved for a later
layer (see Example 2 below).

From the set Ql
b of input predicates computed with expansion, reduction, and permutation, the application

of negation and preservation yields four sets Ql
b Y tTu, Ql

b Y tFu, ηpQl
bq Y tTu, and ηpQl

bq Y tFu. The union
of these sets, denoted Rl

b, is used as input of a logic module, which we explain next.

Logic module: In DLM, a computation unit (see Fig. 1b) at layer l and breadth b outputs nO new predicates
like in NLM. However, in contrast to NLM, each invented predicate is based on input predicates from
Rl
b and is computed with a (soft) logic operator. For simplicity, we only use and and or, but other logic

operators could be considered.

An and (resp. or) logic module at any layer l and breadth b outputs a conjunction (resp. disjunction) over
nA terms of Rl

b, which represents a predicate Cl
bpX1, . . . , Xbq (resp. Dl

bpX1, . . . , Xbq). In terms of tensor, a
conjunctive predicate Cl

bpX1, . . . , Xbq is computed with a fuzzy and and is obtained as follows (for nA “ 2,
which easily extends to nA ą 2):

Cl
b “ QdQ

1, (6)

where Q “
ř

PPRl
b

wPP , Q1 “
ř

P 1PRl
b

wP 1P 1, d is the component-wise product, wP P r0, 1s and wP 1 P r0, 1s
are learnable weights for selecting predicates P and P 1 such that

ř

PPRl
b

wP “ 1 and
ř

P 1PRl
b

wP 1 “ 1.
Similarly, a disjunctive predicate Dl

bpX1, . . . , Xbq is computed with a fuzzy or and is defined as follows (for
nA “ 2, which easily extends to nA ą 2):

Dl
b “ Q`Q

1 ´QdQ1. (7)

Each logic module (i.e., each conjunction or disjunction) has its own set of weights wP ’s (and wP 1 ’s), which
are learned as a softmax of parameters θP (and θP 1) with temperature τ as a hyperparameter:

wP “
exppθP {τq

ř

P 1PRl
b

exppθP 1{τq
. (8)

Example 2. Assume nA “ 2. Consider a blocks world environment with an initial predicate: OnpX, Y q
(i.e., block X is on Y). If it were not initially provided, predicate ToppXq (i.e., no block is on X) could
be learned thanks to the negation and preservation operations (in addition to reduction and permutation).
Indeed, since ToppXq can be expressed as T^␣

`

DY OnpY, Xq
˘

, it can be obtained as follows. As Q1
1 contains

a predicate P pXq “ DY OnpY, Xq (by reduction and permutation), an and logic module could express ToppXq
as a conjunction of T P Q1

1 Y tTu (by preservation) and ␣P P ηpQ1
1q (by negation). Since ␣P is an input

predicate in R1
1, T (resp. F) can preserve it via and (resp. or) logic modules for the next layer.

7

Under review as submission to TMLR

Computational Complexity In one computation unit, the number of parameters grows as OppnAnOq
where p is the number of input predicates of the unit, nA is the number of atoms used to define an invented
predicate, and nO is the number of output predicates invented by the unit. In comparison with related work
(see Section 2), to obtain the same expressivity, the alternative approach BILP (Evans & Grefenstette, 2018)
(and thus its extension to RL, NLRL (Jiang & Luo, 2019)) would need Op

`

p
nA

˘

ˆ nOq because the weights
are defined for all the nA-combinations of p predicates. In contrast, dNL-ILP and NLM would be better
with only OppnOq. However, the components of dNL-ILP and NLM are not really comparable to those of
our model or BILP. Indeed, the NLM units are not interpretable, and the dNL-ILP architecture amounts
to learning a CNF or DNF formula, where a component of that architecture corresponds to a part of that
formula. While expressive, the space of logic program induced in dNL-ILP is much less constrained than
that in our architecture, making it much harder to train, as shown in our experiments (see Table 3).

Assuming that B (the maximum arity) is a small constant, the complete DLM network has OpLnAnO
2q

parameters where L is the maximum number of layers. NLM has instead OpLnO
2q parameters. The com-

plexity of a forward pass in DLM is OpmBLnAnO
2q where m is the number of constants. For NLM, it

is OpmBLnO
2q (assuming that single-layer perceptrons are used). Once a logic program is extracted (see

Section 4.3), we can reduce the forward pass complexity to OpmBpq where p is the number of elements in
the graph. Note that, by construction, p ď LnO

2 ď LnAnO
2.

4.2 Training

As a differentiable model, DLM can be trained in both the SL and RL settings. Since any computation
unit directly corresponds to a (possibly soft) logic expression, DLM is also independent of the number of
constants: it can be trained on a small number of constants and generalize to a larger number. Next,
we discuss supervised training, then present RL training with an actor-critic scheme. In addition, we also
present an incremental training approach to tackle hard tasks. Apart from the latter incremental approach,
the algorithms are quite standard. We present their pseudo-codes in Appendix A.

4.2.1 Supervised Training

SL training can be applied to solve ILP tasks (see Section B.1 for concrete examples): Given a dataset D
expressed with a set of constants C and the initial predicates in P0 “

Ť

b P0
b , learn to predict an r-ary target

predicate PT . DLM can be trained by minimizing a binary cross-entropy loss (e.g., via stochastic mini-batch
gradient descent):

LθpP T , P̂ T q “
ÿ

o1,...,orPC
´P T po1, ..., orq logpP̂ T po1, ..., orqq ´ p1´ P T po1, ..., orqq logp1´ P̂ T po1, ..., orqq,

where θ corresponds to all the DLM parameters, P̂ T “ ϕθpP0
q is the output atom computed by DLM, and

P0 contains the grounded atoms given in D (i.e., all P po1, . . . , obq, @b,@o1, . . . , ob P C,@P P P0
b). As reported

in previous neural-logic work, this loss function generally admits many local optima. Besides, there may
be global optima that reside in the interior of the continuous relaxation (i.e., not interpretable). Therefore,
if we train our model with a standard supervised (or RL training) technique, there is no reason that an
interpretable solution would be obtained, even if we manage to completely solve the task.

In order to help training and guide the model towards an interpretable solution, we propose to use three
techniques: (a) inject some noise in the softmax defined in (8), (b) decrease temperature τ during training,
and (c) use dropout. For the noise, we use a Gumbel distribution. Thus, the softmax in (8) is replaced by
a Gumbel-softmax (Jang et al., 2017):

wP “
expppGP ` θP q{τq

ř

P 1PRl
b

expppGP 1 ` θP 1q{τq
, (9)

where GP (and GP 1) are i.i.d. samples from a Gumbel distribution Gumbelp0, βq. The injection of noise
during training corresponds to a stochastic smoothing technique: optimizing by injecting noise with gradient
descent amounts to performing stochastic gradient descent on a smoothed loss function. This helps avoid

8

Under review as submission to TMLR

Figure 2: Architecture of our critic, assuming that the max arity in P0 is 2. On the left are the depicted atoms of
arity 0, 1, and 2, where m “ |C|, ni is the number of predicates of arity i, and E is the output dimension of a GRU.
Each GRU unit sequentially reads slices depicted with black lines. The architecture can be generalized to larger arity
by introducing more GRU units. The number of parameters of the critic is independent of the number of constants
and only depends on the possible arities and the possible number of predicates in P0.

early convergence to a local optimum and find a global optimum. The decreasing temperature favors the
convergence towards interpretable solutions. To further help learn an interpretable solution, we additionally
use dropout during our training procedure. Dropout helps learn more independent weights, which also
promotes interpretability. The scale β of the Gumbel distribution and the dropout probability are also
decreased with the temperature during learning.

4.2.2 Actor-Critic (AC) Training

For RL tasks (see Section 5 for concrete examples), states are assumed to be encoded with a given set C of
constants and the initial predicates in P0 “

Ť

b P0
b , while action selection can be expressed by an r-ary action

predicate PA, i.e., PApo1, . . . , orq corresponds to an action. In contrast to ILP, the truth values of grounded
atoms (describing a state) may change after performing an action to reflect a new state. The RL problem
consists in learning a policy that takes as inputs P0 (all the grounded atoms of the initial predicates) and
that returns an action predicate such that the expected cumulative reward (1) is maximized by selecting
actions according to the action predicate.

To the best of our knowledge, all previous neural-logic works2 rely on REINFORCE (Williams, 1992) instead
of an AC algorithm, which can generally be much more sample-efficient. One reason may be the difficulty
of designing a neural network for the critic that can directly receive as inputs P0 (i.e., the same input given
to the policy based on a DLM architecture). To overcome this issue, we propose a recurrent neural network
architecture based on Gated Recurrent Unit (GRU) (Cho et al., 2014) for the critic. Once an architecture
for the critic is defined, different actor-critic algorithms could be applied. In this work, we use the SOTA
AC algorithm, PPO (Schulman et al., 2017). We present next the design of our critic and actor.

2Although not discussed in Jiang & Luo (2019), we found in their source code an attempt to apply an AC scheme, but they
do so by converting states into images, which may not only be unsuitable for some problems, but may also lose information
during the conversion and prevent good generalization.

9

Under review as submission to TMLR

Critic This GRU-based critic estimates the value (2) of a state described by the atoms in P0. Recall a
GRU unit (Cho et al., 2014) processes an input sequence xt as follows:

zt “ σpWzxt ` Uzht´1 ` bzq,

rt “ σpWrxt ` Urht´1 ` brq,

ht “ zt d ht´1 ` p1´ ztq d ϕpWhxt ` Uhprt d ht´1q ` bhq,

where zt (resp. rt) is the update (resp. reset) gate vector, ht is the output vector, σ (resp. ϕ) is the
sigmoid (resp. tanh) activation function, d is the component-wise product, and W˚, U˚, b˚ for ˚ P tz, r, hu
are learnable parameters.

Our GRU-based critic (see Fig. 2) includes, for each arity r ą 1 in P0, r independent GRU units. Each of
them reads all the atoms in P0

r, but focuses on a different component of the r-ary predicates. For simplicity,
we present the procedure for the first component, the other components are treated in a similar fashion. The
GRU unit for the first component processes for each o P C, the input sequence xt whose element is defined by
@t “ po2, . . . orq P Cr´1, xt “

`

Prpo, o2, . . . , orq
˘

PrPP0
r
. Its output, taken as the computed last ht, corresponds

to pQ1
rpoq, . . . , QE

r poqq P RE where E is a hyperparameter. Intuitively, the r GRU units compute for each
constant a summary (i.e., vector of dimension r ˆ E) of the objects that are in relation with it.

After processing all the atoms of arity r ą 1, all the combined outputs of these GRU units (i.e., Qi
r’s) in

addition to the initial unary predicates are read by another GRU unit, which outputs a vector pQ1
1, . . . , QE

1 q P
RE . This latter GRU unit takes as inputs @t “ o P C, xt P RN1 where N1 is the total number of Qi

r’s plus
the number of initial unary predicates. The computed vector, in addition to any initial 0-ary predicates
if any, are given as inputs to an MLP, which outputs the estimated state value. Note that the number of
parameters of this critic, like DLM, is independent of the number of constants.

Actor The actor’s output should ideally correspond to a predicate that evaluates to true for only one
action and false for all other actions, which corresponds to a deterministic policy. For instance, in a blocks
world domain, the target predicate would be movepX, Y q and would be true for only one pair of objects,
corresponding to the optimal action, and false for all other pairs. While not impossible to achieve (at least
for certain small tasks), an optimal deterministic policy may involve an unnecessarily complex logic program.
Indeed, for instance, for the blocks world domain, in many states, there are several equivalent actions, which
the deterministic policy would have to order.

Thus, as done in previous works, we separate the reasoning part and the decision-making part. The reasoning
part follows the architecture presented in Fig. 1a, which provides a tensor representing the target predicate
corresponding to the actions. A component of this tensor can be interpreted as whether the respective action
is good or not. The decision part takes as input this tensor and outputs a probability distribution over the
actions using a softmax with fixed low temperature. Note that this temperature used for the actions is
different from that used in Equation(9).

4.2.3 Incremental Training

Learning an interpretable solution amounts to searching in a discrete space whose size increases exponentially
with the size of the solution (i.e., L). In complex tasks whose solution requires a logic program with a large
depth, the SL or RL training we have just discussed may not be sufficient.

To face this difficulty, we also experimented with a more elaborate training procedure where potentially useful
auxiliary predicates are incrementally learned and added to the initial predicates, which can then facilitate
finding a good interpretable solution. This is achieved by repeatedly training a fixed DLM architecture with
an increasing number of initial predicates. More specifically, we repeat the following training phase. At phase
i, we apply the SL or RL training method discussed previously on a randomly initialized DLM to obtain an
interpretable solution using as initial predicates the set Ppiq of predicates, which includes the predicates of
P0 “

Ť

b P0
b (i.e., all initial predicates of the problem) in addition to predicates invented in previous phases

(if any). Thus, during the first phase, Pp1q “ P0. At the end of a training phase, if the learned interpretable
solution solves the problem, the procedure ends. Otherwise, although the obtained solution is imperfect,

10

Under review as submission to TMLR

it may still contain some useful invented predicates. Therefore, we extract (see Section 4.3) the invented
predicates from this interpretable solution, which are then added to Ppiq to form Ppi`1q for the next phase.

Intuitively, incremental training stacks many DLM networks (each with L layers) to obtain a large DLM
network whose number of layers can be up to the number of phases times L, depending on which invented
predicates are used. Thus, incremental training can be seen as a training procedure for training a very deep
DLM architecture.

4.3 Logic Program Extraction

During evaluation and deployment, both the time and space complexity will increase quickly as the number
of constants increases. To speed up inference and have an interpretable model, we post-process the trained
model to extract the logical formulas instead of using it directly. For each used module, we replace the
Gumbel-softmax (9) by an argmax to choose the predicates deterministically. The fuzzy operations can
then be replaced by their corresponding Boolean ones. Formula extraction can be done recursively from
the output of the model. All the non-selected input predicates coming from the previous layer do not need
to be computed. A graph containing only the selected predicates is built from the output to the input
predicates. The extracted interpretable model can then operate on Boolean tensors, which further saves
space and computation time.

5 Experimental Results

We performed four series of experiments. The first (resp. second) series evaluate DLM with SOTA base-
lines on ILP (resp. RL) tasks. The third series correspond to an ablation study that justifies the different
components (i.e., critic, Gumbel-softmax, dropout) of our method. The last series present a comparison of
the methods in terms of computational costs. Examples of interpretable policies learned by DLM are pro-
vided in Appendix B.2. Other details about the experiments (computer specifications, curriculum learning,
hyperparameters used in DLM and baselines) are provided in Appendix D.

The first series, which focuses on SL training, confirm that DLM is competitive with SOTA baselines on
ILP tasks. Compared to interpretable models (Payani & Fekri, 2019a; Evans & Grefenstette, 2018)), DLM
performs better and compared to a SOTA non-interpretable model (Dong et al., 2019), DLM is easier to
train successfully. To keep the paper short, we present the details of those results in Appendix B. The results
for the other experiments are discussed next.

5.1 RL Tasks

For the RL experiments, we justify the baselines we used, provide a short description of the tasks with their
corresponding training procedures, explain the performance metrics, and discuss the experimental results.

RL Baselines Our evaluation on ILP tasks suggests that the best neural-logic architectures, apart from
DLM, are BILP and NLM. While the authors of NLM directly demonstrated it in an RL setting, BILP was
later extended into an RL method called NLRL (Jiang & Luo, 2019). Based on these observations, we
selected NLM and NLRL as strong RL neural-logic baselines to compare DLM with.

RL Task Description Our evaluation is performed on six RL tasks: three Blocks World tasks from Jiang
& Luo (2019), three other tasks (two algorithmic tasks and one Blocks World task) from Dong et al. (2019).
We provide a short description below, but more details can be found in Appendix C.

In the first three, Stack, Unstack, and On, the agent is trained to learn predicate MovepX, Y q, which moves
block X on block (or floor) Y if possible. The observable predicates are: IsFloorpXq, ToppXq, and OnpX, Y q
with an additional predicate OnGoalpX, Y q for the On task only. In Stack, the agent needs to stack all the
blocks whatever their order. In Unstack, the agent needs to put all the blocks on the floor. In On, the agent
needs to reach the goal specified by onGoal.

11

Under review as submission to TMLR

Table 1: Average rewards of NLRL, NLM, and DLM on RL tasks for the best seed.

Average rewards
NLRL NLM nIDLM DLM DLM+incr DLM+incr (SL)

Interpretable yes no no yes yes yes

Unstack 5 vari. 0.914˘ 0.01 0.920˘ 0 0.920˘ 0 0.920˘ 0 0.920˘ 0 0.920˘ 0

Stack 5 vari. 0.877˘ 0.09 0.920˘ 0 0.920˘ 0 0.920˘ 0 0.920˘ 0 0.920˘ 0

On 5 vari. 0.885˘ 0.01 0.896˘ 0 0.896˘ 0 0.896˘ 0 0.896˘ 0 0.896˘ 0

Sorting m “ 10 0.866˘ 0.1 0.939˘ 0.02 0.939˘ 0.02 0.939˘ 0.02 0.939˘ 0.02 0.939˘ 0.02
M “ 50 N/A 0.556˘ 0.02 0.556˘ 0.02 0.559˘ 0.02 0.559˘ 0.02 0.559˘ 0.02

Path m “ 10 N/A 0.970˘ 0 0.970˘ 0 ´ 0.319˘ 0.2 0.970˘ 0
M “ 50 0.970˘ 0 0.970˘ 0 ´ ´0.004˘ 0.4 0.970˘ 0

Blocksworld m “ 10 N/A 0.888˘ 0.02 0.904˘ 0.02 ´ ´ 0.894˘ 0.02
M “ 50 0.153˘ 0.04 0.159˘ 0.11 ´ ´ 0.230˘ 0.04

N/A: Out of memory issue. ´: Could not extract a working interpretable policy for given architecture size.

The last three are Sorting, Path and Blocksworld. In Sorting, the agent must learn SwappX, Y q where X
and Y are two elements of a list to sort. The binary observable predicates are SmallerIndex, SameIndex,
GreaterIndex, SmallerValue, SameValue, and GreaterValue. In Path, the agent is given a graph as a binary
predicate with a source node and a target node as two unary predicates. It must learn the shortest path
with a unary predicate GoTopXq where X is the destination node. Blocksworld is the most complex task: it
features a target world and a source world with numbered blocks, which makes the number of constants to
be 2pm` 1q where m is the number of blocks and 1 corresponds to the floor. The agent learns MovepX, Y q
by moving blocks in the source world. It is rewarded if both worlds match exactly. The binary observable
predicates are SameWorldID, SmallerWorldID, LargerWorldID, SameID, SmallerID, LargerID, Left, SameX,
Right, Below, SameY, and Above.

All those domains are goal-based sparse-reward RL problems. Since the first three domains are relatively
simple, they can be trained and evaluated on fixed instances with a fixed number of blocks. In contrast, for
the last three domains, the training and testing instances are generated randomly. Those last three domains,
which are much harder than the first three, require training with curriculum learning (CL), which was also
used by Dong et al. (2019). The difficulty of a lesson in CL is defined by the number of objects. Further
details about the training with CL are provided in Appendix D.2. After training with m “ 10, we evaluate
the learned model on test instances with m “ 10, but also M “ 50 to assess its generalizability.

RL Metrics Like ILP tasks, the performance can be measured in terms of success rates, i.e., percentage
of times a trained policy can solve an RL task (i.e., reach a goal). In addition, another natural metric in RL
is the average reward obtained during testing.

RL Results Table 1 provides the success rates of all the algorithms on different RL tasks. For DLM,
we provide the results obtained by RL training (see Section 4.2.2) where we enforce the convergence to an
interpretable policy (DLM) or not (nIDLM). DLM+incr and DLM+incr (SL) correspond to our architecture
trained in an incremental way via RL and SL training respectively (see below). Each subrow of an RL task
corresponds to some instance(s) on which a trained model is evaluated.

The experimental results show that NLRL does not scale to harder RL tasks, as expected from its performance
on ILP tasks. On Sorting where we can learn a fully-interpretable policy, DLM is better than NLM in terms
of computational time and memory usage during testing. Thus, DLM is always superior to NLRL and can
match the performance of NLM for simpler tasks.

For the harder RL tasks (Path, Blocksworld), when we do not enforce the convergence to an interpretable
policy, our method with RL training (nIDLM) can reach similar or better performances than NLM. Inter-

12

Under review as submission to TMLR

Table 2: Average percentage of successful seeds (PSS) and average success rates (SR) on all the tasks of Family Tree
and Graph Reasoning during testing with interpretable rules. Score computed with 5 seeds for each task.

Average PSS (%) Average SR (%)
Softmax without noise 58 97.3 ˘ 6.1

Constant β with Dropout 68 97.7 ˘ 9.3
Without Dropout 70 99.3 ˘ 1.6

Gaussian noise 80 99.7 ˘ 0.8
DLM 95 99.8 ˘ 0.7

estingly, although both NLM and nIDLM learn a non-interpretable policy, nIDLM can generalize better
than NLM in Blocksworld, which suggests that the architectural inductive bias of DLM is more suitable for
problems described with FOL. However, obtaining a good interpretable policy with CL reveals to be difficult:
there is a contradiction between learning to solve a lesson and converging to a final interpretable policy that
generalizes. Indeed, on the one hand, we can learn an interpretable policy for a lesson with a small number
of objects, however that policy will probably not generalize and training that interpretable policy on the
next lesson is hard since the softmaxes are nearly argmaxes. On the other hand, we can learn to solve all
the lessons with a non-interpretable policy, but that final policy is hard to turn into an interpretable one,
because of the many local optima in the loss landscape. This training difficulty explains why we did not
manage to learn an interpretable policy for Path and Blocksworld using RL training.

To demonstrate that this issue is due to RL training (and not to our DLM architecture), we also evaluated
it with incremental training (see Section 4.2.3). In the incremental training phases, we tried both SL and
RL training. While incremental RL training does increase the performance compared to RL training alone,
notably in Path, it is not sufficient to solve Blocksworld nor Path completely.

However, incremental SL training is successful, as reported in column DLM+incr (SL) in Table 1. It cor-
responds to an imitation learning scenario where the agent tries to copy a good policy given by a teacher
(possibly the one learned by nIDLM which does not enforce interpretability). With DLM+incr (SL), unlike
vanilla DLM and DLM+incr, we were able to extract a good interpretable policy for Blocksworld. It needed
a stacking of 4 DLMs of depth 8, which shows the difficulty of finding an interpretable formula for this task.
Interestingly, the generalization performance of DLM+incr (SL) is the best on Blocksworld, which suggests
that enforcing interpretability is beneficial. We leave for future work the investigation of alternative RL
training methods that scale better than CL for sparse-reward RL problems like Path and Blocksworld.

5.2 Ablation and Computational Cost Studies

For simplicity, these studies are performed in ILP tasks. Their description can be found on Appendix B.

Ablation We performed an ablation study to understand the different features (e.g., Gumbel noise in
softmaxes, decreasing β, use of Dropout) in DLM. We trained our model on ILP tasks by using only softmax
without injecting noise, without decreasing the noise over time, without having a dropout noise and finally
by replacing the Gumbel distribution with a Gaussian one. In those experiments, during evaluation, we
still used an argmax to retrieve the interpretable rules. Table 2 shows that all our choices help our model
reach interpretable rules. Success rate (SR) is the proportion of examples well-classified by a trained model.
Percentage of successful seeds (PSS) is the proportion of seeds for which a trained model reaches an SR of
100%.

In addition, to evaluate the quality of our proposed critic architecture, we used it to train both NLM
and DLM. Fig. 3 shows the testing performance of NLM or DLM trained with REINFORCE or with an
actor-critic scheme with our proposed critic architecture. Recall the testing performance corresponds to the
evaluation of the latest trained policy in terms of success rates at regular training steps. It has been averaged
over 3 environments and 5 random seeds: Unstack, Stack, and On. As shown in Fig. 3, using our proposed
critic architecture greatly accelerates the RL training for both NLM and DLM.

13

Under review as submission to TMLR

0 50 100 150 200
episodes

0.0

0.5

1.0

te
st

in
g

p
er

fo
rm

an
ce

NLM without critic

NLM with critic

0 1000 2000 3000
episodes

0.0

0.5

1.0

te
st

in
g

p
er

fo
rm

an
ce

DLM without critic

DLM with critic

Figure 3: Learning performance with or without our proposed critic with NLM (left) and DLM (right).

IsGrandParent 2-outdegree

2 4 6 8 10 12 14
persons (× 10)

0

5

10

15

20

25

30

T
im

e
(s

)

dNL-ILP

NLM

DLM (Ours)

5 10 15 20 25 30 35
persons (× 10)

0
10
20
30
40
50
60
70
80
90

T
im

e
(s

)

dNL-ILP

NLM

DLM (Ours)

(a) Computational time

IsGrandParent 2-outdegree

3 4 5 6 7 8 9 10 11 12
persons (× 10)

0

2000

4000

6000

8000

10000

M
em

or
y

(M
iB

) dNL-ILP

NLM

DLM (Ours)

5 10 15 20 25 30 35
persons (× 10)

0

1000

2000

3000

4000

5000

6000

M
em

or
y

(M
iB

) dNL-ILP

NLM

DLM (Ours)

(b) Memory usage

Figure 4: Comparison during test in IsGrandParent and 2-outdegree. On 2-outdegree, NLM is rapidly out of memory
and dNL-ILP does not achieve a 100% success rate.

Comparative computational costs We compare now the different algorithms with respect to compu-
tational times and memory usage during testing (Figure 4) and training (see Table 4 in Appendix). During
testing, we extracted the compact representation of the produced solution by DLM (see Section 4.3). Figure 4
clearly shows that DLM scales better than the other baselines in terms of both memory and computational
times. Note that in the second task (2-outdegree), dNL-ILP does not achieve a 100% success rate and searches
instead in a much smaller space.

6 Conclusion

We proposed a novel neural-logic architecture that is capable of learning a fully-interpretable solution,
i.e., logic program. Among differentiable methods, it obtains state-of-the-art results for inductive logic
programming tasks, while retaining interpretability and scaling much better. For reinforcement learning
tasks, it is superior to previous interpretable neuro-logic models. Compared to non-interpretable models,
it can achieve comparable or higher performances using incremental training. Moreover, it can generalize
better, and more importantly, it scales much more advantageously in terms of computational times and
memory usage during testing.

Our results suggest that learning a fully-interpretable solution using supervised learning with our approach
could be practical, but enforcing interpretability in more complex reinforcement learning tasks, especially
with RL training using sparse rewards, is a much harder problem, which calls for novel neural-logic archi-
tectures or novel training techniques. Another interesting phenomenon that we have observed is that there
is a tension between learning interpretable solutions and curriculum learning. We leave a study of this
phenomenon for future work.

References
Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto

Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, and et al. Explainable
artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible ai.
Information Fusion, 58:82–115, 2020.

14

Under review as submission to TMLR

Richard Bellman. A Markovian decision process. Journal of mathematics and mechanics, pp. 679–684, 1957.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi
Pinkas, Hoifung Poon, and Gerson Zaverucha. Neural-symbolic learning and reasoning: A survey and
interpretation. arXiv:1711.03902, 2017.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statisti-
cal machine translation. In EMNLP, 2014.

Andrew Cropper, Sebastijan Dumančić, and Stephen H. Muggleton. Turning 30: New ideas in inductive
logic programming. In IJCAI, 2020.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: a probabilistic prolog and its application
in link discovery. In IJCAI, 2007.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical Relational AI: Logic,
Probability and Computation. Morgan & Claypool, 2016.

Luc de Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra. From Statistical Relational to
Neuro-Symbolic Artificial Intelligence. In IJCAI, 2020.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural Logic Machines.
In ICLR, 2019.

Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine Learning, 43
(1):7–52, 2001.

Artur d’Avila Garcez, Marco Gori, Luis C. Lamb, Luciano Serafini, Michael Spranger, and Son N. Tran.
Neural-symbolic computing: An effective methodology for principled integration of machine learning and
reasoning. arXiv: 1905.06088, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of AI Research,
2018.

A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, A Grabska-Barwińska, SG Colmenarejo, E Grefen-
stette, T Ramalho, J Agapiou, and et al. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In ICLR,
2017.

Zhengyao Jiang and Shan Luo. Neural Logic Reinforcement Learning. In ICML, 2019.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In NeurIPS, volume 12, 2000.

Robert A Kowalski. Logic programming. In Computational Logic, volume 9, pp. 523–569, 2014.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building machines
that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference
on Learning Representations, 2016.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
problog: Neural probabilistic logic programming. In NeurIPS, 2018.

Gary Marcus. Deep learning: A critical appraisal. arXiv: 1801.00631, 2018.

15

Under review as submission to TMLR

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In ICML,
2016.

Stephen Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–318, Feb 1991.

Ali Payani and Faramarz Fekri. Inductive logic programming via differentiable deep neural logic networks.
arXiv:1906.03523, 2019a.

Ali Payani and Faramarz Fekri. Learning algorithms via neural logic networks. arXiv:1904.01554, 2019b.

Ali Payani and Faramarz Fekri. Incorporating relational background knowledge into reinforcement learning
via differentiable inductive logic programming. arXiv:2003.10386, 2020.

J. Schulman, S. Levine, P. Abbeel, M.I. Jordan, and P. Moritz. Trust region policy optimization. In ICML,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-
mization Algorithms. arXiv preprint: 1707.06347, August 2017.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks. In
NeurIPS, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Prasad Tadepalli, Robert Givan, and Kurt Driessens. Relational reinforcement learning : An overview. In
ICML workshop on relational reinforcement learning, 2004.

Martijn van Otterlo. Solving relational and first-order logical markov decision processes: A survey. In
Reinforcement Learning, volume 12, pp. 253–292. 2012.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3):229–256, 1992.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge base
reasoning. In NeurIPS, 2017.

Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. In ICLR, 2020.

16

Under review as submission to TMLR

A Details About DLM

A.1 Tensor Representation

DLM processes predicates by working on the concatenation of their corresponding tensors. We define be-
low the concatenation, provide some illustrative examples, and list the pseudo-code (Algorithm 1) for the
inference in DLM.

A set Pb of b-ary predicates can be represented as a tensor, denoted Pb, of order b ` 1 with shape
rm, . . . , m, |Pb|s.

The concatenation of two tensors Pb and Qb representing two sets of b-ary predicates, Pb and Qb, is
performed over the last dimension. It results in a tensor of order b` 1 with shape rm, ...m, |Pb| ` |Qb|s.

We provide some examples of how the different operations (i.e., expansion, reduction, permutation) work on
tensors:
Example 3. Expansion: A unary predicate ToppXq represented over 3 constants with the vector p0, 0, 1q
would be expanded into yToppX, Y q as the following matrix pp0, 0, 0q, p0, 0, 0q, p1, 1, 1qq.

Reduction: A binary predicate OnpX, Y q represented with the matrix pp0, 1, 0q, p0, 0, 1q, p0, 0, 0qq would be
reduced to the vector p1, 1, 0q with the existential quantifier representing whether X is “On” any objects.

Permutation: A binary predicate OnpX, Y q represented with the matrix pp0, 1, 0q, p0, 0, 1q, p0, 0, 0qq would
be permuted to the matrix pp0, 0, 0q, p1, 0, 0q, p0, 1, 0qq representing the relation UnderpX, Y q.

We provide a detailed example for understanding DLM’s architecture:
Example 4. Consider a blocks world environment with 4 objects: 3 blocks pu, v, wq and the floor
pfloorq. Assuming that only two initial predicates are available, the following facts tOnpu, vq, Onpv, floorq,
Onpw, floorq, Toppuq, Toppwqu are encoded by two tensors. The first tensor encoding the unary predicate
ToppXq is a vector of length 4, since there are 4 objects. The second tensor for the binary predicate OnpX, Y q
is a 4 ˆ 4-matrix. Those two tensors will feed the DLM network at layer 0 on different breadths (1 and 2
respectively).

We first focus on what happens in the first layer of breadth 1 (l “ 1, b “ 1). By assumption, there is no
expansion. Since the previous layer l´1 with breadth b`1 is not empty, the reduction operation generates two
predicates OnR1pXq Ð @Y, OnpX, Y q and OnR2pXq Ð DY, OnpX, Y q. Hence, the possible (positive) input
predicates R1

1 are tToppXq, OnR1pXq, OnR2pXqu. Since we deal with unary predicates, the permutation
operation does not play a role.

Now, consider the first layer of breadth 2 (l “ 1, b “ 2). By assumption, there is no reduction. The expansion
operation generates one predicate TopEpX, Y q whose truth value is given by ToppXq. Therefore, after the
permutation operation, R1

2 “ tOnpX, Y q, TopEpX, Y q, OnpY, Xq, TopEpY, Xqu.

Assume that we want to detect the objects that are neither the floor, nor on the top of a stack (i.e., v here)
with a unary predicate, which we call BlockNotToppXq. This predicate can be invented as a conjunction with
a negative first atom. As |R1

1| “ 3, wP and wP 1 are vectors of length 4 due to the preservation operation. To
build BlockNotToppXq Ð ␣ToppXq^OnR2pXq, wP should be zero everywhere except for selecting ␣ToppXq
in tTu Y ηpRl

bq. Accordingly, wP 1 should be zero everywhere except for selecting OnR2pXq inside tTu YRl
b.

A.2 Interpretability and Expressivity

Interpretation Following NLM, we keep the probabilistic interpretation of the tensor representations of
the predicates in DLM. This interpretation justifies the application of statistical machine learning tech-
niques to train DLM via cross-entropy minimization for supervised tasks (i.e., ILP) for instance. In this
interpretation, using the fuzzy conjunctions and disjunctions can be understood as making the assumption
of probabilistic independence between the truth values of any pairs of atoms in Rl

b. This may seem a strong
assumption, however this is not detrimental since we want to learn a logic program operating on Boolean
tensors.

17

Under review as submission to TMLR

Algorithm 1 Inference of a module at layer l and breadth b

Require: P l´1
b´1, P l´1

b , P l´1
b`1 (tensor representations of the sets of predicates at layer l ´ 1 with breadth

b´ 1, b, and b` 1 respectively), θ (parameters of the module) and τ (temperature)
Ensure: P l

b (tensor representation of the set of the output predicates)
qP
l´1
b`1 Ð Reduction(P l´1

b`1).
pP
l´1
b´1 Ð Expansion(P l´1

b´1).
Ql
b Ð Permutation(Concatenation(qP

l´1
b`1, P l´1

b , pP
l´1
b´1qq

Ql
b Ð Preservation (Ql

b)
Rl
b Ð Negation(Ql

b)
// Assuming nA “ 2 for readability
F1 Ð FuzzyANDθ,τ pQl

b, Ql
b) Eq. (6)

F2 ÐFuzzyANDθ,τ pQl
b, Rl

b) Eq. (6)
F3 ÐFuzzyORθ,τ pQl

b, Ql
b) Eq. (7)

F4 ÐFuzzyORθ,τ pQl
b, Rl

b) Eq. (7)
P l
b Ð Concatenation(F1, F2, F3, F4)

return P l
b

Expressivity Previous work like BILP or NLM (Evans & Grefenstette, 2018; Jiang & Luo, 2019; Dong
et al., 2019) can express Datalog programs, a subset of FOL composed of Horn clauses that do not contain
function symbols. With the negation operation, DLM is more expressive than BILP. With sufficient breadth
B and depth L, it can express any normal logic programs, i.e., Horn clauses with negative literals (Kowalski,
2014), that do not contain function symbols. We refer the reader to the proof present in (Dong et al., 2019),
its extension with the negation is trivial. Hence, the only FOL formulas not covered by DLM are the ones
containing function symbols.

In practice, the expressivity of DLM can not only be controlled by setting hyperparameters L, B, nA, and nO
but also by restricting the inputs of logic modules (e.g., no negation or no existential or universal quantifiers).
Therefore, a priori knowledge can be injected in this architecture by choosing different values for B at each
layer, different values for nO for each computation unit, different values for nA for each logic module, or by
removing some inputs of logic modules for instance.

A.3 Implementation Remarks

In our implementation, half of the nO outputs of each computation unit corresponds to and logic modules
and the other half corresponds to or modules. Moreover, to enforce a stronger bias, among the and (resp.
or) logic modules, half of them only takes Ql

b Y tTu (resp. Ql
b Y tFu) as inputs. Note that there is no

expressivity loss with this bias, as long as the architecture is large enough.

For the other half of the and (resp. or) modules, half of the nA terms used to build a conjunction (resp.
disjunction) is from Ql

b Y tTu (resp. Ql
b Y tFu) and the other half is from ηpQl

bq Y tTu (resp. ηpQl
bq Y tFu).

A.4 Training Algorithms

For completeness, we provide the pseudo-code of the training algorithms we used. They are mostly standard,
apart from the incremental training technique.

Here is the pseudo-code for supervised training:

The algorithm could naturally also be applied to train on a fixed unique ILP instance. The hyperparameters
are scheduled to decrease so that a convergence to a fully interpretable solution is possible (see Table 9 for
more details).

Here is the pseudo-code for RL training, which is actually based on PPO (Schulman et al., 2017):

18

Under review as submission to TMLR

Algorithm 2 Supervised training of DLM
Require: pP0, PT q (input and target predicates describing an ILP task), θ (randomly-initialized DLM

parameters), with hyperparameters τi (softmax temperature), βi (Gumbel scale), pi (dropout probability),
αi (learning rate)

Ensure: θ (trained DLM parameters)
for i “ 0, 1, 2, . . . do

Sample a batch of ILP instances described by atoms pP0,P T q

P̂ T Ð DLMθpP0
q with softmax temperature τi, Gumbel noise βi and dropout probability pi

Compute binary cross-entropy loss LθpP T , P̂ T q

θ Ð θ ´ αi∇θLθpP T , P̂ T q

end for
return θ

Algorithm 3 RL training of DLM
Require: pP0, PAq (predicates describing an RL task), θ (randomly-initialized DLM parameters), ψ

(randomly-initialized critic parameters), with hyperparameters τi (softmax temperature), β (Gumbel
scale), p (dropout probability), α and ρ (learning rates)

Ensure: θ (trained DLM parameters)
for i “ 0, 1, 2, . . . do

for j “ 1, 2, . . . , N do
Sample initial state sj0 (described by P0)
Generate j-th trajectory psj0, sj1, . . .q using DLMθ with softmax temperature τi, Gumbel noise β and
dropout probability p
Compute rewards-to-go Rj

t of j-th trajectory (i.e., 1 if goal reached and 0 otherwise)
end for
Compute Â from pRj

t qj,t and critic pvψpsjt qqj,t
θ Ð θ ` α∇θJPPOpθq
ψ Ð ψ ´ ρ∇ψMSEψpÂ` vpsjt qj,t, vψpsjt qj,tq

end for
return θ

Recall in PPO, the update of the parameters of the critic is performed by minimizing the mean square error
(MSE) between the output of the critic and the Generalized Advantage Estimate (GAE) (Schulman et al.,
2017) through gradient descent.

Here is the pseudo-code for incremental training:

Incremental training is written here for solving an RL task, but it could be adapted to solve a hard ILP
task as well. Inside the for loop, DLM can be trained via SL or RL, depending on the training method the
necessary hyperparameters need to be passed. In addition for RL training, the critic parameters would also
be needed and should be randomly initialized before RL training.

B Additional Experimental Results and Details

B.1 ILP Tasks

For the ILP experiments, we justify the baselines we selected, provide a short description of the tasks, explain
the performance metrics used for the evaluation, and discuss the results we obtained in terms of performance
and computational costs. During this discussion, we provide the training details.

ILP Baselines Since DLM is a neural-logic architecture, we only compare with other neural-logic ap-
proaches: BILP (Evans & Grefenstette, 2018), NLM (Dong et al., 2019), and dNL-ILP (Payani & Fekri,
2019a). Differentiable architectures such as MEM-NN (Sukhbaatar et al., 2015) or DNC (Graves et al.,

19

Under review as submission to TMLR

Algorithm 4 Incremental training of DLM
Require: pP0, PAq (predicates describing an RL task)
Ensure: P̄0 (initial predicates and those invented during incremental training), θ (trained DLM parameters)

P̄0 “ P0

for k “ 0, 1, 2, . . . do
Randomly initialize θ
θ Ð train DLMθ on pP0, PAq

if performance is satisfying then
return pP̄0,θq

else
Ppkq Ð extract predicates used in DLMθ

P̄0 “ P̄0 Y Ppkq

end if
end for

2016) are not included, since they have been shown to be inferior on ILP tasks compared to NLM and they,
furthermore, do not provide any interpretable solutions. Also, the approaches in multi-hop reasoning (Yang
et al., 2017; Yang & Song, 2020) are also left out because although they can scale well, the rules they can
learn are much less expressive, which prevent them from solving any complex ILP tasks in an interpretable
way. Besides, DeepProbLog (Manhaeve et al., 2018), which is based on backward chaining, is not included
since it is not easy to perform predicate invention with it.

ILP Task Description For the ILP tasks, we evaluate on two domains: Family Tree and Graph Reason-
ing. In the Family Tree domain, different tasks are considered corresponding to different target predicates
to be learned from an input graph where nodes representing individuals are connected with relations: Is-
MotherpX, Y q, IsFatherpX, Y q, IsSonpX, Y q, and IsDaughterpX, Y q. The target predicates are HasFather,
HasSister, IsGrandParent, IsUncle, and IsMGUncle (i.e., maternal great uncle). In the Graph Reasoning
domain, the different target predicates to be learned from an input graph are AdjacentToRed, 4-Connectivity,
6-Connectivity, 1-OutDegree, 2-OutDegree (see Appendix C.1 for their definitions).

ILP Metrics The performance of an ILP method on a task can be measured in terms of success rate, which
is the percentage of relations in a test instance that are correctly classified by a trained model. Following
previous work, we report it as an average over 250 random instances for the best model obtained over 10
random seeds. In addition, we also report the percentage of successful seeds (PSS), which is the percentage
of those 10 seeds that reach a 100% success rate on the testing instances. PSS indicates how reliable a model
and its training are.

Performance on ILP Tasks In Table 3, we report those two metrics for DLM and the baselines we
selected. All the methods are trained on random instances with the number of constants m “ 20, except for
BILP. Since its authors did not release its source code, the reported success rates for BILP are from Dong
et al. (2019) and its PSS is missing. For NLM and dNL-ILP, we use the source codes shared by their authors.
For the latter, Payani & Fekri (2019a) did not evaluate their method in any standard ILP tasks. Using their
source code, we did our best to find the best set of hyperparameters (see Appendix D.3) for each ILP task.

Column m “ 20 provides the success rates for test instances with the same number of constants as in the
training instances, while column M “ 100 provides the success rates for test instances with 100 constants,
which allow to measure the generalization capability of the trained models. N/A means that the method ran
out of memory. For dNL-ILP, the memory issue comes from the fact that, both learning auxiliary predicates
and increasing the number of variables of predicates increase memory consumption sharply with a growing
number of constants (see details in Appendix D.3.1).

The experimental results demonstrate that the previous interpretable methods, dNL-ILP and BILP, do not
scale to difficult ILP tasks and to a larger number of constants. However, DLM can solve all the ILP tasks

20

Under review as submission to TMLR

Table 3: Success rates (%) and percentage of successful seeds of dNL-ILP, BILP, NLM, and DLM on Family Tree and
Graph Reasoning.

dNL-ILP BILP NLM DLM (Ours)
Family Tree m “ 20 M “ 100 PSS m “ 20 M “ 100 m “ 20 M “ 100 PSS m “ 20 M “ 100 PSS
HasFather 100 100 100 100 100 100 100 100 100 p˘0q 100 p˘0q 100
HasSister 100 100 40 100 100 100 100 100 100 p˘0q 100 p˘0q 100
IsGrandparent 100 100 80 100 100 100 100 100 100 p˘0q 100 p˘0q 100
IsUncle 97.32 96.77 0 100 100 100 100 90 100 p˘0q 100 p˘0q 100
IsMGUncle 99.09 N/A 0 100 100 100 100 20 100 p˘0.01q 100 p˘0.08q 70

Graph Reasoning m “ 10 M “ 50 PSS m “ 10 M “ 50 m “ 10 M “ 50 PSS m “ 10 M “ 50 PSS
AdjacentToRed 100 100 100 100 100 100 100 90 100 p˘0.02q 100 p˘0.01q 90
4-Connectivity 91.36 85.30 0 100 100 100 100 100 100 p˘0q 100 p˘0q 100
6-Connectivity 92.80 N/A 0 100 100 100 100 60 100 p˘0.00q 100 p˘0q 90
1-OutDegree 82.00 78.44 0 100 100 100 100 100 100 p˘0q 100 p˘0q 100
2-OutDegree 83.39 8.24 0 N/A N/A 100 100 100 100 p˘0q 100 p˘0q 100

N/A: Out of memory issues. PSS: Percentage of Successful Seeds reaching 100% of success rates on the testing instances.

like NLM, while DLM can in addition provide an interpretable rule in contrast to NLM. Moreover, we can
observe that DLM is more stable, in terms of successful seeds, than all the other methods including NLM.
To further demonstrate the stability of DLM, we also report the standard deviations of its success rates over
the different seeds in Table 3 (values in parentheses). They show that even when a 100% success rate is not
reached for a given seed, the trained model still reaches a success rate close to 100%.

Computational Costs on ILP Tasks In Table 4, we provide the computational time (column T) and
memory usage (column M) during training and testing on two different representative ILP tasks: IsGrand-
parent and 2-Outdegree. The Training rows provides the computational costs observed during training while
the subsequent rows give the costs measured during testing for different numbers of constants. The dNL-ILP
method can scale very well, but both NLM and DLM perform much better than dNL-ILP as shown in our
previous experiments. While the training costs for DLM are slightly higher than NLM, they are still reason-
able. More interestingly, DLM scales much better than NLM during testing, which is the most important,
since these computational costs are incurred after the trained model is deployed.

B.2 Examples of Interpretable Rules or Policies

B.2.1 Discussion of Two Examples

As illustration for ILP, we provide the logic program learned by our method on the task IsGrandParent.
We used L “ 5 layers, B “ 3 breadth, nA “ 2 atoms, and nO “ 8 outputs per logic modules. For better
legibility, we give more meaningful names to the learned rules and remove the expansions and reductions:

IsChild1 pa, bq Ð IsSonpa, bq _ IsDaughterpa, bq

IsChild2 pa, bq Ð IsSonpa, bq _ IsDaughterpa, bq

IsGCPpa, b, cq Ð IsChild2 pa, cq ^ IsChild2 pc, bq

IsGPC1 pa, b, cq Ð IsChild1 pc, aq ^ IsChildpb, cq

IsGPC2 pa, b, cq Ð IsGPC1 pa, b, cq _ IsGCPpb, a, cq

IsGPpa, bq Ð DC, IsGPC2 pa, b, Cq ^ DC, IsGPC2 pa, b, Cq

IsGrandParentpa, bq Ð IsGPpa, bq ^ IsGPpa, bq

The logic program extracted from the trained DLM has redundant parts (e.g., P ^ P), because we used
a relatively large architecture to ensure sufficient expressivity. Note that being able to learn interpretable
solutions with a large architecture is a desirable feature when the designer does not know the solution

21

Under review as submission to TMLR

Table 4: Computational costs of dNL-ILP, NLM, and DLM on IsGrandParent and 2-Outdegree.

dNL-ILP NLM DLM (Ours)
IsGrandparent T M T M T M

Training 201 30 1357 70 1629 382
m “ 10 1 27 4 24 1 2
m “ 20 1 30 4 70 1 24
m “ 30 5 42 5 188 1 24
m “ 40 13 99 5 414 2 74
m “ 50 31 198 7 820 3 124
m “ 60 65 358 8 1341 3 226
m “ 70 119 596 8 2089 4 344
m “ 80 192 932 11 3123 6 500
m “ 90 303 1390 13 4434 8 724
m “ 100 464 1994 17 6093 10 1002
m “ 110 656 2771 21 8079 13 1321
m “ 120 915 3751 27 10056 16 1710
m “ 130 1247 4964 N/A N/A 19 2161

2-Outdegree T M T M T M

Training 966 22 2522 844 3238 1372
m “ 5 1 22 3 78 2 4
m “ 10 1 22 6 844 2 40
m “ 15 3 42 9 4342 3 254
m “ 20 9 112 N/A N/A 5 732
m “ 25 24 314 N/A N/A 10 1751
m “ 30 47 682 N/A N/A 19 3594
m “ 35 93 1332 N/A N/A 33 6666

T: time (s), M: Memory (MB). DLM used depth 4,
breadth 3 for IsGrandparent, and depth 6, breadth 4 for
2-Outdegree. N/A: Out of memory issues.

beforehand. Redundancy could be reduced by using a smaller architecture, otherwise the redundant parts
(e.g., P ^ P) could easily be removed by post-processing the extracted logic program, as we did. After
simplification, the solution is given by the following program, which shows that the target predicate has
been perfectly learned:

IsChildpa, bq Ð IsSonpa, bq _ IsDaughterpa, bq

IsGPC1 pa, b, cq Ð IsChildpc, aq ^ IsChildpb, cq

IsGrandParentpa, bq Ð DC, IsGPC1 pa, b, Cq

As an illustration for RL, we provide the simplified logic program learned by our method on the task On,
which corresponds to the output of the reasoning part:

Movepa, bq Ð pOnGoalpa, bq _ IsFloorpbqq^
␣Onpa, bq ^ Toppaq.

Using this program, the decision-making part (stochastically) moves blocks to the floor and moves the good
block on its goal position when it can. For completeness, we provide the complete logic program:

Pred1 pa, bq Ð OnGoalpb, aq _ IsFloorpaq
Pred2 pa, bq Ð ␣Onpa, bq ^ Toppaq
Pred3 pa, bq Ð Pred1 pb, aq ^ Pred2 pa, bq

Pred4 pa, bq Ð Pred1 pb, aq ^ Pred1 pb, aq

Movepa, bq Ð Pred3 pa, bq ^ Pred4 pa, bq

22

Under review as submission to TMLR

Being able to find solutions in a large architecture is a desirable feature when the designer does not know
the solution before hand. Besides, note that we directly output an interpretable logic program. In contrast,
with previous interpretable models, logic rules with high weights are extracted to be inspected. However,
those rules may not generalize because weights are usually not concentrated on one element.

B.2.2 Other ILP Examples

Here are other examples on the family tree domain:

Pred1 paq Ð DB, IsFatherpa, Bq ^ DB, IsMotherpa, Bq

Pred2 paq Ð DB, IsFatherpa, Bq _ DB, IsMotherpa, Bq

Pred3 paq Ð DB, IsMotherpa, Bq _ DB, IsMotherpa, Bq

Pred4 paq Ð Pred1 paq _ Pred2 paq
Pred5 paq Ð Pred3 paq _ Pred3 paq
Pred6 paq Ð Pred4 paq ^ Pred5 paq
Pred7 paq Ð Pred6 paq _ Pred6 paq
Pred8 paq Ð Pred6 paq _ Pred6 paq
HasFatherpaq Ð Pred7 paq ^ Pred8 paq

Pred1 pa, bq Ð IsDaughterpb, aq ^ IsMotherpa, bq

Pred2 pa, bq Ð IsDaughterpb, aq ^ IsFatherpa, bq

Pred3 pa, bq Ð IsDaughterpb, aq _ IsMotherpa, bq

Pred4 pa, bq Ð DC, Pred2 pb, a, Cq ^ DC, Pred1 pb, a, Cq

Pred5 pa, bq Ð DC, Pred3 pb, a, Cq ^ DC, Pred1 pb, a, Cq

Pred6 paq Ð DB, Pred4 pa, Bq ^ DB, Pred5 pa, Bq

Pred7 paq Ð Pred6 paq _ Pred6 paq
HasSisterpaq Ð Pred7 paq ^ Pred7 paq

Pred1 pa, bq Ð IsSonpb, aq ^ IsSonpb, aq

Pred2 pa, bq Ð IsDaughterpb, aq _ IsSonpb, aq

Pred3 pa, bq Ð ␣IsSonpb, aq _ IsMotherpb, aq

Pred4 pa, bq Ð IsFatherpa, bq ^ IsFatherpa, bq

Pred5 pa, b, cq Ð ␣IsMotherpa, bq ^ IsMotherpa, bq

Pred6 pa, bq Ð ␣IsSonpb, aq ^ IsDaughterpb, aq

Pred7 paq Ð DB, Pred1 pa, Bq _ DB, Pred1 pa, Bq

Pred8 pa, bq Ð DC, Pred5 pa, b, Cq _ DC, Pred5 pa, b, Cq

Pred9 pa, bq Ð ␣DC, Pred6 pb, a, Cq ^ DC, Pred4 pb, a, Cq

Pred10 pa, b, cq Ð ␣Pred2 pb, aq _ Pred3 pa, bq

Pred11 pa, bq Ð Pred8 pa, bq ^ Pred7 pb, aq

Pred12 pa, b, cq Ð ␣Pred9 pa, bq _ Pred10 pb, c, aq

Pred13 pa, bq Ð ␣Pred11 pa, bq ^ @C, Pred12 pa, b, Cq

IsUnclepa, bq Ð Pred13 pa, bq ^ Pred13 pa, bq

23

Under review as submission to TMLR

C Task Description

C.1 ILP

C.1.1 Family Tree

For family tree tasks, they have the same initial predicates: IsFatherpX, Y q, IsMotherpX, Y q, IsSonpX, Y q
and IsDaughterpX, Y q. IsFatherpX, Y q is True when Y is X’s father. The other three predicates have the
similar meaning.

• HasFather: HasFatherpXq is True when X has father. It can be expressed by:

HasFatherpXq Ð DY, IsFatherpX, Y q

• HasSister: HasSisterpXq is True when X has at least one sister. It can be expressed by:

HasSisterpXq Ð DY, IsSisterpX, Y q

IsSisterpX, Y q Ð DZ, pIsDaughterpZ, Y q ^ IsMotherpX, Zqq

• IsGrandparent: IsGrandparentpX, Y q is True when Y is X’s grandparent. It can be expressed by:

IsGrandparentpX, Y q Ð DZ, ppIsSonpY, Zq ^ IsFatherpX, Zqq

_pIsDaughterpY, Zq ^ IsMotherpX, Zqqq

• IsUncle: IsUnclepX, Y q is True when Y is X’s uncle. It can be expressed by:

IsUnclepX, Y q Ð DZ, ppIsMotherpX, Zq ^ IsBrotherpZ, Y qqq

_ pIsFatherpX, Zq ^ IsBrotherpZ, Y qq

IsBrotherpX, Y q Ð DZ, ppIsSonpZ, Y q ^ IsSonpZ, Xqq

_ pIsSonpZ, Y q ^ IsDaughterpZ, Xqqq

• IsMGUncle: IsMGUnclepX, Y q is True when Y is X’s maternal great uncle. It can be expressed
by:

IsMGUnclepX, Y q Ð DZ, pIsMotherpX, Zq ^ IsUnclepZ, Y qq

C.1.2 Graph Reasoning

For graph tasks, HasEdge task have the same initial predicates: HasEdgepX, Y q. HasEdgepX, Y q is True
when there is an undirected edge between node X and node Y .

• AdjacentToRed: AdjacentToRedpXq is True if node X has an edge with a red node. In this task,
it also use ColorspX, Y q as another initial predicate besides HasEdgepX, Y q. ColorpX, Y q is True
when the color of node X is Y . It can be expressed by:

AdjacentToRedpXq Ð DY, pHasEdgepX, Y q ^ ColorpY, redqq

• 4-Connectivity: 4-ConnectivitypX, Y q is True if there exists a path between node X and node Y
within 4 edges. It can be expressed by:

4-ConnectivitypX, Y q Ð DZ, pHasEdgepX, Y q_

Distance2 pX, Y q _ pDistance2 pX, Zq ^HasEdgepZ, Y qq_

pDistance2 pX, Zq ^Distance2 pZ, Y qqq

Distance2 pX, Y q Ð DZ, pHasEdgepX, Zq ^HasEdgepZ, Y qq

24

Under review as submission to TMLR

• 6-Connectivity: 6-ConnectivitypX, Y q is True if there exists a path between node X and node Y
within 6 edges. It can be expressed by:

6-ConnectivitypX, Y q Ð DZ, pHasEdgepX, Y q_

Distance2 pX, Y q _Distance3 pX, Y q_

pDistance2 pX, Zq ^Distance2 pZ, Y qq_

pDistance3 pX, Zq ^Distance2 pZ, Y qq_

pDistance3 pX, Zq ^Distance3 pZ, Y qqq

Distance2 pX, Y q Ð DZ, pHasEdgepX, Zq ^HasEdgepZ, Y qq

Distance3 pX, Y q Ð DZ, pHasEdgepX, Zq ^Distance2 pZ, Y qq

• 1-Outdegree: 1-OutdegreepXq is True if there the outdegree of node X is exactly 1. It can be
expressed by:

1-OutdegreepXq Ð DY,@Z, pHasEdgepX, Y q

^ ␣HasEdgepX, Zqq

• 2-Outdegree: 2-OutdegreepXq is T rue if there the outdegree of node X is exactly 2. It can be expressed by:

2-OutdegreepXq Ð DY,@Z, KpHasEdgepX, Y q

^ ␣HasEdgepX, Zq ^ ␣HasEdgepX, Kqq

C.2 RL

C.2.1 NLRL Tasks

For the three NLRL tasks, Unstack, Stack, and On, the agent is trained to move the blocks to reach a certain
configuration.

The action is represented by a binary predicate MovepX, Y q, which indicates moving block X on block (or
floor) Y . This action can be executed if it is legal, i.e., X is not the ground, block X has no blocks on it, and
the same for Y if it is a block. The three NLRL tasks share the same initial predicates IsFloorpXq, ToppXq,
and OnpX, Y q. Besides, there is one additional predicate OnGoalpX, Y q for the On task only. IsFloorpXq
is True when X is the floor. ToppXq is True when block X has no blocks on it. OnpX, Y q is True when
block X is on Y . OnGoalpX, Y q indicates that the goal for the On task is to move block X onto block Y .

• Unstack: In this task, the goal is to move all the blocks on the floor. A policy that solves this task
is:

MovepX, Y q Ð IsFloorpY q ^ PredpXq
PredpXq Ð Pred2 pXq ^ ToppXq
Pred2 pXq Ð DY, Z, pOnpX, Y q ^OnpY, Zqq

This solution is actually learned by DLM, where Predicates PredpXq and Pred2 pXq are invented
during training. Pred2 pXq indicates that block X is on top of another block, i.e., X is not directly
on the floor. PredpXq indicates that block X is on top of a column of blocks and is not directly on
the floor.

• Stack: The goal in this task is to stack all the blocks into one column. A policy for this task can be
expressed as:

MovepX, Y q Ð PredpY q ^ Pred4 pX, Y q

Pred4 pX, Y q Ð Pred3 pXq ^ Pred2 pY, Xq

Pred2 pX, Y q Ð DZ, pOnpX, Zq ^ ToppY qq
Pred3 pXq Ð OnpX, Y q ^ IsFloorpY q
PredpXq Ð OnpX, Y q ^ Pred2 pY, Xq

25

Under review as submission to TMLR

This solution was actually found by DLM where Predicates PredpXq, Pred2 pX, Y q, Pred3 pXq, and
Pred4 pXq are invented during training. Predicate PredpXq here has the same meaning as the one
invented in Unstack task. Pred2 pX, Y q indicates that X is a block and block Y is has no blocks on
it. Pred3 pXq indicates that block X is directly on the floor. Pred4 pX, Y q indicates that block X is
directly on the floor and there is no block on it, and Y is a block.

• On: The goal is to reach a configuration indicated by OnGoal. A policy for the On task can be
expressed by:

MovepX, Y q Ð pOnGoalpX, Y q _ IsFloorpY qq ^ ␣OnpX, Y q ^ ToppXq

C.2.2 Path

This is a single-source and single-target path finding problem in an undirected graph. For a given graph, the
algorithm need to find if there is at least one path from the source node to the target node within d steps.

The initial predicates are AdjacentpX, Y q, IsStartpXq and IsTargetpXq. The graph is described as an adja-
cency matrix and AdjacentpX, Y q is True when node X and node Y are connected by an undirected edge.
IsStartpXq (resp. IsTargetpXq) is True when node X is the source (resp. target) node.

The action predicate is GoTopXq. If True, it moves from the current node to the next node X.

A working policy for Path, requiring recursive predicates, can be expressed by:

GoT opY q Ð DX, IsStartpXq ^AdjacentpX, Y q^

pIsT argetpY q _ pHasEdgepY, Zq ^ IsT argetpZqqq

HasEdgepX, Y q Ð AdjacentpX, Y q_

pDZ, HasEdgepX, Zq ^HasEdgepZ, Y qq

C.2.3 Sorting

In this problem, the algorithm needs to sort an array a of m integers into ascending order, by swapping
those integers iteratively. Each index of array a is treated as a constant.

The initial predicates are SmallerIndexpX, Y q, SameIndexpX, Y q, GreaterIndexpX, Y q, SmallerValuepX, Y q,
SameValuepX, Y q, and GreaterValuepX, Y q. The first three describe index relations and the last three
describe value relations. For example, SmallerIndexpX, Y q is True when X ă Y , and SmallerValuepX, Y q
is True when arXs ă arY s.

The action predicate is SwappX, Y q. If True, it swaps arXs and arY s. Therefore, we have m ˆ pm ´ 1q
available actions.
The difficulty of the problem comes from the fact that the number of performed swap operations is limited.
Hence, if the number of integers is small, a working policy for Sorting can be expressed by:

SwappX, Y q Ð GreaterV aluepX, Y q ^ SmallerIndexpX, Y q.

However, the general solution for any m cannot be expressed without recursive predicates.

C.2.4 Blocksworld

Recall that in this problem, there are two worlds: the source world where blocks can be moved and the target
world that describes the desired block configurations. Each constant (block or ground) has 4 properties: a
world ID, an object ID, an X coordinate, and Y coordinate. The ground has a fixed position p0, 0q.

The initial predicates are SameWorldID(X, Y), SmallerWorldID(X, Y), LargerWorldID(X, Y), SameID(X,
Y), SmallerID(X, Y), LargerID(X, Y), Left(X, Y), SameX(X, Y), Right(X, Y), Below(X, Y), SameY(X, Y),
and Above(X, Y). The first three compare two constants’ world IDs, while the next three compare object
IDs. The last ones compare two constants’ X or Y coordinates.

26

Under review as submission to TMLR

The action predicate is Move(X, Y). If true, it moves block X onto Y in the source world if it is a legal
operation. It can be implemented as follows (found by a human expert):

MovepX, Y q Ð PlanApX, Y q _ PlanBOnlyIf pX, Y q

PlanBOnlyIf pX, Y q Ð PlanBpX, Y q ^ ␣PlanAWorkpq
PlanAWorkpq Ð DX, Y, PlanApX, Y q

PlanBpX, Y q Ð ShouldMovepXq ^NoGoodY pXq ^ IsGroundpY q
^ InitialWorldpY q

PlanApX, Y q Ð ShouldMovepXq ^ ShouldMoveOnpX, Y q

NoGoodY pXq Ð ␣DY, ShouldMoveOnpX, Y q

ShouldMoveOnpX, Y q Ð WellPlacedpY q ^ ClearpY q
^UnderBlockpX, Y q

ShouldMovepXq Ð InitialWorldpXq ^MoveablepXq^
␣WellPlacedpXq

UnderBlockpX, Y q Ð DZ, pTargetpX, Zq ^UnderBlockTI pZ, Y qq

WellPlacedpXq Ð MatchedpXq ^ ␣HaveUnmatchedBelowpXq
UnderBlockTI pX, Y q Ð DZ, pTargetpY, Zq

^ SameXDirectlyAbovepX, Zqq

HaveUnmatchedBelowpXq Ð DY, pSameXAbovepX, Y q^

␣MatchedpY qq
SameXDirectlyAbovepX, Y q Ð SameXpX, Y q

^DirectlyAbovepX, Y q

MoveablepXq Ð ClearpXq ^ ␣IsGroundpXq
DirectlyAbovepX, Y q Ð AbovepX, Y q ^ ␣DZ, BetweenpX, Z, Y q

MatchedpXq Ð DY, MatchpX, Y q

ClearpXq Ð ␣DY, SameXAbovepY, Xq

BetweenpX, Y, Zq Ð AbovepX, Y q ^AbovepY, Zq

TargetpX, Y q Ð SmallerWorldIDpX, Y q ^ SameIDpX, Y q

MatchpX, Y q Ð ␣SameWorldIDpX, Y q ^ SameIDpX, Y q

^ SameXpX, Y q ^ SameY pX, Y q

InitialWorldpXq Ð ␣DY, SmallerWorldIDpY, Xq

SameXAbovepX, Y q Ð SameWorldIDpX, Y q ^ SameXpX, Y q

^AbovepX, Y q

IsGroundpXq Ð ␣DY, BelowpY, Xq

D Experimental Set-Up

D.1 Computer Specifications

The experiments are ran by one CPU thread and one GPU unit on the computer with specifications shown
in Table 5.

Table 5: Computer specification.

Attribute Specification
CPU 2 ˆ Intel(R) Xeon(R) CPU E5-2678 v3

Threads 48
Memory 64GB (4ˆ16GB 2666)

GPU 4 ˆ GeForce GTX 1080 Ti

27

Under review as submission to TMLR

D.2 Curriculum Learning

Every 10 epochs, we test the performance of the agent over 100 instances with a deterministic policy and a
stochastic policy. If one of them reaches 100% then it can move to the next lesson. Our agents are trained
only on one lesson at a time.

In the NLRL tasks, curriculum learning is not needed: the number of blocks during training is always 4.

In Path, the first lesson starts with 3 objects and finish with 10. In Sorting, we start with 3 objects and
finish with 15. In Blocksworld, we start with 2 blocks (6 objects) and finish with 12 blocks (26 objects).
In those 3 domains, the decreasing of the temperature and noise to obtain an interpretable policy is only
applied during the last lesson.

For DLM-incr, curriculum learning is not needed: the number of blocks during training is always 7. The
teacher produces the trajectories to learn. A new DLM is stacked only if the extracted formula is better
than the previous one. If it is not, the parameters of the last DLM are reinitialized.

D.3 Hyperparameters

D.3.1 Hyperparameters for dNL-ILP

For dNL-ILP, we train each task with at most 80, 000 iterations. Moreover, at each iteration, we use a new
family tree or graph as training data, which is randomly generated from the same data generator in NLM
and DLM, as backgrounds for training the model.
For task HasFather , IsGrandparent and AdjacentToRed, dNL-ILP can achieve 100% accuracy without learn-
ing any auxiliary predicates. For other ILP tasks, it has to learn at least one auxiliary predicate to induct
the target. In practice, the performance decrease with increasing number of auxiliary predicates or variables,
therefore here we only use at most one auxiliary predicate and at most three variables. Table 6 is the no-
tions for all the hyperparameters for testing dNL-ILP. Table 7 shows hyperparameters for defining rules in
dNL-ILP that achieve the best performance.

Table 6: Notions for hyperparameters used in testing Payani & Fekri (2019a)’s work.

Hyperparameter Explanation
Narg The number of arguments
Nvar The number of variables

Nterms The number of terms
Fam amalgamate function

Ntrain The number of nodes for training
T The number of forward chain

Nfilter The number of tests for rules filter
lr Learning rate

Nepoch Maximum number of epochs for training model
Niter The number of iterations for one epoch

Mterms Maximum number of terms in each clause
θmean Fast convergence total loss threshold MEAN
θmax Fast convergence total loss threshold MAX
β1 ADAM β1
β2 ADAM β2
ϵ ADAM ϵ

Moreover, we use the same Ntrain from NLM to train dNL-ILP (i.e. We set Ntrain “ 20 for HasFather ,
HasSister , IsGrandparent, IsUncle and IsMGUncle. And we set Ntrain “ 10 for AdjacentToRed,
4-Connectivity, 6-Connectivity, 1-Outdegree and 2-Outdegree). Other hyperparameters, such as hyper-
parameters for optimizer, remain the same for all tasks and consistent with Payani et al.’s github code

28

Under review as submission to TMLR

Table 7: Hyperparameters for defining and learning dNL-ILP rules for each task.

Task T Auxiliary Target
Narg Nvar Nterms Fam Narg Nvar Nterms Fam

HasFather 1 ´ ´ ´ ´ 1 1 2 or
HasSister 2 2 1 1 eq 1 1 1 max

IsGrandparent 1 ´ ´ ´ ´ 2 1 4 eq
IsUncle 7 2 1 3 or 2 1 4 eq

IsMGUncle 7 2 1 1 or 2 2 2 or
AdjacentToRed 2 ´ ´ ´ ´ 1 1 2 eq
4-Connectivity 7 2 1 1 or 2 1 5 eq
6-Connectivity 7 2 1 1 or 2 2 7 eq
1-Outdegree 3 ´ ´ ´ ´ 1 2 2 eq
2-Outdegree 3 2 0 1 eq 1 3 2 eq

Table 8: Hyperparameters for training dNL-ILP.

Nepoch Nfilter Niter Mterms θmean θmax β1 β2 ϵ

400 3 200 6 0.5 0.5 0.9 0.99 1e-6

(https://github.com/apayani/ILP). For Family Tree tasks, we set lr “ 0.01 when the loss from the last step
is greater than 2, otherwise we set lr “ 0.005. For Graph tasks, we set lr “ 0.01. Other hyperparameters
are shown in Table8.

D.3.2 Hyperparameters for DLM

We have used ADAM with learning rate of 0.005, 5 trajectories, with a clip of 0.2 in the PPO loss, λ “ 0.9 in
GAE and a value function clipping of 0.2. For the softmax over the action distribution, we used a temperature
of 0.01.

29

Under review as submission to TMLR

Table 9: Hyperparameters of the noise in DLM.

Starting from Exponential decay Approximate final value

SL
temperature τ of Gumbel dist. 1 0.995 0.5

scale β of Gumbel dist. 1 0.98 0.005
dropout probability 0.1 0.98 0.0005

RL
temperature τ of Gumbel distr. 1 0.995 task-dependent

scale β of Gumbel dist. 0.1 0.98 task-dependent
dropout probability 0.01 0.98 task-dependent

Table 10: Architectures for DLM on the different ILP and RL tasks.

Depth Breadth nO nA IO residual1

Family Tree

HasFather 5 3 8 2
HasSister 5 3 8 2

IsGrandparent 5 3 8 2
IsUncle 5 3 8 2

IsMGUncle 9 3 8 2

Graph Reasoning

AdjacentToRed 5 3 8 2
4-Connectivity 5 3 8 2
6-Connectivity 9 3 8 2
1-OutDegree 5 3 8 2
2-OutDegree 7 4 8 2

NLRL Tasks
Unstack 4 2 8 2

Stack 4 2 8 2
On 4 2 8 2

General Algorithm
Sorting 4 3 8 2

Path 8 3 8 2
Path (DLM-incr) 6 3 8 3

Blocks World Blocksworld (nIDLM) 8 2 8 2 ✓

Blocksworld (imitation) 8 2 8 2
1 Input-Output residual connections: As in NLM, all the input predicates of the DLM are given as input of

every module. Similarly, every output of each module is given to the final predicate of the DLM.

30

	Introduction
	Related Work
	Background
	Inductive Logic Programming (ILP)
	Reinforcement Learning (RL)
	Neural Logic Machine (NLM)

	Differentiable Logic Machine (DLM)
	Architecture
	Training
	Supervised Training
	Actor-Critic (AC) Training
	Incremental Training

	Logic Program Extraction

	Experimental Results
	RL Tasks
	Ablation and Computational Cost Studies

	Conclusion
	Details About DLM
	Tensor Representation
	Interpretability and Expressivity
	Implementation Remarks
	Training Algorithms

	Additional Experimental Results and Details
	ILP Tasks
	Examples of Interpretable Rules or Policies
	Discussion of Two Examples
	Other ILP Examples

	Task Description
	ILP
	Family Tree
	Graph Reasoning

	RL
	NLRL Tasks
	Path
	Sorting
	Blocksworld

	Experimental Set-Up
	Computer Specifications
	Curriculum Learning
	Hyperparameters
	Hyperparameters for dNL-ILP
	Hyperparameters for DLM

