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ABSTRACT

Text embeddings enable various applications, but their performance deteriorates
on longer texts. In this paper, we find that the performance degradation is due to
a phenomenon called Length Collapse, where longer text embeddings collapse
into a narrow space. This collapse results in a distributional inconsistency be-
tween embeddings of different text lengths, ultimately hurting the performance
of downstream tasks. Theoretically, by considering the self-attention mecha-
nism inherently functions as a low-pass filter, we prove that long sequences
increase the attenuation rate of the low-pass filter effect of the self-attention
mechanism. With layers going deeper, excessive low-pass filtering causes the
token signals to retain only their Direct-Current (DC) component, which means
the input token feature maps will collapse into a narrow space, especially in
long texts. Based on the above analysis, we propose to mitigate the undesirable
length collapse limitation by introducing a temperature in softmax(·), which
achieves a higher low-filter attenuation rate. The tuning-free method, called
TempScale, can be plugged into multiple transformer-based embedding mod-
els. Empirically, we demonstrate that TempScale can improve existing em-
bedding models especially on long text inputs, bringing up to 0.53% perfor-
mance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB)
and 0.82% performance gains on 4 datasets from LongEmbed, which specifi-
cally focuses on long context retrieval. The source code is available at https:
//anonymous.4open.science/r/Length_Collapse-22D2.

1 INTRODUCTION

Text embeddings—dense vectors that preserve the semantic information of given texts—have become
fundamental to many downstream natural language processing (NLP) applications, including text
analysis (Aggarwal & Zhai, 2012; Angelov, 2020), question answering (Tan et al., 2023; Xu et al.,
2024), web search (Zhao et al., 2023; Yates et al., 2021), and retrieval-augmented generation (Gao
et al., 2023; Fan et al., 2024). Typically, embeddings are generated by pre-trained language models
(PLMs), which produce fixed-dimensional embeddings regardless of the input text length. In practice,
we expect PLMs to perform consistently on texts of varying lengths in any downstream applications.

Unfortunately, we observe that popular transformer-based embedding models perform poorly on
longer texts. As shown in Figure 1a, using the classification task on the IMDB dataset from the
Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023) leaderboard as an example,
we evaluate the performance of mainstream embedding models on test sets grouped by different text
lengths. The experimental results reveal that models of different capabilities and context window sizes
consistently exhibit performance degradation as text length increases. For instance, the BGE (Xiao
et al., 2023) model’s classification accuracy drops significantly from 75.6% in the length range [0,
100) tokens to 59.0% in the range [400, 500) tokens, indicating a substantial decline of 16.6% points.

We attribute this performance degradation to a biased behavior of embedding models: embeddings of
longer texts tend to cluster together, a phenomenon we term as length collapse. To verify this, we
conduct controlled experiments depicted in Figures 1b and 1c. Figure 1b shows that embeddings of
longer texts are more densely clustered near the origin in the dimensionally reduced embedding space,
indicating a collapse that reduces variance among embeddings. Details of the rewriting process can be
found in Appendix E.1. Figure 1c further demonstrates that embeddings of longer texts exhibit higher
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Figure 1: (a) Performance of embedding models on IMDb classification across length intervals [0,
100) to [400, 500). The bluer a cell, the higher the classification accuracy. (b) t-SNE visualization
of embeddings from the BGE on NFCorpus dataset, with ● for the original dataset and ▲ and
× for LLM-summarized versions, retaining semantic meaning with varying lengths. L indicates
average text length, and D denotes mean distance to the origin. (c) Mean pairwise cosine similarity
of embeddings from the BGE model across text length intervals on the corpus from NFCorpus, with
an X-axis for length intervals and a Y-axis for average pairwise similarity.

cosine similarity to each other, leading to smaller differences between them. This collapse results in a
distributional inconsistency between embeddings of different text lengths, adversely affecting the
performance of various downstream tasks (Yan et al., 2021) such as text classification.

To study how text length affects the distribution of embeddings, we conduct a rigorous analysis of the
self-attention mechanism in Fourier space (Wang et al., 2022b) (Section 2.2). Based on the finding
that cascading self-attention blocks are equivalent to repeatedly applying a low-pass filter, we further
prove that the attenuation rate of the low-pass filter is proportional to the largest singular value σa of
the high-frequency components (HC) in self-attention matrix. Furthermore, assuming that the input
keys and query tokens follow a Gaussian distribution, we can prove that the σa value decreases as
text length increases. As a result, longer input texts retain more of the Direct Component (DC) in the
token signals, which means that the embeddings at the output layer will collapse to a very narrow
space. This theoretical proof explains the observations in Figure 1b.

Building on this theoretical analysis, we propose a simple yet effective solution named Temperature
Scaling (TempScale) to mitigate the length collapse phenomenon. TempScale manipulates the
calculated attention map by dividing the attention scores by a parameter named temperature smaller
than 1 before applying the softmax(·) operator. This adjustment increases the variance of the
attention score matrix, as shown in Eqn. 3, leading to a larger σs for the self-attention matrix. As a
result, the self-attention matrix has a lower filter attenuation rate, leading to more diverse embeddings.
As shown in Figure 1c, a smaller temperature enables embeddings to exhibit lower pairwise cosine
similarity and results in a more even distribution, thereby alleviating length collapse.

Our contributions can be summarized as follows:

• We uncover the length collapse phenomenon and then establish a rigorous theoretical analysis
from the spectral domain and show that the length collapse is due to the low-pass filtering strength
of self-attention increases as the sequence length increases, leading the token signals retain only
their DC component.

• We present TempScale, a theoretically grounded scaling technique that incorporates a temperature
parameter into the softmax(·) function to achieve a higher attenuation rate in the self-attention
matrix. TempScale is efficient, easy to use, tuning-free, and able to generalize across different
embedding models compared to extending context window methods.

• We conduct extensive experiments by integrating TempScale with mainstream embedding models.
We demonstrate that TempScale can improve existing embedding models especially on long
text inputs, bringing up to 0.53% performance gains on 40 different datasets from Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al., 2023) and 0.82% performance gains on 4
tasks from LongEmbed (Zhu et al., 2024).
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2 LONG INPUTS LEAD TO HOMOGENEOUS EMBEDDINGS

In this section, we first present our notations and define the problem. Then, we introduce the Trans-
former structure in the mainstream embedding model and briefly explain the Fourier transform used
in (Wang et al., 2022b). Based on the Fourier transform, we show that the attention mechanism acts
as a low-pass filter, and longer input sequences strengthen the filtering effect, leading to increasingly
similar representations. This results in cosine similarity increasing with the length of the text.

2.1 PRELIMINARIES AND BACKGROUND

Notations. Let X ∈ Rn×d denote the input feature matrix, where n is the number of input tokens,
and d is the embedding dimension. Let xi ∈ Rd represent the vector corresponding to the i-th token
and zj ∈ Rn represent the token sequence corresponding to the j-th dimension, where i ∈ {1, . . . , n}
denotes the i-th row, and j ∈ {1, . . . , d} denotes the j-th column.

Transformer Architecture. In most modern embedding models (Chen et al., 2024; Xiong et al.,
2021), a bidirectional transformer architecture based on attention mechanisms is widely used. These
models generally consist of three key components: the embedding layer, a stack of transformer
encoder blocks incorporating Multi-Head Self-Attention (MSA) and Feed-Forward Networks (FFN),
and a pooling layer at the end to generate the final embedding representation of the input sequence.
The Self-Attention(SA) module is the fundamental part of MSA, which takes inputs consisting of
the token representations X from the previous layer, and it encodes each token by aggregating
information from other tokens based on the attention scores, formulated as below (Vaswani, 2017):

SA(X) = softmax

(
XWQ(XWK)T√

d

)
XWV , (1)

where WK ∈ Rd×dk , WQ ∈ Rd×dq , WV ∈ Rd×d are the key, query and value weight matrices,
respectively. The dimensions of the query and key vectors are denoted by dq and dk, while

√
d serves

as a scaling factor to adjust the magnitude of the dot product. The function softmax(·) normalizes
the attention scores row-wisely. Multi-Head Self-Attention (MSA) consists of SA heads, with their
outputs combined through a linear projection:

MSA(X) = [SA1(X) · · · SAH(X)]WO,

where the subscripts indicate the number of self-attention (SA) heads, H represents the total number
of heads, and WO ∈ RHd×d projects the combined multi-head outputs back to the hidden dimension.

Fourier Analysis. We use Fourier transform as the main analytic tool in this paper as used
in (Wang et al., 2022b). Let F : Rn → Cn represent the Discrete Fourier Transform (DFT),
with its inverse, the Inverse Discrete Fourier Transform (IDFT), denoted by F−1 : Cn → Rn.
Applying F to a token sequence z is equivalent to left multiplying a DFT matrix, where k-
th row of DFT matrix denotes the Fourier basis corresponding to a certain frequency fk =
[ e2πj(k−1)·0 . . . e2πj(k−1)·(n−1) ]⊤/

√
n ∈ Rn, and j is the imaginary unit. Let z̃ = Fz

represent the spectrum of z, where z̃dc ∈ C and z̃hc ∈ Cn−1 correspond to the first element and
the remaining elements of z̃, respectively. We define the Direct-Current (DC) component of the
input sequence z as DC[z] = z̃dcf1 ∈ Cn, and the complementary high-frequency component as
HC[z] = [ f2 · · · fn ] z̃hc ∈ Cn, consistent with the definition in (Wang et al., 2022b).

In signal processing, a low-pass filter is a system that attenuates the high-frequency components
of a signal while retaining the low-frequency components. In this paper, we specifically define a
low-pass filter as one that preserves only the DC component DC [z], while diminishing all other
high-frequency components HC [z]. A more precise definition is provided in Definition 1.
Definition 1. Let f : Rn → Rn be an endomorphism with f t obtained by applying f for t times.

The function f acts as a low-pass filter if and only if limt→∞
∥HC[ft(z)]∥2

∥DC[ft(z)]∥2
= 0 for all z ∈ Rn.

For additional background information, please refer to Appendix A.

2.2 THEORETICAL ANALYSIS ON LENGTH COLLAPSE

Overview. In this subsection, we aim to demonstrate that increasing the sequence length n accelerates
the rate of low-pass filtering in the attention matrix, leading to greater similarity in text embeddings
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Figure 2: Visualization of the intensity of high-frequency components and their theoretical upper
bounds. The blue line is defined by log(∥HC [Xl+1]∥F /∥HC [Xl]∥F ), and the red line is estimated
using the results in Theorem 2. More details can be found in Appendix E.2.

for longer texts, and provide a theoretical justification of self-attention based on its spectral-domain
effect. Based on the previous findings that self-attention is constantly a low-pass filter (Lemma 1),
which continuously erases high-frequency information, our main result is that the largest singular
value σa of HC [A] can influence the filtering rate, with a smaller σa indicating that self-attention
can eliminate more high-frequency information (Theorem 2). Furthermore, our analysis shows
that longer input sequences lead to a smaller σa value for the attention matrix, resulting in the
embedding of longer texts losing more feature expressiveness (Theorem 3). In conclusion, based
on the assumption that natural language texts exhibit relatively consistent means, we can infer that
longer texts tend to yield more similar representations (Corollary 4) and cause the length collapse.
Lastly, we discuss the impact of other modules in Transformer on length collapse and distinguish our
work from prior studies on similar collapse phenomena induced by deep layers in Transformers.

Formally, the following lemma demonstrates that the attention matrix generated by a softmax function
(e.g., Eqn. 1) acts as a low-pass filter, independent of the specific token features or context window.

Lemma 1. (Attention Matrix is A Low-pass Filter) Let A = softmax(P ), where P ∈ Rn×n. Then
A must be a low-pass filter. For all z ∈ Rn,

lim
t→∞

∥HC[Atz]∥2
∥DC[Atz]∥2

= 0.

Lemma 1 follows directly from the Perron-Frobenius theorem (Meyer, 2000). Since all elements of
the self-attention matrix are positive and each row sums to 1, the largest eigenvalue is 1. One can
see that repeatedly applying the self-attention matrix can be viewed as the forward process of the
embedding model. As the number of layers in the embedding model increases indefinitely, the final
output retains only the DC component and thus loses all the feature expressive power. More detailed
proofs of this lemma are provided in Theorem 1 in Wang et al. (2022b).

Understanding that self-attention matrices act as low-pass filters, we are interested in the extent to
which an SA layer suppresses high-frequency components. Additionally, we provide a filter rate to
illustrate the speed at which these high-frequency components are eliminated.

Theorem 2. (Filter Rate of SA) Let σa be the largest singular value of HC [A] and SA(X) =
AXWV the output of a self-attention module, we have

∥HC [SA(X)]∥F ≤ σa∥WV ∥2∥HC [X]∥F . (2)

The proof of Theorem 2 can be found in Appendix B.1. Theorem 2 suggests the high-frequency
intensity ratio to the pre- and post- attention aggregation is upper bounded by σa∥WV ∥2. When
σa∥WV ∥2 < 1, HC [X] converges to zero exponentially. We further present Figure 2 to justify our
results, showing that the upper bound is consistent with the trend observed in the actual values.

Based on the proof that a lower σs will lead to a higher filter-pass rate, we give proof that the σs will
decrease with input length n increases in the following theorem.

Theorem 3. (Filter Rate of Different Input Length n) Let XWQ and XWK be a Gaussian matrix,
where elements qij ∼ N (0, σ2

q ) and kij ∼ N (0, σ2
k),∀i, j. Let pij = q⊤

i kj/
√
d the attention

4
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score of pair i, j, whose variance can be expressed as σ2
s = σ2

qσ
2
k + Ccross, where Ccross is the

cross-covariance of the squared queries and keys (Goodman, 1960). Then we have

σa ≤
√√√√ n

2
√

1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

, (3)

where σa decreases with n increasing.

The proof of Theorem 3 is provided in Appendix B.2. Theorem 3 builds on the work of Fenton
(1960); Nahshan et al. (2024), which addresses the sum of log-normal variables. As the input length
n increases, σa decreases, leading to the suppression of more high-frequency information and a
reduction in feature expressiveness due to the low-pass filtering effect of the self-attention matrix. To
validate our conclusions, we sample texts of varying lengths and plot the σa values of the attention
matrix from the final layer of the model after inputting, as presented in Figure 5. The results indicate
that σa decreases as the text length increases, ultimately leading to a higher filtering rate.

To facilitate further analysis, we define the temperature of the SA defined in Nahshan et al. (2024) as:

τs =
1

σs
=

1√
σ2
qσ

2
k + Ccross

. (4)

Then denote p̃ij = pij/σs and each element in attention matrix A can be rewritten as follows:

Aij =
ep̃ij/τs∑n
k=1 e

p̃ik/τs
, (5)

where p̃ij ∼ N (0, 1) and σa increases with τs decreases. This implies that with a lower temperature
τs, the self-attention (SA) mechanism preserves more high-frequency components in the token signals,
thereby preventing collapse in long texts.
Corollary 4. (Length Collapse in Text Embeddings) Given two texts of length n, the cosine similarity
of their text embeddings tends to increase as n grows.

[0, 100)

[100, 200)

[200, 300)

[300, 400)

[400, 500)

0.91

0.92

0.93

0.94

0.95

0.96

Avg. Cosine Similarity

NFCorpus
SciFact
SCIDOCS

Figure 3: Mean pairwise co-
sine similarity of text embeddings
across length intervals, with embed-
dings computed as the mean of to-
ken embeddings from the model’s
word embedding matrix.

The proof of Corollary 4 can be found in Appendix B.3 and
is primarily based on the assumption that the mean of word
embeddings in natural language texts maintains a relatively
consistent representation. Specifically, as illustrated in Figure 3,
we get the text embedding by averaging the word embeddings
derived from the BGE model’s embedding matrix for a given
text. We then assess the similarity within specified length in-
tervals. The results indicate that as text length increases, the
similarity between any two embeddings also rises significantly,
supporting the validity of the assumption. According to The-
orem 3, with an increase in text length, text embeddings tend
to converge more rapidly towards the consistent representation
stated in our assumption, ultimately resulting in higher similar-
ity for longer texts. Additionally, we analyze text embeddings
for certain special sequences, such as repeated tokens. Our
findings reveal that even when two texts have no overlapping to-
kens, the cosine similarity of their text embeddings approaches
1 as the sequence length increases. A comprehensive analysis
of this phenomenon can be found in Appendix E.4. This further
corroborates the existence of length collapse, even when the
two sequences exhibit different mean word embeddings on average.

2.3 DISCUSSION

Other Components in Transformer. After discussing how self-attention contributes to length
collapse, we proceed to examine the influence of other modules in the Transformer, such as multi-
head, residual, and FFN. Fortunately, previous work (Wang et al., 2022b) has talked about whether
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Figure 5: Visualization of the value
of σa across different text length. τ
is defined in Eqn. 6 for scaling. See
more details in Appendix E.3

these components can effectively alleviate the low-pass filtering drawbacks. The proof demonstrates
that while these components help preserve high-frequency signals, they do not alter the fact that
the MSA block, as a whole, functions solely with the representational power of a low-pass filter.
Furthermore, the ability of these models to preserve high-frequency signals is solely determined by
their internal parameters and architecture, independent of the input text length. As a result, these
modules do not impact our analysis of length collapse in practical models.

Difference from Over-Smoothing in Deeper Layers. In previous research (Wang et al., 2022b), it
has been noted that a self-attention module acts as a low-pass filter, causing input feature maps to
gradually lose high-frequency signals as the model layers go deeper. Furthermore, other studies (Oono
& Suzuki; Cai & Wang, 2020) indicate that the node features of Graph Convolutional Networks
(GCNs) can become exponentially trapped in the null space of the graph Laplacian matrix. The
root cause of this phenomenon is that both graph Laplacian matrices and self-attention matrices
consistently exhibit a dominant eigenvector, commonly referred to as the DC component. While
these studies address over-smoothing in deeper layers, we focus on how the low-pass filtering process
changes as the input sequence lengthens, specifically examining over-smoothing in longer sequences.

3 MITIGATING LENGTH COLLAPSE VIA TEMPERATURE SCALING

As discussed in Section 2.2, self-attention matrix perform low-pass filtering, which narrows the
filter space embedding model can express. Furthermore, a longer sentence length will cause a more
narrow filter space, which results in the embedding model’s failure in long texts. To address the
problem, an intuitive idea is to increase the diversity of embeddings for long texts, making them
more distinguishable within the space. Inspired by Eqn. 5, we propose a scaling technique, called
Temperature Scaling (TempScale), which directly manipulates the attention map by multiplying τs
by a constant temperature τ less than 1. This slows down the filtering process by increasing σa.

Based on Eqn. 4, a smaller τs results in a larger σs which will further result in a larger σa based on
Eqn. 3. In other words, the low-pass filtering rate of the attention matrix decreases as τs decreases.
Inspired by this, TempScale introduces a temperature τ to re-scale the self-attention matrix A.
Formally, let A = softmax

(
XWQ(XWK)⊤√

d

)
denote a self-attention matrix. To decrease the low-

pass filtering rate of A, we apply a temperature coefficient τ to the logits before performing the
softmax operation. Specifically, for each row pi in the attention score matrix XWQ(XWK)⊤√

d
, we

compute the scaled logits by dividing by a temperature τ ∈ (0, 1], and then apply the softmax function
to obtain the attention weights:

A = softmax

(
XWQ(XWK)⊤

τ
√
d

)
, (6)

where a lower τ results a smaller τs and furthur a smaller rate of low pass filtering.

Intuitive Explanation. We present the effects of temperature scaling on two extreme cases to
illustrate how TempScale works. As shown in Figure 4, when scaling matrix A with a relatively large
τ , the elements in the final matrix A can be approximated as nearly equal. In this scenario, matrix

6
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Table 1: Average of the main metric (see Appendix C) per task on MTEB English subsets and
LongEmbd. Relative Improv. means percentage increase over the performance without TempScale
and improvements are highlighted with ▲ while decreasing values are denoted by ▼.

Class. Clust. Summ. STS BeirRetr. Rerank. LongEmbdRetr. Avg.
Num. Datasets (→) 8 11 1 10 2 4 4 40

window=512

ANCE 55.27 33.04 29.58 66.32 36.87 49.09 34.02 43.45
+ours(τ = 0.9) 55.37 33.28 29.56 66.47 36.86 49.25 33.93 43.53
Relative Improv. (%) 0.17 ▲ 0.73 ▲ -0.05 ▼ 0.22 ▲ -0.01 ▼ 0.32 ▲ -0.25 ▼ 0.18 ▲

GTR 55.10 38.65 29.67 70.11 44.98 54.23 37.33 47.15
+ours(τ = 0.8) 55.51 39.52 29.83 70.26 45.61 54.16 37.33 47.46
Relative Improv. (%) 0.73 ▲ 2.26 ▲ 0.54 ▲ 0.21 ▲ 1.41 ▲ -0.13 ▼ 0.01 ▲ 0.65 ▲

GIST 64.75 44.77 31.14 75.61 52.77 58.55 38.21 52.26
+ours(τ = 0.9) 65.00 44.64 31.17 75.59 53.41 58.60 38.35 52.39
Relative Improv. (%) 0.38 ▲ -0.29 ▼ 0.09 ▲ -0.03 ▼ 1.21 ▲ 0.08 ▲ 0.36 ▲ 0.26 ▲

BGE 64.79 45.80 31.03 75.88 55.29 58.87 37.46 52.73
+ours(τ = 0.8) 64.89 45.61 31.51 75.68 56.00 58.97 38.35 53.00
Relative Improv. (%) 0.16 ▲ -0.42 ▼ 1.53 ▲ -0.26 ▼ 1.29 ▲ 0.17 ▲ 2.40 ▲ 0.51 ▲

window=4k

E5 61.72 38.82 30.58 71.77 47.22 53.12 56.01 51.32
+ours(τ = 0.8) 62.15 40.22 31.11 72.17 47.06 53.47 56.88 51.87
Relative Improv. (%) 0.70 ▲ 3.61 ▲ 1.74 ▲ 0.55 ▲ -0.33 ▼ 0.65 ▲ 1.56 ▲ 1.07 ▲

Avg Improv. (%) 0.43 ▲ 1.18 ▲ 0.77 ▲ 0.14 ▲ 0.71 ▲ 0.22 ▲ 0.82 ▲ 0.53 ▲

A applied to X filters out all high-frequency information, causing all token embeddings to become
identical. Similarly, when scaling with a smaller temperature, matrix A no longer acts as a weighted
sum of all token representations but instead selects the representation of a particular token, allowing
for the retention of more high-frequency information. If we view the attention matrix as an adjacency
matrix, a higher temperature leads to a denser graph, facilitating more information exchange between
nodes and resulting in the loss of high-frequency information (Oono & Suzuki; Cai & Wang, 2020).
In contrast, a lower temperature produces a sparser graph, allowing self-attention to preserve more
high-frequency information at individual nodes and prevent over-smoothing between nodes. For
further discussion on TempScale and other methods, see Appendix F.

4 EXPERIMENTS

In this section, we first conduct experiments to validate the effectiveness of our TempScale on
MTEB (Muennighoff et al., 2023) and LongEmbed. Then we analyze how different tasks can benefit
from TempScale and how different τ affect performance on datasets from LongEmbed (Zhu et al.,
2024). Finally, we adaptively set τ based on text length n to validate our theoretical analysis.

4.1 CAN TEMPSCALE BENEFIT EMBEDDING MODELS?

Experiment Settings. For long context retrieval, we use 4 real-world tasks curated from long-form
QA and summarization in LongEmbed (Zhu et al., 2024) to access embedding models’ factuality
in short-query and long-document settings. For other embedding tasks, we consider six other tasks,
including classification, clustering, summarization, semantic textual similarity (STS), retrieval, and
reranking, comprising 36 datasets from MTEB (Muennighoff et al., 2023). To comprehensively eval-
uate TempScale, we select several representative Transformer-based embedding models, including:
(1) ANCE (Xiong et al., 2021); (2) GTR (Ni et al., 2022); (3) GIST (Solatorio, 2024); (4) BGE (Xiao
et al., 2023); (5) E5 (Zhu et al., 2024). These models are fine-tuned from various pretrain language
models, including BERT (Kenton & Toutanova, 2019), RoBERTa (Liu et al., 2019), and T5 (Chung
et al., 2024). More descriptions of the datasets and models can be found in Appendix D. When
evaluating the embedding models, we set the same τ on the softmax function for the attention modules
across all layers within the range of {0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Unless otherwise specified, all
temperatures used for TempScale are set to 0.8. The metrics used for different tasks are consistent
with MTEB and can be found in Appendix C.
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Results. We select the optimal temperature τ for each model based on their performance across all
tasks and organize the experimental results as shown in Table 1. The results show that these embedding
models can benefit from our proposed method TempScale across various general tasks with an average
improvement of 0.53% and across long context retrieval datasets with an average improvement of
0.82%. In these tasks, some datasets, such as those for STS, have an average text length of only
around 10 tokens, whereas the texts in LongEmbed generally exceed 1000 tokens. Our method
proves effective across both, demonstrating that using TempScale not only prevents long text collapse
but also enhances the embeddings for short texts, leading to improved performance in downstream
tasks. In addition, larger context window sizes lead to greater performance improvements, with E5
showing the highest improvement of 1.07%. This could be attributed to larger windows providing
more and longer data for adjustment, which allows for greater performance improvement. Overall,
our method, TempScale, is designed specifically for long texts but is also capable of improving model
performance in general embedding tasks.

4.2 FURTHER ANALYSIS

ANCE GTR GIST BGE E5
0.2

0.4

0.6

100 100 100 100 100200 200 200 200 200300 300 300 300 300

Avg. Entropy
Raw
Increase
Decrease

ANCE GTR GIST BGE E5
80

85

90

95

100 100 100 100 100200 200 200 200 200300 300 300 300 300

Avg. Acc.
Raw
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Figure 6: Probability entropy and classification accuracy of models across different length intervals
on AmazonPolarity dataset. Each model has bars representing intervals of 100 in length, with 500
text samples per interval, covering a range from 0 to 300. Bars represent raw outputs, with green and
red hatching indicating increases and decreases after TempScale, respectively.

How do the classification and clustering tasks benefit from TempScale? For data grouping tasks
like classification and clustering, in the case of N -class tasks, we can think of the model as learning
N classification boundaries. The farther the text embedding is from the boundary, the closer the
output probability approaches 1 or 0. As shown in Figure 6 (left), we plot the entropy of the model
output probabilities across different length intervals. The model outputs higher entropy for longer
texts, which may be because the embeddings of longer texts are positioned closer to the center of the
space as described in Figure 1b, resulting in a shorter distance to various classification boundaries.
Meanwhile, in Figure 6 (right), we can also observe that accuracy and entropy follow the same
trend: the model achieves higher accuracy when it has lower entropy. In other words, the model
performs better if the text embeddings are farther from the boundary. After applying TempScale, a
decreased entropy will result in increased accuracy. This further supports the relationship between
entropy and accuracy in classification tasks. Moreover, if the model exhibits a more severe length
collapse phenomenon, meaning a greater performance drop on longer texts, the more performance
improvement it experiences after applying TempScale. This suggests that one possible reason
TempScale is effective on shorter text datasets is that it adjusts the distribution differences between
texts of varying lengths. As shown in Figure 1c, after applying TempScale, the distribution of text
embeddings across different length intervals becomes more uniform, which facilitates the model in
learning length-agnostic parameters.

Table 2: Ablation study on LongEmbed. “w/o quer” means no query embedding adjustment, and
“w/o doc” means no document embedding adjustment.

(a) QMSum
Model ANCE GTR GIST BGE E5
TempScale 23.18 20.23 17.85 23.34 34.11
w/o query 22.70 20.27 17.37 23.13 33.86
w/o doc 21.78 19.42 16.83 22.89 31.58
Raw 21.89 19.54 16.61 22.64 31.27

(b) SummScreenFD
Model ANCE GTR GIST BGE E5
TempScale 55.42 62.46 55.55 58.93 93.48
w/o query 53.11 61.91 55.48 57.15 93.57
w/o doc 55.02 62.47 59.12 60.14 93.75
Raw 53.90 61.81 58.58 57.74 93.87
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Table 3: Average ranking position with 20% longest document across different temperature τ .
(a) NFCorpus

Temperature τ 1.0 0.9 0.8

ANCE 1,306.2 1,291.6 1,278.1
GTR 1,132.8 1,120.5 1,113.1
GIST 1,111.0 1,112.8 1,113.8
BGE 998.3 978.9 965.1
E5 1,193.3 1,172.3 1,162.8

(b) SciFact
Temperature τ 1.0 0.9 0.8

ANCE 80.7 78.7 81.5
GTR 81.7 76.6 72.4
GIST 14.4 12.4 11.3
BGE 13.3 12.3 12.4
E5 66.8 47.5 38.9

0.6 0.8 1.0
temperature τ

56

61

66

N
D
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10
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BGE
Long Query
Short Query

Figure 7: Results on SummScreenFD.

How do the text matching tasks benefit from TempScale?
Text matching tasks, like retrieval and STS, compute rele-
vance scores by embedding two texts separately. We conduct
an ablation study on LongEmbed to explore how Temp-
Scale affects each part of the text. As shown in Table 2a,
the model’s performance under the “w/o query” setting is
generally better than that under the “w/o doc” setting. In
contrast, Table 2b shows the opposite phenomenon. This
difference arises from the query length distribution; QMSum
has shorter queries, while SummScreenFD features longer
ones. Therefore, SummScreenFD can gain more improve-
ments through TempScaling on longer queries. To verify this explanation, we calculate average
NDCG@100 for the longest and shortest 20% of queries on SummScreenFD, as shown in Figure 7.
The experimental results demonstrate that a lower temperature brings increasing performance im-
provements for long queries, further confirming the effectiveness of our method on long texts. Similar
phenomena on more models are provided in Appendix E.5.

In addition to improvements on longer queries, we are also interested in the performance changes
on longer documents. Since most documents in LongEmbed are very long and are truncated due
to the context window size, we select NFCorpus and SciFact to investigate the impact. As shown
in Table 3, we record the average ranking position of the longest positive documents after applying
TempScale at different temperatures, where a lower value indicates the documents are ranked higher.
The experimental results show that a lower temperature causes the model to rank relevant long
documents higher. This could be because length collapse reduces the distinction between long
documents, allowing shorter texts with more contextual representations to be ranked higher. Our
method, however, enables long texts to also become more contextual, thereby reducing the bias
introduced by length. In summary, TempScale enhances the performance of long documents and long
queries by introducing TempScale, which helps the embeddings avoid collapsing into a narrow space.

0.6 0.8 1.0
Temperature τ

84

86

88

A
cc

.(%
)

ANCE

Short
Medium
Long

Figure 8: Results on AmazonPolarity.

Can the temperature be set based on the length of the
text? In the previous experiments, we use the same temper-
ature τ for scaling all texts in the same task. However, our
analysis indicates that texts of different lengths have varying
filtering rates, so a natural idea is to use different tempera-
tures for texts of different lengths. As shown in Figure 8, We
plot the performance trend for texts under the same settings
in Figure 6 as the temperature varies. The results indicate
that a higher temperature is optimal for short texts, while a
lower temperature is preferable for long texts, as confirmed
by the results in Figure 7. More results on other models are
provided in Appendix E.6. When performing retrieval tasks,
we can also set different temperatures for queries and documents to achieve better performance. As
shown in Figure 9, on the QMSum dataset, we can consistently achieve better performance by setting
a lower temperature for queries. In the Appendix E.6, we provide more results on SummScreenFD,
demonstrating that a lower temperature on documents can also induce a higher performance gain.

5 RELATED WORK

Text Embedding Models. Embeddings are generated by pre-trained language models (PLMs), which
produce fixed-dimensional embeddings regardless of the input text length, laying the foundation
of numerous NLP applications. Early works on text embeddings lack context awareness and are
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Figure 9: Relative performance compared to the raw results with varying query (Q Temperature) and
document (D Temperature) temperatures using different models on QMSum.

thus commonly labeled as word embedding models (Pennington et al., 2014). Modern embedding
models (Wang et al., 2022a; Xiao et al., 2023) incorporate context awareness into language models
through self-attention mechanisms, serving as the foundation for the latest embedding models.
These models, based on Transformer architectures like BERT (Kenton & Toutanova, 2019) and
RoBERTa (Liu et al., 2019), are first pre-trained on large-scale weakly supervised text pairs using
contrastive loss (Gao et al., 2021), then fine-tuned on small scale but high-quality datasets. More
recently, (Muennighoff et al., 2024) investigates the integration of generative and embedding tasks in
large language models, introducing transformer-based GritLM, which enhances performance in both
areas. Among the diverse range of pre-trained transformers (Wolf et al., 2020), self-attention plays a
crucial role, and this paper focuses on how this module contributes to length collapse.

Context Window Extension for Embedding Model. Despite transformer-based embedding models
excelling in generating vector representations, they are typically constrained by a narrow context
window of around 512 input tokens (Wang et al., 2022a; Xiao et al., 2023; Ni et al., 2022). This
limitation significantly restricts their use in scenarios that require processing long inputs, such as ex-
tensive Wikipedia entries or meeting transcripts (Saad-Falcon et al., 2024; Zhu et al., 2024). Previous
work attributes this poor performance to limited context windows and attempts to extend the window
size. Current initiatives to develop long-context embedding models generally begin with acquiring a
long-context backbone model, either by pre-training from scratch with long inputs (Günther et al.,
2023; Nussbaum et al., 2024; Chen et al., 2024) or utilizing existing models (Wang et al., 2024; Zhu
et al., 2024). This is followed by training the backbone model to generate embeddings. However, in
this paper, we discover that regardless of the model’s context window size, the model consistently
performs worse on longer texts than on shorter texts due to length collapse. Therefore, we aim
to improve the performance of long texts across all context window size models by analyzing and
addressing length collapse, rather than simply expanding context window size.

6 CONCLUSION AND FUTURE WORK

In this paper, we identify the phenomenon of length collapse, where embeddings of longer texts tend
to cluster together and propose practical solutions through Fourier domain analysis. Our theoretical
findings suggest that Multi-Head Self-Attention inherently performs stronger low-pass filtering as
the token sequence length increases, leading to patch uniformity issues in longer sentences. To this
end, we propose a technique called TempScale, which effectively reduces the low-pass filtering effect
by introducing a temperature parameter when applying softmax in the self-attention matrix. Our
extensive experiments validate the effectiveness of our methods and enhance the performance of
general embedding models on the MTEB and LongEmbed benchmarks. Overall, TempScale is a
crucial advancement in enhancing the performance of embedding models on longer texts.

Future work includes: 1) LLM-based embedding model: Current work focuses on embedding
models with bidirectional attention mechanisms. In the future, we plan to investigate length collapse in
LLM-based embedding models that utilize unidirectional attention mechanisms; 2) Tuning method:
The work in this paper relies on existing models and pre-trained parameters without using a training
dataset. In future work, we will focus on tuning the temperature for additional improvements. 3)
Analysis on more modules: We primarily investigate the impact of the self-attention module on
length collapse in this paper. Moving forward, we plan to explore the effects of additional modules in
transformers such as LayerNorm and FFN.
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A BACKGROUND INFORMATION ABOUT FOURIER ANALYSIS

In this appendix, we provide additional background information on Fourier analysis. Specifically,
consider the discrete Fourier transform (DFT) in the real-valued domain, denoted as F : Rn → Cn.
The DFT can be expressed in matrix form as shown below:

DFT =
1√
n



1 1 · · · 1
1 e2πj · · · e2πj(n−1)

...
...

. . .
...

1 e2πj(k−1)·1 · · · e2πj(k−1)·(n−1)

...
...

. . .
...

1 e2πj(n−1) · · · e2πj(n−1)2


,

and inverse discrete Fourier transform is DFT−1 = DFT⊤ = DFT . In signal processing, we can
regard matrices as multi-channel signals. For example, X ∈ Rn×d means d-channel n-length signals.
When the DFT and inverse DFT are applied to multi-channel signals, each channel is transformed
independently. That is, F(X) = [F(x1) · · · F(xd)] = DFT ·X .

Hereby, we can independently operators DC [·] and HC [·] on echo channel using the matrices in Eqn.
7. Then we can write DC [·] as below:

DC [x] = DFT−1 diag(1, 0, · · · , 0)DFTx

=
1

n
11Tx.

Conversely, we can denote HC [·] as:

HC [x] = DFT−1 diag(0, 1, · · · , 1)DFTx

= DFT−1(I − diag(1, 0, · · · , 0))DFTx

= (I − 1

n
11T )x.

B DETAILED PROOFS

B.1 PROOF OF THEOREM 2

We start our analysis by providing a lemma.
Lemma 5. The following holds ∥AB∥F ≤ ∥A∥2∥B∥F and ∥AB∥F ≤ ∥A∥F ∥B∥2.

Proof. Denote B = (b1 · · · bn) and we have AB = (Ab1 · · · Abn). From the definition
of the spectral norm, we have:∥A∥2 ≥ ∥Abi∥2

∥bi∥2
. Taking the average of the right-hand side, we

obtain: ∥A∥22 ≥
∑n

i=1
∥bi∥2

2

∥B∥2
F

∥Abi∥2
2

∥bi∥2
2
. This implies: ∥A∥22∥B∥2F ≥

∑n
i=1∥Abi∥22 = ∥AB∥2F .

Finally, the last step utilizes the result ∥A∥2F =
∑

i,j |aij |2 =
∑n

j=1∥aj∥22. Because both the
spectral norm and the Frobenius norm of a matrix remain unchanged under transposition, we have
∥AB∥F = ∥B⊤A⊤∥F ≤ ∥BT ∥2∥AT ∥F = ∥A∥F ∥B∥2.

Theorem 6. (Filter Rate of SA) Let σa be the largest singular value of HC [A]. Define SA(X) =
AXWV as the output of a self-attention module, then

∥HC [SA(X)]∥F ≤ σa∥WV ∥2∥HC [X]∥F . (7)

Proof. First, we write X = DC [X] +HC [X] = 1
n11

⊤X +H , where H = HC [X] represents
the remaining part of the original signals.
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HC [SA(X)] =

(
I − 1

n
11T

)
AXWV (8)

=

(
I − 1

n
11T

)
A(

1

n
11⊤X +H)WV (9)

=
1

n

(
I − 1

n
11T

)
A11⊤XWV +

(
I − 1

n
11T

)
AHWV (10)

=

(
I − 1

n
11T

)
AHWV (11)

Therefore,

∥HC [SA(X)]∥F =

∥∥∥∥(I − 1

n
11T

)
AHWV

∥∥∥∥
F

(12)

≤
∥∥∥∥(I − 1

n
11T

)
A

∥∥∥∥
2

∥WV ∥2∥H∥F (13)

= σa∥WV ∥2∥H∥F (14)

The Eqn. 13 leverages inequality in Lemma 5.

B.2 PROOF OF THEOREM 3

Theorem 7. (Filter Rate of Different Input Length n) Let XWQ and XWK be a Gaussian matrix,
where elements qij ∼ N (0, σ2

q ) and kij ∼ N (0, σ2
k),∀i, j. Let xij = q⊤

i kj/
√
d the attention

score of pair i, j, whose variance can be expressed as σ2
s = σ2

qσ
2
k + Ccross, where Ccross is the

cross-covariance of the squared queries and keys (Goodman, 1960). Then we have

σa ≤
√√√√ n

2
√

1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

, (15)

where σa decreases with n increasing.

Proof. First we have

σa =

∥∥∥∥(I − 1

n
11T

)
A

∥∥∥∥
2

(16)

≤
∥∥∥∥I − 1

n
11T

∥∥∥∥
2

∥A∥2 (17)

≤ ∥A∥F (18)

The Eqn. 18 leverages
∥∥I − 1

n11
T
∥∥
2
= 1 and ∥A∥2 ≤ ∥A∥F . Now we need to upper bound

∥A∥F . Generally, the product of two independent Gaussian variables has a density in the form of a
modiffed Bessel function of the second kind (Nahshan et al., 2024). When the vector dimensions
are sufficiently large, the Central Limit Theorem implies that the distribution of the dot product
between qi and kj can be approximated by a Gaussian distribution with zero mean and variance
σ2
s . As mentioned in Theorem 3, the variance of q⊤

i kj can be expressed as σ2 = σ2
qσ

2
k + Ccross,

where Ccross = Cov(q2,k2) − Cov(q,k)2 is the cross-covariance of the squared queries and
keys (Goodman, 1960). Thus we can suppose that each element pj ∼ N (0, σs) in the matrix
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XWQW⊤
KXT is independent, where j ∈ (1, · · · , n):

∥A∥F =

√√√√n

n∑
j=1

(
exj∑n
i=1 e

xi

)2

(19)

=

√
n

∑n
j=1 e

2xj

2
∑n

i=1

∑n
j=1,j ̸=i e

xi+xj +
∑n

j=1 e
2xj

(20)

=

√√√√√ nelnn+2σ2
s− 1

2 ln e
4σ2

s−1
n

2elnn(n−1)+σ2
s− 1

2 ln e
2σ2

s−1
n(n−1) + elnn+2σ2

s− 1
2 ln e

4σ2
s−1
n

(21)

=

√√√√ n

2
√
1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

. (22)

The derivation in Eqn. 21 primarily relies on the theorem from Fenton (1960), which addresses the
sum of log-normal variables. First, we have ex ∼ LogNormal(0, σ2

s) and e2x ∼ LogNormal(0, 4σ2
s).

Additionally, we assume that exi and exj are independent, leading to exi+xj ∼ LogNormal(0, 2σ2
s).

Now, considering the sum of log-normal variables, Fenton (1960)’s theorem provides that, for
moderate values of σ2, the sum of zero-mean i.i.d. log-normal variables can be approximated by
another log-normal distribution with mean µΣ and variance σ2

Σ, where:

σ2
Σ = ln

(
1

n

(
eσ

2

− 1
)
+ 1

)
; µΣ = lnn+ (σ2 − σ2

Σ)/2.

For moderate values of n and σ2, the variance σ2
Σ can be approximated as:

σ2
Σ ≈ ln

(
1

n

(
eσ

2

− 1
))

.

Thus, the sum
∑n

j=1 e
2xj follows a log-normal distribution:

n∑
j=1

e2xj ∼ LogNormal
(
lnn+ 2σ2

s −
1

2
ln

(
1

n

(
e4σ

2

− 1
))

, ln

(
1

n

(
e4σ

2

− 1
)))

.

Similarly, the sum
∑n

i=1

∑n
j=1,j ̸=i e

xi+xj follows:

n∑
i=1

n∑
j=1,j ̸=i

exi+xj ∼ LogNormal

(
lnn(n− 1) + σ2

s −
1

2
ln

(
e2σ

2
s − 1

n(n− 1)

)
, ln

(
e2σ

2
s − 1

n(n− 1)

))
.

From these, Eqn. 21 follows naturally. Finally, we have

σa ≤
√√√√ n

2
√

1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

,

where σa decreases with n increasing.

B.3 PROOF OF COROLLARY 4

Theorem 8. (Length Collapse in Text Embeddings) Given two texts of length n, the cosine similarity
of their text embeddings tends to increase as n grows.
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Proof. Given the two texts embeddings x1 and x2, we have

cos(x1,x2) =
(HC [x1] +DC [x1])

(
HC

[
xT
2

]
+DC

[
xT
2

])
∥x1∥2∥x2∥2

(23)

=
HC [x1]HC

[
xT
2

]
+DC [x1]DC

[
xT
2

]
∥x1∥2∥x2∥2

(24)

≥ α2√
α2 + α2

1

√
α2 + α2

2

, (25)

where α1 and α2 represent the maximum values in the frequency domain of HC [x1] and HC [x2]
and α represent the value of DC [x1] and DC [x2], respectively, after applying the discrete Fourier
transform. Eqn. 24 leverages that HC [·] and DC [·] are orthogonal. Eqn. 25 leverages that the
assumption the mean of word embeddings in natural language texts maintains a relatively consistent
representation. Thus HC [x1] and HC [x2] have the same value α after applying the discrete Fourier
transform. Finally, according to Theorem 3, α1 and α2 will gradually decrease with n grows, leading
to a higher cosine similarity between x1 and x2.

C DATASETS AND EVALUATION METRICS

Table 4 provides an overview of the datasets used in our experiments. Next, we give a brief description
of the tasks involved in the experiments and the corresponding datasets and evaluation metrics they
include.

C.1 CLASSIFICATION

In general, we use the provided embedding model to obtain a training set and a test set. The
embeddings of the training set are used to train a logistic regression classifier with a maximum of
100 iterations, which is then scored on the test set. The main evaluation metrics are accuracy, average
precision, and the f1 score.

AmazonPolarity (Zhang et al., 2015) consists of Amazon customer reviews, each labeled as either
“positive" or “negative."

Banking77 (Casanueva et al., 2020) dataset consists of online banking user queries labeled with one
of 77 specific intents.

Emotion (Saravia et al., 2018) comprises Twitter messages categorized by six fundamental emotions:
anger, fear, joy, love, sadness, and surprise.

Imdb (Maas et al., 2011) consists of extensive movie reviews categorized as either positive or
negative.

MassiveIntent (FitzGerald et al., 2022) is a multilingual dataset featuring a diverse array of utterances
from Amazon Alexa, each labeled with one of 60 different intents across 51 languages.

MassiveScenario (FitzGerald et al., 2022) dataset comprises a diverse collection of Amazon Alexa
user utterances, each labeled with one of 60 thematic intents, and supports 51 languages.

ToxicConversations 1 , sourced from a Kaggle competition, comprises comments from the Civil
Comments platform, complete with annotations indicating whether each comment is toxic.

TweetSentimentExtraction 2, a dataset from a Kaggle competition focuses on classifying tweets
into three categories: neutral, positive, and negative sentiments.

1ToxicConversations
2TweetSentimentExtraction
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C.2 CLUSTERING

Clustering aims at grouping a given set of sentences or textbfs into meaningful clusters by training
a mini-batch k-means model on the text embeddings. The model is scored using the v-measure
(Rosenberg & Hirschberg, 2007). Since the v-measure does not depend on the cluster labels, the
arrangement of the labels will not affect the score.

ArxivClusteringS2S, ArxivClusteringP2P, BiorxivClusteringS2S, BiorxivClusteringP2P, Medrx-
ivClusteringP2P, MedrxivClusteringS2S (Muennighoff et al., 2023). These datasets are tailored for
MTEB, utilizing titles or a combination of titles and abstracts from arXiv, bioRxiv, and medRxiv,
with clustering labels derived from human-assigned categories, emphasizing both main and secondary
classification levels.

RedditClustering (Geigle et al., 2021), a dataset consists of titles from 199 subreddits, is organized
into 25 splits, each featuring 10 to 50 classes, with every class containing between 100 and 1,000
sentences.

RedditClusteringP2P (Muennighoff et al., 2023), developed for the MTEB, consists of Reddit posts
combined with their titles, organized into ten splits featuring 10 and 100 clusters each, with a total of
1,000 to 100,000 posts, aimed at clustering based on subreddit affiliation.

StackExchangeClustering (Geigle et al., 2021), a dataset consisting of titles from 121 Stack
Exchange communities, is organized into 25 subsets, each containing 10 to 50 categories, with 100 to
1,000 sentences per category.

StackExchangeClusteringP2P (Muennighoff et al., 2023), designed for MTEB, comprises 10 splits
of posts from StackExchange, each containing 5,000 to 10,000 entries, clustered by subreddit based
on the combined content of titles and posts.

TwentyNewsgroupsClustering 3 consists of article titles from 20 different newsgroups, designed
for clustering tasks, and includes 10 splits with each split featuring between 1,000 and 10,000 titles
across the 20 categories.

C.3 RERANKING

Reranking involves inputting a query along with a series of relevant and irrelevant reference texts, then
sorting the results based on their relevance to the query. The provided model embeds the reference
texts, which are compared to the query using cosine similarity. Each query is scored, and the average
score across all queries is used to generate the final ranking. The evaluation metrics are MRR@k and
MAP, with MAP serving as the primary metric.

AskUbuntuDupQuestions 4 dataset comprises questions sourced from AskUbuntu, accompanied by
manually annotated labels that indicate whether pairs of questions are similar or dissimilar.

MindSmall (Wu et al., 2020) dataset is a comprehensive English resource designed for research in
news recommendation, focusing on ranking news articles based on the title of a currently read article
to suggest related content.

SciDocsRR (Cohan et al., 2020) is a dataset designed for ranking related scientific papers using their
titles as the primary basis for assessment.

StackOverflowDupQuestions (Liu et al., 2018) dataset focuses on identifying whether questions
tagged with Java, JavaScript, and Python on Stack Overflow are duplicates of existing queries.

C.4 RETRIEVAL

In retrieval task, each dataset consists of a corpus, queries, and a mapping of each query to relevant
documents. The task goal is to find these relevant documents based on a given query. When evaluating,
we first use the provided model to embed queries and corpus documents and then calculate the cosine
similarity to obtain relevance scores and rank the corpus documents for each query based on these

3https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
4https://github.com/taolei87/askubuntu
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scores. The evaluation metrics consists of nDCG@k, MRR@k, MAP@k, precision@k, and recall@k,
with nDCG@10 as the primary metric.

C.4.1 BEIR RETRIVAL

NFCorpus (Boteva et al., 2016) is a dataset that includes natural language queries sourced from
NutritionFacts, paired with annotated medical documents from PubMed, utilizing the original splits
from various types of content from NF, such as videos, blogs, and Q&A posts.

SciFact (Wadden et al., 2020) dataset evaluates scientific claims by matching them with evidence
sourced from research literature, specifically utilizing a set of 300 test queries and the complete
document collection from the original dataset.

C.4.2 LONGEMBD RETRIVAL

LongEmbed (Zhu et al., 2024) includes 4 real-world retrieval tasks curated from long-form QA
and summarization. The document in LongEmbed is much longer compared to BEIR. Thus, it can
effectively evaluate the capability of the embedding model on long texts.

LEMBNarrativeQARetrieval (Kočiskỳ et al., 2018) is a question-answering dataset featuring
lengthy narratives, averaging 50,474 words, that challenge models to comprehend and extract
information about characters and events dispersed throughout the stories.

LEMBQMSumRetrieval (Zhong et al., 2021) dataset focuses on generating summaries of meetings
based on specific queries, necessitating the extraction and synthesis of relevant information from
various segments of the conversation that cover multiple topics and participants.

LEMBSummScreenFDRetrieval (Chen et al., 2021) dataset consists of pairs of transcripts from TV
series and their corresponding human-crafted summaries, requiring the integration of dispersed plot
elements into concise narrative descriptions.

LEMBWikimQARetrieval (Ho et al., 2020) dataset is a complex question-answering resource that
includes questions requiring up to five reasoning steps, designed using specific templates to encourage
deep understanding rather than simple retrieval of information.

C.5 SEMANTIC TEXTUAL SIMILARITY (STS)

The task goal is to determine the similarity between a pair of sentences, where continuous scores
serve as labels, with higher values indicating greater similarity. The provided model embeds the
sentences, and their similarity is calculated using cosine similarity. The primary evaluation metric is
the Spearman correlation (Reimers et al., 2016).

STS12, STS13, STS14, STS15, STS16, STS17, STS22, STSBenchmark (Agirre et al., 2012; 2013;
Bandhakavi et al., 2014; Biçici, 2015; Nakov et al., 2016) 5 6 7 are collections of sentence pairs
designed to evaluate semantic textual similarity, with the former set focused on monolingual English
pairs and the latter two incorporating cross-lingual comparisons across multiple languages.

BIOSSES (Soğancıoğlu et al., 2017) comprises 100 pairs of sentences specifically focused on the
biomedical domain.

SICK-R (Dadas et al., 2020) , which stands for Sentences Involving Compositional Knowledge, com-
prises 100,000 diverse sentence pairs that exhibit rich lexical, syntactic, and semantic characteristics.

C.6 SUMMARIZATION

The input consists of a set of summaries written by humans and machines. The goal is to score
the machine-generated summaries. Use the provided model to embed the summaries. Calculate
the distance between each machine summary and all human summary embeddings. Retain similar

5https://alt.qcri.org/semeval2017/task1/
6https://competitions.codalab.org/competitions/33835
7https://github.com/PhilipMay/stsb-multi-mt/
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Table 4: Statistics of the experimental datasets used in the work.

Type Name Categ. #Lang. Train
Samples

Dev
Samples

Test
Samples

Train avg.
chars

Dev avg.
chars

Test avg.
chars

BEIR Retrival NFCorpus s2p 1 0 0 3,956 0 0 1,462.7
SciFact s2p 1 0 0 5,483 0 0 1,422.3

Classification

AmazonPolarityClassification p2p 1 3,600,000 0 400,000 431.6 0 431.4
Banking77Classification s2s 1 10,003 0 3,080 59.5 0 54.2
EmotionClassification s2s 1 16,000 2,000 2,000 96.8 95.3 96.6
ImdbClassification p2p 1 25,000 0 25,000 1,325.1 0 1,293.8
MassiveIntentClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
MassiveScenarioClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
ToxicConversationsClassification s2s 1 50,000 0 50,000 298.8 0 296.6
TweetSentimentExtractionClassification s2s 1 27,481 0 3,534 68.3 0 67.8

Clustering

ArxivClusteringP2P p2p 1 0 0 732,723 0 0 1,009.9
ArxivClusteringS2S s2s 1 0 0 732,723 0 0 74.0
BiorxivClusteringP2P p2p 1 0 0 75,000 0 0 1,666.2
BiorxivClusteringS2S s2s 1 0 0 75,000 0 0 101.6
MedrxivClusteringP2P p2p 1 0 0 37,500 0 0 1,981.2
MedrxivClusteringS2S s2s 1 0 0 37,500 0 0 114.7
RedditClustering s2s 1 0 420,464 420,464 0 64.7 64.7
RedditClusteringP2P p2p 1 0 0 459,399 0 0 727.7
StackExchangeClustering s2s 1 0 417,060 373,850 0 56.8 57.0
StackExchangeClusteringP2P p2p 1 0 0 75,000 0 0 1,090.7
TwentyNewsgroupsClustering s2s 1 0 0 59,545 0 0 32.0

LongEmbd Retrival

LEMBNarrativeQARetrieval s2p 1 0 0 10,804 0 0 326,753.5
LEMBQMSumRetrieval s2p 1 0 0 1,724 0 0 53,335.8
LEMBSummScreenFDRetrieval s2p 1 0 672 0 0 30,854.3 0
LEMBWikimQARetrieval s2p 1 0 0 500 0 0 37,445.6

Reranking

AskUbuntuDupQuestions s2s 1 0 0 2,255 0 0 52.5
MindSmallReranking s2s 1 231,530 0 107,968 69.0 0 70.9
SciDocsRR s2s 1 0 19,594 19,599 0 69.4 69.0
StackOverflowDupQuestions s2s 1 23,018 3,467 3,467 49.6 49.8 49.8

STS

BIOSSES s2s 1 200 200 200 156.6 156.6 156.6
SICK-R s2s 1 19,854 19,854 19,854 46.1 46.1 46.1
STS12 s2s 1 4,468 0 6,216 100.7 0 64.7
STS13 s2s 1 0 0 3,000 0 0 54.0
STS14 s2s 1 0 0 7,500 0 0 54.3
STS15 s2s 1 0 0 6,000 0 0 57.7
STS16 s2s 1 0 0 2,372 0 0 65.3
STS17 s2s 11 0 0 500 0 0 43.3
STS22 p2p 18 0 0 8,060 0 0 1,992.8
STSBenchmark s2s 1 11,498 3,000 2,758 57.6 64.0 53.6

Summarization SummEval p2p 1 0 0 2,800 0 0 359.8

scores as the model score for each individual machine-generated summary. Calculate the Spearman
correlation based on cosine similarity (Reimers et al., 2016) as the main metric.

SummEval (Fabbri et al., 2021) consists of summaries produced by advanced summarization models
trained on CNN and DailyMail articles.

D EMBEDDING MODELS

Table 5 provides the models used in the experiments and their publicly available links. Below is a
brief introduction to these models.

ANCE (Xiong et al., 2021) enhances dense retrieval by selecting challenging negative samples from
the entire corpus and asynchronously updating the Approximate Nearest Neighbor (ANN) index with
each training iteration, using a context window size of 512.

GTR (Ni et al., 2022) improves dual encoder performance for retrieval tasks by scaling up model size
while keeping a fixed bottleneck embedding, leading to significant improvements in out-of-domain
generalization, all within a context window size of 512.

GIST (Solatorio, 2024) consistently improves performance across different model sizes by leveraging
the strengths of large, resource-intensive models to enhance smaller ones, making advanced AI
technologies more accessible and cost-effective, all within a context window size of 512.

BGE (Xiao et al., 2023) offers a range of well-trained embedding models based on a BERT-like
architecture, enabling users to balance performance and efficiency for various applications while also
allowing easy fine-tuning. In our experiments, we use the gte-base-en-v1.5 model, which operates
with a context window size of 512.
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Table 5: Embedding models used in the experiments.

Model Name Publicly Available Link

ANCE https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
GTR https://huggingface.co/sentence-transformers/gtr-t5-base
GIST https://huggingface.co/avsolatorio/GIST-small-Embedding-v0
BGE https://huggingface.co/BAAI/bge-base-en-v1.5
E5 https://huggingface.co/dwzhu/e5-base-4k

E5 (Zhu et al., 2024) is a long-context embedding model fine-tuned to support 4k token inputs
while maintaining the original performance for shorter contexts, designed to advance research in
long-context embedding technologies. It uses a context window size of 4k.

E MORE EXPERIMENTS AND ANALYSIS

E.1 REWRITING PROCESS

To investigate the differences in embedding distributions across texts of varying lengths, we use
the Llama3 (i.e., Llama-3.1-8B-Instruct) (Dubey et al., 2024) model to rewrite the texts.
Specifically, we used two prompts, “Please express the given text in one sentence. No more than
10 tokens. {{original text}}” and “Please use few sentences to summarize the given text. {{original
text}}”, to summarize the texts. This rewriting allows the texts to retain the same semantics while
having lower lengths. By studying the differences in texts of varying lengths, we conclud that the
cause of the length collapse phenomenon is that longer texts cluster to each other in embedding space.

E.2 DETAILS ON FIGURE 2
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Figure 10: Visualization of the intensity of high-frequency components and their theoretical upper
bounds. The setting is the same with Figure 2.

To verify Theorem 2, we illustrate the high-frequency intensity of each layer’s output along with its
theoretical upper limit. Our visualization is based on the official checkpoint of 12-layer ANCE (Xiong
et al., 2021), GIST (Solatorio, 2024) and BGE (Chen et al., 2024). We use a logarithmic scale for the
purpose of a better view. Let Xl denote the output of the l-th layer. For red line, we directly calculate
log(∥HC [Xl+1]∥F /∥HC [Xl]∥F ) at each layer. In practice, models typically employ multi-head
attention, so we replace ∥WV ∥2 in Eqn. 2 with σ1H , where σ1 = maxHh=1∥W h

V ∥2. For blue line,
we obtain the coefficient σ1 with respect to network parameters and apply the logarithmic scale. To
summarize, Figure 2 imply an convergence rate, which is consistent with our Theorem 2. Figure 10
show the same trend as Figure 2, although the E5 model exhibits anomalies at deeper layers.

E.3 DETAILS ON FIGURE 5
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Figure 11: σa of HC [A] before the last layer across different text length under different τ setting.
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To verify Theorem 3, we visualize the value of σa across different text length. Our visualization is
based on the texts from NFCorpus. We sample 100 samples for each bin from 0 to 500 with a bin
size of 50. The σa value is computed as the average of the σa based on the attention of all heads
before the output of the final layer. To summarize, Figure 5 imply that σa shows a decreasing trend
as n increases, which is consistent with our Theorem 3. Moreover, σa also increases as τ decreases,
further validating our proposed method, TempScale. Figure 11 also show the same trend as Figure 5
and the E5 model shows an increasing σa with length, which may be due to anomalies in the deep
layer attention patterns.

E.4 MORE ANALYSIS ABOUT ASSUMPTION IN THEOREM 4
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Figure 12: The cosine similarity of embeddings of texts generated by repeating word “dog” and “cat”.

In Corollary 4, we hypothesize and verify that all natural language sequences tend to have a relatively
consistent representation. As a result, different texts tend to exhibit consistent low-pass signals after
losing high-frequency information, leading to ultimately consistent text embeddings. This leads to an
increase in cosine similarity for longer texts. However, as shown in Figure 12, we repeat the word
“dog” and “word” n times and calculate the similarity between these two texts. The results show
that even when the sequences do not have overlap, the text embeddings tend to converge to similar
representations as the sequence length increases. This further demonstrates that length collapse
causes completely different sequences to converge toward similarity.

E.5 MORE RESULTS ON LONGER QUERIES
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Figure 13: More results about performance difference between long query and short query across
varying temperature τ on SummScreenFD dataset.

In previous experiments, we find that lower temperatures improve the performance of long queries
on the SummScreenFD datset. In Figure 13, we observe a similar phenomenon across other models.
Except for ANCE, the performance of other models on long queries decreases as the temperature
decreases. This suggests that long queries require a lower temperature to mitigate the length collapse
phenomenon. However, ANCE’s performance degradation with decreasing temperature is likely
attributable to its inherent limitations in processing long texts.

E.6 MORE RESULTS ABOUT TEMPERATURE CHANGES WITH LENGTH
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Figure 14: More results about performance difference between long query and short query across
varying temperature τ on AmazonPolarity dataset.
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Figure 15: Relative performance compared to the raw results with varying query (Q Temperature)
and document (D Temperature) temperatures using different model on SummScreenFD

As shown in Figure 14, texts of different length intervals perform best at different temperatures τ . In
general, short texts perform better at higher τ , while longer texts require a lower τ to prevent length
collapse. This suggests we can set different τ values for texts in different length intervals to achieve
better overall performance. Moreover, as shown in Figure 15, compared to the QMSum dataset,
SummScreenFD requires a lower temperature for scaling the document due to its longer length. This
further supports the conclusion that longer texts require a lower temperature for scaling.

F MORE DISCUSSIONS ABOUT TEMPSCALE

F.1 RELATIONSHIP WITH CONTRASTIVE LEARNING METHODS

F.1.1 BACKGROUND AND MOTIVATION

Contrastive learning is a technique widely adopted to improve the anisotropy of the embedding
space, which can reduce the high similarity between embeddings of random text samples across
varied lengths. This anisotropy mitigation is achieved by maximizing distances among negative
pairs while aligning positive pairs closely. However, while contrastive learning has demonstrated
improvements in embedding quality across multiple applications, its effects on the length collapse
phenomenon remain unexamined. This section explores how contrastive learning impacts length
collapse, evaluating its contributions and limitations.

As shown in previous works Wang & Isola (2020), the InfoNCE loss, when scaled to a large number
of negative samples, can be decomposed into two primary components: Alignment and Uniformity.
Alignment ensures that positive pairs—texts with similar content—are close in the embedding space,
while Uniformity spreads embeddings of negative pairs to prevent them from clustering excessively.
Mathematically, as the number of negative samples M → ∞, the normalized InfoNCE loss can be
expressed as:

lim
M→∞

L(f, τ)− logM = −1

τ
E(x,x+)∼ppos

[
f(x)T f

(
x+
)]

Alignment

+ Ex∼pdata

[
logEx−∼p−

data

[
ef(x)

T f(x−)/τ
]]

. Uniformity

These properties make contrastive learning especially effective in tasks such as retrieval, where
maximizing inter-sample variance is crucial.

F.1.2 WHY CONTRASTIVE LEARNING CANNOT FULLY ADDRESS LENGTH COLLAPSE

While contrastive learning alleviates high similarity issues across all text lengths, it does not entirely
resolve the length collapse issue inherent in transformer-based models. Length collapse arises from
self-attention’s tendency to push embeddings for longer texts toward a concentrated representation
space. This characteristic is unaffected by contrastive learning’s alignment or uniformity mechanisms
because contrastive learning optimizes the relative positioning of positive and negative pairs rather
than mitigating the length-induced clustering trend.
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F.2 COMPARISON WITH OTHER POST-PROCESSING TECHNIQUES

In addition to TempScale, several post-processing methods have been proposed to address high
similarity in embeddings, such as the Flow Function Li et al. (2020) and Whitening Su et al. (2021).
For comparative analysis, we implemented the last2avg version of the Flow Function, as the full flow
version requires additional training, and the Whitening method is based on its original formulation.
The results, summarized in Table 6, highlight that these methods do not perform as effectively in our
specific application. These results indicate that Flow and Whitening, originally developed for standard
BERT embeddings, are less effective with the fine-tuned transformer model used in this paper, which
includes additional normalization layers. While TempScale reduces similarity in long-sequence
embeddings, achieving distributional consistency across different sequence lengths is more critical
for performance. Therefore, lowering similarity alone may not significantly improve downstream
tasks.

Table 6: Performance comparison of different post-processing methods across various tasks

Model Rerank. Summ. Class. Clust. LongEmbdRetr. STS BeirRetr. Avg.
ANCE 49.09 29.58 55.27 33.04 34.02 66.32 36.87 43.45
+Flow 48.49 29.57 56.34 32.11 31.92 66.02 36.57 43.00
+Whitening 25.16 21.76 25.82 3.21 1.29 2.78 0.79 11.54

GTR 54.23 29.67 55.10 38.65 37.33 70.11 44.98 47.15
+Flow 37.49 28.09 41.98 21.87 7.65 35.55 1.35 24.85
+Whitening 24.63 20.69 25.71 3.06 1.35 -3.02 0.63 10.44

GIST 58.55 31.14 64.75 44.77 38.21 75.61 52.77 52.26
+Flow 58.16 30.56 65.68 44.67 35.83 74.98 51.40 51.61
+Whitening 24.08 24.26 20.06 9.83 1.78 -4.31 0.81 10.93

BGE 58.87 31.03 64.79 45.80 37.46 75.88 55.29 52.73
+Flow 58.48 30.73 64.77 45.28 36.95 74.43 54.52 52.16
+Whitening 24.75 19.61 16.50 4.23 2.39 1.60 0.47 9.94

E5-4K 53.12 30.58 61.72 41.01 56.01 71.77 47.22 51.63
+Flow 52.48 29.82 62.33 39.95 44.71 68.55 30.68 46.93
+Whitening 24.94 22.14 22.73 4.04 1.85 1.96 0.56 11.17
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