COMPLEMENTARY LABEL LEARNING WITH POSITIVE LABEL GUESSING AND NEGATIVE LABEL ENHANCE-MENT

Anonymous authors

Paper under double-blind review

Abstract

Complementary label learning (CLL) is a weakly supervised learning paradigm that constructs a multi-class classifier only with complementary labels, specifying classes that the instance does not belong to. We reformulate CLL as an inverse problem that infers the full label information from the output space information. To be specific, we propose to split the inverse problem into two subtasks: positive label guessing (PLG) and negative label enhancement (NLE), collectively called PLNL. Specifically, we use well-designed criteria for evaluating the confidence of the model output, accordingly divide the training instances into three categories: highly-confident, moderately-confident and under-confident. For highly-confident instances, we perform PLG to assign them pseudo labels for supervised training. For moderately-confident and under-confident instances, we perform NLE by enhancing their negative label set with different levels and train them with the augmented negative labels iteratively. In addition, we unify PLG and NLE into a consistent framework, in which we can view all the pseudo-labeling-based methods from the perspective of negative label recovery. We prove that the error rates of both PLG and NLE are upper bounded, and based on that we can construct a classifier consistent with that learned by clean full labels. Extensive experiments demonstrate the superiority of PLNL over the state-of-the-art CLL methods, e.g., on STL-10, we increase the classification accuracy from 34.96% to 55.25%. The code has been submitted to supplementary material.

031 032 033

034

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027

028

029

1 INTRODUCTION

Over the past few years, large-scale and accurately labeled data has tremendously boosted the 035 development of deep neural networks. However, collecting accurately labeled data is extremely time-consuming, labor-intensive and sometimes requires specific expertise in real-world tasks. To 037 reduce the dependency on large-scale and accurately labeled datasets, deep learning communities have given increasing attention to weakly supervised learning, including but not limited to partial label learning (Cour et al., 2011; Xie and Huang, 2018; Feng and An, 2019; Lv et al., 2020; Xia et al., 040 2023; Huang and Cheung, 2024; He et al., 2024; Tian et al., 2024), noisy label learning (Natarajan 041 et al., 2013; Han et al., 2018; Song et al., 2022; Wei et al., 2020; Zhang et al., 2023; Huang et al., 042 2023), semi-supervised learning (Van Engelen and Hoos, 2020; Sohn et al., 2020; Xie et al., 2020; 043 Yang et al., 2022; Li et al., 2023b; Xie et al., 2023), positive-unlabeled learning (Niu et al., 2016; 044 Kiryo et al., 2017).

045 Here, we consider a recently proposed weakly supervised learning framework called complementary 046 label learning (CLL) (Ishida et al., 2017; Feng et al., 2020). In CLL, each training instance is 047 associated with one or multiple complementary labels (CLs) which specify one or multiple classes 048 that the instance does not belong to. The goal of CLL is to learn a multi-class classifier only from complementary labeled data. In real-world scenario, if the number of classes is huge, choosing the correct class label from many candidate classes is difficult and laborious, while choosing one or 051 several of the incorrect class labels as CLs would be much easier and thus less costly. Recently, CLL has been applied to online learning (Kaneko et al., 2019), medical image segmentation (Rezaei et al., 052 2020) and medical molecular imaging (Tapper et al., 2024), etc. Besides, another promising future application scenario of CLL is to ensure privacy security in data collection scenarios. For example, collecting some survey data may require extremely private questions and it would be mentally less demanding if we ask the respondent to provide some incorrect answers as CLs (Dwork, 2008).

Previous studies on CLL can be roughly divided into two categories: methods that attempt to construct 057 an unbiased risk estimator (URE-based) (Ishida et al., 2017; 2019; Feng et al., 2020) and methods based on feature learning (FL-based) (Chou et al., 2020; Wang et al., 2021; Liu et al., 2022; Jiang 059 et al., 2024). For URE-based methods, Ishida et al. (Ishida et al., 2017) and Feng et al. (Feng et al., 060 2020) showed that the ordinary classification risk can be recovered by their proposed unbiased risk 061 estimator only from complementary labeled data. Ishida et al. (Ishida et al., 2019) later extended 062 the unbiased risk estimator to arbitrary losses and models. Chou et al. (Chou et al., 2020) proposed 063 a surrogate complementary loss framework, which avoids the extremely noisy gradient problem 064 encountered in unbiased risk estimator. For FL-based methods, Wang et al. (Wang et al., 2021) gave the first attempt to leverage regularization techniques with complementary label by aligning the 065 model output of one instance and its multiple augmented views. Liu et al. (Liu et al., 2022) proposed 066 to integrate self-supervised and self-distillation to complementary learning. Jiang et al. (Jiang et al., 067 2024) leveraged a contrastive learning framework to facilitate CLL. These methods mainly focus on 068 the design of robust loss functions or the exploration of feature space information, while neglecting 069 the power of output space information.

071 We propose that CLL can be viewed as solving the multi-class classification problem from two inverse aspects, where one is to infer the positive label and another is to infer the negative labels. To 072 this end, we propose two subtasks: *positive label guessing* (PLG) and *negative label enhancement* 073 (NLE). We use well-designed criteria for evaluating the confidence of the model output, accordingly 074 divide the training instances into three categories: highly-confident, moderately-confident and under-075 confident in each epoch. We perform PLG by simply pseudo-labeling highly-confident instances 076 for supervised training. Unlike pseudo-labeling methods used in semi-supervised learning (SSL), 077 PLG pseudo-labeling reaches high selected ratio and high precision even without any positive labels 078 available. 079

More importantly, previous SSL methods lack the utilization of untrustworthy instances. They either discard this part or simply employ techniques such as consistency regularization. In this paper, we perform NLE by enhancing the negative label set of moderately-confident and under-confident instances and train them with the augmented negative labels iteratively.

Although PLG and NLE will inevitably bring pseudo-labeling errors, we theoretically prove that the
 error rates are upper bounded. And the generalization error of the learned classifier under PLG and
 NLE errors is also upper bounded, which means that we can construct a classifier consistent with that
 learned by clean full labels. We demonstrate that PLNL achieves state-of-the-art performance on five
 benchmark datasets. Our contributions can be summarized as follows:

- A novel method for CLL. Different from conventional loss design methods, we pioneer a novel method for CLL called PLNL that formulates CLL from output space information and solve it by two subtasks: PLG and NLE.
- A unified framework for pseudo-labeling-based methods. From the perspective of negative label recovery, we construct a unified framework for pseudo-labeling-based methods. We empirically show that PLNL outperforms state-of-the-art SSL methods in terms of pseudo-labeling error, selected ratio and recovered negative labels.
 - *Solid theoretical analysis.* We theoretically prove that both the error rates of PLG and NLE are upper bounded. The generalization error of the learned classifier is also upper bounded.
 - *State-of-the-art performance*. Extensive experiments on five benchmark datasets demonstrate the superiority of PLNL over the state-of-the-art CLL methods.
- 101

090

092

093

094

095

096

097

098 099

2 PRELIMINARIES

103 104

Ordinary Multi-Class Classification. Let $\mathcal{X} \in \mathbb{R}^d$ denote the feature space with d dimensions and $\mathcal{Y} = \{1, 2, ..., K\}$ denote the label space with K classes. The precisely labeled instance $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is sampled from an unknown probability distribution p(x, y). The goal of ordinary multi-class classification is to learn a parameterized function $f(x) : \mathbb{R}^d \to \mathbb{R}^K$ that minimizes the

108 classification risk: 109

110

111

121

122

123

124

125

$$R(f) = \mathbb{E}_{p(\boldsymbol{x}, y)} \mathcal{L}(f(\boldsymbol{x}), y), \tag{1}$$

where $\mathbb{E}_{p(\boldsymbol{x},\boldsymbol{y})}$ refers to the expectation across all possible samples drawn from the distribution $p(\boldsymbol{x},\boldsymbol{y})$, $\mathcal{L}: \mathbb{R}^K \times \mathcal{Y} \to \mathbb{R}$ is a multi-class classification loss function. In this paper, we consider a common 112 case where the function f is a deep neural network with the softmax output layer, where f(x) is 113 considered as the output prediction confidence of the model on each class. Since the probability 114 distribution p(x, y) is unknown, we use the empirical risk R(f) to approximate R(f). Assuming a 115 dataset $\{(x_i, y_i)\}_{i=1}^N$ is independently drawn from distribution p(x, y), then we have 116

$$\widehat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(\boldsymbol{x}), y_i).$$
(2)

Complementary Label Learning. Different from the ordinary multi-class classification, in CLL, let $\{(x_i, \bar{Y}_i)\}_{i=1}^N$ be the complementary labeled dataset, where N is the dataset size, \bar{Y}_i indicates the complementary (negative) label set of x_i . Each complementary labeled instance $(x, \bar{Y}) \in \mathcal{X} \times \mathcal{Y}$ is sampled from an unknown probability distribution $\bar{p}(\boldsymbol{x}, \bar{y})$. Our goal is to learn a classifier that minimizes the classification risk Eq. (1) only from complementary labeled training instances. Then the empirical risk becomes:

$$\widehat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i), \overline{Y}_i),$$
(3)

where $\bar{\mathcal{L}}_{CLL}$ is a specially designed loss function for learning from only complementary labeled data.

3 PROPOSED METHOD

132 133

130 131

The overall framework of PLNL is shown in Fig.1, and the pseudo-code is presented in Appendix 134 A. We begin by employing weak and strong augmentation to a complementary labeled image x_i , 135 which leads to two augmented views x_i^w, x_i^s . These two images are then fed into a two-view network 136 with shared weight $f(x; \Theta)$ to obtain two prediction confidences $f(x_i^w)$ and $f(x_i^s)$. Then we utilize 137 the two-view prediction confidences to select three subsets of training instances mentioned above, 138 i.e., highly-confident, moderately-confident and under-confident. We select these subsets using the 139 historical confidences of the previous training epochs to better alleviate confirmation bias. Finally, 140 different techniques are utilized to conquer individual subsets. In this section, we first explain the 141 well-designed confidence-based instances selection strategy, and then introduce the PLG for the 142 highly-confident instances and two different versions of NLE for the moderately-confident instances 143 and the under-confident instances in detail.

Figure 1: The overall framework of PLNL. We employs a two-view network (shared backbone) 157 to extract features and compute confidences for weak and strong augmentations of one instance 158 respectively. After the selection of highly-confident, moderately-confident and under-confident set, 159 We employ PLG on highly-confident instances and NLE for the rest. The loss is computed on the 160 enhanced labels of both views and the model updates through backpropagation. 161

162 3.1 CONFIDENCE-BASED INSTANCES SELECTION

We first maintain two memory banks M^w and M^s for weak and strong augmentation respectively, each with size $t \times N \times K$ to store the historical prediction confidence over the past t epochs. For simplification, we only consider one view here unless otherwise specified.

$$\boldsymbol{M}_i = [f^1(\boldsymbol{x}_i), \dots, f^t(\boldsymbol{x}_i)]. \tag{4}$$

where $f^t(x_i)$ denotes the prediction confidence of the t-th epoch in the memory bank M.

We propose to select subsets based on the following criteria.

w,

$$V_{i1} = \forall 1 \le j \le t, \arg\max(f^j(\boldsymbol{x}_i)) \notin \bar{Y}_i,$$
(5)

$$\omega_{i2} = \forall 1 \le j, k \le t, \arg\max(f^j(\boldsymbol{x}_i)) = \arg\max(f^k(\boldsymbol{x}_i)), \tag{6}$$

194 195

196

205

210

167 168

170

171 172

 $\omega_{i3} = \forall 1 \le j \le t, \max(f^j(\boldsymbol{x}_i)) \ge \lambda, \tag{7}$

176 where $\omega_{i1}, \omega_{i2}, \omega_{i3}$ are boolean variables which indicate whether the corresponding criterion is 177 satisfied. ω_{i1} ensures that the label corresponding to the max prediction confidence does not fall on 178 the complementary label set, which excludes the complementary labels from being selected as positive 179 label. ω_{i2} ensures that the max prediction confidence be stable and show no sign of fluctuations over 180 the past t epochs. ω_{i3} ensures the max prediction confidence should be higher than a threshold λ . 181 Note that λ can be either a man-made threshold or a self-adaptive one, which will be discussed in 182 detail later.

Warm up. Before selecting, we warm up the model using the entire training set. The goal of this stage is to reduce the classification risk and obtain some historical prediction confidence to construct the memory bank since we have no historical information at initial epoch. In this paper, we use SCL-LOG algorithm (Chou et al., 2020) to warm up models for 20 epochs.

Instance-aware self-adaptive threshold. The threshold in criterion ω_{i3} , as is mentioned above, can be a fixed high threshold (like 0.95). However, a single global threshold does not consider the fitting difficulties of different instances, i.e., hard instances and easy instances. This will result in very few samples being selected in the early training stages as well as confirmation bias. Therefore, to comprehensively consider historical information, we design an instance-aware self-adaptive threshold for each instance at each epoch t as:

$$\lambda(t) = \alpha\lambda(t-1) + (1-\alpha)f(t), \lambda(0) = \frac{1}{K},$$
(8)

where K is the number of classes, $f(t) = \max f(x)$ and α is the ratio which controls the threshold stability.

The threshold is initialized at a low value $\frac{1}{K}$, which will take more data into account and helps speed up convergence in the early stages. As the prediction confidence increases, the threshold grows higher to filter out wrong pseudo labels to alleviate the confirmation bias. Note that we compute $\lambda^w(t)$ and $\lambda^s(t)$ for two different views respectively according to Eq. (8). We use the momentum average confidence of each instance, computed based on all previous epochs. In this way, the threshold comprehensively considers historical information and remains stable and trustworthy.

Subset Selection. For the two-view network, we perform two independent verifications. Let $\beta_i^w = \omega_{i1} \wedge \omega_{i2} \wedge \omega_{i3}$ be the indicator of satisfying the criteria. Thus, β_i^w and β_i^s indicate whether the weak and strong views meet the criteria respectively. For an instance, if both views meet the criteria, we select it to the highly-confident subset, i.e.,

$$\mathcal{H} = \{ \boldsymbol{x}_i | \beta_i^w \land \beta_i^s = 1 \}, \tag{9}$$

It means the prediction confidences of both views are stable and high, thus we consider them to be highly-confident. The size of \mathcal{H} is denoted as N_h .

Similarly, the moderately-confident subset consists of instances only one augmented version of which
 meet the criteria, i.e.,

$$\mathcal{M} = \{ \boldsymbol{x}_i | \beta_i^w \neq \beta_i^s \}, \tag{10}$$

It means only one view's prediction is trustworthy, the other is not. which shows that the model is moderately-confident about its prediction. The size of \mathcal{M} is denoted as N_m .

Finally, the under-confident subset consists of the rest of the instances, i.e.,

$$\mathcal{U} = \{ \boldsymbol{x}_i | \beta_i^w \lor \beta_i^s = 0 \}, \tag{11}$$

It means the prediction confidences of both views do not meet the designed criteria, these instances are considered under-confident. The size of \mathcal{U} is denoted as N_u .

After obtaining \mathcal{H} , \mathcal{M} and \mathcal{U} , we design different techniques to better utilize these different types of training instances.

3.2 POSITIVE LABEL GUESSING

For highly-confident set \mathcal{H} , we consider the label with the max prediction confidence as its positive label. Conversely, all remaining labels are considered complementary labels. Let \hat{Y}_i be the enhanced negative label set for instance x_i , we have:

$$\overline{Y}_i = \{c | c \in Y_i, c \neq \hat{y}_i\}$$

$$(12)$$

where \hat{y}_i is the guessed positive label and $Y_i = \{1, 2, \dots, K\}$ is the full label set.

For highly-confident set \mathcal{H} , we compute the CLL loss on the negative labels for both views:

$$\mathcal{L}_{h} = \frac{1}{N} \sum_{i=1}^{N_{h}} \bar{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_{i}^{w}), \hat{\bar{Y}}_{i}) + \bar{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_{i}^{s}), \hat{\bar{Y}}_{i})$$
(13)

where $f(x_i^w)$ and $f(x_i^s)$ denote model outputs of weak augmentation and strong augmentation respectively.

242 243

241

244

253

220

221

226 227

228

229

230

231 232 233

3.3 NEGATIVE LABEL ENHANCEMENT

For the moderately-confident set \mathcal{M} and the under-confident set \mathcal{U} , guessing the positive labels directly might lead to much more errors due to their relatively lower confidence. Therefore, we employ a different strategy for these instances, called negative label enhancement (NLE).

The rationale of NLE is that more negative labels will bring in additional supervision information
for better training. However, whether the enhanced negative labels are correct remains a question.
Intuitively, randomly enhancing negative labels will bring in a large number of labeling errors. To
better enhance the reliability of NLE, we further exploit information in the output space and design
the following solution.

Calculation of k Nearest Neighbor (k-NN) instances. For instance x_i and its model output prediction confidence y_i , we can compute its k-NN instances in the output space. It is safe to assume that nearby instances in the output space should have the same positive label with a high probability, while their original complementary label sets are likely to vary. The formal definition of this assumption is as follows:

Assumption 1. $\forall (x_i, \bar{Y}_i) \in \mathcal{D}$ and its k-NN instances $(x_i^{(j)}, \bar{Y}_i^{(j)})$, the positive label y_i exists in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no more than α_k , any negative label $y'_i \neq y_i$ exist in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no less than β_k .

This assumption describes the intrinsic characteristics of CLL in the output space, which can be
interpreted in two aspects. First, similarity in the input space will be mapped to similarity in the
output space, which has been widely utilized for tackling representation learning problems (He et al.,
2020). Second, instances of the same category are likely to be labeled with complementary labels of
different categories, which is key to enhancing the negative labels.

268

269 k-NN label frequency. For instance x_i , we propose to calculate the times a negative label appears in its k-NN instances' complementary label set and then enhance top- τ_i frequent ones, that is, add them to the complementary label set of x_i . We define the *j*-th *k*-NN label frequency of x_i as follows:

$$F_{ij} = \sum_{v=1}^{k} \mathbb{I}(j \in \bar{Y}_{i}^{(v)}),$$
(14)

272

273 274 275

279 280 281

282

283

284

285

287

290 291 292 where $\bar{Y}_{i}^{(v)}$ denotes the complementary label set of the v-th nearest instance of x_{i} .

Negative label enhancement. We enhance the complementary label set \overline{Y}_i by adding additional labels with top- τ_i label frequency. For each instance x_i in \mathcal{M} and \mathcal{U} , the enhanced complementary (negative) label set \widehat{Y}_i is calculated by:

$$\bar{Y}_i = \{c | c \in \bar{Y}_i \lor c \in \text{top-}\tau_i \text{-max}_j(F_{ij})\}.$$
(15)

However, the prediction confidence of the under-confident is more unreliable than that of the moderately-confident. Therefore, we should be more conservative when enhancing these instances as the k-NN information may be more unreliable. In our work, we set $\tau_i = \lceil \frac{K-s_i}{10} \rceil$ for \mathcal{U} where s_i is the size of \overline{Y}_i . For \mathcal{M} , we set $\tau_i = (1 + \frac{e}{E_{max}}) \lceil \frac{K-s_i}{10} \rceil$ where e is current epoch, E_{max} is total epochs. This provides a linear growing strategy for the moderately-confident because the model's output becomes increasingly accurate as the training progresses.

For moderately-confident set \mathcal{M} and under-confident set \mathcal{U} , we compute the CLL loss on the negative labels for both views:

$$\mathcal{L}_{m,u} = \frac{1}{N} \sum_{i=1}^{N_m + N_u} \bar{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i^w), \hat{\bar{Y}}_i) + \bar{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i^s), \hat{\bar{Y}}_i)$$
(16)

where $f(x_i^w)$ and $f(x_i^s)$ denote model outputs of weak augmentation and strong augmentation respectively.

295 296

297

318

319

4 A UNIFIED FRAMEWORK FOR PSEUDO-LABELING-BASED METHODS

Pseudo-labeling, which has been widely used in the recent semi-supervised learning (SSL) methods, is employed by giving unlabeled instances pseudo labels and train them in a supervised way. PLNL is an extension of pseudo-labeling. We not only consider pseudo-labeling of highly-confident instances, but also consider enhancing the negative label set of untrustworthy instances. In this way, we actually recover more supervised information than only leveraging pseudo-labeling and further boost the classification performance.

In this section, we construct a unified framework where PLG and NLE are viewed from the perspective of negative label recovery. Let \hat{y}_i be the pseudo-label of x_i . Let Y_i be the full label space. Let \hat{Y}_i be the reconstructed (PLNL) or imposed (pseudo-labeling) negative label set for x_i .

For PLNL, PLG is equivalent to reconstructing a negative label set $\overline{Y}_i = \{c | c \in Y_i, c \neq \hat{y}_i\}$ of size K - 1, in which only the guessed positive label does not belong. NLE is equivalent to reconstructing a negative label set of size $s_i + \tau_i$, where we add τ_i negative labels to the original negative label set of size s_i .

Similarly, for pseudo-labeling methods, let the pseudo label for instance x_i be \hat{y}_i as well. The process of pseudo-label highly-confident instances is also equivalent to imposing a negative label set $\hat{Y}_i = \{c | c \in Y_i, c \neq \hat{y}_i\}$ of size K - 1 as additional supervised information.

In this paper, we propose two metrics for evaluation of pseudo-labeling-based methods. Firstly, we define selected ratio η :

$$\eta = \frac{N_h}{N},\tag{17}$$

320 Obviously, η evaluates the ratio of highly-confident instances selected for pseudo-labeling methods. 321 Furthermore, we define average size of enhanced negative label set \bar{s} :

$$\bar{s} = \frac{\sum_{i=1}^{N} |\hat{\bar{Y}}_i|}{N},$$
(18)

In section 6, we empirically show that PLNL achieves lower error rate ϵ , higher selection ratio η and obviously larger size of negative label set \bar{s} compared with pseudo-labeling method Fixmatch (Sohn et al., 2020) and Freematch (Wang et al., 2022).

5 THEORETICAL ANALYSIS

5.1 GENERALIZATION BOUND

For simplification, we only consider one view network here, which has no influence on the deduction of generalization error bound. Our goal is to learn a classification model $f(x; \Theta)$ by minimizing the empirical risk $\hat{R}'(f)$ acquired from data with enhanced negative labels:

 $\widehat{R}'(f) = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i), \widehat{\overline{Y}}_i),$

(19)

where \overline{Y}_i denotes the enhanced negative label set of x_i .

Let the CLL loss function be $\mathcal{L}_{CLL}(f(\boldsymbol{x}), \widehat{Y}_i) = \sum_{\substack{y \notin \widehat{Y}_i \\ i = 1}} (1/(K - |\widehat{Y}_i|))\ell(f(\boldsymbol{x}), y)$ where $|\widehat{Y}_i|$ is the size of the enhanced negative label set. Let $\overline{s} = \frac{\sum_{i=1}^{N} |\widehat{Y}_i|}{N}$ be the average size of enhanced negative label set. Let $\epsilon_1 = \sum_{i=1}^{N_h} \frac{\mathbb{I}(y_i \in \hat{Y}_i)}{N_h}$ be the error rate of PLG. Let $\epsilon_2 = \sum_{i=1}^{N_m + N_u} \frac{\mathbb{I}(y_i \in \hat{Y}_i)}{N_m + N_u}$ be the error rate of NLE. The actual pseudo-labeling error rate $\epsilon = \frac{\sum_{i=1}^{N} \mathbb{I}(y_i \in \hat{Y}_i)}{N} = \frac{N_h}{N} \epsilon_1 + \frac{N_m + N_u}{N} \epsilon_2 = \eta \epsilon_1 + (1 - \eta) \epsilon_2$. Moreover, $\ell(f(\boldsymbol{x}), \boldsymbol{y})$ is ρ -Lipschitz w.r.t. $f(\boldsymbol{x})$ where ρ can be any Lipschitz constant (not necessarily the best). Let $\Re_N(\mathcal{F})$ be the expected Rademacher complexity (Mohri et al., 2018) of \mathcal{F} with N training instances. Let $\hat{f} = \operatorname{argmin}_{f \in \mathcal{F}} \widehat{R}'(f)$ be the empirical risk minimizer, where \mathcal{F} is a function class, and $f^* = \operatorname{argmin}_{f \in \mathcal{F}} R(f)$ be the true risk minimizer. We derive the following theorem, which provides a generalization error bound for the proposed method.

Theorem 1. Suppose that $\ell(f(\boldsymbol{x}), y)$ is bounded by B. For pseudo-labeling error rate $\epsilon \in (0, 1)$, for any $\delta > 0$, with probability at least $1 - \delta$, we have

$$R(\hat{f}) - R(f^*) \le 2\left(1 - \frac{1 - \epsilon}{K - \bar{s}}\right)B + 4\rho K \Re_N(\mathcal{F}) + 2KB \sqrt{\frac{\log^2 \delta}{2N}},\tag{20}$$

Remark. Detailed proofs are provided in Appendix B. Theorem 1 shows that as $N \to \infty$, $\epsilon_1 \to 0$, $\epsilon_2 \to 0$, the empirical risk minimizer converges to the true risk minimizer with high probability. It can be observed from Eq. (20) that the generalization bound is influenced by five factors: the number of categories K, the average size of enhanced negative label set \bar{s} and two error rates. This is consistent with the intuition that more categories and less complementary labels will make the CLL problem harder. In a nutshell, smaller PLNL pseudo-labeling error rates ϵ_1, ϵ_2 and larger size of enhanced negative label set \bar{s} will produce better generalization performance.

5.2 ERROR BOUND OF POSITIVE LABEL GUESSING

Theorem 2. Suppose that y_i denote the ground-truth positive label of x_i and \hat{y}_i denote the guessed positive label which might not be true. PLG error rate ϵ_1 is upper bounded by:

$$\epsilon_1 = \mathbb{P}(y_i \in \widehat{Y}_i) \le (K - 1 - s_i)\psi, \tag{21}$$

where K is class number, s_i is the size of \overline{Y}_i and $\psi \in (0, \frac{1}{K-1-s_i})$. Detailed proofs are provided in Appendix C.

375 5.3 Error Bound of Negative Label Enhancement

Theorem 3. Suppose that y denote the ground-truth positive label of x_i and y' denote an arbitrary negative label. Let $F_i^{(\tau_i)}$ denote the τ_i -th largest label frequency. Let p denote the probability of the ground-truth positive label y_i appearing in its k-NN instance's complementary label set. Let q denote the probability of the label y' appearing in its k-NN instance's complementary label set. The NLE error rate ϵ_2 is upper bounded by:

$$\epsilon_{2} = \mathbb{P}(y_{i} \in \widehat{\bar{Y}}_{i}) \leq \sum_{j=1}^{k} \binom{|Y_{i}| - 1}{|Y_{i}| - \tau_{i}} F_{\beta_{k}}(k - j + 1, j)^{(|Y_{i}| - \tau_{i})} b_{\alpha_{k}}(k, j),$$
(22)

382 383 384

386

387

394

396 397

407

422 423

424

where $F_{\beta_k}(k,j) = \int_0^{\beta_k} p^{k-1}(1-p)^{j-1}dt$ denotes the regularized incomplete beta function, $b_{\alpha_k}(k,j) = {k \choose j} \alpha_k^j (1-\alpha_k)^{k-j}$ is the probability mass function of a binomial distribution $B(k,\alpha_k)$. Detailed proofs are provided in Appendix D.

Remark. Theorem 2 and Theorem 3 show that both PLG error rate ϵ_1 and NLE error rate ϵ_2 are upper bounded under mild condition.

Table 1: Comparison of classification accuracies between different methods on four datasets with a single complementary label per instance. The results (mean \pm std) are reported over 3 random trials. The best results are highlighted in bold (The same applies hereinafter).

Method	STL-10	SVHN	FMNIST	CIFAR-10
UB-EXP	$\parallel 28.84 {\pm} 0.54\%$	88.93±0.17%	87.96±0.08%	62.90±0.06%
UB-LOG	$\parallel 20.41 \pm 0.46\%$	89.59±0.08%	87.59±0.14%	70.28±0.12%
SCL-EXP	$\parallel 31.03 \pm 0.61\%$	88.66±0.20%	88.31±0.09%	72.35±0.10%
SCL-LOG	$\parallel 30.74 {\pm} 0.72\%$	89.26±0.24%	88.03±0.10%	79.87±0.14%
POCR	$\parallel 34.96 {\pm} 0.32\%$	96.65±0.14%	92.29±0.07%	94.15±0.09%
SELF-CL	$\parallel 30.87 {\pm} 0.72\%$	90.13±0.23%	84.86±0.10%	88.95±0.22%
ComCo	∥ 32.43±0.28%	91.41±0.35%	85.42±0.40%	89.36±0.76%
Ours	$\parallel 55.25 {\pm} 0.36\%$	97.58±0.18%	93.38±0.06%	94.78±0.12%

Table 2: Comparison of classification accuracies between different methods on five datasets with multiple complementary labels per instance. The results (mean \pm std) are reported over 3 random trials.

Method	STL-10	SVHN	Ι	FMNIST	Ι	CIFAR-10	CIFAR-100
UB-EXP	$60.85 {\pm} 0.12\%$	$95.23{\pm}0.09\%$		$92.34{\pm}0.28\%$	I	91.13±0.23%	34.43±0.08%
UB-LOG	$62.84{\pm}0.17\%$	$94.76 {\pm} 0.07\%$		$91.84{\pm}0.29\%$	I	92.01±0.21%	52.76±0.15%
SCL-EXP	$62.96{\pm}0.10\%$	$95.28{\pm}0.14\%$		$92.20{\pm}0.27\%$		91.85±0.25%	47.81±0.09%
SCL-LOG	$61.60{\pm}0.14\%$	$94.88{\pm}0.16\%$		$91.51{\pm}0.25\%$		92.67±0.18%	49.40±0.19%
POCR	$74.51 {\pm} 0.29\%$	$97.14{\pm}0.09\%$		$94.76 {\pm} 0.26\%$		96.09±0.27%	53.16±0.11%
SELF-CL	$69.85 {\pm} 0.20\%$	$91.58{\pm}0.30\%$		$94.92{\pm}0.21\%$		92.23±0.16%	57.65±0.25%
ComCo	$73.28{\pm}0.19\%$	$95.41{\pm}0.23\%$		$92.01{\pm}0.16\%$		91.38±0.73%	57.88±0.95%
Ours	77.11±0.14%	$98.13{\pm}0.11\%$		95.16±0.13%		96.80±0.28%	64.33±0.43%

6 EXPERIMENT

6.1 EXPERIMENT SETUP

Datasets. We use five commonly used benchmark datasets, STL-10 (Coates et al., 2011), Fashion-MNIST (FMNIST) (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009). We conduct experiments by considering both the scenarios of Single CLL (SCLL) and Multiple CLL (MCLL). To generate single complementary label, we randomly select one of the complementary classes per instance. To generate multiple complementary labels, let *s* be the size of \overline{Y} , we first instantiate $p(s) = {K-1 \choose s}/{2K-2}$, $s \in \{1, 2, ..., K-1\}$, which represents the possibility of randomly sample a complementary label set whose size is *s* from all possible complementary label sets which has $2^K - 2$ sets to choose from. Then for each instance

 x_i , we first sample s_i from $p(s_i)$, and then sample a complementary label set \overline{Y}_i with size s from $p(\bar{Y}_i) = 1/\binom{K-1}{s_i}.$ 434

Compared methods. We compare the performance of PLNL with seven state-of-the-art CLL methods, including UB-EXP (Feng et al., 2020), UB-LOG (Feng et al., 2020), SCL-EXP (Chou et al., 2020), SCL-LOG (Chou et al., 2020), POCR (Wang et al., 2021), SELF-CL (Liu et al., 2022) and ComCo (Jiang et al., 2024) and two state-of-the-art SSL methods, Fixmatch (Sohn et al., 2020) and Freematch (Wang et al., 2022).

Implementation. Implementation details are provided in Appendix F.

6.2 MAIN RESULTS

Figure 2: The experiments is conducted on CIFAR-100 with multiple complementary labels (MCLL). (a) 456 The accuracy of PLNL improves tremendously over epochs and achieves the best finally. (b) The precision of PLG decreases slowly, while the selected ratio steadily rises, indicating a growing proportion of selected 458 instances during training. (c) Ave. Size of NLS denotes average number of negative label set \bar{s} . The precision of NLE remains relatively stable with a slight decrease, whereas the average size of negative label set increases 459 significantly, showing a steady recovery of negative labels. 460

461

457

432

433

435

436

437

438

439

440 441

442 443

444

462 PLNL achieves SOTA results. As shown in Table 1 and Table 9, PLNL outperforms all the 463 compared method by a significant margin across all datasets. Specifically, on STL-10 dataset, we 464 outperform the previous SOTA by 20.29% and 1.61% in both SCLL and MCLL settings. Furthermore, 465 PLNL performs even better in harder scenarios where there is larger label space or less supervised 466 information for each class. We challenge this by showing our results on CIFAR-100 datasets. On 467 CIFAR-100 with Multiple CLs, the improvement is 6.45% compared to previous SOTA. Fig. 2a 468 further demonstrates that PLNL significantly outperforms the compared ones.

470 **PLNL** pseudo-labeling achieves excellent performance with extremely high precision. Fig. 471 2b shows that as the number of epochs increases, PLG will select more and more highly-confident 472 instance, eventually occupying most of the dataset, while the precision only drops slightly in the final stage, which maintains high precision and high selected ratio. Meanwhile, Fig. 2c shows that NLE 473 identifies more and more negative labels with extremely high precision, which maintains above 0.99474 throughout training. 475

476

469

Compared with SOTA semi-supervised learning methods, PLNL performs even better. From 477 Fig. 3a and Fig. 3b, we can see that PLNL achieves both higher selected ratio and recovered more 478 negative labels compared with Fixmatch and Freematch. PLNL is both accurate and comprehensive 479 in recovering label information. This highlights PLNL's enhanced capacity in leveraging moderately-480 confident and under-confident instances for label recovery, showcasing both stability and scalability. 481

482 483

PLNL can reduce the generalization bound and achieves lower generalization bound compared with SSL methods. Fig. 3c demonstrates that $(1 - \frac{1-\epsilon}{K-\bar{s}})$ decreases as the training progresses. As 484 $(1 - \frac{1-\epsilon}{\kappa-\epsilon})$ is the variable of the generalization bound derived in Theorem 1, it is safe to conclude 485 that PLNL can continuously and significantly reduce the generalization error.

Figure 3: The experiments is conducted on CIFAR-10 with single complementary labels (SCLL). (a) shows that selected ratio of PLNL trenscends Fixmatch and Freematch significantly. (b) shows that average size of NLS of PLNL is significantly larger due to specially designed technique NLE for enhancing the untrustworthy negative labels. Nearly all negative labels are revealed at the end of training, almost reaching 9 negative labels for each instances in CIFAR-10 (c) indicates that the value of $\left(1 - \frac{1-k}{K-s}\right)$ decreases steadily during training.

6.3 ABLATION STUDY

Two-view networks facilitate increased pseudolabeling precision. We observe that two-view network 504 significantly boost the performance of PLNL pseudo-505 labeling, which helps accurately select more highly-506 confident instances. As shown in Table 3, the η in-507 creases 8.75% and 8.65% respectively on CIFAR-10 508 and CIFAR-100 with $1 - \epsilon_1$ increases 6.58% and 9.22% 509 respectively. We also compare PLNL with one variant: 510 PLNL v1 where we replace the two-view networks in 511 PLNL with a single network in Table 4, which shows 512 that ours outperforms PLNL v1 by a remarkable margin (e.g. +6.00% on STL-10). 513

515 All the components contribute to the performance gain. We explore the effectiveness of our proposed 516 PLG and NLE method on three settings STL-10 (SCLL), 517 CIFAR-10 (SCLL), CIFAR-100 (MCLL). Specifically, 518 we compare PLNL with several variants: (1) PLNL 519 v2 which removes the PLG component; (2) PLNL v3 520 which removes the NLE component. From Table 4, we 521 observe that PLNL outperforms PLNL v2 remarkably 522 (e.g., +5.43% on STL-10), which proves the effective-523 ness of positive label guessing. We also observe that ours 524 outperforms PLNL v3 (e.g., +1.19% on CIFAR-100), which proves the effectiveness of NLE.

526 527

495

496

497

498

499 500

501 502

514

- 7 CONCLUSION.
- 528 529

Table 3: The performance of PLNL withsingle network on two settings.

Method	$\begin{array}{ c c } CIFAR-10 \\ SCLL \\ \eta & 1-\epsilon_1 \end{array}$	$ \begin{vmatrix} \text{CIFAR-100} \\ \text{MCLL} \\ \eta & 1 - \epsilon_1 \end{vmatrix} $
Single	84.65 90.21	67.43 70.62
Two-view	93.40 96.79	76.08 79.84

Table 4: Classification accuracy of degen-
erated methods on three settings.

Method	STL-10 SCLL	CIFAR-10 SCLL	CIFAR-100 MCLL
PLNL	55.25	94.78	64.33
PLNL v1	49.25	93.75	63.09
PLNL v2	49.82	92.01	58.94
PLNL v3	53.22	94.28	63.14
POCR	34.96	94.15	53.16

In this paper, we introduce a novel complementary label learning method that reformulates CLL as an 530 inverse problem to infer the full label information from the output space information. To this end, we 531 split this inverse problem into two subtasks (PLG and NLE). A confidence-based instances selection 532 module is proposed for dataset split: highly-confident, moderately-confident and under-confident. Then we perform PLG for highly-confident instances by assigning pseudo-labels to them. For 534 moderately-confident and under-confident instances, we perform NLE by enhancing their negative label set with different levels and train them with the augmented negative labels iteratively. We 536 theoretically prove that when pseudo-labeling error is limited, we can construct a classifier consistent with that learned by clean full labels. The upper bounds of PLG and NLE error rate are deduced and we empirically show that PLNL can infer both positive and negative labels with a high precision. We 538 conducted extensive experiments which demonstrate that PLNL achieves a new state-of-the-art in CLL. In addition, extensive ablation studies have proved the effectiveness of each component.

540 REFERENCES

547

567

568

569

570

Shoshana Abramovich, Graham Jameson, and Gord Sinnamon. Refining jensen's inequality. *Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie*, pages 3–14, 2004.

- Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, and Masashi Sugiyama. Unbiased risk estimators can mislead: A case study of learning with complementary labels. In *International conference on machine learning*, pages 1929–1938. PMLR, 2020.
- Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
 feature learning. In *Proceedings of the fourteenth international conference on artificial intelligence* and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.
- Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. *The Journal of Machine Learning Research*, 12:1501–1536, 2011.
- ⁵⁵³ Cynthia Dwork. Differential privacy: A survey of results. In *International conference on theory and applications of models of computation*, pages 1–19. Springer, 2008.
- Lei Feng and Bo An. Partial label learning with self-guided retraining. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 3542–3549, 2019.
- Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, and Masashi Sugiyama. Learning with multiple
 complementary labels. In *International conference on machine learning*, pages 3072–3081. PMLR, 2020.
- Xiuwen Gong, Dong Yuan, Wei Bao, and Fulin Luo. A unifying probabilistic framework for partially
 labeled data learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2022.
- Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
 Advances in neural information processing systems, 31, 2018.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.
- Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9729–9738, 2020.
- Shuo He, Chaojie Wang, Guowu Yang, and Lei Feng. Candidate label set pruning: A data-centric perspective for deep partial-label learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Fk5IzauJ7F.
- Jintao Huang and Yiu-Ming Cheung. Trustworthy partial label learning with out-of-distribution detection. *arXiv preprint arXiv:2403.06681*, 2024.
- Zhizhong Huang, Junping Zhang, and Hongming Shan. Twin contrastive learning with noisy labels.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11661–11670, 2023.
- Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. Learning from complementary labels.
 Advances in neural information processing systems, 30, 2017.
- Takashi Ishida, Gang Niu, Aditya Menon, and Masashi Sugiyama. Complementary-label learning for
 arbitrary losses and models. In *International conference on machine learning*, pages 2971–2980.
 PMLR, 2019.
- Hiroki Ishiguro, Takashi Ishida, and Masashi Sugiyama. Learning from noisy complementary labels
 with robust loss functions. *IEICE TRANSACTIONS on Information and Systems*, 105(2):364–376, 2022.
- 593 Haoran Jiang, Zhihao Sun, and Yingjie Tian. Comco: Complementary supervised contrastive learning for complementary label learning. *Neural Networks*, 169:44–56, 2024.

600

601

602

621

625

626

627

628

- 594 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE 595 *Transactions on Big Data*, 7(3):535–547, 2019. 596
- Takuo Kaneko, Issei Sato, and Masashi Sugiyama. Online multiclass classification based on prediction 597 margin for partial feedback. arXiv preprint arXiv:1902.01056, 2019. 598
 - Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi Sugiyama. Positive-unlabeled learning with non-negative risk estimator. Advances in neural information processing systems, 30, 2017.
- 603 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs. 604 toronto.edu/~kriz/learning-features-2009-TR.pdf. 605
- 606 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. 607
- 608 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image 609 pre-training with frozen image encoders and large language models, 2023a. URL https:// 610 arxiv.org/abs/2301.12597.
- 611 Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, and Stan Z Li. Semireward: 612 A general reward model for semi-supervised learning. arXiv preprint arXiv:2310.03013, 2023b. 613
- 614 Jiabin Liu, Biao Li, Minglong Lei, and Yong Shi. Self-supervised knowledge distillation for 615 complementary label learning. Neural Networks, 155:318-327, 2022. 616
- 617 Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identification of true labels for partial-label learning. In International conference on machine learning, pages 618 6500-6510. PMLR, 2020. 619
- 620 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018. 622
- Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with 623 noisy labels. Advances in neural information processing systems, 26, 2013. 624
 - Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning, volume 2011, page 7. Granada, Spain, 2011.
- 629 Gang Niu, Marthinus Christoffel Du Plessis, Tomoya Sakai, Yao Ma, and Masashi Sugiyama. Theo-630 retical comparisons of positive-unlabeled learning against positive-negative learning. Advances in neural information processing systems, 29, 2016. 631
- 632 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor 633 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward 634 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 635 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning 636 library, 2019. 637
- Mina Rezaei, Haojin Yang, and Christoph Meinel. Recurrent generative adversarial network for 638 learning imbalanced medical image semantic segmentation. Multimedia Tools and Applications, 639 79(21):15329–15348, 2020. 640
- 641 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-642 gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning 643 with consistency and confidence. Advances in neural information processing systems, 33:596–608, 644 2020. 645
- Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy 646 labels with deep neural networks: A survey. *IEEE transactions on neural networks and learning* 647 systems, 2022.

648 649 650	William Tapper, Gustavo Carneiro, Christos Mikropoulos, Spencer A Thomas, Philip M Evans, and Stergios Boussios. The application of radiomics and ai to molecular imaging for prostate cancer. <i>Journal of personalized medicine</i> , 14(3):287, 2024.
651 652 653	Shiyu Tian, Hongxin Wei, Yiqun Wang, and Lei Feng. Crosel: Cross selection of confident pseudo labels for partial-label learning, 2024.
654 655	Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. <i>Machine learning</i> , 109(2):373–440, 2020.
656 657 658	Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. Learning from complementary labels via partial- output consistency regularization. In <i>IJCAI</i> , pages 3075–3081, 2021.
659 660 661	Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, et al. Freematch: Self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246, 2022.
662 663 664 665	Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint training method with co-regularization. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pages 13726–13735, 2020.
666 667 668	Shiyu Xia, Jiaqi Lv, Ning Xu, Gang Niu, and Xin Geng. Towards effective visual representations for partial-label learning. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pages 15589–15598, 2023.
669 670 671	Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. <i>arXiv preprint arXiv:1708.07747</i> , 2017.
672 673 674	Kouzhiqiang Yucheng Xie, Jing Wang, Yuheng Jia, Boyu Shi, and Xin Geng. Rankmatch: A novel approach to semi-supervised label distribution learning leveraging inter-label correlations. <i>arXiv</i> preprint arXiv:2312.06343, 2023.
675 676 677	Ming-Kun Xie and Sheng-Jun Huang. Partial multi-label learning. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 32, 2018.
678 679	Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for consistency training. <i>Advances in neural information processing systems</i> , 33:6256–6268, 2020.
680 681 682	Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 35(9):8934–8954, 2022.
683 684 685 686	Manyi Zhang, Xuyang Zhao, Jun Yao, Chun Yuan, and Weiran Huang. When noisy labels meet long tail dilemmas: A representation calibration method. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pages 15890–15900, 2023.
687 688 689	
690 691 692	
693 694 695	
696 697 698	
699 700 701	

702 THE PSEUDO-CODE OF PLNL А 703 704 Algorithm 1 Pseudo-code of PLNL. 705 Input: Training dataset \mathcal{D} , mini-batch size B, epochs E_{max} , a two-view network with shared 706 parameter Θ and two memory bank matrices M^w , M^s , hyperparameters t, k, τ_m, τ_u . 1: Initialize M^w , M^s , Θ by warming up 20 epochs using SCL-LOG (Chou et al., 2020). 708 2: for $e = 1, 2, ..., E_{max}$ do 709 Shuffle \mathcal{D} into $\frac{|\mathcal{D}|}{B}$ mini-batches; Construct M^w, M^s ; 3: 710 4: 711 Compute two-view network outputs of each instances; 5: 712 Select $\mathcal{H}, \mathcal{M}, \mathcal{U}$ based on criteria in Eq. (5); 6: 713 7: Pseudo-label the highly-confident set \mathcal{H} ; // PLG 714 Enhance negative labels of set \mathcal{M}, \mathcal{U} based on Eq. (14) and Eq. (15); // NLE 8: 715 for $i = 1, 2, \ldots, \frac{|\mathcal{D}|}{B}$ do 9: 716 Fetch an batch B_i with enhanced negative label set; 10: 717 Compute the empirical risk $\widehat{R}'(f)$ by Eq. (19); 11: 718 12: Update parameters of Θ ; 719 13: end for 720 14: end for 721 **Output:** parameters of Θ . 722

PROOF OF THEOREM 1 В

723 724

725

727

728

734

742 743

750 751 752

754

726 We first derive the uniform deviation bound between $\widehat{R}(f)$ and R(f).

Lemma 1. Suppose that the binary loss function $\ell(f(x), y)$ is ρ -Lipschitz continuous w.r.t. f(x). For any $\delta > 0$, with probability at least $1 - \delta$, we have

$$\left| R(f) - \widehat{R}(f) \right| \le 2\rho K \Re_N(\mathcal{F}) + K B \sqrt{\frac{\log \frac{2}{\delta}}{2N}}.$$
(23)

Proof. We firstly define the Rademacher complexity of \mathcal{L} and \mathcal{F} with N training instances as follows:

$$\Re_{N}(\mathcal{L} \circ \mathcal{F}) = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{N} \sigma_{i} \mathcal{L}_{CLL}(f(\boldsymbol{x}_{i}), \widehat{\bar{Y}}_{i}),) \right].$$
(24)

Considering that $\mathcal{L}_{CLL}(f(\boldsymbol{x}), \widehat{Y}_i) = \sum_{\boldsymbol{y} \notin \widehat{Y}_i} \ell(f(\boldsymbol{x}), \boldsymbol{y})$, we have 740 741

$$\Re_{N}(\mathcal{L} \circ \mathcal{F}) \leq K \Re_{N}(\ell \circ \mathcal{F}), \\ \leq \rho K \Re_{N}(\mathcal{F}),$$
(25)

744 where the second line is based on Lipschitz continuity of $\ell(f(x), y)$. 745

Suppose an instance (x_i, y_i) is replaced by another arbitrary instance (x'_i, y'_i) , this leads to a change 746 of $\sup_{f \in \mathcal{F}} R(f) - \widehat{R}(f)$ no greater than $\frac{KB}{N}$ due to the fact that ℓ is bounded by B. According to 747 748 McDiarmid's inequality (Mohri et al., 2018), for any $\delta > 0$, with probability at least $1 - \frac{\delta}{2}$, we have 749

$$\sup_{f \in \mathcal{F}} R(f) - \widehat{R}(f) \le \mathbb{E}\left[\sup_{f \in \mathcal{F}} R(f) - \widehat{R}(f)\right] + KB\sqrt{\frac{\log\frac{2}{\delta}}{2N}}.$$
(26)

In addition, it is routine (Mohri et al., 2018) that 753

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}R(f)-\widehat{R}(f)\right] \le 2\bar{\mathfrak{R}}_N(\mathcal{F}).$$
(27)

⁷⁵⁶ By combining Eq. (26) and Eq. (27), and futher taking the other direction of $\sup_{f \in \mathcal{F}} \widehat{R}(f) - R(f)$ into account, with probability at least $1 - \delta$, we have

$$\sup_{f \in \mathcal{F}} \left| R(f) - \widehat{R}(f) \right| \le 2\rho K \mathfrak{R}_N(\mathcal{F}) + K B \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$$
(28)

which concludes the proof.

The problem of CLL actually has been translated into a noisy CLL problem where the true label might be mislabeled as complementary label (Ishiguro et al., 2022). Let ϵ_1 be the error rate of PLG and ϵ_2 be the error rate of NLE. Since NLE error rate $\epsilon_1 = \sum_{i=1}^{N_h} \frac{\mathbb{I}(y_i \in \hat{Y}_i)}{N_h}$ and NLE error rate $\epsilon_2 = \sum_{i=1}^{N_m+N_u} \frac{\mathbb{I}(y_i \in \hat{Y}_i)}{N_m+N_u}$, the actual noise rate $\epsilon = \frac{\sum_{i=1}^{N} \mathbb{I}(y_i \in \hat{Y}_i)}{N}$ can be calculated as $\epsilon = \frac{N_h}{N} \epsilon_1 + \frac{N_m+N_u}{N} \epsilon_2 = \eta \epsilon_1 + (1-\eta)\epsilon_2$. We further bound the difference between $\hat{R}(f)$ and $\hat{R}'(f)$.

Lemma 2. Suppose that the binary loss function ℓ is bounded by B. For some noise rate $\epsilon \in (0,1)$ and average complementary label size \bar{s} for any $f \in \mathcal{F}$, we have

$$\left|\widehat{R}'(f) - \widehat{R}(f)\right| \le \left(1 - \frac{1 - \epsilon}{K - \bar{s}}\right)B.$$
(29)

We firstly proved the upper bound of the $\widehat{R}'(f)$:

$$\widehat{R}'(f) = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_{i}), \widehat{Y}_{i}),$$

$$= \frac{1}{N} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_{i}), y_{i}) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \notin \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}, c \neq y_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \frac{K - |\widehat{Y}_{i}| - 1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), y_{i}) \right]$$

$$+ \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \in \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \ell(f(\boldsymbol{x}_{i}), y_{i}) \right],$$

$$\leq \widehat{R}(f) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \notin \widehat{Y}_{i}) \sum_{c \notin \widehat{Y}_{i}, c \neq y_{i}} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_{i}), c) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \in \widehat{Y}_{i}) \sum_{c \notin \widehat{Y}_{i}} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_{i}), c),$$

$$\leq \widehat{R}(f) + (1 - c)^{K - \bar{s} - 1} R + cR$$
(20)

$$\leq \widehat{R}(f) + (1-\epsilon)\frac{K-\bar{s}-1}{K-\bar{s}}B + \epsilon B,\tag{30}$$

where the second line holds based on $\epsilon = \frac{\sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i)}{N}$ and Jensen's inequality (Abramovich et al., 2004) as , and we can prove the lower bound in a similar way:

$$\begin{split} \widehat{R}'(f) &= \frac{1}{N} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_{i}), y_{i}) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \notin \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}, c \neq y_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \frac{K - |\widehat{Y}_{i}| - 1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), y_{i}) \right] \\ &+ \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \in \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \ell(f(\boldsymbol{x}_{i}), y_{i}) \right], \end{split}$$

$$\geq \widehat{R}(f) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \notin \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i, c \neq y_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \in \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \notin \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar{s}} \ell(f(\boldsymbol{x}_i), c) - \frac{1}{N} \sum_{c \# \widehat{Y}_i} \frac{1}{K - \bar$$

$$\geq \widehat{R}(f) - (1 - \epsilon) \frac{K - \bar{s} - 1}{K - \bar{s}} B - \epsilon B, \tag{31}$$

By combining these two sides, we have:

$$\left|\widehat{R}_{h}'(f) - \widehat{R}_{h}(f)\right| \le 1 - \frac{1 - \epsilon}{K - \bar{s}}B,\tag{32}$$

which concludes the proof.

Then, for any $\delta > 0$, with probability at least $1 - \delta$, we have

 $\leq \widehat{R}(\widehat{f}) + 2\rho K \mathfrak{R}_N(\mathcal{F}) + K B \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$

 $R(\hat{f})$

 where the first and fifth line are based on Lemma 1, the second and fourth line are based on Lemma 2, the third line is based on the definition of the empirical risk minimizer $\hat{f} = \operatorname{argmin}_{f \in \mathcal{F}} \hat{R}(f)$ which means any other $f \neq \hat{f}$ would lead to a larger risk of $\hat{R}(f)$.

 $\leq \widehat{R}'(\widehat{f}) + (1 - \frac{1 - \epsilon}{K - \overline{s}})B + 2\rho K \Re_N(\mathcal{F}) + K B \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$

 $\leq \widehat{R}'(f^*) + (1 - \frac{1 - \epsilon}{K - \overline{s}})B + 2\rho K \Re_N(\mathcal{F}) + KB \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$

 $\leq \widehat{R}(f^*) + 2\left(1 - \frac{1 - \epsilon}{K - \overline{s}}\right)B + 2\rho K \Re_N(\mathcal{F}) + K B \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$

 $\leq R(f^*) + 2(1 - \frac{1 - \epsilon}{K - \bar{s}})B + 4\rho K \Re_N(\mathcal{F}) + 2KB \sqrt{\frac{\log \frac{2}{\delta}}{2N}},$

C PROOF OF THEOREM 2

Motivated by the formulation of partially labeled data learning in (Gong et al., 2022), we assume that the full label information $Y = \{y, \tilde{Y}\}$ where y is the ground-truth label and \tilde{Y} is a set of the rest labels. And we assume that Q is a hypothetical predictive model with parameters θ , where θ is the model parameter used for prediction. PLG aims to identify the ground-truth label from the label set except complementary label set, which can be implemented by maximizing the conditional likelihood of training dataset with respect to parameters θ . The conditional log-likelihood given all training examples can be expressed as follows.

 $f(\theta|\widetilde{Y}) = \frac{1}{N} \sum_{i=1}^{N} \log Q(y_i|\boldsymbol{x}_i).$ (34)

(33)

By multiplying and dividing classifier Q by the true distribution of identified ground-truth labels given features P(y|x), we can formulate Eq. (34) as follows.

$$f(\theta|\tilde{Y}) = \frac{1}{N} \sum_{i=1}^{N} \log \frac{Q(y_i|\boldsymbol{x}_i)}{P(y_i|\boldsymbol{x}_i)} + \frac{1}{N} \sum_{i=1}^{N} \log P(y_i|\boldsymbol{x}_i).$$
(35)

By multiplying and dividing the probability P(Y|x) to the second term, we can formulate Eq. (34) as follows.

$$f(\theta|\tilde{Y}) = \frac{1}{N} \sum_{i=1}^{N} \log \frac{Q(y_i|\boldsymbol{x}_i)}{P(y_i|\boldsymbol{x}_i)} + \frac{1}{N} \sum_{i=1}^{N} \log \frac{P(y_i|\boldsymbol{x}_i)}{P(Y_i|\boldsymbol{x}_i)} + \frac{1}{N} \sum_{i=1}^{N} \log P(Y_i|\boldsymbol{x}_i).$$
(36)

We use $\mathbb{E}_{(\mathcal{X},\mathcal{Y})}$ operator to calculate the expectation of the random variables $(\mathcal{X},\mathcal{Y})$, meaning $n \to \infty$.

$$f(\theta|\tilde{Y}) = \mathbb{E}_{(\mathcal{X},\mathcal{Y})} \left\{ \log \frac{Q(y|\boldsymbol{x})}{P(y|\boldsymbol{x})} \right\} + \mathbb{E}_{(\mathcal{X},\mathcal{Y})} \left\{ \log \frac{P(y|\boldsymbol{x})}{P(Y|\boldsymbol{x})} \right\} + \mathbb{E}_{(\mathcal{X},\mathcal{Y})} \left\{ \log P(Y|\boldsymbol{x}) \right\}.$$
(37)

 $\mathbb{E}_{(\mathcal{X},\mathcal{Y})}\left\{\log\frac{P(y|\boldsymbol{x})}{P(Y|\boldsymbol{x})}\right\} = -\mathbb{E}_{(\mathcal{X},\mathcal{Y})}\left\{\log\frac{P(Y|\boldsymbol{x})}{P(y|\boldsymbol{x})}\right\},\$

864 Recall that we assume that the full label information $Y = \{y, \tilde{Y}\}$. Then the second term of Eq. (37) 865 can be developed as follows. 866

 $= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(y,\tilde{Y}|\boldsymbol{x})}{P(y|\boldsymbol{x})},$

 $= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(y,\widetilde{Y},\boldsymbol{x})}{P(y,\boldsymbol{x})},$

867 868

$$=-\sum_{(oldsymbol{x},Y)}P(oldsymbol{x},Y)\lograc{P(\widetilde{Y},oldsymbol{x}|y)}{P(oldsymbol{x}|y)},$$

$$=-\sum_{(\boldsymbol{x},Y)}P(\boldsymbol{x},Y)\lograc{P(\widetilde{Y},\boldsymbol{x}|y)}{P(\boldsymbol{x}|y)}rac{P(\widetilde{Y}|y)}{P(\widetilde{Y}|y)},$$

$$= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(\tilde{Y},\boldsymbol{x}|y)}{P(\boldsymbol{x}|y)P(\tilde{Y}|y)} - \sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log P(\tilde{Y}|y),$$

$$= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(\tilde{Y},\boldsymbol{x}|y)}{P(\boldsymbol{x}|y)P(\tilde{Y}|y)} - \sum_{(\tilde{Y},y)} P(\tilde{Y},y) \log P(\tilde{Y}|y),$$

$$= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(\tilde{Y},\boldsymbol{x}|y)}{P(\boldsymbol{x}|y)P(\tilde{Y}|y)} - \sum_{(\tilde{Y},y)} P(\tilde{Y},y) \log P(\tilde{Y}|y),$$

$$= -\sum_{(\boldsymbol{x},Y)} P(\boldsymbol{x},Y) \log \frac{P(\tilde{Y},\boldsymbol{x}|y)}{P(\boldsymbol{x}|y)P(\tilde{Y}|y)} - \sum_{(\tilde{Y},y)} P(\tilde{Y},y) \log P(\tilde{Y}|y),$$

 $= -I(\widetilde{Y}, X|y) + H(\widetilde{Y}|y),$

 $= -I(\widetilde{Y}, X|y).$

889 890

891

892

893

The last equality holds because the conditional entropy $H(\tilde{Y}|y) = 0$. This is because in CLL setting, once y is known, then the full label information is of course known in advance, meanwhile, thus the uncertainty remaining in \tilde{Y} is zero, i.e., $H(\tilde{Y}|y) = 0$. By combining Eq. (38) and Eq. (37), we have the objective function as follows.

905

907

908 909 910

$$f(\theta|\tilde{Y}) = -\mathbb{E}_{(\mathcal{X},\mathcal{Y})} \left\{ \log \frac{P(y|\boldsymbol{x})}{Q(y|\boldsymbol{x})} \right\} - I(\tilde{Y},X|y) - H(Y|X).$$
(39)

899 The first term is a log likelihood ratio between the true and the predicted ground-truth label distribu-900 tions given features. The value of this term depends on how well the model Q can approximate P. The second term is the conditional mutual information between the complementary labels and the 901 features, given the ground-truth label. The last term is a constant independent of parameters. 902

903 Then, we discuss the mild assumption under which PLG method is effective for CLL. 904

Assumption 2. Let $y \in Y'$ and $y' \in Y'$ denote any ground-truth label and unidentified negative label respectively. Let X denote the random variables of x. Let I(y, X) denote the mutual information 906 between ground-truth label y and feature X. Let I(y', X) denote the mutual information between any unidentified negative label y' and feature X. Then, with probability no more than ψ , we have

$$I(y,X) \le I(y',X),\tag{40}$$

(38)

911 where $\psi < \frac{1}{K-1-\epsilon}$. 912

913 Remark. This assumption ensures that the feature tends to have more mutual information with positive 914 labels than negative labels. 915

Motivated by the simplification for identification method in (Gong et al., 2022). In PLG, the training 916 objective actually is the second term of Eq. (39): $f_y(x) = I(y, X|Y)$. As a result, the error rate of 917 PLG can be calculated as follows. Suppose \hat{y} is the guessed positive label, and y' is any negative label.

$$\mathbb{P}(y \neq j, \hat{y} = j) = \sum_{y' \notin \bar{Y}} P(f_{\hat{y}}(\boldsymbol{x}) - f_{y'}(\boldsymbol{x}) \leq 0),$$

$$= \sum_{y' \notin \bar{Y}} P(I(\hat{y}, X | \tilde{Y}) \leq I(y', X | \tilde{Y})),$$

$$\leq (K - 1 - s)\psi,$$

(41)

where the second line is based on replacing \tilde{Y} with any y in 39, the fourth line is based on assumption 2. This concludes the proof.

PROOF OF THEOREM 3 D

It is evident that reliable representation information is of great importance to the performace of k-NN based NLE. Motivated by the label distinguishability setting in (He et al., 2024), a mild assumption for CLL datasets are discussed to ensure the reliability of the representation information.

According to assumption 1, we have the following lemma.

Lemma 3. $\forall (x_i, \bar{Y}_i) \in \mathcal{D}$, let p denote the probability of the true label $y_i \in Y_i$ appearing in its k-NN instance's complementary label set. Let q denote the probability of each non-complementary negative label $y \in Y_i \setminus \{y_i\}$ appearing in its k-NN instance's complementary label set. Then, we have

$$p \le \alpha_k, q \ge \beta_k. \tag{42}$$

Then, We derive the error bound of NLE in a step by step manner as follows.

$$\mathbb{P}(\mathbf{F}_{i}^{(\tau)} < \mathbf{F}_{iy}) = \sum_{j=0}^{k} P(\mathbf{F}_{i}^{(\tau)} < \mathbf{F}_{iy} | \mathbf{F}_{iy} = j) P(\mathbf{F}_{iy} = j) \\
= \sum_{j=1}^{k} P(\mathbf{F}_{i} \le j - 1) P(\mathbf{F}_{i} = j), \\
= \sum_{j=1}^{k} \left(\underbrace{P(\mathbf{F}_{i}^{(1)}) > j \dots}_{(\tau-1)items} \underbrace{P(\mathbf{F}_{i}^{(\tau)}) < j \dots P(\mathbf{F}_{i}^{(|Y_{i}|-1)}) < j)}_{(|Y_{i}|-\tau)items} \right) P(\mathbf{F}_{i}) = j), \\
\le \sum_{i=1}^{k} \binom{|Y_{i}| - 1}{|Y_{i}| - \tau} F_{\beta_{k}}(k - j + 1, j)^{(|Y_{i}|-\tau)} b_{\alpha_{k}}(k, j), \quad (43)$$

where
$$F_{\beta_k}(k,j) = \int_0^{\beta_k} p^{k-1}(1-p)^{j-1} dt$$
 denotes the regularized incomplete beta function
 $b_{\alpha_k}(k,j) = {k \choose i} \alpha_k^j (1-\alpha_k)^{k-j}$ is simply the probability mass function of a binomial distribution

 $B(k, \alpha_k)$ which is used to describe the counting process of the label frequency F_{iv} .

E DETAILS OF MCLL SETTINGS.

Ishida *et al.* (Ishida et al., 2017) assumed that $\bar{p}(x, \bar{y})$ is expressed as:

$$\bar{p}(\boldsymbol{x},\bar{y}) = \frac{1}{c-1} \sum_{y \neq \bar{y}} p(\boldsymbol{x},y).$$
(44)

This assumption implies that all other labels except the correct label are picked as the complementary label with uniform probabilities. Later, Feng et al. (Feng et al., 2020) considered a more general setting where each instance is associated with multiple complementary labels (Multiple CLL). Suppose a Multiple CLL dataset is represented as $\{(x_i, \overline{Y}_i)\}_{i=1}^N$, where \overline{Y}_i is the complementary label set for instance x_i . Let us denote the number of the complementary labels by a random variable s_i , which is sampled from a distribution $p(s_i)$. Then, we assume that each sample is drawn from the following distribution:

$$\bar{p}(\boldsymbol{x}_i, \bar{Y}_i) = \sum_{j=1}^{c-1} \bar{p}(\boldsymbol{x}_i, \bar{Y}_i | s_i = j) p(s_i = j),$$
(45)

972	
973	where $\begin{pmatrix} 1 & \sum p(\boldsymbol{x}, \boldsymbol{y}) & \text{if } \boldsymbol{y} & -\boldsymbol{y} \end{pmatrix}$
974	$\bar{p}(\boldsymbol{x}_{i}, \bar{Y}_{i} s_{i}=j)p(s_{i}=j) := \left\{ \begin{array}{c} \frac{1}{(c-1)} \sum_{y \notin \bar{Y}_{i}} p(\boldsymbol{x}, y), & \text{II} s_{i}=j, \\ \frac{1}{(c-1)} \sum_{y \notin \bar{Y}_{i}} p(\boldsymbol{x}, y), & \text{II} s_{i}=j, \end{array} \right\} $ (46)
975	$\left(\begin{array}{c}0, \\0\end{array}\right)$
976	
977	F MORE EXPERIMENT DETAILS
978	Details of Compared Methods
979	Details of Compared Victuous.
981	• UB-EXP (Feng et al., 2020), an unbiased risk estimator with an estimation error bound, which is derived for Multiple CLL specially.
982 983	• UB-LOG (Feng et al., 2020), another unbiased risk estimator with an estimation error bound but with a different multi-class classification loss function.
984 985	• SCL-EXP (Chou et al., 2020), a surrogate complementary loss with the use of exponential loss function
986 987	 SCL-LOG (Chou et al., 2020), a surrogate complementary loss with the use of negative log loss function
988 989	 POCR (Wang et al., 2021), an algorithm which combines the SCL-LOG loss and the consistency regularization technique
990 991	 SELF-CL (Liu et al., 2022), an self-supervised learning algorithm which integrates self- listilities to CLI.
992 993	 ComCo (Jiang et al., 2024), a contrastive learning framework which leverages the contrastive
994	learning technique on CLL.
995 996	Details of Implementation.
997 998	Implementation. Values of hyperparameters in PLNL are set as follows. The queue size t is
990	selected from $\{2, 3, 4, 5\}$, k-NN parameter k is selected from $\{100, 250, 500\}$. The α in the instance-
1000	aware self-adaptive threshold is selected from $\{0.1, 0.3, 0.5, 0.7, 0.9, 0.99\}$. For each method, we
1001	train the commonly used PreAct-ResNet18 (He et al., 2016) with 200 epochs (initial 20 epochs for warm up) and use SCD as the opimizer with a momentum of 0.0 , a weight decay of 1.4 . We set the
1002	batch size from $\{64, 128\}$ the initial learning rate from $\{10^{-1}, 10^{-2}\}$ and we use cosine learning
1003	rate scheduling with final learning rate 10^{-3} . We employed <i>faiss</i> (Johnson et al., 2019) to compute
1004	k-NN instances in the output space, which is a library for efficient similarity search and clustering of
1005	dense vectors. For weak augmentations, we employ normalization, horizontal flipping and random
1006 1007	cropping. For strong augmentations, we use RandAugment strategy for all, which selects the type and magnitude of augmentation based on uniform probability.
1008	For implementation of SSL methods, we firstly pre-train the network with complete CLL dataset for
1009	200 epochs. Next, we perform pseudo-labeling iteratively and train the model for another 200 epochs.
1010	All of the experiments are implemented based on PyTorch (Paszke et al., 2019) and all of our
1011	experiments are conducted with 8 NVIDIA 4090 GPUs.
1012	
1014	G MORE EXPERIMENTAL RESULTS.
1015	C. 1. OHANTATIVE DESILITS: DEDEODMANCE OF DI C. AND NI E
1016	G.1 QUANTATIVE RESULTS. PERFORMANCE OF FLG AND NLE.
1017	As shown in Table 5, PLG achieves high selected ratio in all datasets, even reaching 98.86% on
1019	FMNIST (MCLL), and 76.08% on the difficult CIFAR-100. And the precision remains high even at a high selected ratio. NLE also has high precision, reaching 80.84% even on CIEAP, 100
1020	ingh selected faile. IVEE also has ingh precision, reaching 60.64% even on CIFAR-100.
1021	G.2 PARAMETER SENSITIVITY ANALYSIS.
1022	Influence of memory have been to the share in Table Chine being that the light of
1023	Innuence of memory dank size t. As is shown in Table b , it is obvious that t has little effect on the experimental results on the three datasets. We chose $t = 5$, which has a slightly better effect. It is
1024	important to utilize historical confidence information to alleviate confirmation bias, but the size of
1023	the memory banks does not matter.

Table 5: The performance of PLG and NLE on three settings. The results (mean \pm std) are reported over 3 random trials. η denotes PLG selected ratio, $1 - \epsilon_1$ denotes PLG precision, $1 - \epsilon_2$ denotes NLE precision.

Dataset	Case	η	Performance $ 1-\epsilon_1$	$1-\epsilon_2$
CIFAR-10	SCLL MCLL	93.40±0.14% 97.49±0.12%	$\begin{array}{ }96.79{\pm}0.08\%\\99.30{\pm}0.05\%\end{array}$	$\begin{array}{c c}97.79{\pm}0.09\%\\98.91{\pm}0.07\%\end{array}$
FMNIST	SCLL MCLL	$\begin{array}{c c} 97.25{\pm}0.08\%\\ 98.86{\pm}0.06\%\end{array}$	95.24±0.11% 97.89±0.11%	$\begin{array}{ }97.56 {\pm} 0.08\% \\98.97 {\pm} 0.03\%\end{array}$
CIFAR-100	MCLL	76.08±0.22%	79.84±0.41%	80.84±0.04%

Table 6: Classification accuracy of PLNL with different memory bank size t on three benchmark datasets. The best results are highlighted in bold and the second best are underlined (The same applies hereinafter).

t	STL-10 SCLL	CIFAR-10 SCLL	CIFAR-100 MCLL
2	54.45%	94.12%	<u>64.21%</u>
3	<u>54.95%</u>	93.98%	63.95%
4	54.88%	<u>94.56%</u>	63.81%
5	55.25%	94.78%	64.33%

Influence of confidence threshold λ . From Table 8, Table 7: Classification accuracy of we observe that there is a trade-off between η and $1-\epsilon_1$, i.e., a higher threshold will lead the precision to increase but result in less reliable instances selected while a lower threshold will decrease the precision but select more re-liable instances. Instance-aware self-adaptive threshold (IST) shows obvious performance gain compared with a fixed global threshold, showcasing its effectiveness.

PLNL with different k-NN parameter k on three benchmark datasets.

k	STL-10 SCLL	CIFAR-10 SCLL	CIFAR-100 MCLL
100	<u>54.45%</u>	94.25%	<u>63.27%</u>
250	55.25%	94.73%	64.33%
500	47.23%	94.78%	59.65%

Influence of k-NN parameter k. As is shown in Table 7, the selection of k depends on the specific situation of the dataset. For example, STL-10 has only 500 labeled

instances for each category. If k is set too large, there will be instances that are not in the category near the decision boundary, which will induce more noise in NLE and cause performance degradation.

Table 8: Classification accuracy and PLG performance of PLNL with different confidence threshold λ on two benchmark datasets. η denotes PLG selected ratio, $1 - \epsilon_1$ denotes PLG precision, $1 - \epsilon_2$ denotes NLE precision. IST denotes instance-aware self-adaptive threshold.

)	CIF	AR-10, SC	LL	CIFA	R-100, MC	CLL
~	Accuracy	η	$1-\epsilon_1$	Accuracy	η	$1-\epsilon_1$
0.85	92.89%	99.86%	90.79%	62.12%	81.52%	72.88%
0.90	93.85%	95.78%	92.43%	63.95%	77.25%	77.34%
0.95	94.74%	87.28%	98.68%	<u>64.12%</u>	73.48%	83.61%
IST ($\alpha = 0.5$	5) 94.78%	93.40%	96.79%	64.33%	76.08%	79.84%

G.3 EXPERIMENTAL RESULTS ON TINY IMAGENET

Tiny-ImageNet (Le and Yang, 2015) contains 100000 images of 200 classes. Each class has 500 training images, 50 validation images and 50 test images. Due to its huge number of categories, it is an extremely difficult dataset for complementary label learning. Most existing CLL methods have only tested their performance on 10-class small datasets. Most of their backbones are ResNet and

1083	Method Tiny-ImageNet
1084	UB-EXP 3.89%
1085	UB-LOG 7.17%
1086	SCL-EXP 3.36%
1087	SCL-LOG 8.96%
1088	POCR 4.29%
1089	SELF-CL 7.87%
1091	ComCo 8.52%
1092	Ours 11.87%

Table 9: Comparison of classification accuracies between different methods on Tiny-ImageNet with
 multiple complementary labels per instance.

1093 1094

a single complementary label is a rather difficult setting for large datasets, these will lead to poor performance of traditional CLL methods.

However, we have tested the performance of our method on Tiny-ImageNet with MCLL settings.
Though most of the methods perform poorly, our method still outperforms traditional CLL methods obtrusively.

1100

G.4 EXTRACT FEATURES BASED ON VISUAL LANGUAGE MODELS (VLMS) AND SELF-SUPERVISED LEARNING (SSL) TECHNIQUES.

1104 In the paper, we compute k-NN instances based on the model output space information, namely 1105 the feature extracted by the model itself. It strikes us that different features may have much to do with the NLE performance. To confirm this, we employ different feature extractors for computing 1106 k-NN, including PreActResNet-18-MoCo, BLIP-2 (Li et al., 2023a). Note that these results are 1107 just for performance comparison which has nothing to do with the results presented in the main 1108 body of the paper. For MoCo, we train a PreActResNet by self-supervised learning method MoCo 1109 (He et al., 2020) without any supervision. The weak and strong data augmentations used in MoCo 1110 follow the original configurations mentioned in the main body. Then we compute k-NN on the 1111 512-dimensional feature output of the PreActResNet. For BLIP-2, we first employ the visual encoder 1112 to extract 768-dimensional high-quality representations and then leverage faiss (Johnson et al., 2019) 1113 to compute k-NN instances in this feature space. We compute the average precision of NLE $1 - \epsilon_2$ 1114 and accuracy on CIFAR-10 (SCLL) and CIFAR-100 (MCLL). As shown in Table 10, the feature 1115 extracted from BLIP-2 outperforms MoCo and ResNet itself significantly. This shows the powerful 1116 visual representation ability of VLMs, which has a great potential for facilitating innovation in 1117 weakly-supervised learning in the future.

1118

1119Table 10: Comparison of classification accuracies and NLE precision between different methods on1120CIFAR-100 with multiple complementary labels per instance. PreActResNet-18 denotes leveraging1121the model output space information for k-NN calculation

Feature Extractor	CIFAR-1 Accuracy	0	, SCLL $1 - \epsilon_2$	CIFAR-1 Accuracy	$\begin{array}{c} 00, \text{MCLL} \\ \mid 1 - \epsilon_2 \end{array}$
MoCo	93.12%		95.64%	61.82%	75.34%
BLIP-2	95.84%		99.91%	69.85%	93.34%
PreActResNet-18	<u>94.78%</u>		<u>97.79%</u>	<u>64.33%</u>	80.84%

1127 1128

1129

1131

1130 G.5 COMPARISON WITH SEMIREWARD

We further compare the performance of PLNL with one of the recently published SSL method
SemiReward Li et al. (2023b). It can be seen that PLNL still outperforms SemiReward significantly in selection ratio and average size of NLS.

Figure 4: The experiments is conducted on CIFAR-10 with single complementary labels (SCLL). (a) shows that selected ratio of PLNL trenscends Fixmatch, Freematch and SemiReward significantly. (b) shows that average size of NLS of PLNL is significantly larger due to specially designed technique NLE for enhancing the untrustworthy negative labels. Nearly all negative labels are revealed at the end of training, almost reaching 9 negative labels for each instances in CIFAR-10.

DEVIATION REPORTS OF TABLE 3 AND TABLE 4 Η

Table 11: The performance of PLNL with single network on two settings.

Method	CIF	AR-10 CLL	CIFAR-100 MCLL		
	η	$ $ $1-\epsilon_1$	\mid η	$1-\epsilon_1$	
Single	84.65±0.12%	90.21±0.09%	67.43±0.24%	70.62±0.31%	
Two-view	93.40±0.14%	96.79±0.08%	76.08±0.22%	79.84±0.41%	

Table 12: Classification accuracy of degenerated methods on three settings.

Method	STL-10 SCLL	CIFAR-10 SCLL	CIFAR-100 MCLL
PLNL	55.25±0.35%	94.78±0.12%	64.33±0.43%
PLNL v1	49.25±0.41%	$93.75 {\pm} 0.08\%$	63.09±0.27%
PLNL v2	49.82±0.39%	$92.01{\pm}0.12\%$	58.94±0.31%
PLNL v3	53.22±0.35%	$94.28 {\pm} 0.10\%$	63.14±0.32%
POCR	34.96±0.32%	94.15±0.09%	53.16±0.11%

¹¹⁸⁸ I DETAILED DERIVATION OF EQUATION 30

1197 This step is due to the definition of CLL loss function:

$$\mathcal{L}_{CLL}(f(oldsymbol{x}),\widehat{ar{Y}}_i) = \sum_{y
otin \widehat{ar{Y}}_i} rac{1}{K - |\widehat{ar{Y}}_i|} \ell(f(oldsymbol{x}),y).$$

 $= \frac{1}{N} \sum_{i=1}^{N} \sum_{y \notin \widehat{Y}_i} \frac{1}{K - |\widehat{Y}_i|} \ell(f(\boldsymbol{x}), y).$

(47)

 $\widehat{R}'(f) = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i), \widehat{\overline{Y}}_i)$

Then we have:

$$\widehat{R}'(f) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_{i}), y_{i}) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \notin \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}, c \neq y_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \frac{K - |\widehat{Y}_{i}| - 1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), y_{i}) \right] \\
+ \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_{i} \in \widehat{Y}_{i}) \left[\sum_{c \notin \widehat{Y}_{i}} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) - \ell(f(\boldsymbol{x}_{i}), y_{i}) \right].$$
(48)

The first term is the loss on the ground-truth label, summing up to the empirical risk $\hat{R}(f)$. The second and third term is the difference between empirical risk $\hat{R}(f)$ and practical empirical risk with pseudo-labeling error $\hat{R}'(f)$.

1215 Since pseudo-labeling error may occur during PLG and NLE processes, the ground-truth label of x_i 1216 may be mistakenly included or correctly excluded in the enhanced negative label set \hat{Y}_i . We discuss 1218 two situations separately (i.e. $\mathbb{I}(y_i \in \hat{Y}_i)$ and $\mathbb{I}(y_i \notin \hat{Y}_i)$). We extract the empirical risk term $\hat{R}(f)$ 1219 by subtracting the equivalent value in the second and third terms, which is shown between square 1220 brackets above.

1221 As $\ell(f(x), y)$ is bounded by a positive value *B*. We can scale up the second and third terms by 1222 directly removing the terms after minus sign, which is double underlined above, which will yield the 1223 following line.

$$\widehat{R}'(f) \leq \widehat{R}(f) + \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i \notin \widehat{Y}_i) \sum_{c \notin \widehat{Y}_i, c \neq y_i} \frac{1}{K - |\widehat{Y}_i|} \ell(f(\boldsymbol{x}_i), c)$$

$$+\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}(y_i\in\widehat{\bar{Y}_i})\sum_{c\notin\widehat{\bar{Y}_i}}\frac{1}{K-|\widehat{\bar{Y}_i}|}\ell(f(\boldsymbol{x}_i),c).$$
(49)

1234 Jensen's Inequality for concave function φ :

$$\varphi\left(\sum_{i=1}^{n} g(x_i)\lambda_i\right) \ge \sum_{i=1}^{n} \varphi(g(x_i))\lambda_i,$$

where $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1, \lambda_i \ge 0.$

Here, the concave function is
$$\varphi(|\widehat{Y}_i|) = \frac{1}{K - |\widehat{Y}_i|}$$
, where $\lambda_i = \frac{1}{N}$, since $\sum_{c \notin \widehat{Y}_i, c \neq y_i} \ell(f(\boldsymbol{x}_i), c)$
indicates the sum of binary losses on non-complementary labels $c \notin \widehat{Y}_i$, excluding the ground-truth

label $c \neq y_i$. The number of non-complementary labels is $K - |\hat{Y}_i|$, excluding the ground-truth label will get $K - |\widehat{Y}_i| - 1$, which means computing the binary loss $\ell(f(\boldsymbol{x}_i), c)$ for $K - |\widehat{Y}_i| - 1$ times. Finally, since ℓ is bounded by B, we can make such a scale:

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{c \notin \widehat{Y}_{i}, c \neq y_{i} \\ i \neq y_{i} }} \frac{1}{K - |\widehat{Y}_{i}|} \ell(f(\boldsymbol{x}_{i}), c) \\
\leq \frac{1}{N} \sum_{i=1}^{N} \frac{K - |\widehat{Y}_{i}| - 1}{K - |\widehat{Y}_{i}|} B \\
\leq \frac{K - \frac{1}{N} \sum_{i=1}^{N} |\widehat{Y}_{i}| - 1}{K - \frac{1}{N} \sum_{i=1}^{N} |\widehat{Y}_{i}|} B.$$
(50)

Since we have defined that $\bar{s} = \frac{1}{N} \sum_{i=1}^{N} |\hat{Y}_i|$ and $\mathbb{I}(y_i \notin \hat{Y}_i) = 1 - \epsilon$, we have

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}(y_{i}\notin\widehat{Y}_{i})\frac{K-\frac{1}{N}\sum_{i=1}^{N}|\widehat{Y}_{i}|-1}{K-\frac{1}{N}\sum_{i=1}^{N}|\widehat{Y}_{i}|}B$$

$$\leq (1-\epsilon)\frac{K-\bar{s}-1}{K-\bar{s}}B.$$
(51)

The third term in Eq.(48) follows similar scaling procedures.