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ABSTRACT

Light decoder-based solvers have gained popularity for solving vehicle routing
problems (VRPs) due to their efficiency and ease of integration with reinforcement
learning algorithms. However, they often struggle with generalization to larger
problem instances or different VRP variants. This paper revisits light decoder-
based approaches, analyzing the implications of their reliance on static embed-
dings and the inherent challenges that arise. Specifically, we demonstrate that in
the light decoder paradigm, the encoder is implicitly tasked with capturing in-
formation for all potential decision scenarios during solution construction within
a single set of embeddings, resulting in high information density. Furthermore,
our empirical analysis reveals that the overly simplistic decoder struggles to ef-
fectively utilize this dense information, particularly as task complexity increases,
which limits generalization to out-of-distribution (OOD) settings. Building on
these insights, we show that enhancing the decoder capacity, with a simple ad-
dition of identity mapping and a feed-forward layer, can considerably alleviate
the generalization issue. Experimentally, our method significantly enhances the
OOD generalization of light decoder-based approaches on large-scale instances
and complex VRP variants, narrowing the gap with the heavy decoder paradigm.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) are a fundamental class of NP-hard combinatorial optimization
problems (COPs) with wide-ranging applications in logistics (Konstantakopoulos et al.,[2022)), trans-
portation (Garaix et al., [2010), and supply chain management (Dondo et al., 2011). Efficiently
solving VRPs is critical for reducing operational costs and enhancing service quality in practice.
Traditionally, VRPs have been tackled either using exact solvers (e.g., Gurobi) or heuristic solvers
(e.g., LKH-3 (Helsgaun, |2017a)). While these methods can yield high-quality (or even optimal) so-
lutions for small to moderate-sized instances, they often face challenges in scaling to larger problem
sizes or adapting to different problem variants without extensive domain expertise or manual tuning.

Neural solvers have emerged as a promising alternative by leveraging advanced deep learning tech-
niques to learn solution strategies directly from data (Bengio et al.,[2021). Numerous neural solvers
have been proposed for solving VRPs (Bogyrbayeva et al.,[2024), with autoregressive construction
solvers gaining particular popularity. These solvers sequentially build solutions by adding one feasi-
ble node at a time and are valued for their conceptual simplicity and flexibility across different VRP
variants. Among them, (heavy encoder) light decoder-based solvers (Vinyals et al., 2015} |[Kool et al.}
2019 [Kwon et al., 2020; Kim et al., 2022} |Gao et al., 2024} [Liu et al.| [2024) stand out for their com-
putational efficiency and ease of integration with reinforcement learning (RL) algorithms. These
methods typically employ a heavy transformer-based encoder to compute static node embeddingsﬂ
followed by a lightweight decoder to construct the solution by sequentially selecting the next node
based on these embeddings. While this paradigm has shown promising in-distribution performance,
it faces significant challenges in generalizing to out-of-distribution (OOD) instances (Joshi et al.,
2021)), especially those with larger problem sizes or more complex constraints.

Recent works (Drakulic et al., 2023} |Luo et al.,|2023)) propose a (light encoder) heavy decoder ar-
chitecture to generate dynamic node embeddings, improving generalization on large-scale instances.

'In this paper, static embedding refers to a set of node embeddings used for all key and value computations
in the decoder’s attention layers throughout the entire decoding process.
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Despite the impressive performance, they exhibit several limitations: 1) their solution construction
process is computationally inefficient, as they must re-embed the remaining nodes at each decod-
ing step, resulting in much higher computational costs than light decoder-based solvers; 2) they
require a considerable amount of high-quality solutions as labels for supervised training, which may
be impractical for less-explored problem variants. Although self-improvement learning (Luo et al.,
2024) can help reduce the label burden, advanced search techniques (Pirnay & Grimm, 2024) may
still be necessary to generate high-quality pseudo-labels for effective training, introducing an extra
layer of complexity to the training process; 3) their versability may be compromised by the policy
formulation, as they have to solve problems with an inherently tail-recursive nature. That said, both
paradigms have their respective merits, and our goal is to narrow the performance gap between them.

In this paper, we revisit the light decoder paradigm by analyzing its inherent limitations, and identi-
fying potential bottlenecks in current methods that hinder their performance. Firstly, we demonstrate
that the architecture design of the light decoder paradigm imposes an inherent challenge on the en-
coder by assigning it an overly complex learning task. As nearly all embedding transformations
are performed in a context-agnostic manner by the encoder, it has to encapsulate all relevant infor-
mation necessary to address any possible future context of solution construction within a single set
of static embeddings, resulting in high information density. As the problem size grows, this task
becomes exponentially more complex, as the encoder must anticipate and represent an increasingly
vast amount of potential sub-problems and decision paths within fixed-size static embeddings. In
contrast, the dynamic node embeddings in the heavy decoder paradigm are only responsible for pre-
dicting the next step based on the current state, simplifying the decision-making task but sacrificing
computational efficiency. Secondly, despite these inherent challenges of the light decoder paradigm,
their heavy encoders are still capable of learning valuable static embeddings that effectively address
a broad spectrum of sub-problems. However, our empirical analysis reveals that the overly simplis-
tic decoder struggles to effectively leverage the dense information embedded in static embeddings
during solution construction and fails to handle tasks with unseen levels of complexity, thereby lim-
iting the model’s ability to generalize to OOD problem instances. This suggests that enhancing the
decoder’s capacity could unlock the latent potential of existing approaches and potentially alleviate
the burden on the encoder. Building on these insights into the light and heavy decoder paradigms,
we propose a simple yet efficient method that leverages the strengths of each to compensate their
respective weaknesses, significantly improving the performance of light decoder-based solvers.

Our contributions are summarized as follows.

* We systematically revisit the light decoder paradigm by thoroughly analyzing its inher-
ent challenges and identifying potential bottlenecks in existing methods, with the goal of
enhancing their generalization performance.

* We provide insights into their poor generalization, including the overly complex learning
task imposed on the encoder and the inability of the simplistic decoder to effectively lever-
age the dense information in static embeddings when addressing OOD instances. Based on
these insights, we propose RelLD, incorporating simple yet efficient modifications, such as
adding identity mapping and a feed-forward layer, to enhance the decoder’s capacity.

* We conduct extensive experiments on cross-size and cross-problem benchmarks, and
demonstrate the effectiveness of our method in significantly improving both in-distribution
and OOD generalization performance of light decoder-based solvers. Notably, our work
narrows the performance gap between light and heavy decoder paradigms, reaffirming the
potential of light decoder-based solvers when properly adjusted.

2 RETHINKING LIGHT DECODER-BASED SOLVERS

We introduce light decoder-based solvers, where the decoder leverages static node embeddings as
keys and values in its attention layers throughout the entire decoding process. Hereafter, with a slight
abuse of terminology, the terms static embedding and light decoder will be used interchangeably.

2.1 PRELIMINARIES

VRP. A VRP instance is defined over a graph G = {V, E}, where v; € V = {v;}¥, represents
the node and e(v;,v;) € E represents the edge between node v; and v;. A feasible solution T is
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Figure 1: (a)-(c): The primary difference between light decoder, heavy decoder, and decoder-only
paradigms lies in the number of prefix layers that are shared across decoding steps. (d)-(e): Decoder
structures of POMO and ReLLD. QKV in (d) or (e) refers to the query, key and value matrices involve
in the computation of MHA as presented in Eq. @) or (9) (e.g., Q = h., K =V = H; in Eq. {@)).

represented as a sequence of nodes that satisfies the problem-specific constraints. For example, a
feasible solution in CVRP consists of multiple sub-tours, each of which represents a vehicle starting
from the depot node vy, visiting a subset of customer nodes and returning to the depot node. It is
feasible if each customer node is visited exactly once and the total demand in each sub-tour does not
exceed the vehicle’s capacity limit (i.e., capacity constraint).

Policy Formulation. In theory, the Markov decision process (MDP) of light decoder-based solvers

for generating a solution 7 = (74, ..., 7) to a VRP instance should be formulated as follows:
T
p0(T‘G):Hp9(7t|7—177_t7175taUt)7 )
t=2

where py is the policy parameterized by 6, T is the total number of construction steps, 7; represents
the node selected at step ¢, s; encapsulates the state variables at step ¢ (e.g., remaining vehicle
capacity for CVRP), and U, denotes the sub-graph of GG consisting of only unvisited nodes at step
t. It is important to note that at any step ¢, the policy should be conditioned only on the immediate
previous node 7;_; and the initial node 7; (i.e., depot node vg), rather than the entire sequence of
previously selected nodes. This reflects the property that the solution to the remaining sub-problem
is independent of the sequence of earlier decisions made in VRPs.

Light Decoder-based Architecture. Typically, a transformer-based encoder-decoder architecture
is utilized to parameterize the policy py. Given an instance of N customer nodes, each characterized

by raw features x; € R, the model first projects these features into initial embeddings hl(-o) € R
through a linear transformation. These initial embeddings are then processed through L encoder

layers to generate a final set of static node embeddings H(F) = (héL), e h%)). Formally, each
encoder layer ¢ transforms H (=1 = {h{*"N as follows:

h{Y) = NORM (hg‘*” + MHA(hE‘*”)) : 2)

h{Y) = NORM (ﬁﬁ”) + FF(EZ@)) , 3)

where NORM(+) is a normalization layer, MHA(-) is a multi-head self-attention layer, and FF(-) is
a feed forward network with ReLU activation. We refer to Kool et al. (2019) for further details. At
each decoding step ¢, the decoder takes as inputs the node embeddings H; = {hEL)}ie F,» with Fy
denoting the set of feasible nodes at time ¢, and a context vector h. = [hg,{)l , Dy] € Ridntdarer  with
D, € Retr denoting dynamic features that capture the state variable s; in Eq. . To aggregate
information from node embeddings, the decoder refines the context vector h,. through a multi-head

cross-attention layer, using k.. as the query and H, € RIFt*?r a5 the key and value, as follows:

he. = MHA (he, Hy, Hy). )
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Finally, with a hyperparameter to clip the logits so as to benefit the policy exploration, the probability
p; of selecting node ¢ € F; is calculated as follows:

I\NT
p; = Softmax <C’ . tanh(%))i. 5)

Multi-trajectory Strategy. The multi-trajectory strategy has been a default technique for light
decoder-based solvers during training and inference since its introduction in [Kwon et al.| (2020).
Specifically, it exploits the symmetries in VRP solution representations by sampling multiple tra-
jectories of an instance, each starting from a different initial node. This approach can be efficiently
implemented due to the shared embedding design in light decoder-based solvers, where all trajec-
tories share the same set of static node embeddings, significantly reducing memory consumption.
During training, the model parameters # are optimized to minimize the expected tour length over
the training data distribution using the REINFORCE algorithm (Williams| |1992). For each instance,
multiple trajectories are generated by varying the starting move, with the baseline value for the pol-
icy gradient set to the mean reward (i.e., negative tour length) of all trajectories sampled from that
instance. At inference time, multiple trajectories are sampled in parallel, and the one with the mini-
mal cost is selected as the final solution for a given test instance. This strategy effectively enhances
exploration of the solution space without incurring significant computational overhead.

2.2 PoLicY REFORMULATION

Light decoder-based solvers are characterized by their reliance on static embeddings, where the
input node representations for computing keys and values in the decoder’s attention layers remain
unchanged throughout all decoding steps. Most existing approaches reformulate the decoding policy
(as in Eq. () in terms of the encoder fg,, and the decoder gg,, as follows:

T

p9E,9D(T|G) = HgHD(Tt|hTr,7175t’{hj}jEUt)7 (6)
t=2

where {h;}N, = fo, (G) represents the set of node embeddings for the entire graph G computed
by the encoder fy,,. In light decoder-based methods, the decoder gy, comprises a shallow network,
such as a MHA and single-query attention layer (Kool et al.l 2019; Kwon et al.l|2020), while the en-
coder fy,, is generally a deeper network. In contrast, heavy decoder-based methods feature a deeper
decoder paired with a shallow encoder (Luo et al.l 2023). Furthermore, designing fy,, as either an
identity mapping or a simple node-wise feed-forward network can approach what are essentially
decoder-only solvers (Drakulic et al.,|2023).

Gap between Policy Formulations. Unfortunately, there is a gap between the practical policy
formulation in Eq. (6) and the principled policy formulation in Eq. (I). Concretely, each node em-
bedding h;, used for decision-making at each decoding step, inherently contains information about
all other (potentially irrelevant) nodes in the graph due to the attention mechanisms in the encoder.
Consequently, at each step, the decoder in Eq. (6) is implicitly conditioned on all previously selected
nodes, which diverges from the principled policy formulation. This misalignment exhibits the gap
between the theory and practical implementations in existing neural solvers. In the following, we
explore this discrepancy from an alternative perspective.

Static Embedding as KV Cache. Recent advancements in Large Language Models (LLM) involve
using KV Cache techniques to store computed keys and values from previous tokens within attention
layers in the decoder, reducing computational time (Shazeer, 2019} Brown, [2020; |Ainslie et al.,
2023; [Touvron et al., 2023). Static embedding in COP shares similar motivation with KV Cache in
NLP, aiming to prevent the re-computation of keys and values. However, a fundamental difference
exists in the MDP formulation between COP and NLP. In NLP, the process is generative: each
predicted token is appended to the state (or context) for subsequent predictions, i.e., the context is
increasing throughout the decoding process. Caching KV aligns naturally with the generative nature
of the task, where each new token depends on the extended historical context, and hence it does not
disrupt the original MDP formulation of the task. In contrast, the process in COP is selective: the
context diminishes as each predicted element (or token) is removed from consideration in subsequent
decisions. This reduction in context, contrary to the expansion observed in NLP, implies that simply
reusing KV computed on historical context may introduce irrelevant information to the decision on
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current sub-problem. This increases the learning task’s complexity, as the decoder further needs to
learn to disentangle irrelevant information from the inputs.

2.3  ANALYSES OF LIGHT DECODER PARADIGM

In the light decoder paradigm, the encoder takes on the complex task of producing context-agnostic
node embeddings that are broadly applicable across various sub-problems within the original in-
stance, yielding static embeddings with high information density. Despite the challenging nature of
the task, we find that these embeddings are effective in addressing a broad spectrum of sub-problems.
Then, the decoder makes decisions based on the current sub-problem at hand to determine the next
step. However, our empirical analysis reveals that the simplistic decoder struggles to effectively
leverage the dense information in static embeddings and fails to manage tasks with unseen levels of
complexity, thereby limiting the model’s ability to generalize to OOD problem instances. This high-
lights the need for a more powerful decoder capable of effectively interpreting and adapting static
embeddings to the current context, filtering out irrelevant information and focusing on the features
most relevant to the sub-problem at hand. In the following, we delve into each point in detail.

Complex Learning Task for the Encoder. A weak decoder imposes substantial challenges on the
encoder’s learning task. Since 1) nearly all embedding transformations are performed in a context-
agnostic manner by the encoder, and 2) the simplistic decoder lacks the capacity to effectively adjust
static embeddings according to the context, the encoder has to encapsulate all relevant information
to produce static embeddings that are sufficiently detailed and informative. These static embeddings
are expected to handle any potential sub-problem (i.e. context) that may arise during solution con-
struction, resulting in high information density within a single set of embeddings. As the problem
size increases, the task becomes exponentially more difficult due to the combinatorial explosion of
decision space. Intuitively, this exponential increase in complexity suggests that the optimal strate-
gies for solving problems at different scales may diverge significantly. As the problem size grows,
the interactions between nodes become more intricate, and additional constraints or patterns that are
not prominent in smaller instances may emerge. Therefore, the strategies learned at smaller scales
may not generalize well to larger instances, hindering the model’s ability to adapt across various
problem sizes. Additionally, since the encoder must allocate its representational capacity across a
wide range of possible contexts, the quality of embeddings for individual situations may be diluted.
This dilution may diminish the encoder’s ability to capture specific features necessary for optimal
performance. In contrast, in the heavy decoder paradigm, the model only needs to produce embed-
dings tailored to predict the next step based on the current sub-problem, which is a much simpler
task compared to the encoder’s burden in the light decoder paradigm. By decomposing the complex
task into predicting one step at a time based on dynamic embeddings, heavy decoder-based solvers
avoid the exponentially increasing task complexity associated with larger problem sizes.

Capability of Static Embeddings in Solving Sub-problems. Despite the challenging nature of
the encoder task in light decoder-based solvers, we find that the embeddings generated by heavy
encoders are effective in addressing a broad spectrum of sub-problems. To empirically support this,
we conduct an experiment using node embeddings obtained from CVRP instances to solve randomly
sampled sub-instances. For simplicity, instead of generating a large instance and subsampling a
set of nodes, we first generate a small instance (i.e., a subproblem) and then add a random set
of additional nodes. Note that these two processes are equivalent, as the generation of each node
is independent. Specifically, for a uniformly sampled CVRP instance of size n, we introduce an
additional set of irrelevant nodes of size [§ x n| generated from the same distribution, where &
denotes the extension rate. Then, the encoder processes all n + [4 x n] nodes, but only the original
n node embeddings are used as inputs to the decoder for decision-making. We conduct experiments
on 100 instances and report the average results in Table|l| It can be observed that using embeddings
from a larger instance does not significantly affect the performance of light decoder-based solvers,
such as POMO (Kwon et al. 2020)). Since the model is unaware of the specific sub-problem it
needs to solve in advance, this suggests that static embeddings contain valuable information to solve
various sub-problems. Moreover, we conduct similar experiments on heavy decoder-based solvers,
such as LEHD (Luo et al., [2023))). In this setup, at each decoding step, we append [¢ X n] random
nodes to the model and filter them out before the final decoder layer, ensuring that the additional
nodes pass through the same number of layers as in POMO’s encoder. The results reveal that the
LEHD model is highly sensitive to the additional context, indicating that most of its layers, unlike
those in POMO, are highly specialized for solving a specific sub-problem at each decoding step.
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Table 1: Impact of embeddings from an ex-  Table 2: Experiments on fine-tuning and model
tended graph. Models are trained on CVRP100.  complexity. Models are trained on CVRP100.

CVRP100 CVRP200 CVRP500 CVRP100 CVRP200 CVRP500 CVRP1000
Method d Gap Gap Gap Method Gap Gap Gap Gap
0.0 1.000% 3.403% 11.135% N
POMO 05 1556‘72 3.968”7% 1011 17% ] POMO 1.000% 3.403% 11.135% 110.632%
1.0 1.880% 4.299% 10.255% Fine-tune Dec 2.620% 4.487% 7.148% 15.202%
0 7.094% 10.707% 18.145% Fl.ne—tune Enc 3.061% 4.384% 4.863% 9.627%
AM 0.5 7.375% 10.729% 20.129% Fine-tune Al 2.594%  4.132%  5.718% 11.708%
1.0 7.642% 11.307% 23.746%
POMON 0.947% 3.864% 13.008% 33.262%
0.0 3.648% 3.312% 3.178% _Enct
LEHD 05 14499 5450% 9'999% POMON-Enc 0.890% 2.703% 9.578% 30.198%
1.0 12.951% 14.456% 12.123% POMON-Dec™  0.682% 2.640% 8.185% 18.076%

Inability of Simplistic Decoders. Our empirical results (in Table [2)) highlight the inferior general-
ization performance of light decoder-based solvers on large-scale instances. To further investigate
the influence of the encoder and decoder on generalization, we conduct two experiments. First, in-
spired by the linear probe protocol in self-supervised learning (He et al.| 2020; (Chen et al.| |2020),
we fine-tune POMO (pretrained on CVRP100) on large-scale instances. We observe that fine-tuning
only the decoder results in relatively poor performance compared to fine-tuning the encoder or per-
forming full fine-tuning. This suggests a potential defect of the decoder architecture, which may
complicate the fine-tuning process. Second, we attempt to strengthen the encoder and decoder of
POMON (without the normalization layer), respectively. For example, POMON-Enc™ simply in-
corporates two more layers into the encoder. The results suggest that the decoder may be overly
simplistic, as increasing its capability can significantly improve its generalization performance and
may reduce the burden on the encoder. This observation is also supported by recent studies (Drakulic
et al.,[2023;|Luo et al.}[2023; Zhou et al.,2024b), which show that enhancing the decoder with deeper
layers or conditional computation can substantially boost generalization performance. Therefore,
we assume the potential bottleneck of light decoder-based solvers lies in their simplistic decoders,
which struggle to effectively leverage the dense information in static embeddings and fail to manage
tasks with increasing complexity.

3 METHODOLOGY

Building on the insights into the light and heavy decoder paradigms discussed in Section[2} we pro-
pose ReL.D, which incorporates simple yet efficient modifications to the decoder architecture and
training process. ReLD effectively enhances the decoder’s capability while preserving the advan-
tages of light decoder-based solvers. The structure of ReLD is illustrated in Fig. [I]

3.1 DIRECT INFLUENCE OF CONTEXT

Existing light decoder-based solvers typically employ a decoder architecture composed of an MHA
layer followed by a compatibility layer. The MHA layer aggregates information from the static node
embeddings using a context vector h,. to form the query vector h/.. This query vector is then used
by the compatibility layer to compute the probability distribution for the next step, based on the dot-
product similarity between k., and each node embedding. In this design, h/, is the only component
that captures the context, placing the entire burden of context representation on this single vector.
To make the computation of the query vector h., clearer, we re-write Eq. as follows:

S S
hi=MHA(he, Hy, Hy) =Y WY ug Wl hi =YY ugiva, (7)
s=1 i€F, s=14icF,
<WQhC>TWKHt) -
where us ; = Softmax ( = 5 , Vs = Wa WS h;. )
, n .

Here, S is the number of attention heads, WP, W& WX WY are the projection matrices in the s-th
attention head, and H; = {h;};cr, denotes the static node embeddings. We omit the superscript
(L) for simplicity of notation. This design implies that the influence of the context h. on A, is
only mediated through the attention weights u ;, without directly modifying the combined vectors.



Under review as a conference paper at ICLR 2025

Such an indirect incorporation of context may lead to inefficient utilization of context information,
especially in tasks with complex constraints where dynamic context is crucial for decision-making.

To address this limitation, we propose directly integrating context information into the embedding
space, rather than relying solely on the attention weights. Specifically, we suggest adding an resid-
ual connection (He et al., 2016) between the context vector h. and the query vector h., thereby
embedding context-aware information directly into the representation:

h,, = MHA (h,, H;, H;) + IDT(h..). ©)

In practice, h. = [h,,_,, D:] typically has a different shape compared to h,, so the identity mapping
function IDT(-) must reshape the original input. To effectively preserve the information of the last
node location h;,s; while maintaining simplicity, we define the function IDT(+) as follows:

IDT(he) = hr,_, + WIPTD, (10)

where W!PT is a learnable parameter that projects D; to the same dimension as k., .

3.2 POWERFUL QUERY

A key component of the decoder is the context-aware query vector h/,, which is used to compute at-
tention scores over the node embeddings and ultimately determine the probability distribution over
the next possible nodes. This query vector is crucial, as it is the only element in the computation
that incorporates the current context of the decision-making. In existing implementations, as shown
in Eq. , h!, is computed as a weighted combination of the node embeddings. The computa-
tion follows a largely linear form with respect to the fixed sets of value vectors v, ;, with the only
non-linearity introduced through the attention weights u, ;. This inherent linearity may limit the
decoder’s capacity to model complex relationships and adapt the embeddings based on the context.

Considering the importance of non-linearity in enabling neural networks to model complex func-
tions (Cybenko, |1989), we propose to enhance the decoder’s representation capacity by introducing
non-linearity into the computation of 4. Intuitively, to more effectively transform the context infor-
mation, non-linearity should be introduced after the context has been fully aggregated. This suggests
that adding non-linearity after the MHA layer, where the global context is integrated, would have a
bigger impact. Drawing inspiration from the observation that the overall architecture of transformer
blocks, rather than solely the self-attention mechanism, plays a significant role in the model’s per-
formance (Raghu et al.| 2021} [Yu et al.l 2022), we propose incorporating a feed-forward network
with residual connections into the decoder as follows:

ge=he + FF(he) = he + o(Wao (Wihg + b1) + b2), (1)
where Wy, Ws, by, and by are the parameters of the feed-forward layer, and o denotes the ReLU
activation function. This modification, along with the one presented in Eq. (9), transforms the
decoder into a transformer block with a single query, adding non-linear processing capabilities to the
query vector computation. In doing so, it provides the encoder with greater flexibility in designing
the embedding space and potentially alleviates the burden imposed on it. Note that our modification
is computationally efficient, as the additional step-wise running time is independent of the number
of nodes, and therefore does not affect the overall asymptotic time complexity of the decoder. This
makes it a practical and effective enhancement for light decoder-based methods.

3.3 GENERALIZABLE TRAINING

Distance Heuristic. Recent advancements have incorporated distance heuristics into the learned
policy (Jin et al.l 2023 |Gao et al.| |2024; [Wang et al., 2024} Zhou et al., [20244a) to enhance gener-
alization on larger-scale instances. Building on this idea, we add a negative logarithmic distance
heuristic score to the output of the compatibility layer in the decoder, modifying Eq. (5) into:

p; = Softmax (C’ . tanh(M - log(disti))> , (12)
vy )

where dist; denotes the distance between node ¢ and the last selected node 7;_1.

Varying Attribute. Recent work have also introduced several strategies to improve the generaliza-
tion on large-scale instances, such as training on varying instance sizes (Drakulic et al.,[2023; Zhou
et al., 2023} [Luo et al.| [2023; [Wang et al.l 2024; Zhou et al.l [2024a) and vehicle capacities (Gao
et al.l [2024). We also adopt these strategies in our approach (see Section [.T).
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Table 3: Results on synthetic CVRP instances.  Table 4: Results on CVRPLib Set-X instances.

N <200 |200 < N <500[500 < N < 1000] __Total
CVRP100 CVRP200 CVRP500 CVRP1000 (22 instances)| (46 instances) | (32 instances) [(100 instances)

Method Gap Time| Gap Time| Gap Time| Gap Time BKS * * * *
LKH3 % 12h| * 21n * 55h| *  7.1h  LEHDgreedy¥| 1135% 9.45% 17.74% 12.52%
BQ greedy* - - - 9.94%

HGS 0.533% 4.5h |-1.126% 1.4h|-1.794% 4h |-2.162% 53h  INViT-3V* 6.52% 9.11% 10.21% -
- POMO 5.63% 9.25% 18.85% 11.52%
GLOP-G (LKH3)*| - - - - - - ] 6903% 17m  [CAM no-aug*| 5.14% 4.44% 5.17% 4.83%

ELG no- 25% 5 10.02 X

BQ greedy* 2726% 13m|2.972% 10|3248% 0.69m] 5.892% 1.59m o "oe | G2% 138 0.00% son
LEHD greedy  |3.648% 0.38m|3.312% 25 |3.178% 15s | 4912% 134m  MTL 9.49% 10.96% 16.80% 1251%
MVMoE 4.74% 9.97% 19.60% 11.90%
MDAM bs50* 2.211% 25m [4.304% 3m |10.498% 12m |27.814% 47m ReLD-MTL 331% 5.84% 9.05% 6.31%
POMO augx8 1.004% 1.07m|3.403% 25 [11.135% 13s [110.632%0.88m ~ ReLD-MoEL | 3.14% 5.75% 8.83% 6.16%
‘ % 318 m2.553% 75 |5.472% 0.44ml 10.760% 1.42 ReLD-MoEL*|  2.41% 3.40% 4.52% 3.54%
ELG augx8 1.207% 3.18 m| 2.553% s | 5.472% 0.44m) 10.760% 142 Roypyo g 3.36% 3.93% 5.12% 4.18%
ReLD augx8 0.960% 1.34m|1.654% 2s |2.975% 15s | 6.757% 0.9Im  ReLD 2.53% 3.44% 4.64% 3.62%

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present empirical results from experiments on synthetic CVRP instances of vari-
ous scales, multi-task cross-problem learning across 16 VRP variants, and the CVRPLib benchmark
datasets to demonstrate the effectiveness of the proposed ReLLD method. All experiments were con-
ducted using a single Nvidia A800 GPU with 80GB of memory.

Baselines. 1) Traditional Solvers: We utilize SOTA non-learning solvers LKH3 (Helsgaun) 2017b)
and HGS (Vidal,|2022), which are known for providing strong results on VRPs. In line with previous
work (Luo et al., |2023)), the performance gaps are computed relative to LKH3, even though HGS
generally produces slightly better results. 2) Learning-based Solvers: We retrain the POMO model
(Kwon et al.| 2020) for 5,000 epochs, with 10,000 instances per epoch and batch size of 64. Addi-
tionally, we utilize the publicly released available models MDAM (Xin et al.,|2021al), BQ (Drakulic
et al.,[2023)), ELG (Gao et al.,|[2024), LEHD (Luo et al.,|[2023)), and GLOP (Ye et al.,|2024)). Results
for INVIT (Fang et al.,[2024) and ICAM (Zhou et al.|[2024a)) are obtained from their original papers.

4.1 CROSS-SIZE

Problem Setting. We first evaluate performance on the CVRP using the test dataset introduced in
(Luo et al. 2023)), which consists of 10,000 instances with 100 nodes, and 128 instances for each
problem size of 200, 500, and 1,000 nodes. The corresponding vehicle capacity settings for these
problem scales are 50, 80, 100, and 250, respectively.

Model Setting. Based on POMO (Kwon et al., 2020), we remove normalization layers in the en-
coder and add identity mapping (Section [3.1)), feed forward layer (Section and distance score
(Section[3-3) to decoder to obtain ReLD.

Training Setting. ReLD employs the same training algorithm as POMO (Kwon et al., 2020), but is
trained over 90 epochs, with each epoch comprising 600,000 training instances and a batch size of
120. We use the Adam optimizer with an initial learning rate of le-4, which is decayed by a factor
of 0.1 at the 70th and 80th epochs. Weight decay is set to zero. For generating the training data, we
first sample a problem size from a discrete uniform distribution, Uniform(40, 100). Following the
standard data generation procedure outlined in (Kool et al. 2019), node coordinates and demands
are generated uniformly. To ensure adaptability to varying attribute (Section [3.3), we randomly
sample an expected route size r (average number of nodes in a route) from a triangular distribution
T(3,6,25) (Uchoa et al., 2017) for each instance, the vehicle capacity of which is set to [rD],
where D represents the mean demand of the nodes in the instance. It takes 39 hours with 18131MiB
GPU memory to train ReLD.

Inference Setting. For all neural solvers, we adopt the greedy rollout strategy. To ensure comparable
runtime across baselines, we set the number of rollout trajectories K for all light decoder-based
methods (POMO, ELG, ReLD) to min(100, N), where N represents the problem size. To initialize
each trajectory, we input all the nodes with full capacity to the decoder and select top K moves with
respect to the output probability distribution.

Results. The results on uniformly generated CVRP instances are presented in Table [3] (the super-
script asterisk (*) on method denotes that the results of the method are directly obtained from the
original paper). ReLD consistently outperforms other learning-based solvers at all scales except
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Table 5: Performance on 1K test instances of 16 VRP variants.

CVRP VRPTW
Method Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time

HGS 15.504 * 9.1m | 24.339 * 19.6m - - - - - -
LKH3 15590  0.556%  18.0m | 24.721 1.584%  7.8m | 10.010 * 53m | 16.496 * 16.0m
OR-Tools 15935  2.751% 3.5h | 25212 3.482% 3.5h 9.842  0.122%  3.5h | 16.004 1.444% 3.5h
POMO 15734 1.488% 9s 25.367 4.307% 11s 10.044  2.192% 8s 15785  0.093% 9s
POMO-MTL 15790  1.846% 9s 25.610 5.313% 11s 10.169  3.458% 8s 15846 0.479% 9s
MVMoE-L 15.771 1.728% 10s 25519 4.927% I1s 10.145  3.214% 9s 15.821  0.323% 10s

MVMOoE . X s . X . . s . . s
ReLD-MTL 15723 1416%  10s | 25432 4561%  11s | 10057 2321%  9s | 15773 0.020%  10s
ReLD-MoEL | 15713 1.354%  10s | 25403 4444%  11s | 10050 2260% 9s | 15.768 -0.016%  10s
ReLD-MoEL™ | 15739  1.515%  10s | 25445 4.621%  11s | 10084 2.592%  9s | 15788 0.113%  10s

VRPB OVRPTW OVRPB OVRPL
Method Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time
OR-Tools 11.878 * 3.5h | 14.380 * 3.5h 8.365 * 3.5h | 9.790 * 3.5h
POM 11993 0.995% 9s 14.728  2.467% I1s - - - - - -
POMO-MTL 12.072  1.674% 9s 15.008 4.411% 11s 8.979  7.335% 8s 10.126  3.441% 9s
MVMOoE-L 12.036  1.368% 10s 14.940 3.941% 11s 8.972  7.243% 9s 10.106  3.244% 10s
MVMoE 12.027  1.285% 11s 14.927  3.852% 12s 8.959  7.088% 10s | 10.097  3.148% 11s
ReLD-MTL 11.981  0.901% 10s 14.818  3.103% 11s 8814  5.361% 9s 10.014  2.310% 10s
ReLD-MoEL 11969  0.801% 10s 14.804  3.000% I1s 8.804  5.239% 9s 10.007  2.233% 10s
ReLD-MoEL* | 11.981  0.887% 10s 14.848  3.304% 11s 8.794 5.113% 9s 10.040  2.567% 10s
VRPBL VRPBTW VRPLTW OVRPBL
Method Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time Ob;. Gap Time
OR-Tools 11.790 * 3.5 25.496 * 3.5h | 25.195 * 3.5h | 8.348 * 3.5
POMO-MTL 11.998  1.793% 9s 27319 7.413% I1s 25.619  1.920% 8s 8.961 7.343% 9s
MVMOoE-L 11.960  1.473% 10s 27.265 7.190% I1s 25.529  1.545% 9s 8.957  7.300% 10s
MVMOoE 11.945  1.346% I1s 27.236 7.078% 12s 25514 1.471% 10s 8.942  7.115% 11s
ReLD-MTL 11.905  1.005% 10s 27.144  6.735% I1s 25433 1.167% 9s 8.800  5.411% 10s
ReLD-MoEL 11.894 0.917% 10s 27.106 6.574% 11s 25415 1.089% 9s 8.786  5.247% 10s
ReLD-MoEL™ | 11.908  1.024% 10s 27.166  6.806% 11s 25456  1.258% 9s 8.779  5.154% 10s
OVRPBTW OVRPLTW VRPBLTW OVRPBLTW
Method Ob;j. Gap Time Obj. Gap Time Oby;j. Gap Time Ob;. Gap Time
OR-Tools 14.384 * 3.5h | 14279 * 3.5h | 25.342 * 3.5h | 14.250 * 3.5h
POMO-MTL 15.879  10.453% 9s 14.896  4.374% I1s 27.247  7.746% 8s 15.738  10.498% 9s
MVMOoE-L 15.841  10.188% 10s 14.839  3.971% 11s 27.177  7.473% 9s 15706 10.263% 10s
MVMOoE 15.808  9.948% 11s 14.828  3.903% 12s 27.142  7.332% 10s | 15.671  10.009% 11s

ReLD-MTL 15711  9.288% 10s 14721  3.159% 11s 27.042  6.937% 9s 15.555  9.215% 10s
ReLLD-MoEL 15.697  9.184% 10s 14.707  3.054% 11s 27.044  6.915% 9s 15550  9.171% 10s
ReLD-MoEL" | 15728  9.403% 10s 14744 3.318% 11s 27.078  7.106% 9s 15599  9.516% 10s

for CVRP1000, while achieving similar or lower computational time. For CVRP1000, ReLD re-
mains highly competitive, surpassing most neural solvers. However, solvers like BQ and LEHD still
demonstrate superior performance at this scale, indicating that a performance gap persists between
light decoder-based methods and heavy decoder or decoder-only architectures for larger instances.
This finding suggests the need to further enhance the decoder’s capacity in light decoder-based mod-
els to close this gap.

4.2 CROSS-PROBLEM

We follow all the problem setting, training setting, and evaluation setting used in[Zhou et al.[(2024b).

Model Setting. We remove all the normalization layers in the encoder and add identity mapping
(Section [3.1)), feed forward layer (Section [3.2) to the original POMO-MTL and MVMOoE-light to
obtain the ReLD-MTL and ReLD-MoEL. Notably, original MVMOoE-light utilizes an MoE layer
to replace the linear layer in the decoder to transform the results obtained from multiple attention
heads. For simplicity and fair comparison, we use the original POMO decoder architecture with
added identity mapping and feed forward layer in both of the ReLD-MTL and ReLD-MoEL. We
also employ the training techniques in Sectionon ReLLD-MoEL, denoted as ReL.D-MoEL™T.

Results. The results on all the VRP variants are shown in Table [5and Table [7](see Appendix). It is
quite clear that all the ReLD models outperform the POMO-MTL, MVMOoE-L and MVMOoE base-
lines on all the studied VRP variants by a significant margin. Notably, both the ReLD-MTL and
ReLD-MoEL outperform the single-task POMO that is specifically trained on the CVRP, VRPL and
VRPB. An even more surprising result is that ReLD-MoEL surpasses the strong LKH3 traditional
solver on VRPL, achieving a negative gap. The improvement becomes even more pronounced in
the generalization to unseen VRP variants (the last 10 variaints in Table [5), with an average gap
improvement of 1.1% and 1.0% for ReLD-MTL and ReLD-MoEL, respectively, compared to their
original counterparts. This demonstrates the superior ability of ReLD to handle varying constraints
effectively. On the other hand, ReLD-MoEL™ underperforms relative to other ReLD models on
most problems, though it still significantly outperforms all baselines. This suggests that the tech-
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niques employed in Section [3.3] may trade off in-distribution performance to gain stronger out-of-
distribution generalization, aligning with the observations in Section4.4]

4.3 BENCHMARK PERFORMANCE

We also evaluate our ReLLD on the well known benchmark dataset CVRPLib Set-X (Uchoa et al.,
2017) and Set-XXL. Specifically, we dividle CVRPLib Set-X (Uchoa et al., |2017) into 3 subsets
according to the scale the of instances, each with range N < 200, 200 < N < 500 and 500 < N <
1000. For Set-XXL, we select instances with size 3000 < N < 16000.

Inference. On both datasets, light decoder-based models run with a maximum of 100 trajectory and
augmentation x8 (Kwon et al., [2020) is used by default.

Results. The results on Set-X and Set-XXL are presented in Table {f] and Table [§] (see Appendix),
respectively. Interestingly, heavy decoder methods like LEHD show inferior performance on Set-X
instances, especially when compared to the lighter decoder-based methods. ReLD models, including
both ReLD-MTL and ReLD-MoEL, consistently outperform the baseline methods without distance
heuristic across all instance sizes. For the models that involve using advanced techniques like dis-
tance heuristic, ReLD-MoEL™ achieves the best results. Such surprising results suggest that it is
a generalizable foundational model. Furthermore, ReLD demonstrates a significant margin of im-
provement over all baseline methods on the four large scale real-world instances from Set-XXL,
further validating the generalizability of the proposed methods.

4.4 ABLATION STUDY

We conduct ablation study to gain insights for the contribution of each components in ReLD for the
overall performance. Main ablation results are presented in Table [I0] (see Appendix).

Identity Mapping is Crucial for OOD Size Generalization. The introduction of identity mapping
significantly improves generalization to larger problem sizes for both POMO and POMON (POMO
without the normalization layer), highlighting its critical role in handling out-of-distribution (OOD)
instances. Additionally, it provides minor improvements for smaller problem sizes, indicating that
it enhances generalization without sacrificing in-distribution performance.

Feed Forward Layer is Crucial for In-Distribution Learning. Adding feed-forward layer to
POMON reduces the gap on CVRP100 from 0.95% to 0.66% (POMON v.s. POMON+FF), a signif-
icant improvement in in-distribution learning. However, this modification is less effective for larger
scales without the identity mapping, as seen on CVRP1000.

ReLD Improves Generalization Performance to Larger Size. Adding the feed-forward layer
alongside identity mapping combines their strengths, resulting in significant improvements in both
in-distribution learning and OOD size generalization (POMON vs. POMON+IDT+FF). Addition-
ally, incorporating the distance heuristic and training with varying attributes further boosts general-
ization, though with a slight trade-off in in-distribution performance. The combination of identity
mapping and the feed-forward layer provides a comprehensive improvement across all problem
scales, effectively reducing the performance gap as problem size increases and demonstrating the
effectiveness of the proposed architectural enhancements in various settings.

5 CONCLUSION

This paper systematically revisits the light decoder paradigm, analyzes its inherent challenges, com-
pares it with the heavy decoder paradigm, and identifies potential bottlenecks in existing methods.
We offer valuable insights and propose ReLD, a simple yet effective approach to narrow the gap
between these two paradigms. Extensive experiments on cross-size and cross-problem benchmarks
demonstrate the effectiveness of our method. One limitation is that the proposed method still lags
behind heavy decoder-based solvers and faces challenges with very large-scale instances, which may
require advanced techniques such as linear attention. We leave the development of more efficient
and powerful light decoder-based solvers for future work.

10
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A RELATED WORK

Neural VRP solvers typically learn construction heuristics, which can be broadly categorized into
two types: autoregressive and non-autoregressive construction solvers. Autoregressive construction
solvers build solutions sequentially by adding one feasible node at a time. Within this category,
light decoder-based solvers, characterized by static node embeddings generated in a heavy encoder
and solution construction handled by a lightweight decoder, have gained significant popularity for
their computational efficiency and versatility. |[Vinyals et al.| (2015) propose the Pointer Network,
which solves the traveling salesman problem (TSP) using supervised learning (SL). Later works
shift from SL to RL to solve TSP (Bello et al.l [2017) and the capacitated vehicle routing problem
(CVRP) (Nazari et al., 2018)). Kool et al.| (2019) introduce the attention model (AM), targeting a
range of COPs such as TSP and CVRP. Building on this, [Kwon et al.| (2020) propose the policy
optimization with multiple optima (POMO), which improves AM by exploiting a multi-trajectory
strategy. Subsequent developments (Kwon et al.|[2021; |Kim et al.| [2022; |Grinsztajn et al., 2023} |Liu
et al., 2024; |Gao et al., 2024} |Hottung et al., |2024; Zhou et al., 2024b; |Berto et al., 2024) are often
built upon AM and POMO, further advancing their scalability (Li et al.l 2021} Hou et al., |2023}
Ye et al.| [2024; |Zheng et al) 2024) and generalization (Joshi et al., 2021} [Bi et al.| 2022; |Geisler
et al.}[2022; Zhou et al.| |2023). Heavy decoder-based solvers (Drakulic et al., 2023 |Luo et al., 2023;
2024), characterized by dynamic node embeddings re-embedded at each decoding step, demonstrate
impressive performance on large-scale instances, though at the expense of computational efficiency
and training simplicity. Regarding non-autoregressive construction solvers, solutions are generated
in a one-shot manner, bypassing the need for iterative forward passes through the model. Early
work (Joshi et al., 2019) employs a graph convolutional network to predict the probability of each
edge appearing on the optimal tour (i.e., a heatmap) using SL. More recent efforts (Fu et al.| 2021}
Qiu et al.l 2022} |Sun & Yang] 2023} Min et al., 2023} |Ye et al., 2023} [Kim et al.| [2024; [Xia et al.,
2024) further enhance performance by leveraging advanced models, training paradigms, and search
strategies. Beyond construction solvers, some neural solvers learn improvement heuristics to itera-
tively refine an initial feasible solution until a termination condition is met. These approaches often
involve learning more efficient or effective search components within classical local search methods
or specialized heuristic solvers (Chen & Tian, 2019; |Lu et al.l [2020; |Costa et al., 2020; [Wu et al.,
2021; [Ma et al} 2021} Xin et al., [2021b; Ma et al., |2023). While improvement solvers generally
outperform construction solvers in terms of solution quality, they come with the trade-off of signifi-
cantly longer inference time. In this paper, we mainly focus on autoregressive construction solvers
due to their efficiency and versatility in solving VRPs.

B MORE DISCUSSIONS ON LIGHT DECODER AND HEAVY DECODER

This paper bridges heavy decoder-based and light decoder-based methods through the concept of
sharing encoding layers. This naturally leads to a more general paradigm: for a model with L
layers, the first L’ layers are shared across K decoding steps. Specifically, it becomes decoder-
only (e.g., BQ (Drakulic et al.,2023)) when L’ = 0, a heavy decoder (e.g., LEHD (Luo et al., [2023)))
when L’ = 1, and a light decoder (e.g., AM (Kool et al., 2019), POMO (Kwon et al., [2020)) when
L' = L — 1. Such a framework offers flexible trade-offs between performance and efficiency by
adjusting the number of shared layers and the frequency of updating shared embeddings. It may
reduce the encoder’s task complexity if static embedding is utilized for only a constant number of
steps K (rather than all decoding steps). We leave a comprehensive investigation of this framework
for future work.

C IMPACT OF CAPACITY

We found that the POMON+IDT+FF model trained with fixed capacity data fail to generalize to
scales that are very different from training setting even on small size data (see Table[6). This obser-
vation provides an insight: the capacity setting might introduce generalization challenges inde-
pendent of the problem scale. This observation motivates us to explore varying capacity training
to expose the model to a broader range of contexts.
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Table 6: Investigation into the impact of capacity setting. POMON+IDT+FF trained from varying
size Uniform(40, 100) capacity 50 data fail to generalize to varying capacity data. POMO no-aug
single means the model is use single trajectory with no augmentation during inference, n100:Cap M
denotes data of size 100 sampled with capacity scalar M.

n100:Cap50 | n100:Capl00 | n100:Cap250 | n100:Cap500
Method Ob;. Ob;. Ob;. Ob;.
POMON+IDT+FF no-aug single 16.20 11.14 9.04 8.65
LEHD greedy 16.55 11.17 8.81 8.41

D AVERAGE GAP IN CROSS-PROBLEM SETTINGS

Table 7: Average gap of each model in cross-problem settings.

Method | 6 Trained VRPs | 10 Unseen VRPs | ALL

POMO-MTL 2.863% 6.231% 4.968%
MVMOoE-L 2.584% 5.989% 4.712%
MVMOoE 2.515% 5.844% 4.596%
ReLD-MTL 2.054% 5.059% 3.932%
ReLLD-MoEL 1.974% 4.962 % 3.842%
ReLD-MoEL™* 2.172% 5.126% 4.019%

E RESULTS ON CVRPLIB SET-XXL

Table 8: Empirical results on real-world instances from CVRPLib Set-XXL with N < 16, 000. The
asterisk (*) denotes the results of methods directly obtained from the original paper.

| L1(GK) | L2(4K) | A1(6K) | A2(7K) | G1 (10K) | G2 (11K) | B1 (15K) | B2 (16K)
GLOP-LKH3* 16.60% 21.10% 19.30% 19.40% 18.30% 18.10% 27.50% 20.10%

BQ greedy* 13.27% 24.00% 11.21% 15.02% - - - -
LEHD greedy* | 14.04% 26.30% 18.90% 26.40% 27.23% 38.45% 35.94% 40.76%
POMO* 75.30% 78.16% | 112.27% | 159.22% - - - -

Sym-POMO* 170.44% | 179.55% | 79.72% | 179.55% - - - -
Omni-POMO* | 22.79% 60.39% 42.52% 48.59% - - - -
ELG* 10.77% 21.80% 10.70% 17.69% 13.24% 18.93% 17.73% 20.05%

ReLD no-aug 7.74% 15.23% 7.61% 13.53% 7.92% 15.44% 10.45% 15.59%
RelLD 7.45% 14.55% 7.43% 13.50% 7.63% 14.38% 10.08 % 14.69 %

F APPLICATION ON ATSP

We further conduct preliminary experiments on the asymmetric travelling salesman problem
(ATSP), which is a more practical and general TSP setting. The experiements are conducted on
the MatNet model (Kwon et al., 2021).

F.1 ENCODER MODIFICATIONS

We make some simple adjustments to the original MatNet encoder to make it lighter and better,
these modifications are applied to both the presented MatNet™ baseline and ReLD.

Initial Embedding. Original MatNet use zero vectors and one-hot vectors for initial embeddings.
However, using one-hot vectors limits the model’s applicability to instances with size larger than
embedding dimension (256). To resolve this, we assign a random number from Uniform(0, 1) to
each node as its initial node features (need to cite goal). Then, a learnable linear layer transforms
the 1D random features into the embedding dimension as inputs to the encoder.
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Single Branch. MatNet adapt a two branch transformer architecture with cross-attention to model
the interaction between two sets of objects. This design is redundent for ATSP, where there is only a
single set of objects (i.e., nodes). Thus, we modify the encoder to include only a single branch with
self-attention, reducing the number of parameters by nearly half.

Mixed Score Self-Attention. To modify the mixed score cross-attention proposed in MatNet to self-
attention, we mix the distance matrix D and its transpose D7 simultaneously with the attention score
of each head. This modification helps the network better understand the *from-to’ dual relationship
between nodes with self-attention. Notably, we found that the model diverges in the single branch
setting without DT,

Normalized Distance Matrix. Since the optimal solution is invariant to the scale of the distance ma-
trix, we normalize the distance matrix by dividing its maximum value before sending it to network.

F.2 RELD FOR ATSP

We incoporate the proposed architectural design (i.e., identity mapping and feed-forward network)
into the MatNet decoder. Specifically, let i, denote the embedding of the t** node of the constructed
trajectory. At step ¢ + 1, the query vector &, is obtained as follows:

h/c = MHA([hTHth]aHta Ht) + h‘rw

where [-, -] denotes the concatenation operator. Notice that we exclude the step-agnostic context
information h.,, in the identity mapping. Then, we refine the obtained A/ using a feed-forward
network with reZero (Bachlechner et al.l 2021):

e = ah/c + FF(h/c)v

where FF is a 2-layer feed-forward network with ReLU activation, « is a learnable scalar initialized
to zero. The resulting g. is then used in Eq. (3)) of the paper to output probabilities for each node.
Note that the distance heuristic and varying-size training are not utilized in this preliminary result.

F.3 TRAINING SETTING

We train the models on instances of size 100 for 2100 epochs, with each epoch contains 10000
instances and the batch size of 128. To reduce memory, we use 4 attention heads with gkv dimension
equals to 64 in the encoder, other hyper-parameters remain the same as MatNet (Kwon et al} 202T)).

F.4 RESULTS

We test the models on synthetic data of sizes 20, 50, 100, 200, and 500. All the models use greedy
rolloust with full trajectories and without augmentation. For the original MatNet, we report the
results from the released checkpoint, which is trained for 12,000 epochs on instances of size 100.
MatNet™ includes the modifications outlined in Sectionupon MatNet, while ReLLD incorporates
additional decoder changes upon MatNet™. The results are presented in TableEl It can be seen that
the original MatNet model fails to generalize across sizes. MatNet™ model significantly outperforms
the original model, and ReLLD achieves even better results across all sizes, with a more pronounced
gap at larger sizes.

Table 9: Results on ATSP instances across different scales.

ATSP20 ATSP50 ATSP100 ATSP200 ATSP500
Method Obj. (Gap) Obj. (Gap) Obj. (Gap) Ob;j. (Gap) Obj. (Gap)
CPLEX 1.540 (*) 1.560 (*) 1.570 (*) - -
MatNet official | 2.608 (69.351%) | 2.556 (63.846%) | 1.624 (3.439%) - -
MatNet™ 1.651 (7.208%) 1.604 (2.821%) | 1.616 (2.930%) | 1.665 (1.216%) | 2.126 (12.725%)
ReLD 1.623 (5.390%) 1.591 (1.987%) | 1.607 (2.357%) 1.645 (%) 1.886 (*)
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G ABLATION STUDY RESULTS

The ablation results of the architectural components are presented in Table [T0] the model ReLD
w/o IDT&FF, ReLD-7Layer, and ReLLD are trained under the setting described in Section @ all
other models are trained under the same condition as the POMO baseline. To better evaluate the
effect of the distance heuristic on larger instances, we additionally trained ReLD with and without
the distance heuristic under the training setting used in ICAM (Zhou et al | 2024a), which primarily
trains on instances of size sampled from Uniform(100, 500). The results of this experiment is
presented in Table[T1]

Where and How to Introduce Extra Parameters Matter. We explore three additional ways to
increase the number of parameters in the decoder: (1) +FF,;: replacing the query and key trans-
formtions in the MHA module with feed-forward networks, (2) +FF,: replacing the query, key,
and value transformtions in the MHA module with feed-forward networks, and (3) +MHA: adding
an additional MHA layer on top of the original one. It can be observed that simply increasing the
number of parameters does not consistently lead to better performance. In fact, certain modifica-
tions (+FF,;, and +FF,,,) degrade performance significantly, particularly on larger instances. This
highlights the importance of thoughtfully determining where and how additional parameters are
introduced into the decoder.

Why Identity Mapping is Effective for Size Generalization? The effectiveness likely stems from
its ability to explicitly preserve context information, such as the location of the last selected node.
As problem sizes grow, the decoder must aggregate a vast amount of global and local information
into a fixed-size query vector, which can result in the loss of crucial locality information (Alon &
2020). Identity mapping mitigates this issue by reinforcing the positional information of the
last visited node, enabling the model to better distinguish local interactions in larger graphs.

Adding Additional Encoder Layers to ReLD Does Not Benefit Size Generalization. We also
attempted to enhance the encoder capacity in ReLD by adding an additional layer (ReLD-7layer).
Unfortunately, while this led to a slight improvement in in-distribution performance, it had no posi-
tive effect on OOD generalization, and in some cases, even worsened it. This supports the hypothesis
that, with the same decoder structure, the encoder’s learning task for small-scale instances has lim-
ited overlap with that for larger-scale problems, as indicated by the intrinsic complexity gap. As
a result, improving the encoder alone does not necessarily enhance OOD performance due to this
misalignment. These findings suggest that efforts should focus on improving the decoder structure
to simplify the encoder’s task and reduce the gap between the encoder’s tasks across different scales.

Distance Heuristic is Crucial. It can be observed that the distance heuristic plays a crucial role
in enabling generalization across scales. When distance information is explicitly leveraged, models
consistently achieve better performance across all problem sizes. For instance, ReLLD with distance
heuristic outperforms its counterpart without distance heuristic in all configurations, particularly
on larger-scale instances such as CVRP5000 and CVRP7000. Notably, even without leveraging
distance information, ReLD remains highly competitive with the baselines, particularly as problem
sizes increase. This highlights the superiority of the proposed decoder modifications.

H RESULTS OF FINE-TUNING ON LARGE SCALE INSTANCES

We fine-tune the ReLD model checkpoint from the 70th epoch (before to the learning rate decay)
for 1 epoch (5,000 batches). The instance are generarated with size /N sampled from Uniform(100,
500). The expected route size (average number of nodes in a route) is sampled from triangular
distribution T'(8, 16, 45g. The learning rate is decayed by a factor of 0.1 at the 2500th batch. Batch
size is set to [120 - (122)1-6], around 150,000 instances are utilized in total for fine-tuning. Other
settings remain identical to the training settings. For baseline, we train ELG under the same fine-
tuning setting. the results are presented in Table[T2] It can be seen that ReLD also achieves better
fine-tuning performance in both in-distribution data (100, 200, and 500) and out-of-distribution data
(1000).
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Table 10: Ablation study of components in ReLD.

CVRP100 | CVRP200 | CVRP500 | CVRP1000
Method Gap Gap Gap Gap
POMO 1.004% 3.403% 11.135% 110.632%
POMO+IDT 0.936% 3.096% 9.349% 23.508%
POMON 0.947% 3.864% 13.008% 33.262%
POMON+FF 0.889% 3.907% 15.589% 169.461%
POMON+FF 1, 0.837% 3.894% 16.314% 245.524%
POMON+MHA 1.129% 4.478% 15.809% 47.132%
POMON+IDT 0.909% 3.623% 10.932% 20.687%
POMON+FF 0.663 % 3.142% 12.901% 35.589%
POMON+IDT+FF 0.682% 2.640% 8.185% 18.076%
ReLD w/o IDT&FF 1.063% 1.960% 4.101% 9.623%
ReLD-7Layer 0.921% 1.638% 3.055% 6.834%
ReLD 0.960% 1.690% 3.015% 6.771%

Table 11: Effects of training on larger-scale instances. 'w. dist’ indicates that distance information
is explicitly incorporated into the model, while "w/o dist’ denotes the absence of such information.
’Single-trajec.” refers to inference using a single starting point, ’100-traject.” involves rolling out
the top 100 starting points at the first step, and ’full-traject.” utilizes the total number of possible
trajectories as in POMO. Augmentation is disabled for all models.

CVRP100 | CVRP1000 | CVRP2000 | CVRP5000 | CVRP7000

Method Ob;. Ob;. Ob;. Ob;. Ob;.
HGS | 1556 | 3629 | 5720 | 12620 | 172.10
GLOP-G 15.65 37.09 63.02 140.35 191.20
LEHD greedy 16.22 3891 61.58 138.17 -
BQ greedy 16.07 39.28 62.59 139.84 -
ICAM w. dist single-trajec. 16.19 38.97 62.38 140.25 -
ICAM w. dist full-trajec. 15.94 38.42 61.34 136.93 -
ReLD w/o dist single-trajec. 16.28 38.83 61.37 135.30 183.79
ReLD w/o dist 100-trajec. 15.98 38.41 60.78 134.45 182.75
ReLD w. dist single-trajec. 16.26 38.69 60.41 129.66 173.91
ReLD w. dist 100-trajec. 15.97 38.28 59.84 128.79 172.83

Table 12: Effects of fine-tuning on instances from Uniform(100, 500).

‘ CVRP100 ‘ CVRP200 ‘ CVRP500 ‘ CVRP1000

Method Gap Gap Gap Gap

ELG 1.156% 4.150% 8.527% 15.054%
ELG fine-tune 1.895% 1.841% 2.281% 5.631%
RelLD 1.143% 2.036% 3.623% 7.156%
ReLD fine-tune 1.148% 1.675% 1.952% 3.947%

I RELD BENEFITS FROM MORE DECODER LAYER

To explore the potential gains of further increasing decoder capacity, we introduce ReLD-Large,
which stacks an additional decoder block on top of the original ReLLD decoder while preserving the
property of static keys and values.

In specific, the original ReLLD decoder can be viewed as a transformer block with a single query. We
stack another single query block on top of the original one to further transform the query vector ¢,
obtained from Eq. (E[): ze = MHA(q., Ht, Ht) + ¢c, q. = z. + FF(z.). The transformed ¢/, will
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be used as input to the compatibility layer. To minimize the additional memory cost, the new block
shares the same cached keys and values used in Eq. (i.e., share the WX WV parameters with
the MHA module in Eq. (TI). To maintain the total number of transformer blocks consistent with
the original ReLD, we reduce the number of encoder blocks in ReLLD-Large to 5.

The results are presented in Table[T3] Both models use 100-trajectories with instance augx8 during
inference. Notably, these experiments are conducted on different hardware than specified in the
paper, resulting in ReLD’s runtime differing from the values reported in Table[3] It can be observed
that increasing the decoder’s complexity further enhances model performance across all sizes, albeit
with greater computational overhead.

Table 13: Results of stacking an additional layer in the decoder.

CVRP100 CVRP200 CVRP500 CVRP1000
Method Gap (time) Gap (time) Gap (time) Gap (time)
RelD 0.959% (2.16m) | 1.654% (0.11m) | 2.975% (0.48m) | 6.757% (1.95m)
ReLD-Large | 0.891% (3.60m) | 1.527% (0.16m) | 2.678% (0.73m) | 6.265% (2.89m)
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