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Abstract

In this paper, we introduce DQWIC, a novel algo-
rithm that combines Deep Reinforcement Learning
and Whittle index theory within the Contextual
Restless Multi-Armed Bandit framework for the dis-
counted criterion. DQWIC is designed to learn in
evolving environments typical of real-world appli-
cations, such as recommender systems, where user
preferences and environmental dynamics evolve over
time. In particular, we apply DQWIC to the prob-
lem of optimizing email recommendations, where
it tackles the dual challenges of enhancing content
relevance and reducing spam messages, thereby ad-
dressing ethical concerns related to intrusive email-
ing. The algorithm leverages two neural networks: a
Q-network for approximating action-value functions
and a Whittle-network for estimating Whittle in-
dices, both of which integrate contextual features to
inform decision-making. In addition, the inclusion
of context allows us to handle many heterogeneous
users in a scalable way. The learning process occurs
through a two time scale stochastic approximation,
with the Q-network updated frequently to minimize
the loss between predicted and target Q-values, and
the Whittle-network updated on a slower time scale.
To evaluate its effectiveness, we conducted experi-
ments in partnership with a company specializing
in digital marketing. Our results, derived from both
synthetic and real-world data, show that DQWIC
outperforms existing email marketing baselines.

1 Introduction

In sequential decision-making problems, the Multi-
Armed Bandit (MAB) framework [1] has emerged as
an effective paradigm for balancing the exploration-
exploitation trade-off in a widespread range of ap-
plications, including advertising [2], clinical trials
[3], and web content optimization [4]. The classical
MAB setting assumes that the rewards associated
with each arm are stationary and independent of the
previous actions of the agent (decision-maker). Yet,
many situations feature complex dependencies that
require advanced models. One such extension is the
Contextual Multi-Armed Bandit (CMAB) problem

[5], where the rewards are not only dependent on
the chosen arm but also on an observed context.
This setting is particularly relevant in recommender
systems [2, 6], where the user’s preferences can be
modeled as the context. While this MAB variant
captures the influence of side information, it still
assumes that the rewards are identically distributed
over time. However, in various real-world scenar-
ios, the underlying reward distributions can shift
over time due to changes in environmental dynam-
ics. For instance, in network routing, traffic patterns
change based on user demands, network congestion,
or hardware failures. These challenges prompted the
study of the Restless Multi-Armed Bandit (RMAB)
framework, in many fields such as communication
networks [7], healthcare [8], and web crawling [9]. In
this setting, the state of each arm evolves according
to a Markovian transition, even when the arm is not
played, making the problem harder to solve. Several
approaches have been proposed to tackle the RMAB
problem, including approximate solutions based on
index policies [10–13], and Reinforcement Learning
(RL) techniques [14, 15].

One particularly promising direction is the
combination of contextual and restless bandits,
coined as Contextual Restless Multi-Armed Ban-
dits (CRMAB). To the best of our knowledge, the
only works that address CRMAB are by Chen and
Hou [16] and by Liang et al. [17]. Chen and Hou
[16] developed an index policy algorithm using dual
decomposition, and applied it to demand response
decision-making in smart grids. Liang et al. [17]
combined Bayesian modeling with Thompson sam-
pling, and focused on public health applications.

In a CRMAB setting, the reward and state tran-
sition dynamics of each arm depend not only on the
state of the chosen arm but also on the observed
context. This framework captures the complexities
of real-world applications, notably in recommender
systems, where user preferences evolve over time.

In email marketing, which is the main domain
of application of our work, the task involves recom-
mending relevant content to users via emails, and
adjusting to their changing behaviors. In this use
case, personalization becomes essential, particularly
due to the ethical concerns related to traditional
approaches, such as sending bulk email campaigns.
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These methods generally apply a one-size-fits-all
strategy, sending the same email content to large
groups of users, which leads to spam [18], and neg-
ative user experiences [19]. We elaborate more on
the use case of email marketing in Section A of the
appendix.

To address these challenges, we propose DQWIC,
a deep Q-learning algorithm that draws inspiration
from Deep Q-Networks (DQN) [20] and leverages
two neural networks (NN): a Q-network operating
on a fast time scale, and a Whittle-network oper-
ating on a slower time scale. The Q-network ap-
proximates action-value functions (Q-values), which
estimate the expected cumulative reward and guide
the decision-maker toward actions that maximize
the long-term rewards. The Whittle-network es-
timates Whittle indices, which were originally de-
signed for restless bandit problems with resource
constraints [10]. These indices represent the oppor-
tunity cost of activating an arm versus keeping it
passive, providing a systematic approach to priori-
tize arm selection when resources are limited.

By integrating the Whittle index into a contextual
restless bandit framework, we create a model that
can scale to systems with a large number of users,
adapt to both evolving user behaviors and context,
and optimize long-term user engagement. Our ap-
proach builds upon recent works that have explored
the integration of Whittle indices with deep learning
[21–24].

In this paper, we extend the application of Whittle
index heuristic to a contextual setting, and leverage
deep reinforcement learning to handle large state
spaces and context spaces. In addition, the inclusion
of context allows us to handle many heterogeneous
users in a scalable way. We also demonstrate the
practical applicability of this approach in an email
recommender system, where it shows a potential to
address ethical concerns related to intrusive market-
ing practices.

The algorithm’s utility lies in its ability to handle
dynamic environments where the agent has to make
sequential decisions while balancing exploration and
exploitation, and incorporating both state and con-
text information, therefore it can be applied to vari-
ous other domains beyond email recommenders, such
as: in healthcare to optimize personalized treatment
depending on the patient’s health state and context
(such as age, medical history, and current symptoms);
in dynamic pricing to optimize pricing strategies de-
pending on the demand levels and context (such as
competitor prices, seasonal trends, and customer
behavior), etc.

The paper is structured as follows: Section 2
formalizes contextual restless bandits. Section 3
presents the application details. Section 4 describes
the proposed algorithm. Section 5 outlines the ex-
periments conducted and discusses the results.

2 Contextual Restless Bandits

The problem of Contextual Restless Multi-Armed
Bandits (CRMAB) is as follows: let I =

{1, 2, . . . , 𝑁} be the set of 𝑁 arms. Each arm is
modeled as a context-augmented Markov Decision
Process (MDP), where the transition probabilities
depend not only on the arm’s current state but
also on the context, which can vary over time.
Each arm 𝑖 ∈ I is characterized by: a state space
S = {1, 2, . . . , |S|}, where 𝑠𝑖 ∈ S represents the state
that the arm 𝑖 can occupy at a given time step; a
context space C = {1, 2, . . . , |C|}, where 𝑐𝑖 ∈ C is
the side information of arm 𝑖; and an action space
defined as A = {0, 1}, where 𝑎𝑖 = 1 denotes the
active action of choosing arm 𝑖, and 𝑎𝑖 = 0 denotes
the passive action of not choosing it.
The probability of transitioning from state 𝑠𝑡

𝑖
to

state 𝑠𝑡+1
𝑖
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𝑖
.
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The reward function R : S × C × A × S → R
assigns a real value to each transition, reflecting the
immediate gain from moving between states given a
specific action and context: 𝑟 𝑡

𝑖
= R(𝑠𝑡

𝑖
, 𝑐𝑡

𝑖
, 𝑎𝑡

𝑖
, 𝑠𝑡+1

𝑖
).

The objective in CRMAB is to find a policy 𝜋 :
S×C → A that maximizes the expected cumulative
reward over time, by selecting which arms to activate.
This is formulated as:

max
𝜋

E

[ ∞∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝛾𝑡 𝑟𝑖 (𝑠𝑡𝑖 , 𝑐𝑡𝑖 , 𝑎𝑡𝑖 , 𝑠𝑡+1𝑖 )
]
, (1)

where 𝛾 ∈ (0, 1) is the discount factor, which bal-
ances the value of immediate versus future rewards.
This optimization is subject to the constraint that,
at a time step 𝑡, only 𝑀 arms can be active simulta-
neously:

𝑁∑︁
𝑖=1

𝑎𝑡𝑖 = 𝑀, ∀𝑡 ≥ 0. (2)

3 CRMAB Application Details

In the context of our email recommender system
application, each user 𝑢𝑖 ∈ U corresponds to arm 𝑖

in the CRMAB. For each user 𝑢𝑖, the state space
S represents four different levels of engagement of
the user which are: opening an email, clicking on
a link within the email, making a purchase, or not
interacting at all.
The context space C contains campaign-related

features such as some details about the ongoing email
campaign, seasonal promotions or special discounts;
and/or user-related features such as age, location,
browsing history, and user segments, etc.
The action space A defines the active action

(𝑎𝑖 = 1) of sending a promotional email to user 𝑢𝑖,
and the passive action (𝑎𝑖 = 0) of not sending an
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email to the user. In a more complex setting, this
action space could include multiple actions corre-
sponding to various types of recommendations, such
as sending different types of promotional emails.
However, to simplify the analysis for now, we focus
on a two-action framework.
The reward function R should be carefully de-

signed to guide the learning agent to prioritize ac-
tions that increase engagement levels. Reward shap-
ing [25], which incorporates domain knowledge to
nudge the algorithm towards more positive actions,
can be applied to further enhance the learning qual-
ity.

The goal is to maximize the expected discounted
reward while ensuring that only 𝑀 < 𝑁 users receive
promotional emails at a given time step 𝑡. This
constraint prevents overloading users with emails.

4 Deep Q-learning the Whittle
Index with Context

4.1 Whittle Index

In the CRMAB setting, the Whittle index approach
offers a scalable solution to tackle arm selection.
This policy, initially developed for RMAB problems
[10], assigns a scalar to the state of an arm to pri-
oritize its activation. This simplifies the decision-
making process by decoupling the global optimiza-
tion problem into subproblems, for each arm. In
order to achieve this, the Whittle index heuristic
introduces a Lagrange multiplier, 𝜆, to relax the
condition that only 𝑀 arms can be activated at
each time step. This relaxation transforms the origi-
nal optimization problem into an unconstrained one,
making it possible to handle each arm independently
while still considering the overall constraint. The
Lagrangian formulation of the CRMAB objective
function is expressed as:

max
𝜋

E

[ ∞∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝛾𝑡
(
𝑟𝑖 (𝑠𝑡𝑖 , 𝑐𝑡𝑖 , 𝑎𝑡𝑖 , 𝑠𝑡+1𝑖 ) + 𝜆(1 − 𝑎𝑡𝑖 )

)]
,

(3)
where 𝜆 serves as a subsidy term for not activating
an arm. The Whittle index for arm 𝑖 is defined
as the smallest subsidy 𝜆𝑖 that makes the agent
indifferent between activating the arm (𝑎𝑖 = 1) and
not activating it (𝑎𝑖 = 0). This indifference can be
expressed in terms of Q-values:

𝑄𝑖 (𝑠𝑖 , 1, 𝑐𝑖) = 𝑄𝑖 (𝑠𝑖 , 0, 𝑐𝑖). (4)

Therefore, the Whittle index for arm 𝑖 is defined as:

𝜆𝑖 (𝑠𝑖 , 𝑐𝑖) = min {𝜆 : 𝑄𝑖 (𝑠𝑖 , 1, 𝑐𝑖) = 𝑄𝑖 (𝑠𝑖 , 0, 𝑐𝑖)} , (5)

where 𝑄𝑖 (𝑠𝑖 , 𝑎𝑖 , 𝑐𝑖) is the Q-value associated with
taking action 𝑎𝑖 ∈ {0, 1} in state 𝑠𝑖 under context

𝑐𝑖 and subsidy 𝜆. Using the Bellman equation, the
Q-values for the active and passive actions in the
CRMAB framework are defined as:

𝑄𝑖 (𝑠𝑖 , 1, 𝑐𝑖) = 𝑟1𝑖 + 𝛾
∑︁
𝑠′
𝑖
∈S

𝑃
1,𝑐
𝑠,𝑠′𝑉𝑖 (𝑠

′
𝑖 , 𝑐𝑖), (6)

𝑄𝑖 (𝑠𝑖 , 0, 𝑐𝑖) = 𝑟0𝑖 + 𝜆 + 𝛾
∑︁
𝑠′
𝑖
∈S

𝑃
0,𝑐
𝑠,𝑠′𝑉𝑖 (𝑠

′
𝑖 , 𝑐𝑖), (7)

where: 𝑟𝑎
𝑖
= 𝑟𝑖 (𝑠𝑖 , 𝑐𝑖 , 𝑎𝑖 , 𝑠′𝑖) is the immediate reward

and 𝑉𝑖 (𝑠′𝑖 , 𝑐𝑖) is the value function representing the
expected discounted reward from state 𝑠′

𝑖
under con-

text 𝑐𝑖.
By solving equation (5), we obtain the Whittle

indices of the arms. The indices in the current state
profile are arranged in descending order, showcasing
the top M arms to be activated.

4.2 Algorithm

While the Whittle index provides an approach for
prioritizing arms in the CRMAB setting, computing
it in a tabular form becomes infeasible due to the
exponential growth of state-action-context combi-
nations, making it computationally very expensive.
To solve these scalability challenges, we propose
Deep Q-learning the Whittle Index with Context
(DQWIC). The algorithm uses deep neural networks
to approximate the Whittle indices and Q-values,
by allowing to generalize across similar states and
contexts. The algorithm alternates between updat-
ing a Q-network, which estimates the action-value
functions (Q-values), and a Whittle network, which
computes the Whittle indices, using their respective
loss functions.
At each time step, the algorithm selects actions

using an epsilon-greedy strategy: with probability 𝜖 ,
the algorithm randomly selects 𝑀 arms to activate.
With probability 1−𝜖 , it selects the top 𝑀 arms with
the highest Whittle indices, which are computed
using the current state and context. After action
selection, the environment transitions to the next
state, and context and rewards are observed. These
experiences are stored in a replay memory D.
On a fast time scale, we update the Q-values. A

mini-batch of size 𝐵 is sampled from D. Each sam-
ple consists of the current state 𝑠𝑡 , action 𝑎𝑡 , reward
𝑟𝑡 , context 𝑐𝑡 , and the next state 𝑠′𝑡 . The Q-network
takes as input the current state 𝑠𝑡 , the Whittle in-
dices 𝜆𝛿 , and context 𝑐𝑡 , and computes the predicted
Q-values for all possible actions. The target network
computes the target Q-values as follows:

𝑄target (𝑠𝑡 , 𝑎𝑡 , 𝜆𝛿 , 𝑐𝑡 ) = (1 − 𝑎𝑡 ) (𝑟0 (𝑠𝑡 ) + 𝜆𝛿)
+ 𝑎𝑡𝑟1 (𝑠𝑡 ) + 𝛾 max

𝑎∈{0,1}
𝑄 𝜃 𝑡𝑔 (𝑠′𝑡 , 𝑎, 𝜆𝛿 , 𝑐𝑡 ), (8)

where (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠
′
𝑡 , 𝑐𝑡) represent the current state,

action, reward, next state, and context in the sam-
pled batch. 𝜆𝛿 is 𝜆𝛿 (𝑘, 𝑐𝑡 ), the Whittle index for
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Figure 1. Overview of DQWIC architecture.

the reference state 𝑘 and context 𝑐𝑡 , parameterized
by 𝛿. max𝑎∈{0,1} 𝑄 𝜃 𝑡𝑔 (𝑠′𝑡 , 𝑎, 𝜆𝛿 , 𝑐𝑡 ) is the maximum
Q-value for the next state 𝑠′𝑡 over all possible ac-
tions, predicted by the target network parameters
𝜃𝑡𝑔. The Q-network parameters 𝜃 are updated by
minimizing the Mean Squared Error (MSE) between
the predicted Q-values and the target Q-values. The
loss function is defined as:

L(𝜃) := E
[𝑄 𝜃 (𝑠, 𝑎, 𝜆𝛿 , 𝑐) −𝑄target (𝑠, 𝑎, 𝜆𝛿 , 𝑐)

2] .
(9)

The parameters 𝜃 of the Q-network are updated
using backpropagation to minimize this loss. The
parameters of the target network 𝜃𝑡𝑔 are periodically
synchronized with those of the Q-network 𝜃, for
instance every 100 iterations, to stabilize training.
The Whittle network enables to compute the

Whittle index 𝜆𝛿 (𝑘, 𝑐) for each state 𝑘 and con-
text 𝑐 such that the Q-values for the active (action
𝑎 = 1) and passive (action 𝑎 = 0) states are equal.
This indicates indifference between actions at that
state. The loss function for the Whittle network is
defined as the MSE between the Q-values for the
active and passive actions:

E(𝛿) = E
[
∥𝑄 𝜃 (𝑘, 1, 𝜆𝛿 , 𝑐) −𝑄 𝜃 (𝑘, 0, 𝜆𝛿 , 𝑐)∥2

]
,

(10)
where 𝑄 𝜃 (𝑘, 1, 𝜆𝛿 , 𝑐) is the Q-value for the active
action under the current estimate of 𝜆𝛿 (𝑘, 𝑐), and
𝑄 𝜃 (𝑘, 0, 𝜆𝛿 , 𝑐) is the Q-value for the passive action
under the current estimate of 𝜆𝛿 (𝑘, 𝑐).

On a slower time scale, a batch of reference states
𝑘 and contexts 𝑐 are sampled from the replay mem-
ory D. These samples are used to compute the MSE

loss function E(𝛿) based on the difference between
the Q-values for the active and passive actions. The
parameters 𝛿 of the Whittle network are updated
using gradient descent to minimize the loss E(𝛿).
The algorithm pseudocode is given in Section B

of the appendix.

5 Experiments

5.1 Baselines

To evaluate our proposed algorithm DQWIC, we
compare it against several baseline policies com-
monly adopted in email marketing and restless ban-
dit problems. Specifically, we consider the following:

• Myopic policy: selects to contact users who
are most likely to lead to immediate conver-
sions, such as those who have recently opened
or clicked on emails;

• Random policy: involves sending emails to
randomly selected users;

• Round-robin policy: sends emails evenly in
a cyclic order, ensuring each user is contacted
in turn, regardless of their likelihood to engage;

• Q-index policy: prioritizes users who are most
likely to engage immediately. It is a learning-
based policy that relies on a simplified greedy
DQN-based approach. The Q-values are learned
in the same way as in DQWIC. However, we do
not compute Whittle indices. Instead, during
the action selection process, we only consider
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(a) User Engagement (UE) (b) Real-world data / N = 100, M = 10 (c) Synthetic data / N = 1000, M = 100

Figure 2. Performance graphs for DQWIC algorithm vs. Q-index, myopic, round robin, and random policies. N
is the total number of arms, and M is the number of selected arms.

the Q-value for action 1 (𝑄𝑎1
) for each user.

Then, we rank users based on their 𝑄𝑎1
values

and select the top M. In the emailing use case,
action 1 means deciding to send an email. The
Q-value 𝑄𝑎1

reflects the likelihood that the user
will engage. The goal of this DQN-only Q-
index policy is to provide a comparison with
DQWIC, showing the effect of learning without
the Whittle network.

We conducted experiments using both synthetic
data and real-world data provided by our partner
company Smartprofile [26], which is specialized in
digital marketing.

5.2 Real-world Dataset

In a typical setup of the partner company, Smart-
profile, 𝑀 represents 10% of the potentially targeted
users. This proportion was also used in our experi-
ments. The dataset, provided by Smartprofile, was
collected with user consent adhering to ethical stan-
dards, including GDPR [27] and CNIL [28] regula-
tions. The dataset contains more than 10000 distinct
users. We worked in a fully observable setup: at
each time step, we can observe the state of each user
in the logged anonymized dataset. Figure 2(a) illus-
trates the distribution of User Engagement (UE),
highlighting that 65.6% of users exhibit low UE.
This means that users are likely to remain Idle with
low probabilities of moving to more active states
like Open, Click, and Purchase. This results in data
sparsity, as there are fewer interactions to analyze,
making it challenging to derive meaningful insights.
To address this issue and create a more balanced
model of user behaviors, we developed a simulator.
This also enables experiments without exposing the
entire dataset, thereby ensuring more privacy. De-
spite starting with data of more than 10000 users, we
were able to reliably construct irreducible MDPs for
100 users due to sparse data. The time-independent
context we used was the location. Given the con-
straints of data sparsity in the original dataset, we
built an additional simulator using synthetic data.

5.3 Synthetic Data

Aside from user location, other time-independent
contexts we used include: city, age, and marital
status, based of distributions from [29]. We created
four user classes with transition matrices for low,
medium, high, and excellent UE. Various setups re-
flecting different user distributions were tested, and
DQWIC consistently achieved the best results. Fig-
ure 2(a) shows a setup reflecting the real-world user
distribution, where low UE is most prominent. The
performance in this setup exceeded that of the real
dataset results because the transition probabilities,
determined in collaboration with the partner com-
pany, represented more diversely user behavior in
terms of opens, clicks, and purchases. This suggests
that accurate user modeling through well-calibrated
transition probabilities is essential for optimizing
system performance.

5.4 Architecture of Neural Networks

Figure 3. Average reward comparison of DQWIC with
two different neural network architectures. N = 1000,
M = 100.

In the reported experiments, we designed a relatively
simple NN architecture: the Q-network featured two
hidden layers with 130 and 50 neurons, respectively,
while the Whittle network was constructed with
a single hidden layer containing 250 neurons. For
both networks, the layers are connected by ReLU
activation functions.
We also tried other architectures where we in-

creased the depth and width of the Q-network and
Whittle network. For instance, a more complex NN
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architecture was implemented where both networks
featured four hidden layers consisting of 512, 256,
128, and 64 neurons. Additionally, batch normal-
ization was applied after the first layer, and ReLU
activation functions were used between all layers.
Figure 3 shows that the simple NN architecture

outperforms the more complex NN in terms of both
convergence speed and average reward. This sug-
gests that while moderate increases in model com-
plexity may enhance learning, excessive complexity
can degrade the learning in terms of both perfor-
mance and efficacy.

5.5 Results

Experiments, on real-world dataset and on synthetic
data, were conducted over 1000 evaluation steps, rep-
resenting for instance the email campaigns. Figure
2(a) illustrates the distribution of user engagement
in the real-world dataset. Figure 2(b) shows the
average reward comparison over time on real-world
dataset, with N = 100 and M = 10. Figure 2(c)
depicts the average reward comparison over time
using synthetic data, with N = 1000 and M = 100.
The experiments conducted, on both synthetic and
real-world data, show that DQWIC demonstrates a
significantly better performance in terms of average
rewards exceeding Q-index, myopic, random, and
round robin baselines.

6 Conclusion

To the best of our knowledge, we are the first to
propose deep Q-learning with Whittle index for
CRMAB, and to apply it to an email recommender
system. One important feature of our algorithm is
the usage of only three neural networks for many
(potentially thousands) heterogeneous users. This
is possible thanks to the addition of context to the
RMAB model. Through experiments on both syn-
thetic and real-world data, we demonstrate that
DQWIC outperforms existing baselines by a signifi-
cant margin. Future work will focus on incorporating
multiple actions, and enhancing fairness.
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A Motivational Insights on
User Modeling in Email
Marketing

In modern marketing, email campaigns are a key
channel for reaching out to customers. However, the
traditional approach of sending bulk emails often
leads to spam [18] and a negative user experience
[19]. Personalized emails can significantly improve
user engagement, as users are more likely to interact
with content that is aligned with their preferences,
behavior, and context. This makes email marketing
suitable for modeling as a recommender system,
we can dynamically tailor content for each user.
This enables more relevant emails, which not only
increases the effectiveness of the campaign but also
improves user experience by delivering content they
are genuinely interested in.
The email recommender system involves a trade-

off between exploration (recommending to new users)
and exploitation (targeting users that are already
known to be engaging). The Multi-Armed Bandit
(MAB) framework [1] is well-suited for this type of
sequential decision-making problem, as it optimizes
this balance by learning from user feedback over
time.

A standard MAB model assumes that the state of
each arm (in this case, each user) is static when the
arm is not selected. However, in real-world scenarios
(like in email marketing), user behavior evolves over
time, even when no interaction occurs. For instance:
a user’s interests may shift due to changes in their
preferences, they also might become less engaging
over time if they receive too many irrelevant emails.
This dynamic nature makes the problem a rest-

less bandit framework that allows us to model the
evolving behavior of users, making it a better fit for
email marketing than a standard bandit model. It
captures the fact that a user’s state (likelihood of
engagement) can change regardless of whether an
email is sent to them, which is efficient for long-term
personalization.

While the restless bandit framework captures the
dynamic nature of user behavior, it does not account
for context, which is vital in real-world scenarios
where a user’s decision to engage is often influenced
by contextual factors. To address this, we model
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the email recommender problem as a contextual
restless bandit. This approach not only considers
the dynamic state transitions of each user but also
incorporates the influence of contextual features.
The challenge lies in determining which users

(arms) to prioritize at each time step, especially
when resources (such as the number of emails that
can be sent) are limited. This is where the Whittle
index comes into play. The Whittle index is a well-
known heuristic in restless bandit problems [10]. It
simplifies the decision-making process by assigning
a score to each arm, representing the value of taking
an action for that arm. The arms with the highest
indices are the ones that are most valuable to engage
with at that moment.

Moreover, this policy is effective in balancing
immediate engagement opportunities (exploitation)
with long-term benefits (exploration). Some users
may need immediate attention to maintain engage-
ment, while others may benefit from receiving fewer
emails. The Whittle index helps prioritize users
based on their current state and context, balancing
the need to engage users who are likely to respond
now with the need to maintain long-term engage-
ment.

In email marketing, with potentially thousands or
even millions of users, the system needs a compu-
tationally efficient method to decide which users to
target. The Whittle index reduces the complexity
of selecting actions by decoupling decisions for each
user, making it scalable for real-world applications.
This scalability is a key strength of the Whittle
index-based decomposition, allowing to scale experi-
ments to larger datasets.
In fact, in our experiments with N = 1000 total

users and M = 100 selected users per time step,
DQWIC outperformed the other policies, as shown
in Figure 2(c). To further validate the scalability of
our method, we conducted additional experiments
with a larger dataset of N = 5000 and M = 500,
which corresponds closer to a real-life email cam-
paign. Figure A.1 shows that DQWIC continues
to outperform Q-index, myopic, round robin, and
random policies.

Figure A.1. DQWIC vs. baselines. Selection of
M = 500 out of N = 5000 arms.

B Algorithm Pseudocode

Algorithm B.1 Deep Q-learning Whittle Index
with Context (DQWIC)

Initialize: Q-network parameters 𝜃, Whittle net-
work parameters 𝛿, target network parameters 𝜃𝑡𝑔,
replay memory D, and hyperparameters 𝜖, 𝛾.

1: Get initial state 𝑠 and context 𝑐

2: for each time step 𝑡 do

3: if Uniform[0, 1] < 𝜖 then
4: Explore by selecting 𝑀 random arms
5: else
6: Exploit by selecting top 𝑀 arms with the

highest Whittle indices
7: end if

8: Execute action 𝑎, observe context 𝑐, next
state 𝑠′ and reward 𝑟

9: Store transitions (𝑠, 𝑐, 𝑎, 𝑟, 𝑠′) in replay mem-
ory D

10: if |D| > batch size then

11: /* On a faster time scale */
12: Sample mini-batch of transitions from D
13: Compute 𝑄target (equation 8)
14: Compute loss: L(𝜃) (equation 9)
15: Update Q-network parameters 𝜃

16: /* On a slower time scale */
17: Sample batch of (𝑘, 𝑐) from D
18: Compute loss: E(𝛿) (equation 10)
19: Update Whittle network parameters 𝛿

20: end if

21: Periodically synchronize 𝜃𝑡𝑔 ← 𝜃

22: end for
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