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ABSTRACT

Recent development in large language models (LLMs) has demonstrated impres-
sive zero-shot proficiency on unstructured textual or multi-modal tasks across var-
ious domains. However, despite with inherent world knowledge, their application
on structured tabular data prediction still lags behind, primarily due to the numeri-
cal insensitivity and modality discrepancy that brings a gap between LLM reason-
ing and statistical machine learning. Unlike textual or vision data (e.g., electronic
health records, medical images), tabular data is often presented in heterogeneous
numerical values (e.g., blood test reports). This ubiquitous data format requires
intensive expert annotation, and its numerical nature limits LLMs’ ability to effec-
tively transfer untapped domain expertise. In this paper, we propose SERSAL, a
general loop of thought prompting method by synergy learning with small models
to unconditionally enhance zero-shot tabular prediction for LLMs. Specifi-
cally, SERSAL utilizes the LLM’s zero-shot outcomes as original soft noisy anno-
tations, which are dynamically leveraged to teach a better small student model in
a semi-supervised manner. Reversely, the outcomes from the trained small model
are used to teach the LLM to further refine its real capability. Such mutual process
can be repeatedly applied for continuous progress. Comprehensive experiments
on widely used domain tabular datasets show that, without access to gold labels,
applying SERSAL to OpenAI GPT reasoning process attains substantial improve-
ment compared to linguistic prompting methods, which serves as an orthogonal
direction for tabular LLM, and increasing prompting bonus is observed as more
powerful LLMs appear.

1 INTRODUCTION

The advancement of large language models (LLMs) (Zhao et al., 2023) has made waves in both
research and industry communities. Through friendly natural language interaction and powerful
in-context reasoning ability, LLMs have shown their remarkable zero-shot generalization to various
language processing (Wei et al., 2021; Wang et al., 2022), complex planning (Qin et al., 2023; Zan
et al., 2023) and even vertical domain (e.g., healthcare (Cascella et al., 2023), law (Deroy et al.,
2023), chemistry (Guo et al., 2023)) tasks compared to previous supervised small pre-trained lan-
guage models (Kenton & Toutanova, 2019; Radford et al., 2019), all achieved with suitable prompt-
ing and no fine-tuning, yet they are still struggling for the numeric tabular prediction.

For example, GPT-4 achieves 81.7 % accuracy with zero-shot prompting on the United States Med-
ical Licensing Examination (USMLE), which metric will be increased to 90.2 % when meticulous
prompts are designed (Nori et al., 2023). In the left part of Fig. 1(a), we also exhibit performances
of GPT-3.5, GPT-4 and the fully supervised BERT on top-5 ICD coding for MIMIC-III discharge
summaries. Even with simple zero-shot prompting, GPT-3.5 has already surpassed the fine-tuned
ClinicalBERT (Huang et al., 2019) and can obtain further improvement with linguistic prompting
tricks (e.g., zero-shot CoT (Kojima et al., 2022)). However, when handling medical tables with
numerical feature values, the trend becomes totally different. See right part of Fig. 1(a), such sig-
nificant prompting bonus disappears, suggesting an undeniable void in the current LLM prompting
taxonomy tailored for tabular prediction. There are two key points causing the gap:

(i) Existing competitions for general-purpose LLMs predominantly focus on their capabilities in
processing unstructured data (Zhang et al., 2024a;b), which is naturally different from structured
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tabular data characterized by dense heterogeneous numerical features (Borisov et al., 2022; Yan
et al., 2023), and the prevailing technical landscape of LLMs neglects nuanced sensitivity and un-
derstanding for numerical values (Qian et al., 2023; Yan et al., 2024).

(ii) Most LLM tasks of interest can be formulated as sample-level data understanding then reasoning
by generation, the input semantics are unstructured and detailed, while the tabular prediction (e.g.,
disease diagnosis with numerical metrics from medical examinations and tests) requires overall sta-
tistical relation between numerical features and targets on the whole dataset or a specific task, which
is hard to access through a single tabular instance in high-level and limited contexts.

Based on these observations, a straightforward question is, how to harness diverse knowledge of
existing versatile LLMs, especially these commercial and blackbox (users cannot access the logit)
ones (OpenAI, 2022; 2023), for the domain tabular prediction like disease diagnosis using medical
examination results, which serves as a potential breakthrough to enable LLMs to handle statistical
learning tasks.

To fill the aforementioned technical gap and extend LLM’s vertical capability to tabular prediction,
we propose SERSAL, a synergy learning pipeline between small models and LLMs, requiring no
gold labels. Different from existing prompting techniques designing hard or soft prompts to aug-
ment inputs for unstructured data tasks, our SERSAL contributes from a brand new perspective that
improves zero-shot awareness of LLMs on numeric tabular data prediction, providing an inter-
face to adapt LLM untapped domain knowledge to such statistical learning featured tasks. SERSAL
helps a blackbox LLM recognize and refine its statistical capability on vertical domain tabular data
in the following steps: (1) Using simple zero-shot prompting to gather the LLM’s zero-shot out-
comes with confidence as initial coarse annotations on the whole dataset; (2) Teaching a better
small tabular model (e.g., XGBoost (Chen & Guestrin, 2016), FT-Transformer (Gorishniy et al.,
2021)) from scratch based on the soft confidence like semi-supervised learning with noisy labels;
(3) Reversely fine-tuning the LLM using the outcomes of the trained small model to further update
LLM annotations in the next loop; The process from step (1) to (3) can be repeatedly applied to
the LLM for continuous progress on specific tabular dataset. Essentially, since tabular prediction
relies on data statistical information, we use LLM predictions on the all samples as “indicators” and
the small model as “probe” to represent and refine the well-expressed part to feedback for LLM
self-improvement.

In this paper, the main experiment is based on the well-known online blackbox LLM OpenAI GPT-
3.5 (OpenAI, 2022) & GPT-4 (OpenAI, 2023), and as a prompting counterpart, our SERSAL can be
directly transferred to other general LLMs once the fine-tuning APIs are supported. In a nutshell,
our main contributions are:

• For the first time, we bring the common challenge of existing general-purpose LLMs on
numeric tabular prediction, a statistical learning featured task, to the spotlight that has not
been covered by prevailing prompting techniques.

• We propose SERSAL, a novel prompting counterpart for LLM zero-shot improvement on
tabular prediction, which leverages LLM outcomes and small models to refine statistical
capability from untapped domain knowledge of the LLMs.

• Comprehensive experiments reveal that SERSAL is consistently more effective than com-
mon prompting methods on many medical tabular datasets, with general feasibility in other
vertical domains discussed.

2 SERSAL: LOOP OF THOUGHT FOR LLM TABULAR PREDICTION

We propose SERSAL, a synergy learning pipeline using small models to adapt LLM’s knowledge
to tabular data, which is a fundamentally distinct prompting method and serves as a novel interface
to extend current LLMs to tabular data prediction. Principally, SERSAL is inspired by the theory
of semi-supervised noisy label learning and teacher-student model, while several key differences
exist: (1) Noisy label learning setting requires a certain proportion of gold labels as the starting
point, while SERSAL only access the LLM’s soft pseudo labels to aware its statistical confidence
on the whole dataset; (2) In teacher-student paradigm the student model is primarily considered
to be comparable to the teacher, while SERSAL conservatively teaches a better student model by
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Figure 1: (a) Comparison of prompting effectiveness on unstructured textual data (Mullenbach et al.,
2018) and structured tabular data (Detrano et al., 1989) from medical domain, it is clearly seen, even
with surprising medical expertise (Nori et al., 2023), GPT-4 still struggles to catch up fully super-
vised small models (ClinicalBERT (Huang et al., 2019) for textual tasks and FT-Transformer (Gor-
ishniy et al., 2021) for tabular ones) on tabular data, implying essential task discrepancy that makes
it incompatible to rely on typical prompting techniques to unlock LLM knowledge on tabular pre-
diction. (b) SERSAL pipeline to refine LLM knowledge for better zero-shot tabular prediction.

dynamically learning from the relatively clean pseudo labels and regularizing on noisy ones from the
LLM to avoid misleading confirmation bias (Tarvainen & Valpola, 2017). The overall framework
of SERSAL is outlined in Fig. 1(b) and formulated in Algorithm 1. Each part is detailed in the
following subsections.

2.1 SOFT LLM PSEUDO LABELING

To access the statistical capability of the LLM on a specific tabular dataset, we first query its confi-
dence on each sample using simple zero-shot prompt template. Specifically, the prompt consists of
a task description and listed feature specifications, for example, “You are a professional doctor, here
are some clinical metrics of a patient, please give a likelihood between 0 to 1 of suffering from a
heart disease: [Age] 47 (years old); [Gender] Male; [Systolic Blood Pressure] 138 (mmHg); [Blood
Lipid] 240 (mg/dL); . . . ”. In this way the confidence of the LLM on the whole dataset is gathered,
though the initial zero-shot performance is often far away from the one of a supervised small tabular
model (see Fig. 1(a) and Table 2), we can dig into such fine-grained LLM confidence to separately
leverage underlying clean and unclean supervision signal to teach a robust small model.

2.2 SMALL MODEL TEACHING WITH NOISY SOFT LABELS

This step aims to teach a better small model with the collected soft outputs from the LLM. Intuitively,
such LLM confidence is a kind of noisy labels, thereby a straightforward insight is to reformulate
the teaching process as learning from noisy labels. To seamlessly and thoroughly utilize LLM’s
knowledge, we adopt a semi-supervised learning manner after dividing training samples into a more
reliable labeled set and another unlabeled set, i.e., the small student model is fitted with the soft
pseudo labels from the LLM in the labeled set and regularized on the ones of the unlabeled set, the
data partition is based on per-sample loss since deep neural networks tend to fit samples with clean
labels faster than one with wrong labels according to the noisy label learning (NLL) theory (Arpit
et al., 2017) thus lower loss often indicates relatively cleaner labels (Chen et al., 2019).

In implementation, we use an adapted version of DivideMix (Li et al., 2019), a common semi-
supervised NLL algorithm for image classification that dynamically fits a Gaussian Mixture Model
on sample-wise loss to distinguish probably clean and noisy samples and trains a pair of neural
networks simultaneously to keep them diverged to avoid confirmation bias in single-model self-
training process (Tarvainen & Valpola, 2017). Apart from extending DivideMix to tabular data, the
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used soft noisy labels naturally apply label smoothing guided by the LLM. Besides, we leverage
the pseudo labels in high LLM confidence for early stopping with underlying assumption that LLM
prediction with higher confidence is tend to be more accurate, which is observed in Fig. 2 and
Fig. 4, and discussed in Sec. 3.3. Specifically, we divide a training subset called early stopping set
Des = {(Xi, ȳi)|max(ŷi) ≥ τ} to perform early stopping and hyper-parameter selection for the
teaching process, where for the i-th sample, ŷi is its LLM’s soft label confidence vector, and ȳi is
the corresponding hard labels (i.e., ȳi = argmax(ŷi)), samples with maximum label confidence
larger than threshold τ (we uniformly set τ = 0.9 in the experiment) are considered to be accurate
enough for early stopping. During the semi-supervised learning, samples in the early stopping set
are also used for training since: (1) some domain (e.g., medicine) tabular datasets may suffer from
data inadequacy, making the reduction of training subsets likely to distort data distribution; (2) This
subset still contains noisy labels (not totally accurate) thus the small model will not overfit on the real
training labels. We formulate this step in the line 3-5 of Algorithm 1 and conduct related ablations
in Sec. 3.3.

In summary, this teaching step adapts semi-supervised noisy label learning process to LLM knowl-
edge refinement and aggregation to amplify the LLM’s real capabilities on tabular data through a
small student model.

2.3 QUALITY CONTROL

Since SERSAL operates iteratively, it requires a termination mechanism to manage the process exit.
Here we provide three heuristic strategies, users can also define their own control flow in practice.

• Metric-based Control. In Sec. 2.2 we define the high-confidence training subset as early
stopping set Des which pseudo labels are relatively more accurate (see Fig. 2). Therefore,
users can inspect metrics (e.g., AUC or accuracy scores for classification tasks) by treating
these pseudo labels as the ”ground truth” to control whether to end the loop.

• External Validation Control. If budget permits, human experts can collect and annotate
appropriate external data as a validation set, e.g., in hospitals, regular medical data quality
inspection needs to sample and label a small part of data, and learning quality can be
assessed with such external set.

• Rule-based Control. For example, users can define a fixed iteration time.

For simplicity, in the main experiment we uniformly report one-loop SERSAL performance in med-
ical and other domain tabular datasets (Table 2 & 5), which significantly surpassed the prevailing
prompting techniques, and further discuss the effectiveness of multi-loop SERSAL in Sec. 3.4.

2.4 REVERSE LLM TUNING

The final step is to reversely teach the LLM using the well-trained small student model to feed-
back the aggregated knowledge. Similar to using LLM soft confidence to teach the small model in
Sec. 2.2, we also use soft confidence from the small model to fine-tune the LLM (fine-tune the online
blackbox GPTs through their APIs in experiment). Specifically, the training samples are re-labeled
by the trained small model with its guessed probabilities (line 7-8 in Algorithm 1), the same prompt
templates in Sec. 2.1 are used to construct the training corpus for the LLM. To avoid the excessive
memorization of the LLM on the small model outputs (Bordt et al., 2023), we employ a slightly tun-
ing strategy that sets the maximum training epoch to 3 with proper early stopping (the fine-tuning
APIs of GPT-3.5 & GPT-4 provide automatic early stopping in default), making the LLM slightly
fitted on the guessed labels while keeping a non-zero minimum training loss. Then the updated LLM
initiates the next SERSAL loop, forming an iterative process.

3 EXPERIMENTS

In this section, we first compare SERSAL with prevailing prompting techniques (using GPT-3.5
& GPT-4) and the fully supervised small models on extensive medical domain tabular datasets
(Sec. 3.2). Next, we conduct ablation on several key adaptations in semi-supervised noisy label
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Algorithm 1 SERSAL Pipeline. Line 2: Soft pseudo labeling (Sec. 2.1); Line 3-5: Small model
teaching (Sec. 2.2); Line 6: Quality control (Sec. 2.3); Line 7-9: Reverse LLM tuning (Sec. 2.4).

Input: Unlabeled training set Xtrain and test set Xtest, large language model f (0)
LLM

Parameter: Confidence threshold τ , quality control function fctr
Output: Improved zero-shot tabular prediction y∗test

1: Let t = 1. // Initialize iteration number
2: Softly labeled dataset D(t)

train = (Xtrain, ŷ
(t)) by current f (t)

LLM.
3: Randomly initialize a small tabular model θ(t).
4: Select early stopping set D(t)

es =
{
(Xi, ȳ

(t)
i )|max(ŷ

(t)
i ) ≥ τ

}
⊆ D

(t)
train.

5: θ∗(t) = DivideMix(D(t)
train, D

(t)
es , θ(t), τ). // Adapted DivideMix (Li et al., 2019)

6: while fctr(θ
∗(t),X) do

7: y(t)sm = Predict(Xtrain; θ
∗(t)). // Soft label guessing by the small model

8: ŷ(t)sm = Sharpen(y(t)
sm, temperature = 0.1). // Simple temperature sharpening

9: f
(t+1)
LLM = Finetune(Xtrain, ŷ(t)sm, f

(t)
LLM). // Reversely tune the LLM with guessed labels

10: t = t+ 1.
11: Repeat Line 2-5. // Self-prompting loop
12: end while
13: y∗test = Predict(Xtest; θ

∗(t)). // Final prediction with the taught small model
14: return y∗test

learning (Sec. 2.2) and inspect the effectiveness of multi-loop SERSAL (Sec. 3.4). Also, we ex-
plore the method interpretability by visualizing Shapely Value variation during SERSAL process
(Sec. 3.5). Besides, we discuss the method feasibility on other domain tabular data (Sec. 3.6).

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate on ten widely recognized medical diagnosis tabular datasets on various dis-
eases: Heart Failure Prediction (HF, Detrano et al. (1989)), Lung Cancer Prediction (LC, Ahmad
& Mayya (2020)), Early Classification of Diabetes (ECD, Islam et al. (2020)), Indian Liver Patient
Records (LI, Ramana et al. (2012)), Hepatitis C Prediction (HE, Hoffmann et al. (2018)), Pima
Indians Diabetes Database (PID, Smith et al. (1988)), Framingham Heart Study (FH, O’Donnell
& Elosua (2008)), Stroke Prediction (ST, Fedesoriano (2020)), COVID-19 Presence(CO, Heman-
thhari (2020)) and Anemia Disease (AN, Kilicarslan et al. (2021)). Besides, datasets in clinical
trail (Wang & Sun, 2022) and open domains (Gorishniy et al., 2021) are added to further inspect
the effectiveness of SERSAL in difficult tasks and general data scenarios respectively. We split each
tabular dataset (80 % for training and 20 % for testing), and keep the same label distribution in each
split. Statistics of medical diagnosis datasets are given in Table 1.

Dataset HF LC ECD LI HE PID FH ST CO AN

# features 13 15 16 10 12 8 15 7 20 24
# samples 303 309 520 583 615 768 4238 5110 5434 15300
P/N 0.80 6.92 1.60 2.51 0.11 0.54 0.18 0.04 4.17 0.57
disease Heart Lung Diabetes Liver Hepatitis C Diabetes Heart Stroke COVID-19 Anemia

Table 1: Dataset statistics of ten medical diagnosis datasets for binary classification on various
diseases. “P/N” denotes the amount ratio of positive samples and negative ones.

Compared Methods. Since SERSAL serves as a tailored loop of thought prompting method for
LLM zero-shot tabular prediction, we compare with existing linguistic prompting methods for LLM
usage in general textual and tabular tasks, which focus on meticulously designed prompt texts: (1)
Zero-Shot Prompting (0-shot) is the straightforward prompt that contains no examples; (2) Zero-
Shot CoT Prompting (Kojima et al., 2022) (CoT) is a popular prompting method which asks the
LLMs to answer with intermediate reasoning steps to enable complex reasoning capabilities; (3) 8-
shot Prompting (8-shot) is a common few-shot prompt setting in standard prompting studies (Wei
et al., 2022; Kojima et al., 2022; Nori et al., 2023), it provides eight labeled samples (exemplars)
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to enrich prompt contexts and steer the LLM to the better outputs, in the experiment we randomly
sample eight training examples and control the same positive-negative ratio (i.e., “P/N” in Table 1)
with at least one example for each class; (4) TabLLM (Hegselmann et al., 2023) and (5) LIFT (Dinh
et al., 2022) are two recent known linguistic prompt schemes for textualizing tabular data to fine-tune
LLMs with gold labels, though TabLLM was additionally evaluated in zero-shot settings, none of
them are originally proposed for zero-shot tabular scenarios, here we use their schemes for zero-
shot comparison. Additionally, we provide a fully supervised small tabular model (FSSM) group
for reference representing traditional supervised tabular prediction by fine-tuning dataset-specific
small models.

Implementation Details. All experiments are conducted with PyTorch on Python 3.8 and run on
NVIDIA RTX 3090. For the small model, we uniformly use FT-Transformer with the default model
and training configurations provided in the original paper (Gorishniy et al., 2021). For SERSAL, the
only adjustable hyper-parameter is the temperature of DivideMix (Li et al., 2019) with choices of
0.5, 5.0 and 10.0 in line 5 of Algorithm 1, which is selected by the metric of the early stopping set
(D(t)

es in line 4 of Algorithm 1). The LLMs in the experiment includes OpenAI GPT-3.5 & GPT-4 to
inspect the effectiveness of SERSAL across different LLM capabilities.

3.2 WHY WE NEED SERSAL?

HF LC ECD LI HE PID FH ST CO AN

Random guessing 37.22 40.18 46.25 50.28 62.73 63.24 50.39 41.76 71.55 51.28
FSSM∗(supervised FT-T) 88.19 86.61 99.60 78.94 100.00 84.72 66.25 82.98 99.91 99.92

0-shot (GPT-3.5) 71.88 78.87 85.71 76.81 68.51 73.12 60.32 63.01 82.60 90.43
8-shot∗ (GPT-3.5) 73.65 78.87 87.68 76.81 68.51 73.12 58.27 60.85 77.63 87.19
CoT (GPT-3.5) 71.88 78.87 82.36 76.81 68.51 70.83 60.32 63.01 82.60 90.43
TabLLM (GPT-3.5) 76.37 78.87 87.06 78.24 74.39 75.69 61.78 68.48 85.78 89.11
LIFT (GPT-3.5) 78.23 80.69 83.92 73.60 72.57 73.12 60.32 70.92 87.93 90.43
SERSAL (GPT-3.5) 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37
TabLLM+SERSAL (GPT-3.5) 93.82 85.42 88.39 80.71 89.27 82.54 65.02 81.74 97.51 98.16
SERSAL (GPT-4) 94.18 86.93 92.68 82.51 92.76 82.39 67.14 81.23 97.96 98.82

Table 2: The AUC scores (%) of different tabular prediction schemes on 10 medical diagnosis
datasets. The top part is the traditional supervised small models, the middle one is compared LLM
prompting methods (the top performances are marked in bold), the bottom part is additional com-
binations. Here the results of SERSAL are only based on a single loop. “∗” denotes the groups use
gold labels. “FSSM” is the fully supervised FT-Transformer. The results on more difficult clinical
trial datasets are given in Table 7.

Main Results Analysis. The performances of different LLM prompting baselines are reported in
the middle part of Table 2. An overall trend is that, when the GPT-3.5 meets medical domain tab-
ular prediction tasks, the results using common prompting methods are consistently better than the
ones of random guessing, demonstrating the general-purpose LLMs indeed contain medical domain
expertise inherently, but they are still far from the traditional supervised small models (see group
“FSSM”), and further performance enhancement can not be achieved through usual prompting tricks
as in textual tasks (see Fig. 1(a)). Specifically, we observe 8-shot prompting slightly benefits the per-
formances in small-scale datasets (e.g., HF and ECD) but hurts in the larger datasets (e.g., FH, ST,
CO and AN) compared to the 0-shot prompting, which may be explained by the representativeness
of the used examples, since the distribution of the smaller datasets are more likely to be covered by
few examples, thus 8-shot performs better as data scale decreases, and vice versa. For 0-shot CoT
prompting, it does not affect the overall results in most cases, but we find slight performance decline
in two diabetes datasets (i.e., ECD and PID), this may be caused by the over-consideration of CoT
on noisy features since diabetes can be diagnosed with several prominent features (e.g., blood sugar
and lipid). Although carefully crafted prompt templates from recent LLM in-context tabular learning
studies (i.e., TabLLM and LIFT) show modest improvement, they still follow the linguistic nature
to process numeric tabular data, and are primarily designed for few-shot learning or supervised
fine-tuning. Our SERSAL explores a fundamentally novel prompting mechanism exploiting the
information gain in the LLM’s noisy outputs, which breaks through the predicament from an or-
thogonal perspective and serves as an interface to effectively adapt the LLM’s domain knowledge to
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numeric tabular data. After applying SERSAL, without access to gold labels, the GPT-3.5 is able to
achieve significantly better reasoning on these medical domain tasks, with many cases competitive
with the supervised small models.

Orthogonal Technical Contribution. Based on the above analysis, SERSAL works in a distinct un-
derlying mechanism, and we can jointly adopt SERSAL and previous linguistic prompting methods
for better combined performances (see group “TabLLM+SERSAL”).

Continuous Performance Growth. We additionally apply SERSAL to OpenAI GPT-4 on med-
ical diagnosis datasets (the bottom part of Table 2) and more difficult clinical trial datasets (see
Table 7). It can be seen SERSAL can further realize substantial performance gains as the capability
of used LLMs becomes more powerful, which can even surpass the traditional supervised paradigm
(N00041119 and N00312208 datasets in Table 7), indicating ample room for continuous prompting
bonus in SERSAL alongside the emergence of more advanced LLMs.

3.3 SEVERAL KEY ADAPTATIONS

HF LC ECD LI HE PID FH ST CO AN

SERSAL 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37

w/o soft pseudo 84.58 76.58 87.24 78.25 75.79 75.93 62.58 75.05 93.97 97.53
w/o ES 84.03 74.11 75.92 59.39 47.41 68.43 57.08 74.70 90.57 97.57

Table 3: The AUC scores of ablation on two key adaptations. “w/o soft pseudo” means replacing the
LLM’s soft outputs with hard ones during teaching the student model, “w/o ES” denotes no early
stopping during DivideMix (line 5 in Algorithm 1).

In Sec. 2.2, to adapt the LLM’s outputs to a semi-supervised learning process to teach a small student
model, we gather per-sample confidence from the LLM as soft noisy annotations and heuristically
select high-confidence samples for early stopping. In this section, we will analyze the effect of the
two designs which distinguish our SERSAL from traditional noisy label learning settings.

The Effect of using Soft Labels. We query soft confidence from the LLM (see Sec. 2.1) rather than
directly using hard outputs for small model teaching. The prediction probabilities inherently reflect
the LLM’s prior knowledge on the domain tabular data and can be naturally treated as a kind of label
smoothing. Besides, the probability values can be used to select relatively reliable labels to early
stop the teaching process and avoid overfitting. In Table 3 we compare the effect of using soft labels
by replacing it with hard ones during SERSAL reasoning (group “w/o soft pseudo”). We find that
using hard ones is usually suboptimal since it loses both prediction uncertainty and label smoothing,
which is unable to exploit fine-grained LLM knowledge.

ECD LI

Pe
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)

LLM confidence range

AUC
Accuracy

[0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0] [0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1.0]

Figure 2: Performances in different LLM con-
fidence ranges on ECD and LI datasets. High-
confidence samples are relatively more reliable.

The Effect of Early Stopping. In addition
to using LLM soft outputs, a relatively clean
training subset is selected by threshold clipping
on the per-sample confidence (line 4 in Algo-
rithm 1) for early stopping. Table 3 report the
ablation results by directly training 100 epochs
(group “w/o ES”). It can be clearly seen, simply
following the original DivideMix is far from
the desired results, since tabular features are
heterogeneous and high-level compared to the
well-patterned pixels of images (Chen et al.,
2023; Yan et al., 2024), and in medical tabular
domain the typically limited available data fur-
ther makes it prone to overfit without early stop-
ping, for example, except large AN dataset, all
other tabular datasets appear to be significantly
impacted by removing the early stopping mech-
anism. The heuristic design of selecting high-
confidence sample is inspired from the empiri-
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cal assumption that confident predictions from the LLM are more likely to be accurate, which is
supported by the performance variation of different confidence ranges in Fig. 2 and Fig. 4.

3.4 EFFECTIVENESS OF MULTI-LOOP SERSAL

Since SERSAL is essentially a self-prompting loop (see Fig. 1(b)), we further inspect the effective-
ness of multi-loop SERSAL for GPT-3.5 reasoning process. Specifically, we repeatedly apply the
pipeline three times on ECD and LI datasets, the result variations are reported in Table 4.

# Loop ECD LI

SERSAL LLM 0-shot SERSAL LLM 0-shot

1 86.40 85.71 79.39 76.81
2 87.00 86.42 82.47 80.26
3 89.00 87.81 84.07 82.91

Table 4: The AUC score variation of SERSAL
outputs and zero-shot prompting of the tuned
GPT-3.5 (LLM 0-shot) on LI and ECD datasets
during three loops. “# Loop” is the same as the
variable t in line 1 of of Algorithm 1.

During three loops, progressive improvement
on both the small model (SERSAL outputs are
from the well-trained student model of each
loop) and the GPT-3.5 is observed. Surpris-
ingly, even inferior to the 8-shot prompting
baseline on ECD dataset after the first loop
(see Table 2), we find SERSAL can reduce the
gap and even outperform few-shot baselines af-
ter several loops. Such continuous progress
probably comes from the synergy learning be-
tween the small model and the LLM that
shares a similar underlying mechanism of
co-teaching (Han et al., 2018), i.e., both sides
purposely learn from a part of reliable pesudo labels from each other and it makes them diverged to
avoid confirmation bias, forming a mutual improvement manner to aggregate and refine untapped
domain knowledge for LLM tabular prediction.

3.5 INTERPRETABILITY OF SERSAL

Low
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1st SERSAL loop
AUC: 79.39 %
Accuracy: 65.51 %

2nd SERSAL loop
AUC: 82.47 %
Accuracy: 70.69 %
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Aspartate Aminotransferase
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Albumin and Globulin Ratio
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Alkaline Phosphatase
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Figure 3: Interpretability visualization from feature importance perspective: the variation of the
Shapley Values (treat SERSAL outputs as the targets) and performances on Indian Liver Patient
Records (LI dataset) after one and two SERSAL loops using GPT-3.5.

In Fig. 3 we visualize the variation of Shapely Values on Indian Liver Patient Records (LI) dataset
after one (left) and two (right) SERSAL loops by treating the predictions (i.e., Algorithm 1) as tar-
gets. It can be clearly seen the feature “Age” is adequately considered after one loop self-prompting,
which highlights a strong and reasonable positive correlation between age and the incidence of liver
diseases that aligns with the medical expertise. Besides, a negative correlation with “Total Proteins”,
a guiding clinical metric reflecting the liver’s synthetic function, is captured in the right figure to con-
tribute the prediction, since a lower total protein level indicates a risk of liver cirrhosis. These two
reasonable changes of feature importance interpret the SERSAL prompting is able to iteratively re-
fine the domain expertise in the LLM, calibrating the statistical feature-target relationship for better
reasoning results during the process.
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3.6 GNERALIZED DATA ADAPTABILITY ON OTHER DOMAINS

Churn Credit Adult Fake

domain Business Finance Sociology N/A
# features 10 10 14 6
# samples 10000 16714 48842 1000

Random guessing 66.35 43.80 58.73 53.85
FSSM∗ 86.27 84.88 91.39 55.31

0-shot (GPT-3.5) 77.81 69.05 75.10 46.28
SERSAL (GPT-3.5) 83.29 79.36 88.72 38.72

Table 5: The data statistics and AUC scores on
other general data domains. “Fake” is a generated
dataset with random labels and features. The de-
notations follow the ones in Table 1 and Table 2.

In this section, we further explore the fea-
sibility of SERSAL on other domain tabular
data. We use three classic binary classifica-
tion datasets: Churn Modeling (Iyyer, 2019),
Credit (Credit Fusion, 2011) and Adult (Kohavi
et al., 1996), which are widely included in gen-
eral tabular prediction studies (Gorishniy et al.,
2021; Yan et al., 2023; Grinsztajn et al., 2022).
Additionally, we build a dataset “Fake” by ran-
domly generating features and binary labels to
emulate the extreme case where the LLM has
no related knowledge at all. The data informa-
tion and the results are given in Table 5. As in
the medical domains, the GPT-3.5 indeed holds
the world knowledge and can directly achieve the considerable results with simple zero-shot prompt-
ing, and SERSAL further enhances the zero-shot performance significantly. However, when facing
the tabular data from an unknown domain (i.e., the Fake dataset), the LLM outputs high confi-
dence on wrong labels, SERSAL is unable to recognize such misleading confidence. Therefore, our
SERSAL shares the same basic limitation as other linguistic prompting methods that the applied
LLMs require a certain level of knowledge in the target domain.

4 RELATED WORK

Prompt Engineering for In-Context Learning Prompt engineering is a flourishing discipline for
better LLM reasoning through meticulously designed linguistic input contexts or interaction process.
The most common and straightforward prompting is the single-round instruction that directly asks
with zero (zero-shot) or several (few-shot) demonstrations (Brown et al., 2020; Wei et al., 2021), but
such prompt style fails to work in more complex reasoning tasks (Wei et al., 2022). To tackle this
deficiency and improve the LLM’s capacity on a wide range of tasks, recently, studies on more ad-
vanced prompting methods are emerging, such as chain-of-thought (CoT) (Wei et al., 2022; Kojima
et al., 2022; Zhang et al., 2023a), tree-of-thought (ToT) (Yao et al., 2023) and self-consistency (Wang
et al., 2023). However, current prompting methods are mostly designed to serve unstructured data
tasks (Zhang et al., 2023b). Although recent studies on LLM in-context learning for tabular data
(e.g., TabLLM (Hegselmann et al., 2023), LIFT (Dinh et al., 2022)) propose table-friendly prompt-
ing strategies, their linguistic nature still hinders the numeric table understanding (Yan et al., 2024).

Semi-supervised Noisy Label Learning Semi-supervised learning treats the unlabeled samples as
regularization for better model generalization (Lee et al., 2013; Tarvainen & Valpola, 2017; Miyato
et al., 2019; Berthelot et al., 2019). Recently, the related theory has been introduced to noisy label
learning scenarios (Song et al., 2022) that actively divide samples into clean labeled group and noisy
unlabeled one (Li et al., 2019) to achieve robust training even with noisy labels.

5 CONCLUSIONS

This paper revealed the common challenge of existing general-purpose LLMs on numeric tabu-
lar prediction and proposed SERSAL, a novel loop of thought prompting method in non-linguistic
mechanism that unlocks the LLM’s domain knowledge for better zero-shot tabular prediction. This
is achieved through a co-teaching process between the LLM and a small student tabular model which
learn from the other’s noisy outputs to refine the untapped capability of the LLM. Extensive experi-
ments on various domain tabular datasets demonstrate that, SERSAL is consistently more suitable to
trigger the LLM’s latent power on numeric tabular prediction, serving as an orthogonal prompting
landscape to extend the LLMs to the domain tabular data.
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A LIMITATIONS & IMPACTS

As discussed in Sec. 3.6, though our SERSAL is distinguished from traditional prompting methods
by its non-linguistic mechanism, it still requires the LLMs with latent knowledge in the target do-
main to be effective. Therefore, in practice the user should have prior understanding of the used
LLM’s capability or advantageous application fields. SERSAL contributes to the progress in both
LLM prompting and tabular data community through providing a novel interface to adapt untapped
knowledge in LLMs to the tabular prediction tasks in a zero-shot manner, which is particularly useful
in the regime where limited data or annotation is available.

B DATASETS AND EXPERIMENT DETAILS

We provide detailed data information of the experiment tabular datasets in Table 6. We drop the
samples with missing features and adopt the same preprocessing as Gorishniy et al. (2021) before
training. For MIMIC-III discharge summary dataset (Johnson et al., 2016; Mullenbach et al., 2018)
used in Fig. 1(a), we retain the most frequent 5 labels (medical codes) since our goal is just to
demonstrate the prompting effectiveness on medical textual tasks and conducting validation on the
full label version (several thousands labels) is inconvenient. During conducting zero-shot prompting
for GPT-3.5v and GPT-4v on the MIMIC-III dataset, we follow the PhysioNet Credentialed Data
Use Agreement 1 and enroll in the Azure OpenAI service without human review of the data to
protect the data from third-party access.

Dataset Abbr. # Sample # Feature P/N Source Link
Indian Liver Patient Records LI 583 10 2.51 https://www.kaggle.com/datasets/uciml/indian-liver-patient-records
Pima Indians Diabetes Database PID 768 8 0.54 https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
Framingham Heart Study FH 4238 15 0.18 https://www.kaggle.com/datasets/mohannapd/ramingham-heart-study
Stroke Prediction ST 5110 7 0.04 https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
Hepatitis C Prediction HE 615 12 0.11 https://www.kaggle.com/datasets/fedesoriano/hepatitis-c-dataset
COVID-19 CO 5434 20 4.17 https://www.kaggle.com/datasets/hemanthhari/symptoms-and-covid-presence
Lung Cancer Prediction LC 309 15 6.92 https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
Heart Failure Prediction HF 303 13 0.80 https://archive.ics.uci.edu/dataset/45/heart+disease
Early Classification of Diabetes ECD 520 16 1.60 https://www.kaggle.com/datasets/andrewmvd/early-diabetes-classification
Anemia Disease AN 15300 24 0.57 https://www.kaggle.com/datasets/serhathoca/anemia-disease
Churn Modeling - 10000 10 0.26 -
Give Me Some Credit - 16714 10 1.00 https://www.kaggle.com/c/GiveMeSomeCredit
US Adult Income - 48842 14 0.31 https://www.kaggle.com/datasets/johnolafenwa/us-census-data

Table 6: Detailed data information of used tabular datasets (10 from the medical domain and 3 from
others). “P/N” denotes the amount ratio of positive samples and negative ones.

C RESULTS ON CLINICAL TRIAL DATASETS

We evaluate SERSAL on clinical trail mortality datasets, which require specialized scientific knowl-
edge for clinical trials. Although SERSAL prompting with GPT-3.5 cannot directly achieve good
performance on such vertical tasks, further performance gains are still observed once we use more
powerful GPT-4, indicating room for continuous improvement as more advanced LLMs appear.

N00041119 N00174655 N00312208 N00079274 N00694382

FSSM∗(supervised FT-T) 62.38 89.20 77.83 71.78 73.89

0-shot (GPT-3.5) 56.79 73.08 63.49 59.85 62.70
CoT (GPT-3.5) 56.79 73.08 60.73 59.85 62.70
SERSAL (GPT-3.5) 58.31 82.64 71.92 64.17 66.31
SERSAL (GPT-4) 65.08 88.62 78.39 67.94 71.47

Table 7: The AUC scores (%) of different tabular prediction schemes on clinical trail mortality
datasets used in Wang & Sun (2022) (see ClinicalTrials.gov). The similar denotations are used as
Table 2. No gold labels are used for prompting methods here. It can be seen SERSAL can achieve
continuous improvement and even perform comparably with the traditional supervised paradigm
once more powerful base LLMs are applied.

1https://physionet.org/news/post/415
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D MECHANISM EXPLANATION OF DIVIDEMIX IN SERSAL

To make the paper friendly to the audiences from different background, in this section we provide
detailed mechanism explanation of noisy label learning and how to learn a better small (neural
network) model from LLM noisy annotations using DivideMix.

DivideMix mechanism in SERSAL: In the traditional noisy data learning field, it was theoretically
proved and empirically observed that the “memorization” behavior of neural networks leads to dif-
ferent optimization behavior on real data and noisy ones that neural networks tend to learn simple
patterns first before fitting label noise (Arpit et al., 2017). Based on this theoretical foundation, a
typical group of noisy label learning methods (Berthelot et al., 2019; Li et al., 2019) exploit per-
sample training loss to judge the noisy labels, for example, in our paper we adopt DivideMix (Li
et al., 2019) to learn a small model using LLM noisy annotations, which models the noise probabili-
ties of each sample by dynamically fitting a Gaussian Mixture Model (GMM) on per-sample losses,
all training samples are divided into a clean set and a noisy set based on a probability threshold τ .
During the DivideMix training process, samples in the clean set are used for supervised learning (us-
ing their soft LLM annotations), while ones in the noisy set is used in an unsupervised manner (only
using their features), e.g., learn with regularization loss or reconstruction task. The process will be
ended until the average loss of heuristically selected early stopping subset (high-LLM-confidence
samples Des in Algorithm 1) is converged, i.e., the loss of early stopping subset is not decreased
for m epochs. Notably, clean sample is not equivalent to high-LLM-confidence sample, but the
sample which LLM annotation is easier to fit by the small tabular model. Since the small model
(i.e., FT-Transformer here) is only supervised by clean data and regularized on noisy data, all data
is sufficiently and reasonably exploited to acquire a better pattern.

DivideMix hyperparameters in SERSAL: We refer to the original hyperparameter settings in Di-
videMix paper [4] and only search the temperature (T ) in {0.5, 5.0, 10.0}, with fixed regularization
loss weight Lu to 25, clean probability τ to 0.9, and the learning rate of the small model (FT-
Transformer) to 1e-4. Additionally, we uniformly introduce the early stopping patience m to 5. The
best temperature is selected based on the training loss of early stopping subset Des.

Lung Cancer (LC)Heart Failure (HF) Hepatitis C (HE) Pima Indians Diabetes
(PID)

Framingham Heart Study
(FH)

Stroke (ST) COVID-19 (CO) Anemia Disease (AN)

Figure 4: Performances in different LLM confidence ranges on other eight datasets. The overall
trend of high-confidence samples being relatively more reliable still holds.
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HF LC ECD LI HE PID FH ST CO AN

0-shot GPT-3.5 #1 71.88 78.87 85.71 76.81 68.51 73.12 60.32 63.01 82.60 90.43
SERSAL #1 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37

0-shot GPT-3.5 #2 87.58 83.74 86.42 80.26 86.18 79.26 63.86 73.62 91.29 93.62
SERSAL #2 92.03 86.15 87.00 82.47 87.32 80.61 65.27 79.58 97.20 98.93

0-shot GPT-3.5 #3 89.26 85.39 87.81 82.91 86.87 81.47 64.12 76.37 93.65 94.13
SERSAL #3 93.58 85.42 89.00 84.07 89.57 81.83 65.27 80.93 97.02 98.60

Table 8: The AUC score variation of SERSAL outputs and zero-shot prompting of the tuned GPT-
3.5 on all datasets from Table 2 during three loops.
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