MASKGCT: ZERO-SHOT TEXT-TO-SPEECH WITH MASKED GENERATIVE CODEC TRANSFORMER

Anonymous authors

Paper under double-blind review

ABSTRACT

The recent large-scale text-to-speech (TTS) systems are usually grouped as autoregressive and non-autoregressive systems. The autoregressive systems implicitly model duration but exhibit certain deficiencies in robustness and lack of duration controllability. Non-autoregressive systems require explicit alignment information between text and speech during training and predict durations for linguistic units (e.g. phone), which may compromise their naturalness. In this paper, we introduce Masked Generative Codec Transformer (MaskGCT), a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the *mask-and-predict* learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zeroshot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at https://maskgct.github.io/.

028 029

031 032

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

033 In recent years, large-scale zero-shot text-to-speech (TTS) systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have 034 achieved significant improvements by scaling data and model sizes, including both autoregressive (AR) [1, 2, 3, 4, 5, 6] and non-autoregressive (NAR) models [7, 8, 9, 10]. However, both AR-based and NAR-based systems still exhibit some shortcomings. In particular, AR-based TTS systems typically quantize speech into discrete tokens and then use decoder-only models to autoregressively 037 generate these tokens, which offer diverse prosody but also suffer from problems such as poor robustness and slow inference speed. NAR-based models, typically based on diffusion [7, 8], flow matching [9], or GAN [10], require explicit text and speech alignment information as well as the 040 prediction of phone-level duration, resulting in a complex pipeline and producing more standardized 041 but less diverse speech. 042

Recently, masked generative transformers, a class of generative models, have achieved significant 043 results in the fields of image [11, 12, 13], video [14, 15], and audio [16, 17, 18] generation, demon-044 strating potential comparable to or superior to autoregressive models or diffusion models. These models employ a mask-and-predict training paradigm and utilize iterative parallel decoding during 046 inference. Some previous works have attempted to introduce masked generative models into the field 047 of TTS. SoundStorm [19] was the first attempt to use a masked generative transformer to predict 048 multi-layer acoustic tokens extracted from SoundStream, conditioned on speech semantic tokens; however, it needs to receive the semantic tokens of an AR model as input. Thus, SoundStorm is more of an acoustic model that converts semantic tokens into acoustic tokens and does not fully utilize the 051 powerful generative potential of masked generative models. NaturalSpeech 3 [8] decomposes speech into discrete token sequences representing different attributes through special designs and generates 052 tokens representing different attributes through masked generative models. However, it still needs speech-text alignment supervision and phone-level duration prediction.

054 In this work, we propose MaskGCT, a fully non-autoregressive model for text-to-speech synthesis 055 that uses masked generative transformers without requiring text-speech alignment supervision 056 and phone-level duration prediction. MaskGCT is a two-stage system, both stages are trained 057 using the mask-and-predict learning paradigm. The first stage, the text-to-semantic (T2S) model, 058 predicts masked semantic tokens with in-context learning, using text token sequences and prompt speech semantic token sequences as the prefix, without explicit duration prediction. The second stage, the semantic-to-acoustic (S2A) model, utilizes semantic tokens to predict masked acoustic 060 tokens extracted from an RVQ-based speech codec with prompt acoustic tokens. During inference, 061 MaskGCT can generate semantic tokens of various specified lengths with a few iteration steps given 062 a sequence of text. In addition, we train a VQ-VAE [20] to quantize speech self-supervised learning 063 embedding, rather than using k-means to extract semantic tokens that is common in previous work. 064 This approach minimizes the information loss of semantic features even with a single codebook. We 065 also explore the scalability of our methods beyond the zero-shot TTS task, such as speech translation 066 (cross-lingual dubbing), speech content editing, voice conversion, and emotion control, demonstrating 067 the potential of MaskGCT as a foundational model for speech generation. Appendix A.6 shows a 068 comparison between MaskGCT and some previous works.

069 Our experiments demonstrate that MaskGCT has achieved performance comparable to or superior to 070 that of existing models in terms of speech quality, similarity, prosody, and intelligibility. Specifically, 071 (1) It achieves comparable or better quality and naturalness than the ground truth speech across three 072 benchmarks (LibriSpeech, SeedTTS test-en, and SeedTTS test-zh) in terms of CMOS. (2) It achieves 073 human-level similarity between the generated speech and the prompt speech, with improvements 074 of +0.017, -0.002, and +0.027 in SIM-O and +0.28, +0.32 and +0.25 in SMOS for LibriSpeech, 075 SeedTTS test-en, and SeedTTS test-zh, respectively. (3) It achieves comparable intelligibility in terms of WER across the three benchmarks and demonstrates stability within a reasonable range of 076 speech duration, which also indicates the diversity and controllability of the generated speech. 077

In summary, we propose a non-autoregressive zero-shot TTS system based on masked generative transformers and introduce a speech discrete semantic representation by training a VQ-VAE on speech self-supervised representations. Our system achieves human-level similarity, naturalness, and intelligibility by scaling data to 100K hours of in-the-wild speech, while also demonstrating high flexibility, diversity, and controllability. We investigate the scalability of our system across various tasks, including cross-lingual dubbing, voice conversion, emotion control, and speech content editing, utilizing zero-shot learning or post-training methods. This showcases the potential of our system as a foundational model for speech generation.

086 087

088

2 RELATED WORK

090 Large-scale TTS. Traditional TTS systems [21, 22, 23, 24, 25] are trained to generate speech from a 091 single speaker or multiple speakers using hours of high-quality transcribed training data. Modern 092 large-scale TTS systems [1, 2, 3, 4, 5, 6] aim to achieve zero-shot TTS (synthesizing speech for 093 unseen speakers with speech prompts) by scaling both the model and data size. These systems can be mainly divided into AR-based and NAR-based categories. For AR-based systems: SpearTTS [1] 094 utilizes three AR models to predict semantic tokens from text, coarse-grained acoustic tokens from 095 semantic tokens, and fine-grained acoustic tokens from coarse-grained tokens. VALL-E [2] predicts 096 the first layer of acoustic tokens extracted from EnCodec [26] using an AR codec language model, and the final layers with a NAR model. VoiceCraft [5] employs a single AR model to predict multi-layer 098 acoustic tokens in a delayed pattern [27]. BASETTS [3] predicts novel speech codes extracted from WavLM features and uses a GAN model for waveform reconstruction. For NAR-based systems: 100 NaturalSpeech 2 [7] employs latent diffusion to predict the latent representations from a codec 101 model [28]. VoiceBox [9] and P-Flow [29] use flow matching and in-context learning to predict 102 mel-spectrograms. MegaTTS [10] utilizes a GAN to predict mel-spectrograms, while an AR model 103 predicts phone-level prosody codes. NaturalSpeech 3 [8] employs a unified framework based on 104 discrete diffusion models to predict discrete representations of different speech attributes. However, 105 these NAR systems need to predict phoneme-level duration, leading to a complex pipeline and more standardized generative results. SimpleSpeech [30], DiTTo-TTS [31], and E2 TTS [32] are also 106 NAR-based models that do not require precise alignment information between text and speech, nor 107 do they predict phoneme-level duration. We discuss these concurrent works in Appendix K.

108 Masked Generative Model. Masked generative transformers, a class of generative models, achieve 109 significant results and demonstrate potential comparable to or superior to that of autoregressive models 110 or diffusion models in the fields of image [11, 12, 13, 33], video [14, 15], and audio [16, 17, 18, 19] 111 generation. MaskGIT [11] is the first work to use masked generative models for both unconditional 112 and conditional image generation. Subsequently, Muse [12] leverages rich text to achieve highquality and diverse text-to-image generation within the same framework. MAGVIT-v2 [15] employs 113 masked generative models with novel lookup-free quantization, outperforming diffusion models in 114 image and video generation. Recently, some efforts have been made to adapt masked generative 115 models to the field of audio. SoundStorm [19] takes in the semantic tokens from AudioLM and 116 utilizes this generative paradigm to generate tokens for a neural audio codec [28]. VampNet [16] and 117 MAGNeT [18] apply masked generative models for music and audio generation, while MaskSR [17] 118 extends these models for speech restoration. 119

Discrete Speech Representation. Speech representation is a crucial aspect of speech generation. 120 Early works [22, 24] typically utilized mel-spectrograms as the modeling target. Recently, some 121 large-scale TTS systems [2, 8] have shifted to using discrete speech representations. Discrete speech 122 representation can be primarily divided into two types: semantic discrete representation and acoustic 123 discrete representation¹. Semantic discrete representations are mainly extracted from various speech 124 SSL models [34, 35, 36] using quantization methods such as k-means. Acoustic discrete representa-125 tions, on the other hand, are usually obtained by training a VQ-GAN model [20] with the goal of 126 waveform reconstruction, as seen in speech codecs [26, 28, 37]. Semantic discrete representation 127 typically shows a stronger correlation with text, whereas acoustic discrete representation more ef-128 fectively reconstructs audio. Consequently, some two-stage TTS models predict both semantic and 129 acoustic tokens. FACodec [8] is a novel speech codec that disentangles speech into subspaces of different attributes, including content, prosody, timbre, and acoustic details. 130

131 132

133 134

135

146

147 148 3 Method

3.1 BACKGROUND: NON-AUTOREGRESSIVE MASKED GENERATIVE TRANSFORMER

136 Given a discrete representation sequence X of some data, we define $X_t = X \odot M_t$ as the process of 137 masking a subset of tokens in X with the corresponding binary mask $\mathbf{M}_t = [m_{t,i}]_{i=1}^N$. Specifically, 138 this involves replacing x_i with a special [MASK] token if $m_{t,i} = 1$, and otherwise leaving x_i 139 unmasked if $m_{t,i} = 0$. Here, each $m_{t,i}$ is independently and identically distributed according to a 140 Bernoulli distribution with parameter $\gamma(t)$, where $\gamma(t) \in (0, 1]$ represents a mask schedule function 141 (for example, $\gamma(t) = \sin(\frac{\pi t}{2T}), t \in (0,T]$). We denote $\mathbf{X}_0 = \mathbf{X}$. The non-autoregressive masked 142 generative transformers are trained to predict the masked tokens based on the unmasked tokens and 143 a condition C. This prediction is modeled as $p_{\theta}(\mathbf{X}_{t}, \mathbf{C})$. The parameters θ are optimized to 144 minimize the negative log-likelihood of the masked tokens: 145

$$\mathcal{L}_{\text{mask}} = \mathop{\mathbb{E}}_{\mathbf{X} \in \mathcal{D}, t \in [0,T]} - \sum_{i=1}^{N} m_{t,i} \cdot \log(p_{\theta}(x_i | \mathbf{X}_t, \mathbf{C})).$$

At the inference stage, we decode the tokens in parallel through iterative decoding. We start with a fully masked sequence \mathbf{X}_T . Assuming the total number of decoding steps is S, for each step i from 1 to S, we first sample $\hat{\mathbf{X}}_0$ from $p_{\theta}(\mathbf{X}_0 | \mathbf{X}_{T-(i-1) \cdot \frac{T}{S}}, \mathbf{C})$. Then, we sample $\lfloor N \cdot \gamma(T - i \cdot \frac{T}{S}) \rfloor$ tokens based on the confidence score to remask, resulting in $\mathbf{X}_{T-i \cdot \frac{T}{S}}$, where N is the total number of tokens in \mathbf{X} . The confidence score for \hat{x}_i in $\hat{\mathbf{X}}_0$ is assigned to $p_{\theta}(\mathbf{x}_i | \mathbf{X}_{T-(i-1) \cdot \frac{T}{S}}, \mathbf{C})$ if $x_{T-(i-1) \cdot \frac{T}{S}, i}$ is a [MASK] token; otherwise, we set the confidence score of \hat{x}_i to 1, indicating that tokens already unmasked in $\mathbf{X}_{T-(i-1) \cdot \frac{T}{S}}$ will not be remasked. Particularly, we choose $\lfloor N \cdot \gamma(T - i \cdot \frac{T}{S}) \rfloor$ tokens with the lowest confidence scores to be masked.

The masked generative modeling paradigm was first introduced in [11], and subsequent work such as [33] has further explored it under the perspective of discrete diffusion.

¹We give a more detailed discussion about the definitions of "semantic" and "acoustic" in Appendix B.

167

168 Figure 1: An overview of the proposed two-stage MaskGCT framework. It consists of four main 169 components: (1) a speech semantic representation codec converts speech to semantic tokens; (2) 170 a text-to-semantic model predicts semantic tokens with text and prompt semantic tokens; (3) a semantic-to-acoustic model predicts acoustic tokens conditioned on semantic tokens; (4) a speech acoustic codec reconstructs waveform from acoustic tokens. 172

173 MODEL OVERVIEW 3.2 174

175 An overview of the MaskGCT framework is presented in Figure 1. Following [2, 19, 38], MaskGCT 176 is a two-stage TTS system. The first stage uses text to predict speech semantic representation tokens, 177 which contain most information of content and partial information of prosody. The second stage model is trained to learn more acoustic information. Unlike previous works [1, 2, 19, 38] use an 178 autoregressive model for the first stage, MaskGCT utilizes the non-autoregressive masked generative 179 modeling paradigm for both the two stages without text-speech alignment supervision and phone-level 180 duration prediction: (1) For the first stage model, we trained a model to learn $p_{\theta_1}(\mathbf{S}|\mathbf{S}_t, (\mathbf{S}^p, \mathbf{P}))$, 181 where \mathbf{S} is the speech semantic representation token sequence obtained from a speech semantic 182 representation codec (we introduce in 3.2.1), \mathbf{S}^{p} is the prompt semantic token sequence, and \mathbf{P} is the 183 text token sequence. S^p and P are the condition for the first stage model. (2) The second stage model 184 is trained to learn $p_{\theta_{s^2}}(\mathbf{A}|\mathbf{A}_t, (\mathbf{A}^p, \mathbf{S}))$, where **A** is the multi-layer acoustic token sequence from a 185 speech acoustic codec like [26, 28]. Our second stage model is similar to SoundStorm [19]. We give 186 more details about the four parts in the following sections.

187 188

189

208 209

3.2.1 SPEECH SEMANTIC REPRESENTATION CODEC

Discrete speech representations can be divided into semantic tokens and acoustic tokens. Generally, 190 semantic tokens are obtained by discretizing features from speech self-supervised learning (SSL). 191 Previous two-stage, large-scale TTS systems [1, 19, 38] typically first use text to predict semantic 192 tokens, and then employ another model to predict acoustic tokens or features. This is because 193 semantic tokens have a stronger correlation with text or phonemes, which makes predicting them 194 more straightforward than directly predicting acoustic tokens. Commonly, previous works have 195 used k-means to discretize semantic features to obtain semantic tokens; however, this method can 196 lead to a loss of information. This loss may complicate the accurate reconstruction of high-quality 197 speech or the precise prediction of acoustic tokens, especially for tonally rich languages. For example, our early experiments demonstrate the challenges of accurately predicting acoustic tokens to achieve proper prosody for Chinese using semantic tokens obtained via k-means. We give more 199 experimental explorations in Section 4.3. Therefore, we need to discretize semantic representation 200 features while minimizing information loss. Inspired by [39], we train a VQ-VAE model to learn a 201 vector quantization codebook that reconstructs speech semantic representations from a speech SSL 202 model. For a speech semantic representation sequence $\mathbf{S} \in \mathbb{R}^{T \times d}$, the vector quantizer quantizes the 203 output of the encoder $\mathcal{E}(\mathbf{S})$ to \mathbf{E} , and the decoder reconstructs \mathbf{E} back to $\hat{\mathbf{S}}$. We optimize the encoder 204 and the decoder using a reconstruction loss between S and \hat{S} , employ codebook loss to optimize the 205 codebook and use commitment loss to optimize the encoder with the straight-through method [20]. 206 The total loss for training the semantic representation codec can be written as: 207

$$\mathcal{L}_{\text{total}} = \frac{1}{Td} (\lambda_{\text{rec}} \cdot ||\mathbf{S} - \hat{\mathbf{S}}||_1 + \lambda_{\text{codebook}} \cdot ||\text{sg}(\mathcal{E}(\mathbf{S})) - \mathbf{E}||_2 + \lambda_{\text{commit}} \cdot ||\text{sg}(\mathbf{E}) - \mathcal{E}(\mathbf{S})||_2)$$

where sg means stop-gradient. 210

211 In detail, we utilize the hidden states from the 17th layer of W2v-BERT 2.0 [34] as the semantic 212 features for our speech encoder. The encoder and decoder are composed of multiple ConvNext [40] 213 blocks. Following the methods of improved VQ-GAN [41] and DAC [37], we use factorized codes to project the output of the encoder into a low-dimensional latent variable space. The codebook 214 contains 8,192 entries, each of dimension 8. Further details about the model architecture are provided 215 in Appendix A.4.

Figure 2: An overview of training diagram of the T2S (left) and S2A (right) models. The T2S model is trained to predict masked semantic tokens with text and prompt semantic tokens as the prefix. The S2A model is trained to predict masked acoustic tokens of a random layer conditioned on prompt acoustic tokens, semantic tokens, and acoustic tokens of the previous layers.

3.2.2 TEXT-TO-SEMANTIC MODEL

232 Based on the previous discussion, we employ a non-autoregressive masked generative transformer to 233 train a text-to-semantic (T2S) model, instead of using an autoregressive model or any text-to-speech 234 alignment information. During training, we randomly extract a portion of the prefix of the semantic token sequence as the prompt, denoted as S^p . We then concatenate the text token sequence P 235 with \mathbf{S}^p to form the condition. We simply add $(\mathbf{P}, \mathbf{S}^p)$ as the prefix sequence to the input masked 236 semantic token sequence S_t to leverage the in-context learning ability of language models. We 237 use a Llama-style [42] transformer as the backbone of our model, incorporating gated linear units 238 with GELU [43] activation, rotation position encoding [44], etc., but replacing causal attention with 239 bidirectional attention. We also use adaptive RMSNorm [45], which accepts the time step t as the 240 condition. 241

During inference, we generate the target semantic token sequence of any specified length conditioned
on the text and the prompt semantic token sequence. In this paper, we also train a flow matching [46]
based duration prediction model to predict the total duration conditioned on the text and prompt
speech duration, leveraging in-context learning. More details can be found in Appendix A.5.

246 247

224

225

226

227

228 229 230

231

3.2.3 SEMANTIC-TO-ACOUSTIC MODEL

248 We also train a semantic-to-acoustic (S2A) model using a masked generative codec transformer 249 conditioned on the semantic tokens. Our semantic-to-acoustic model is based on SoundStorm [19], 250 which generates multi-layer acoustic token sequences. Given N layers of the acoustic token sequence 251 $A^{1:N}$, during training, we select one layer j from 1 to N. We denote the jth layer of the acoustic 252 token sequence as A^j . Following the previous discussion, we mask A^j at the timestep t to get \mathbf{A}_t^j . 253 The model is then trained to predict \mathbf{A}^{j} conditioned on the prompt \mathbf{A}^{p} , the corresponding semantic 254 token sequence S, and all the layers smaller than j of the acoustic tokens. This can be formulated as $p_{\theta_{s2a}}(\mathbf{A}^j | \mathbf{A}_t^j, (\mathbf{A}^p, \mathbf{S}, \mathbf{A}^{1:j-1}))$. We sample j according to a linear schedule $p(j) = 1 - \frac{2j}{N(N+1)}$. 255 256 For the input of the S2A model, since the number of frames in the semantic token sequence is equal 257 to the sum of the frames in the prompt acoustic sequence and the target acoustic sequence, we simply 258 sum the embeddings of the semantic tokens and the embeddings of the acoustic tokens from layer 1 259 to j. During inference, we generate tokens for each layer from coarse to fine, using iterative parallel 260 decoding within each layer. Figure 2 shows a simplified training diagram of the T2S and S2A models.

261 262

263

3.2.4 SPEECH ACOUSTIC CODEC

Speech acoustic codec is trained to quantize speech waveform to multi-layer discrete tokens while
aiming to preserve all the information of the speech as soon as possible. We follow the residual vector
quantization (RVQ) method to compress the 24K sampling rate speech waveform into discrete tokens
of 12 layers. The codebook size of each layer is 1,024 and the codebook dimension is 8. The model
architectures, discriminators, and training losses follow DAC [37], except that we use the Vocos [47]
architecture as the decoder for more efficient training and inference. Figure 5 shows the comparison
between the semantic codec and acoustic codec.

270 3.3 OTHER APPLICATIONS

MaskGCT can accomplish tasks beyond zero-shot TTS, such as duration-controllable speech translation (cross-lingual dubbing), emotion control, speech content editing, and voice conversion with
simple modifications or the assistance of external tools, demonstrating the potential of MaskGCT as
a foundational model for speech generation. We provide more details in Appendix F, G, H, I.

276 277

278

4 EXPERIMENTS AND RESULTS

279 4.1 EXPERIMENTAL SETTINGS280

Datasets. We use the Emilia [48] dataset to train our models. Emilia is a multilingual and diverse 281 in-the-wild speech dataset designed for large-scale speech generation. In this work, we use English 282 and Chinese data from Emilia, each with 50K hours of speech (totaling 100K hours). We evaluate 283 our zero-shot TTS models with three benchmarks: (1) LibriSpeech [49] test-clean, a widely used test 284 set for English zero-shot TTS. (2) SeedTTS test-en, a test set introduced in Seed-TTS [6] of samples 285 extracted from English public corpora, includes 1,000 samples from the Common Voice dataset [50]. 286 (3) SeedTTS test-zh, a test set introduced in Seed-TTS of samples extracted from Chinese public 287 corpora, includes 2,000 samples from the DiDiSpeech dataset [51]. We also scale the training dataset 288 to six languages to support multilingual zero-shot TTS. We provide additional experimental details 289 and evaluation results about multilingual zero-shot TTS in Appendix E.

290 Evaluation Metrics. We use both objective and subjective metrics to evaluate our models. For the 291 objective metrics, we evaluate speaker similarity (SIM-O), robustness (WER), and speech quality 292 (FSD). Specifically, for speaker similarity, we compute the cosine similarity between the WavLM 293 TDNN² [36] speaker embedding of generated samples and the prompt. For Word Error Rate (WER), 294 we use a HuBERT-based³ ASR model for LibriSpeech test-clean, Whisper-large-v3 for Seed-TTS 295 test-en, and Paraformer-zh for Seed-TTS test-zh, following previous works. For speech quality, we 296 use Fréchet Speech Distance (FSD) with self-supervised wav2vec 2.0 [52] features, following [9]. For the subjective metrics, comparative mean option score (CMOS) and similarity mean option score 297 (SMOS) are used to evaluate naturalness and similarity, respectively. CMOS is on a scale of -3 to 3, 298 and SMOS is on a scale of 1 to 5. 299

Baseline. We compare our models with state-of-the-art zero-shot TTS systems, including NaturalSpeech 3 [8], VALL-E [2], VoiceBox [9], VoiceCraft [5], XTTS-v2 [53], and CosyVoice [54]. More
details of each model can be found in Appendix D. We also train an AR-based T2S model to replace
the T2S part of MaskGCT, we term it as AR + SoundStorm.

304 Training. We train all models on 8 NVIDIA A100 80GB GPUs. We train two T2S models of 305 different sizes (denoted as T2S-*Base* and T2S-*large*). For more details about the model architecture, 306 please refer to Appendix A.1. We report the metrics of T2S-large by default, and you can find a 307 comparison of model sizes in Section 4.5. We also compare two different methods of text tokenization: 308 Grapheme-to-Phoneme (G2P) [55] and Byte Pair Encoding (BPE) [56]. See more details of the two methods in Appendix A.7. We report the metrics of G2P by default. We optimize these models 309 with the AdamW [57] optimizer with a learning rate of 1e-4 and 32K warmup steps, following the 310 inverse square root learning schedule. We use the classifier-free guidance [58], during training for 311 both the T2S and S2A models, we drop the prompt with a probability of 0.15. See more details about 312 classifier-free guidance and classifier-free guidance rescale in Appendix C. 313

314 Inference. For the T2S model, we use 50 steps as the default total inference steps. The classifier-free 315 guidance scale and the classifier-free guidance rescale factor [59] are set to 2.5 and 0.75, respectively. For sampling, we use a top-k of 20, with the sampling temperature annealing from 1.5 to 0. We add 316 Gumbel noise to token confidences when determining the remasking process, following [11]. For the 317 S2A model, we use [40, 16, 1, 1, 1, 1, 1, 1, 1, 1] steps for acoustic RVQ layers by default, we find 318 the S2A model can also perform well with fewer inference steps of [10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]319 (see Appendix A.3). We use the same sampling strategy as the T2S model, except that we use greedy 320 sampling instead of top-k sampling if the inference step is 1. 321

^{322 &}lt;sup>2</sup>https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_ 323 verification

³https://huggingface.co/facebook/hubert-large-ls960-ft

324 Table 1: Evaluation results for MaskGCT and the baseline methods on LibriSpeech test-clean, 325 SeedTTS test-en, SeedTTS test-zh. The boldface denotes the best result, the underline denotes the 326 second best. gt length denotes the result obtained by using ground truth total speech length. The results in '()' means the result is the best one selected from five random samples (rerank 5). 327

328									
329	System	SIM-O↑	WER↓	FSD↓	SMOS ↑	CMOS ↑			
330		LibriSpeech test-clean							
000	Ground Truth	0.68	1.94	-	$4.05_{\pm 0.12}$	0.00			
331	VALL-E [2]	0.50	5.90	-	$3.47_{\pm 0.26}$	$-0.52_{\pm 0.22}$			
332	VoiceBox [9]	0.64	2.03	0.762	$3.80_{\pm 0.17}$	$-0.41_{\pm 0.13}$			
333	NaturalSpeech 3 [8]	0.67	1.94	0.786	$4.26_{\pm 0.10}$	$0.16_{\pm 0.14}$			
334	VoiceCraft [5]	0.45	4.68	0.981	$3.52_{\pm 0.21}$	$-0.33_{\pm 0.16}$			
335	XTTS-v2 [53]	0.51	4.20	0.945	$3.02_{\pm0.22}$	$-0.98_{\pm 0.19}$			
000	MaskGCT	<u>0.687</u> (0.723)	2.634(1.976)	0.886	$4.27_{\pm 0.14}$	$0.10_{\pm 0.16}$			
330	MaskGCT (gt length)	0.697	2.012	0.746	$4.33_{\pm 0.11}$	$0.13_{\pm 0.13}$			
337		See	dTTS test-en						
338	Ground Truth	0.730	2.143	-	$3.92_{\pm 0.15}$	0.00			
339	CosyVoice [54]	0.643	4.079	0.316	$3.52_{\pm 0.17}$	$-0.41_{\pm 0.18}$			
340	XTTS-v2 [53]	0.463	3.248	0.484	$3.15_{\pm 0.22}$	$-0.86_{\pm 0.19}$			
3/1	VoiceCraft [5]	0.470	7.556	0.226	$3.18_{\pm0.20}$	$-1.08_{\pm 0.15}$			
541	MaskGCT	<u>0.717</u> (0.760)	<u>2.623</u> (1.283)	0.188	$4.24_{\pm 0.12}$	$0.03_{\pm 0.14}$			
342	MaskGCT (gt length)	0.728	2.466	0.159	$4.13_{\pm 0.17}$	$0.12_{\pm 0.15}$			
343		See	dTTS test-zh						
344	Ground Truth	0.750	1.254	-	$3.86_{\pm0.17}$	0.00			
345	CosyVoice [54]	0.750	4.089	0.276	$3.54_{\pm 0.12}$	$-0.45_{\pm 0.15}$			
346	XTTS-v2 [53]	0.635	2.876	0.413	$2.95_{\pm0.18}$	$-0.81_{\pm 0.22}$			
2/7	MaskGCT	0.774(0.805)	<u>2.273(0.843)</u>	0.106	$4.09_{\pm 0.12}$	$0.05_{\pm 0.17}$			
347	MaskGCT (gt length)	0.777	2.183	0.101	$4.11_{\pm 0.12}$	$0.08_{\pm 0.18}$			
348									

4.2 ZERO-SHOT TTS

In this section, we show the main results of zero-shot TTS: we show comparison results with 353 SOTA baselines in Section 4.2.1; we compare MaskGCT with replacing T2S model to an AR model in Section 4.2.2; We present the performance of MaskGCT across varying speech tempos in 354 Section 4.2.3. Additionally, we present the results of zero-shot TTS for speech style imitation in 355 Section 4.3, multilingual zero-shot TTS in Appendix E, and cross-lingual speech translation (dubbing) 356 in Appendix F.

357 358 359

360

349 350

351 352

4.2.1**COMPARISON WITH BASELINES**

361 We compare MaskGCT with baselines in terms of similarity, robustness, and generation quality. The 362 main results are shown in Table 1. MaskGCT demonstrates excellent performance on all metrics and 363 achieves human-level similarity, naturalness, and intelligibility. In *similarity*, MaskGCT's SIM-O and SMOS both outperform the best baseline, whether assessed using the total length of ground 364 truth or the predicted total duration $(0.67 \rightarrow 0.687 \text{ in LibriSpeech}, 0.643 \rightarrow 0.717 \text{ in SeedTTS test$ en, 0.75 \rightarrow 0.774 in SeedTTS test-zh for SIM-O; +0.01 in LibriSpeech, +0.72 in SeedTTS test-en, 366 +0.55 in SeedTTS test-zh for SMOS). When compared with human recordings, MaskGCT achieves 367 human-level similarity across all three test sets (+0.017, -0.002, and +0.027 for SIM-O respectively 368 in the three test sets, and +0.28, +0.32, and +0.25 for SMOS respectively in the three test sets). In 369 robustness, MaskGCT likewise results nearly on par with ground truth (with 2.634, 2.623, 2.273 370 WER on LibriSpeech, SeedTTS test-en, and SeedTTS test-zh, respectively), exhibiting enhanced 371 robustness compared to AR-based models and performing on par or better than NAR-based models 372 such as VoiceBox and NaturalSpeech 3, without relying on phone-level duration predictions. In 373 generation quality, MaskGCT achieves +0.10, +0.03, and +0.05 CMOS across the three test sets 374 when compared with human recordings, indicating that MaskGCT attains human-level naturalness 375 on these test sets. We also observe that MaskGCT exhibits excellent performance when using both ground truth total duration and predicted total duration, indicating the robustness of MaskGCT within 376 a reasonable range of total speech duration and the capability of our total duration predictor to yield 377 appropriate durations.

System	SIM-O↑	WER↓	FSD ↓	SMOS ↑	CMOS ↑	
LibriSpeech test-clean						
AR + SoundStorm	0.672	3.267	0.998	$4.20_{\pm 0.17}$	$-0.02_{\pm 0.20}$	
MaskGCT	0.687	2.634	0.886	$4.27_{\pm 0.14}$	$0.10_{\pm 0.16}$	
SeedTTS test-en						
AR + SoundStorm	0.683	2.846	0.323	$4.03_{\pm 0.23}$	$-0.05_{\pm 0.22}$	
MaskGCT	0.717	2.623	0.188	$4.24_{\pm 0.12}$	$0.03_{\pm 0.14}$	
SeedTTS test-zh						
AR + SoundStorm	0.747	3.865	0.238	$3.78_{\pm 0.23}$	$-0.32_{\pm 0.19}$	
MaskGCT	0.774	2.273	0.106	$4.09_{\pm 0.12}$	$0.05_{\pm 0.17}$	

Table 2: Comparison results of the evaluation of MaskGCT and AR+SoundStorm. AR+SoundStorm
 can be regarded as replacing the T2S MaskGCT with the AR T2S model.

388 389 390

391

392

380 381 382

4.2.2 AUTOREGRESSIVE VS. MASKED GENERATIVE MODELS

We compare MaskGCT to replacing T2S MaskGCT with an AR T2S model (which we call AR + 393 SoundStorm). Table 2 shows the performance of these two models on all three test sets. MaskGCT 394 demonstrates improved similarity, robustness, and CMOS (+0.12 on LibriSpeech test-clean, +0.08 395 on SeedTTS test-en, and +0.37 on SeedTTS test-zh) across all three test sets. We also conduct 396 comparisons on more challenging hard cases (such as repeating words, and tongue twisters, which 397 are often considered as samples where TTS systems are prone to *hallucinations*). MaskGCT exhibits 398 a more pronounced robustness advantage in these scenarios. See details in Appendix J. In addition, 399 compared to AR-based models, MaskGCT offers the capability to control the total duration of the 400 generated speech, along with fewer inference steps, requiring only 25 to 50 steps for T2S models 401 to achieve optimal results for speeches of any length. Conversely, the inference steps for AR-based 402 models increase linearly with the length of the speech.

403 404

405

418

420

4.2.3 DURATION LENGTH ANALYSIS

We analyze the robustness of the generated re-406 sults of MaskGCT under different changes in to-407 tal duration length (which can also be regarded 408 as changes in speech tempo). The results are 409 shown in Figure 3. We explore the results of 410 multiplying the ground truth total duration by 411 0.7 to 1.3. The results show that the lowest WER 412 is achieved at a total duration multiplier of 1.0, 413 indicating that the models perform best when 414

the speech is played at its natural speed. When Figure 3: WER vs. Total Duration Multiplier.
the multiplier is 0.9 or 1.1, the model is still able to achieve a WER very close to the best. When the multiplier is 0.7 or 1.3, the WER is slightly higher but still within a reasonable range. This shows that our model can generate reasonable and accurate content at different speech tempos.

419 4.3 SPEECH STYLE IMITATION

Zero-shot TTS endeavors to learn *how to speak*, including voice timbre and style, from prompt speech. 421 Previous works utilized SIM-O to measure the similarity between generated speech and reference 422 speech; however, SIM-O primarily assesses the similarity in voice timbre. In addition to evaluating 423 the model's zero-shot cloning ability through timbre similarity metrics, we also explored MaskGCT's 424 capability to clone overall style from two more expressive and stylized dimensions: accent and 425 emotion. We randomly sampled a portion of data from the L2-ARCTIC [60] accent corpus and the 426 ESD [61] emotion corpus to construct our accent and emotion evaluation datasets. Additionally, we 427 introduce supplementary metrics to assess the model's performance. For accent imitation, we employ 428 SIM-Accent, to measure the similarity in accent between the generated speech and reference speech. 429 The calculation process is analogous to SIM-O, but we utilize CommonAccent⁴ [62, 63] to derive the accent representation features of the speech. We also incorporate a subjective evaluation metric, 430

⁴https://huggingface.co/Jzuluaga/accent-id-commonaccent_ecapa

Accent SMOS, which is similar to SMOS but focuses on accent rather than timbre. For emotion, we introduce Emotion SIM (with emotion2vec⁵ [64] to extract features) and Emotion SMOS.

Our experiments demonstrate that MaskGCT exhibits powerful style cloning capabilities. For accent imitation, MaskGCT achieves the highest SIM-O of 0.717, close to the ground truth of 0.747. It also maintains a competitive WER of 6.382 and the best Accent SIM of 0.645. Additionally, MaskGCT leads in CMOS of 0.23, SMOS of 4.24, and Accent SMOS of 4.38. For emotion imitation, MaskGCT achieves the highest SIM-O of 0.600. It also attains a competitive WER of 12.502 and a strong Emotion SIM of 0.822. Furthermore, MaskGCT leads in all subjective metrics with CMOS of -0.31, SMOS of 4.07, and Emotion SMOS of 3.76, indicating natural and pleasant emotion imitation. In addition, we find the WER in Table 3 and Table 4 of all methods is much higher than previously reported. One possible reason for the high WER could be that the ASR model has poor recognition capabilities for accents and emotional data. We discover that the WER of the ground truth is also high.

Table 3: Evaluation results for MaskGCT and the baseline methods on accent imitation.

System	SIM-O↑	WER↓	Accent SIM ↑	CMOS ↑	SMOS ↑	Accent SMOS ↑		
Accent Corpus L2-Arctit								
Ground Truth	0.747	10.903	0.633	0.00	-	-		
VALL-E	0.403	10.721	0.485	$-1.04_{\pm 0.50}$	$3.12_{\pm 0.41}$	$2.77_{\pm 0.45}$		
CosyVoice	0.653	6.660	0.640	$0.10_{\pm 0.19}$	$4.23_{\pm 0.18}$	$3.99_{\pm 0.23}$		
VoiceBox	0.475	6.181	0.575	$-0.55_{\pm 0.22}$	$3.93_{\pm 0.25}$	$3.49_{\pm 0.29}$		
VoiceCraft	0.438	10.072	0.517	$-0.39_{\pm 0.22}$	$3.51_{\pm 0.33}$	$3.29_{\pm 0.28}$		
MaskGCT	0.717	<u>6.382</u>	0.645	$0.23_{\pm 0.17}$	$4.24_{\pm 0.16}$	$4.38_{\pm 0.25}$		

Table 4: Evaluation results for MaskGCT and the baseline methods on emotion imitation.

System	SIM-O ↑	WER↓	Emotion SIM ↑	CMOS ↑	SMOS ↑	Emotion SMOS ↑	
Emotion Corpus ESD							
Ground Truth	0.673	11.792	0.936	0.00	-	-	
VALL-E	0.396	15.731	0.735	$-1.43_{\pm 0.33}$	$2.52_{\pm 0.38}$	$2.63_{\pm 0.36}$	
CosyVoice	0.575	10.139	0.839	$-0.45_{\pm 0.18}$	$3.98_{\pm0.19}$	$3.66_{\pm 0.19}$	
VoiceBox	0.451	12.647	0.811	$-0.65_{\pm 0.20}$	$3.81_{\pm 0.16}$	$3.61_{\pm 0.19}$	
VoiceCraft	0.345	16.042	0.788	$-0.60_{\pm 0.24}$	$3.42_{\pm0.31}$	$3.52_{\pm 0.25}$	
MaskGCT	0.600	12.502	0.822	-0.31 _{±0.17}	$4.07_{\pm 0.16}$	3.76 ±0.25	

4.4 CHOICE OF SEMANTIC REPRESENTATION CODEC

In this section, we investigate the impact of different semantic representation approaches on acoustic token reconstruction. We primarily evaluate two types of semantic codecs: VQ-based and k-means-based. For VQ-based approaches, we implement two configurations with codebook sizes of 8192 and 2048, denoted as "VQ 8192" and "VQ 2048", respectively. Similarly, for k-means-based approaches, we train models with 8192 and 2048 clusters, denoted as "k-means 8192" and "k-means 2048". To assess how different semantic representations affect acoustic prediction, we train separate semantic-to-acoustic (S2A) models for each configuration and evaluate their performance through speech reconstruction metrics. The comparative results are presented in Table 5.

Table 5: Evaluation results for S2A models with different semantic codecs. In this experiment, we use the ground-truth semantic tokens to predict acoustic tokens.

Semantic Codec	SIM-O ↑	WER↓	SIM-O ↑	WER \downarrow	SIM-O ↑	WER ↓
	LibriSpeec	h <i>test-clean</i>	SeedTTS	S test-en	SeedTTS	S test-zh
k-means 2048	0.648	3.013	0.658	3.989	0.691	11.420
k-means 8192	0.661	2.862	0.664	3.012	0.713	8.782
VQ 2048	0.671	2.177	0.692	3.187	0.744	4.913
VQ 8192	0.680	<u>2.223</u>	0.713	2.175	0.763	2.088

⁵https://github.com/ddlBoJack/emotion2vec

486 The experimental results demonstrate consistent patterns across all three test sets. For SIM-O, the 487 results reveal a consistent performance ranking across all test sets, with VQ 8192 yielding the highest 488 scores, followed sequentially by VQ 2048, k-means 8192, and k-means 2048. Regarding Word Error 489 Rate (WER), VQ-based methods consistently outperform k-means approaches, though this advantage 490 is less pronounced in the LibriSpeech test-clean set. Notably, on the SeedTTS test-zh (Chinese test set), k-means exhibits a substantial degradation in the performance of the WER. We attribute this 491 phenomenon to the stronger coupling between semantic and prosodic features in Chinese, where the 492 transition from VQ to k-means results in a significant loss of prosodic information in the semantic 493 representations. 494

495 4.5 ABLATION STUDY

496

512 513

523

524 525

526 527

Inference Timesteps. We explore the impact of inference steps of the T2S model on the results, 497 ranging from 5 steps to 75 steps. Initially, SIM increases significantly and stabilizes after 25 steps. 498 For test-zh, it rises from 0.761 at 5 steps to 0.771 at 75 steps, and for test-en, from 0.696 to 0.715. 499 SIM peaks around 25 steps. WER improves more dramatically, especially up to 25 steps. For test-zh, 500 it drops from 10.19 at 5 steps to 2.507 at 25 steps, and for test-en, from 8.096 to 2.346. Both SIM 501 and WER show minimal changes beyond 25 steps. These findings suggest that SIM can be optimized 502 with around 10 steps, while achieving the lowest WER requires approximately 25 steps. Beyond this, 503 both metrics show minimal changes, indicating that further increases in steps do not yield substantial 504 improvements. Therefore, for practical applications, 25 inference steps may be considered optimal 505 for balancing SIM and WER, ensuring efficient and effective performance. See more details in 506 Appendix A.2.

Model Size. We compare the performance differences of T2S models with varying model sizes. The result is shown in Table 6. We observe that the large model outperforms the base model across all metrics, albeit not significantly. We suggest that our system can achieve good performance with just the setting of the base model when using 100K hours of data. In the future, we will explore more comprehensive scaling laws for both model size and data scaling.

System	SIM-O ↑	WER↓	FSD↓	#Parameters		
SeedTTS test-en						
T2S-Base	0.714	2.514	0.189	315M		
T2S-Large	0.728	2.466	0.159	695M		
	SeedTTS test-zh					
T2S-Base	0.769	2.216	0.123	315M		
T2S-Large	0.777	2.183	0.101	695M		

Table 6: Comparison results between T2S-*Large* and T2S-*Base*.

Text Tokenizer. We compare two text tokenization methods: Grapheme-to-Phoneme (G2P) and Byte Pair Encoding (BPE). See more details in Appendix A.7.

5 CONCLUSION

In this paper, we present MaskGCT, a large-scale zero-shot TTS system that leverages fully non-528 autoregressive masked generative codec transformers while not requiring text-speech alignment 529 supervision and phone-level duration prediction. MaskGCT achieves high-quality text-to-speech 530 synthesis using text to predict semantic tokens extracted from a speech self-supervised learning (SSL) 531 model, and then predicting acoustic tokens conditioned on these semantic tokens. Our experiments 532 demonstrate that MaskGCT outperforms the state-of-the-art TTS system on speech quality, similarity, 533 and intelligibility with scaled model size and training data, and MaskGCT can control the total 534 duration of generated speech. We also explore the scalability of MaskGCT in tasks such as speech translation, voice conversion, emotion control, and speech content editing, demonstrating the potential 536 of MaskGCT as a foundational model for speech generation.

537

538

540 REFERENCES

- [1] Eugene Kharitonov, Damien Vincent, Zalán Borsos, Raphaël Marinier, Sertan Girgin, Olivier
 Pietquin, Matt Sharifi, Marco Tagliasacchi, and Neil Zeghidour. Speak, read and prompt:
 High-fidelity text-to-speech with minimal supervision. *Transactions of the Association for Computational Linguistics*, 11:1703–1718, 2023.
 - [2] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech synthesizers. arXiv preprint arXiv:2301.02111, 2023.
 - [3] Mateusz Łajszczak, Guillermo Cámbara, Yang Li, Fatih Beyhan, Arent van Korlaar, Fan Yang, Arnaud Joly, Álvaro Martín-Cortinas, Ammar Abbas, Adam Michalski, et al. Base tts: Lessons from building a billion-parameter text-to-speech model on 100k hours of data. *arXiv preprint arXiv:2402.08093*, 2024.
 - [4] Jaehyeon Kim, Keon Lee, Seungjun Chung, and Jaewoong Cho. Clam-tts: Improving neural codec language model for zero-shot text-to-speech. *arXiv preprint arXiv:2404.02781*, 2024.
 - [5] Puyuan Peng, Po-Yao Huang, Daniel Li, Abdelrahman Mohamed, and David Harwath. Voicecraft: Zero-shot speech editing and text-to-speech in the wild. arXiv preprint arXiv:2403.16973, 2024.
 - [6] Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech generation models. *arXiv preprint arXiv:2406.02430*, 2024.
 - [7] Kai Shen, Zeqian Ju, Xu Tan, Yanqing Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang Bian. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers. *arXiv preprint arXiv:2304.09116*, 2023.
 - [8] Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factorized codec and diffusion models. arXiv preprint arXiv:2403.03100, 2024.
 - [9] Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson, Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal speech generation at scale. *Advances in neural information processing systems*, 36, 2024.
 - [10] Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Chen Zhang, Zhenhui Ye, Pengfei Wei, Chunfeng Wang, Xiang Yin, Zejun Ma, et al. Mega-tts 2: Zero-shot text-to-speech with arbitrary length speech prompts. arXiv preprint arXiv:2307.07218, 2023.
 - [11] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 11315–11325, 2022.
 - [12] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.
 - [13] Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. Mage: Masked generative encoder to unify representation learning and image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2142–2152, 2023.
- [14] Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
 transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10459–10469, 2023.

600

601

602

603

604

605

606

607

608 609

610

611

612

613 614

615

616

617

618

619

620

621

622

623 624

625

626

627

628

629 630

631

632 633

634

635

636

637

638

639 640

641

642

643

644

- [15] Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion-tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.
 - [16] Hugo Flores Garcia, Prem Seetharaman, Rithesh Kumar, and Bryan Pardo. Vampnet: Music generation via masked acoustic token modeling. arXiv preprint arXiv:2307.04686, 2023.
 - [17] Xu Li, Qirui Wang, and Xiaoyu Liu. Masksr: Masked language model for full-band speech restoration. *arXiv preprint arXiv:2406.02092*, 2024.
 - [18] Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive transformer. *arXiv preprint arXiv:2401.04577*, 2024.
 - [19] Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene Kharitonov, Neil Zeghidour, and Marco Tagliasacchi. Soundstorm: Efficient parallel audio generation. arXiv preprint arXiv:2305.09636, 2023.
 - [20] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural information processing systems, 30, 2017.
 - [21] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast and high-quality end-to-end text to speech. *arXiv preprint arXiv:2006.04558*, 2020.
 - [22] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech: Fast, robust and controllable text to speech. Advances in neural information processing systems, 32, 2019.
 - [23] Xu Tan, Jiawei Chen, Haohe Liu, Jian Cong, Chen Zhang, Yanqing Liu, Xi Wang, Yichong Leng, Yuanhao Yi, Lei He, et al. Naturalspeech: End-to-end text-to-speech synthesis with human-level quality. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - [24] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135, 2017.
 - [25] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech. In *International Conference on Machine Learning*, pages 5530–5540. PMLR, 2021.
 - [26] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression. *arXiv preprint arXiv:2210.13438*, 2022.
 - [27] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez. Simple and controllable music generation. Advances in Neural Information Processing Systems, 36, 2024.
 - [28] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Soundstream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 30:495–507, 2021.
 - [29] Sungwon Kim, Kevin Shih, Joao Felipe Santos, Evelina Bakhturina, Mikyas Desta, Rafael Valle, Sungroh Yoon, Bryan Catanzaro, et al. P-flow: a fast and data-efficient zero-shot tts through speech prompting. Advances in Neural Information Processing Systems, 36, 2024.
 - [30] Dongchao Yang, Dingdong Wang, Haohan Guo, Xueyuan Chen, Xixin Wu, and Helen Meng. Simplespeech: Towards simple and efficient text-to-speech with scalar latent transformer diffusion models. arXiv preprint arXiv:2406.02328, 2024.
 - [31] Keon Lee, Dong Won Kim, Jaehyeon Kim, and Jaewoong Cho. Ditto-tts: Efficient and scalable zero-shot text-to-speech with diffusion transformer. *arXiv preprint arXiv:2406.11427*, 2024.
- [32] Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen Xiao, Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 tts: Embarrassingly easy fully non-autoregressive zero-shot tts. *arXiv preprint arXiv:2406.18009*, 2024.

657

659

660

661

662

663

664

665

666

668

669

670 671

672

673 674

675

676

677

678

679

680 681

682 683

684

685

686

687 688

689

690

691

692 693

694

696

697

698

- 648 [33] José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation 649 with token-critic. In European Conference on Computer Vision, pages 70-86. Springer, 2022. 650
- [34] Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui Wu. W2v-bert: Combining contrastive learning and masked language modeling 652 for self-supervised speech pre-training. In 2021 IEEE Automatic Speech Recognition and 653 Understanding Workshop (ASRU), pages 244–250. IEEE, 2021. 654
- 655 [35] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, 656 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing, 29:3451-3460, 2021. 658
 - [36] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pretraining for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505-1518, 2022.
 - [37] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. Highfidelity audio compression with improved rvqgan. Advances in Neural Information Processing Systems, 36, 2024.
- 667 [38] James Betker. Better speech synthesis through scaling. arXiv preprint arXiv:2305.07243, 2023.
 - [39] Zhichao Huang, Chutong Meng, and Tom Ko. Repcodec: A speech representation codec for speech tokenization. arXiv preprint arXiv:2309.00169, 2023.
 - [40] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11976–11986, 2022.
 - [41] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint arXiv:2110.04627, 2021.
 - [42] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.
 - [43] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
 - [44] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 - [45] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information Processing Systems, 32, 2019.
 - [46] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.
 - [47] Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders for high-quality audio synthesis. arXiv preprint arXiv:2306.00814, 2023.
 - [48] Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset for large-scale speech generation. arXiv preprint arXiv:2407.05361, 2024.
 - [49] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus based on public domain audio books. In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.
- [50] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, 700 Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670, 2019.

[51] Tingwei Guo, Cheng Wen, Dongwei Jiang, Ne Luo, Ruixiong Zhang, Shuaijiang Zhao, Wubo Li, 703 Cheng Gong, Wei Zou, Kun Han, et al. Didispeech: A large scale mandarin speech corpus. In 704 ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing 705 (ICASSP), pages 6968–6972. IEEE, 2021. 706 [52] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: 707 A framework for self-supervised learning of speech representations. Advances in neural 708 information processing systems, 33:12449–12460, 2020. 709 710 [53] Edresson Casanova, Kelly Davis, Eren Gölge, Görkem Göknar, Iulian Gulea, Logan Hart, Aya 711 Aljafari, Joshua Meyer, Reuben Morais, Samuel Olayemi, et al. Xtts: a massively multilingual zero-shot text-to-speech model. arXiv preprint arXiv:2406.04904, 2024. 712 713 [54] Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi 714 Zheng, Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech 715 synthesizer based on supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024. 716 [55] Mathieu Bernard and Hadrien Titeux. Phonemizer: Text to phones transcription for multiple 717 languages in python. Journal of Open Source Software, 6(68):3958, 2021. 718 719 [56] Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994. 720 721 [57] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 722 723 [58] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint 724 arXiv:2207.12598, 2022. 725 [59] Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules 726 and sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications 727 of computer vision, pages 5404–5411, 2024. 728 729 [60] Guanlong Zhao, Evgeny Chukharev-Hudilainen, Sinem Sonsaat, Alif Silpachai, Ivana Lucic, 730 Ricardo Gutierrez-Osuna, and John Levis. L2-arctic: A non-native english speech corpus. 2018. 731 [61] Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li. Seen and unseen emotional style transfer for 732 voice conversion with a new emotional speech dataset. In ICASSP 2021-2021 IEEE International 733 Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 920–924. IEEE, 2021. 734 735 [62] Huaying Xue, Xiulian Peng, Yan Lu, et al. Convert and speak: Zero-shot accent conversion 736 with minimum supervision. In ACM Multimedia 2024. 737 [63] Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, and Mark Hasegawa-Johnson. Autovc: 738 Zero-shot voice style transfer with only autoencoder loss. In International Conference on 739 Machine Learning, pages 5210–5219. PMLR, 2019. 740 741 [64] Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, Shiliang Zhang, and Xie Chen. 742 emotion2vec: Self-supervised pre-training for speech emotion representation. arXiv preprint 743 arXiv:2312.15185, 2023. 744 [65] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A 745 universal neural vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022. 746 747 [66] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate 748 and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 749 [67] Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-tts: A generative flow 750 for text-to-speech via monotonic alignment search. Advances in Neural Information Processing 751 Systems, 33:8067-8077, 2020. 752 753 [68] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: 754 a language modeling approach to audio generation. IEEE/ACM transactions on audio, speech, 755 and language processing, 31:2523–2533, 2023.

761 762

763

764

765

766

767

768

769

770

778

779

780

781

782

783 784

785

786

787

788

789

790 791

792

793 794

795

796

797

798

799

800

801 802

803

804

- 756 [69] Hao-Han Guo, Kun Liu, Fei-Yu Shen, Yi-Chen Wu, Feng-Long Xie, Kun Xie, and Kai-Tuo 757 Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative speech 758 applications. arXiv preprint arXiv:2409.03283, 2024. 759
 - [70] Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified speech tokenizer for speech large language models. arXiv preprint arXiv:2308.16692, 2023.
 - [71] Xueyao Zhang, Liumeng Xue, Yuancheng Wang, Yicheng Gu, Xi Chen, Zihao Fang, Haopeng Chen, Lexiao Zou, Chaoren Wang, Jun Han, et al. Amphion: An open-source audio, music and speech generation toolkit. arXiv preprint arXiv:2312.09911, 2023.
 - [72] Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light: A benchmark for asr with limited or no supervision. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7669–7673. IEEE, 2020.
- [73] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni 771 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 772 technical report. arXiv preprint arXiv:2303.08774, 2023. 773
- 774 [74] Chenpeng Du, Yiwei Guo, Feiyu Shen, Zhijun Liu, Zheng Liang, Xie Chen, Shuai Wang, Hui 775 Zhang, and Kai Yu. Unicats: A unified context-aware text-to-speech framework with contextual 776 vq-diffusion and vocoding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 17924-17932, 2024. 777
 - [75] Jingyi Li, Weiping Tu, and Li Xiao. Freevc: Towards high-quality text-free one-shot voice conversion. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.
 - [76] Zengyi Qin, Wenliang Zhao, Xumin Yu, and Xin Sun. Openvoice: Versatile instant voice cloning. arXiv preprint arXiv:2312.01479, 2023.
 - [77] Christophe Veaux, Junichi Yamagishi, Kirsten MacDonald, et al. Cstr vctk corpus: English multi-speaker corpus for cstr voice cloning toolkit. University of Edinburgh. The Centre for Speech Technology Research (CSTR), 6:15, 2017.
 - [78] Sang-Hoon Lee, Ha-Yeong Choi, Seung-Bin Kim, and Seong-Whan Lee. Hierspeech++: Bridging the gap between semantic and acoustic representation of speech by hierarchical variational inference for zero-shot speech synthesis. arXiv preprint arXiv:2311.12454, 2023.
 - [79] Zhichao Wang, Yuanzhe Chen, Lei Xie, Qiao Tian, and Yuping Wang. Lm-vc: Zero-shot voice conversion via speech generation based on language models. *IEEE Signal Processing Letters*, 2023.
 - [80] Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Xuankai Chang, Jiatong Shi, Sheng Zhao, Jiang Bian, Xixin Wu, et al. Uniaudio: An audio foundation model toward universal audio generation. arXiv preprint arXiv:2310.00704, 2023.
 - [81] Chandan KA Reddy, Vishak Gopal, and Ross Cutler. Dnsmos: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6493– 6497. IEEE, 2021.
 - [82] Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and Sebastian Möller. Nisga: A deep cnn-selfattention model for multidimensional speech quality prediction with crowdsourced datasets. arXiv preprint arXiv:2104.09494, 2021.
- 805 [83] Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and 806 Xie Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv preprint arXiv:2410.06885, 2024. 808
- [84] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar 809 quantization: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.
 - 15

810	[85]	Anonymous A\$^2\$-flow: Alignment-aware pre-training for speech synthesis with flow match-
811	[05]	ing. In Submitted to The Thirteenth International Conference on Learning Representations.
812		2024. URL https://openreview.net/forum?id=e2p1BWR3vg.under review.
813		
814	[86]	Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and
815		Yonghui Wu. Libritts: A corpus derived from librispeech for text-to-speech. arXiv preprint
816		arXiv:1904.02882, 2019.
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

DETAILS OF MASKGCT А

A.1 MODEL ARCHITECTURE

We use a Llama-style [42] Transformer architecture as the backbone of our model, incorporating gated linear units with GELU [43] activation (SwiGLU), rotation position encoding [44], etc., but replacing causal attention with bidirectional attention. We also use adaptive RMSNorm [45], which accepts the time step t as the condition. Table 7 presents the key hyperparameters of the models.

Table 7: Overview of the key hyperparameters of MaskGCT.

	T2S-Base	T2S-Large	S2A
Layers	16	16	16
Model Dimension	1,024	1,536	1,024
FFN Dimension	4,096	6,144	4,096
Attention Heads	16	16	16
Attention Type	Bidirectional	Bidirectional	Bidirectional
Activation Function	SwiGLU	-	-
Positional Embeddings	RoPE (θ = 10,000)	-	-
Number of Parameters	315M	695M	353M

A.2 INFERENCE STEPS FOR THE T2S MODEL

Figure 4 shows the relationship between inference steps and metrics SIM and WER for SeedTTS test-zh (left) and test-en (right). Initially, SIM increases significantly, stabilizing after 25 steps. For test-zh, SIM rises from 0.761 at 5 steps to 0.771 at 75 steps, and for test-en, from 0.696 to 0.715. SIM reaches high values with just 10 steps but peaks around 25 steps. WER improves more dramatically, especially up to 25 steps. For test-zh, WER drops from 10.19 at 5 steps to 2.507 at 25 steps, and for test-en, from 8.096 to 2.346. Both SIM and WER show minimal changes beyond 25 steps. These findings indicate that while SIM metrics can be sufficiently optimized with around 10 inference steps, achieving the lowest WER values requires approximately 25 inference steps. Beyond this threshold, both SIM and WER metrics exhibit minimal changes, implying that further increases in inference steps do not yield substantial improvements in these performance metrics. Therefore, for practical applications, 25 inference steps may be considered optimal for balancing SIM and WER, ensuring efficient and effective performance.

918 A.3 INFERENCE STEPS FOR THE S2A MODEL 919

The S2A model generates tokens layer by layer during inference. Since the acoustic codec follows
an RVQ structure, we can view the S2A inference as a process from coarse to fine. We also use
more iterations in the initial layers, as the first few layers carry more information. By default, we
use inference steps of [40, 16, 1, 1, 1, 1, 1, 1, 1, 1] for each layer, however, we find that the S2A
model can also perform well with fewer steps, such as [10, 1, 1, 1, 1, 1, 1, 1, 1], with only a
very slight performance loss.

926

927 928

938

939

940

941

942

953 954 Table 8: Evaluation results of different inference steps for the S2A model.

Inference Steps	SIM-O ↑	WER \downarrow	$FSD\downarrow$			
SeedTTS test-en						
[10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.709	2.796	0.164			
[40, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.728	2.466	0.159			
SeedTTS test-zh						
[10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.766	2.268	0.111			
[40, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.777	2.183	0.101			

We present the real-time factor (RTF) of MaskGCT on an A100 GPU for generating a 20-second speech across various inference steps in Table 9. Across all configurations presented, there is no significant performance difference. Additionally, we also present the RTF of AR + SoundStorm. For AR + SoundStorm, generating a 20-second speech requires 1000 steps for text-to-semantic inference. However, it can leverage kv-cache to accelerate the process.

943 Table 9: Real-time factor (RTF) comparison of MaskGCT and AR + SoundStorm on an A100 GPU
 944 for generating a 20-second speech.
 945

Model	T2S steps	S2A steps	RTF
MaskGCT	50	[40, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.52
MaskGCT	50	[10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.44
MaskGCT	25	[10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.31
AR + SoundStorm	1000	[40, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1]	0.98

A.4 DETAILS OF SEMANTIC AND ACOUSTIC CODEC

For semantic codec, we train a VQ-VAE model using the hidden features from the 17th layer of W2v-BERT 2.0, incorporating factorized codec [33] technology. The original hidden dimension of 1,024 is projected into a lower-dimensional space for quantization. The codebook size is set to 8,192, with a codebook dimension of 8. We employ only the \mathcal{L}_1 loss as the reconstruction target, optimizing the codebook with codebook loss and commitment loss. The input features are normalized to have a mean of 0 and a variance of 1, based on the statistics of the training dataset. The encoder and the decoder are each composed of 12 mirrored ConvNext blocks, featuring a kernel size of 7 and a hidden size of 384.

962 For acoustic codec, the basic architecture of the encoder follows [37] and the decoder follows [47]. 963 The Vocos-based decoder can model amplitude and phase, enabling waveform generation through 964 inverse STFT transformation without requiring upsampling. The number of RVQ layers, codebook 965 size, and codebook dimension are set to 12, 8,192, and 8, respectively. We utilize the multi-scale 966 mel-reconstruction loss [37] \mathcal{L}_{rec} , for the adversarial loss \mathcal{L}_{adv} , we employ both the multi-period 967 discriminator (MPD) and the multi-band multi-scale STFT discriminator, as proposed by [37, 65]. 968 Additionally, we incorporate the relative feature matching loss $\mathcal{L}_{\text{feat}}$. For codebook learning, we use the codebook loss $\mathcal{L}_{codebook}$ and the commitment loss \mathcal{L}_{commit} from VQ-VAE. We set $\lambda_{rec} = 10.0$, 969 $\lambda_{\text{adv}} = 2.0, \lambda_{\text{feat}} = 2.0, \lambda_{\text{codebook}} = 1.0, \lambda_{\text{commit}} = 0.25$ as coefficients for balancing each loss terms. 970 Figure 5 shows the overview of the semantic codec and acoustic codec, Table 10 presents the detailed 971 model configurations of semantic codec and acoustic codec.

Figure 5: An overview of the semantic codec (left) and acoustic codec (right). The semantic codec is trained to quantize semantic features with a single codebook and reconstruct semantic features. The acoustic codec is trained to quantize and reconstruct the speech waveform using RVQ, with time and spectral discriminators to enhance the reconstruction quality further.

Table 10: The detailed model configurations of semantic codec and acoustic codec.

	Semantic Codec	Acoustic Codec
Input	W2v-BERT 2.0 hidden	Waveform
Sample Rate	16K	24K
Hopsize	320	480
Number of (R)VQ Blocks	1	12
Codebook size	8,192	1,024
Codebook Dimension	8	8
Decoder Hidden Dimension	384	512
Decoder Kernel Size	7	7
Number of Decoder Blocks	12	30
Number of Parameters	44M	170M

1006

1004

989

990

991

992 993 994

1008 A.5 DETAILS OF DURATION PREDICTOR

MaskGCT requires specifying the target speech duration during inference, so we train a flow match-1010 ing [46, 66] based duration predictor to obtain the total duration of the target audio by summing the 1011 phone-level duration. Note that we do not need to actually use the phone-level durations but only 1012 use them to make a reasonable estimate of the total duration, leaving other total duration predictor 1013 methods for future works to explore. The duration predictor has a similar Transformer architecture to 1014 MaskGCT, with 12 layers, 12 attention heads, and a hidden size of 768. We also adapt in-context 1015 learning and classifier-free guidance for the duration predictor. During training, we randomly select a 1016 prefix segment of the phoneme sequence and its corresponding duration as a prompt, which is not 1017 added with noise. At the same time, we use a probability of 0.15 to drop the prompt. We model the duration in the log domain using flow matching. We denote x_1 as a random variable of $\log(\text{duration}+1)$, 1018 x_0 as a randomly sampled Gaussian noise, then $v_{\theta}(x_t, t) = x_t = (1-t)x_0 + tx_1$, where the timestep 1019 $t \in [0, 1]$. The loss function of the duration predictor is $\mathbb{E}_{t,x_1}(v_{\theta}(x_t, t) - (x_1 - x_0))^2$. In the inference 1020 stage, we use a midpoint ODE solver to generate the target from randomly sampled Gaussian noise 1021 with a total of 4 steps. We pretrain a duration aligner (between phoneme and W2v-BERT 2.0 semantic feature) based on monotonic alignment search (MAS) [67] to get the ground truth duration for each 1023 phoneme. 1024

1025 It is noteworthy that there are several methods to determine the total duration length. Our trained duration predictor is solely for providing a rough estimate to facilitate inference and comparison. Alterna-

1026 tively, a simpler approach could be: target total duration = target phone number $\times \frac{prompt total duration}{prompt phone number}$ 1027 Table 11 illustrates the comparative results of MaskGCT under three different total duration calcula-1028 tion methods. The results indicate that our model, using simple rules to predict total duration, can 1029 generate speech with SIM and WER that are essentially comparable to those of the ground truth. The 1030 results indicate that our model, using simple rules to predict total duration, can generate speech with 1031 SIM and WER that are essentially comparable to those of the ground truth.

1033 Table 11: Comparison of results for MaskGCT under three different total duration calculation methods. 1034

1036	Method	SIM-O↑	WER↓		
1037	LibriSpeed	ch <i>test-clean</i>			
1038	rule-based	0.686	2.976		
1030	duration predictor	0.687	2.634		
1035	gt length	0.697	2.012		
1040 -	SeedTTS test-en				
1041	rule-based	0.719	2.712		
1042	duration predictor	0.717	2.623		
1043	gt length	0.728	2.466		
1044	SeedTT	S test-zh			
1045	rule-based	0.771	2.409		
1046	duration predictor	0.774	2.273		
1047	gt length	0.777	2.183		

1048 1049

1051

1061 1062 1063

1032

1035

A.6 COMPARISON BETWEEN MASKGCT AND OTHER SYSTEMS 1050

Table 12: A comparison between MaskGCT and existing systems. "Model" stands for modeling method 1052 and "Rep." stands for the representation used. MaskGCT uses masked generative modeling for acoustic and 1053 semantic tokens ("A." stands for acoustic, "S." stands for semantic, "F." stands for factorized tokens used in 1054 NaturalSpeech 3). MaskGCT implicitly models duration ("Imp. Dur.") and allows flexible control over the 1055 total length of generated speech ("Len. Ctrl"). MaskGCT supports various speech generation tasks. "ZS TTS" 1056 denotes zero-shot TTS and "CL TTS" denotes cross-lingual TTS.

1057									
1058	System	Model	Rep.	Imp. Dur.	Len. Ctrl.	ZS TTS	CL TTS	Dubbing	Edit
1000	VALL-E	Autoregressive	A. Tokens	✓	X	1	×	×	X
1059	NaturalSpeech 2	Diffusion	A. Features	X	×	1	×	×	×
1060	VoiceBox	Diffusion	A. Features	X	×	1	1	×	1
1000	VoiceCraft	Autoregressive	A. Tokens	1	×	1	X	×	1
1061	NaturalSpeech 3	Masked Generative	F. Tokens	X	×	1	×	×	1
1062	MaskGCT	Masked Generative	S.&A. Tokens	1	1	1	1	1	1

1064 A.7 TEXT TOKENIZER

We consider two text tokenization methods: Grapheme-to-Phoneme (G2P) and Byte Pair Encoding (BPE). For G2P, we employ phone-1067 1068 mize⁶ for English and a combination of jieba⁷ and pypinyin⁸ for Chinese. For BPE, we utilize the BPE method and vocabulary from 1069 Whisper⁹, with a vocabulary size exceeding 30,000. Table 13 shows 1070 the comparison results of MaskGCT using the two different text 1071 tokenization methods. The results indicate that G2P outperforms 1072 BPE in English with a higher SIM-O of 0.728 compared to 0.711 1073 and a lower WER of 2.466 versus 4.036. Conversely, in Chinese, 1074

Table 13: G2P vs. BPE.

	SIM-O ↑	WER \downarrow
S	eedTTS tes	t-en
G2P	0.728	2.466
BPE	0.711	4.036
S	eedTTS tes	t-zh
G2P	0.777	2.183
BPE	0.769	1.921

G2P maintains a slightly higher SIM-O (0.777 vs. 0.769) but BPE achieves a lower WER (1.921 vs. 1075

⁸https://github.com/mozillazg/python-pinyin 1078

⁹https://github.com/huggingface/transformers/blob/main/src/ 1079

transformers/models/whisper/tokenization_whisper.py

¹⁰⁷⁶ ⁶https://github.com/bootphon/phonemizer

¹⁰⁷⁷ ⁷https://github.com/fxsjy/jieba

2.338). These findings suggest that while G2P is superior in preserving text similarity and reducing errors in English, BPE is more effective in minimizing WER in Chinese. We hypothesize that the reason might be that the Chinese G2P system we used still has deficiencies in handling polyphonic characters. In contrast, BPE can learn different pronunciations for the same character based on context.

1085 1086

1087 1088

B DISCUSSION ABOUT SEMANTIC AND ACOUSTIC DEFINITIONS

In this paper, we refer to the speech representation extracted from the speech self-supervised learning 1089 (SSL) model as the semantic feature. The discrete tokens obtained through the discretization of these 1090 semantic features (using k-means or vector quantization are termed semantic tokens. Similarly, we 1091 define the representations from melspectrogram, neural speech codecs, or speech VAE as acoustic 1092 features, and their discrete counterparts are called acoustic tokens. This terminology was first 1093 introduced in [68] and has since been adopted by many subsequent works [8, 19, 39, 69, 70]. It 1094 is important to note that this is not a strictly rigorous definition. Generally, we consider semantic 1095 features or tokens to contain more prominent linguistic information and exhibit stronger correlations 1096 with phonemes or text. One measure of this is the phonetic discriminability in terms of the ABX error rate. In this paper, the W2v-BERT 2.0 features we use have a phonetic discriminability within less than 5 on the LibriSpeech dev-clean dataset, whereas acoustic features, for example, Encodec latent features, score above 20 on this metric. However, it is worth noting that semantic features or tokens 1099 not only contain semantic information but also include prosodic and timbre aspects. In fact, we 1100 suggest that for certain two-stage zero-shot TTS systems, excessive loss of information in semantic 1101 tokens can degrade the performance of the second stage, where semantic-to-acoustic conversion 1102 occurs. Therefore, finding a speech representation that is more suitable for speech generation remains 1103 a challenging problem. 1104

1105 1106

1107

C CLASSIFIER-FREE GUIDANCE

1108 We adopt the classifier-free guidance [58] technique for both the T2S model and the S2A model. 1109 We also introduce classifier-free guidance with rescaling, following [59]. In the training stage, 1110 we randomly drop the prompt with a probability of 0.15 to model the probability distribution $p_{\theta}(\mathbf{X})$ without the prompt. During inference, we compute the output embedding $g_{\theta}^{cfg}(\mathbf{X}|\mathbf{X}^p) =$ 1111 $g_{\theta}(\mathbf{X}|\mathbf{X}^p) + w_{cfg} \cdot (g_{\theta}(\mathbf{X}|\mathbf{X}^p) - g_{\theta}(\mathbf{X}))$ of the last layer of the model, where w_{cfg} is the classifier-1112 free guidance scale, then we compute the rescale embedding $g_{\theta}^{\text{rescale}}(\mathbf{X}|\mathbf{X}^p) = g_{\theta}^{\text{cfg}}(\mathbf{X}|\mathbf{X}^p) \times$ 1113 1114 $\operatorname{std}(g_{\theta}(\mathbf{X}|\mathbf{X}^p))/\operatorname{std}(g_{\theta}^{\operatorname{cfg}}(\mathbf{X}|\mathbf{X}^p)), \text{ the final output embedding is computed as } w_{\operatorname{rescale}} \cdot g_{\theta}^{\operatorname{rescale}}(\mathbf{X}|\mathbf{X}^p) +$ 1115 $(1 - w_{\text{rescale}}) \cdot g_{\theta}^{\text{cfg}}(\mathbf{X}|\mathbf{X}^p)$. In our paper, w_{cfg} and w_{rescale} are set as 2.5 and 0.75 by default. 1116

1117

1119

1118 D EVALUATION BASELINES

VALL-E [2]. A large-scale TTS system uses an autoregressive and an additional non-autoregressive model to predict discrete tokens from a neural speech codec [26]. We reproduce VALL-E with Amphion toolkit [71] and Librilight [72] dataset.

NaturalSpeech 3 [8]. A non-autoregressive model large-scale TTS systems with factorized speech codec for speech decoupling representation and factorized diffusion Models for speech generation. It achieves human-level naturalness on the LibriSpeech test set. We report the scores of LibriSpeech *test-clean* obtained from [8] and ask for the generated samples for subjective evaluation.

1127
1128
1129
1129
1120
1120
1120
1120
1121
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1120
1120
1120
1120
1120
1120
1120
1120
1121
1121
1121
1121
1122
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120</l

1131 XTTS-v2 [53]. An open-source multilingual TTS model that supports 16 languages. It is also based 1132 on an autoregressive model. We use the official code and pre-trained checkpoint¹⁰.

¹⁰https://huggingface.co/coqui/XTTS-v2

VoiceCraft [5]. A token-infilling neural codec language model for text editing and text-to-speech. It predicts multi-layer tokens in a delay pattern. We use the official code and pre-trained checkpoint¹¹.

CosyVoice [54]. A two-stage large-scale TTS system. The first stage is an autoregressive model and the second stage is a diffusion model. It is trained on 170,000 hours of multilingual speech data. We use the official code and pre-trained checkpoint¹².

1140

1142

1141 E MULTILINGUAL ZERO-SHOT TTS

We validate the effectiveness of MaskGCT across four additional languages beyond Chinese and 1143 English, specifically Japanese, Korean, German, and French. On the foundation of our existing 1144 training data, we expand by 2,500 hours of Japanese, 7,400 hours of Korean, 6,900 hours of German, 1145 and 8,200 hours of French. We collect these data using the data collection pipeline proposed by [48]. 1146 For evaluation, we use the test sets provided in [48]. We still employ SIM-O and WER as evaluation 1147 metrics, with Whisper-medium¹³ serving as the ASR model for WER assessment. We utilize XTTS-1148 v2 and the two models proposed in [48]: Emilia-AR and Emilia-NAR as comparative baselines. 1149 Table 14 shows the results. MaskGCT demonstrates significant improvements over the baselines, 1150 with the exception of WER in Japanese. It is noteworthy that we only retrained our text-to-semantic 1151 model using the expanded data, without retraining the tokenizers and semantic-to-acoustic models. 1152 We believe that further enhancements in our model's performance can be achieved if all components are retrained on the expanded data. 1153

Table 14: Evaluation results for MaskGCT and baseline methods on the test sets for Japanese, Korean,German, and French.

System		Ja		Ко		Fr		De	
5,500111	WER	SIM-O	WER	SIM-O	WER	SIM-O	WER	SIM-O	
Emilia-AR	3.6	0.625	10.9	0.681	8.2	0.589	6.8	0.680	
Emilia-NAR	10.8	0.562	15.2	0.608	17.5	0.550	13.3	0.633	
XTTS-v2	2.981	0.579	12.45	0.617	6.898	0.531	9.168	0.569	
MaskGCT	3.903	0.678	9.417	0.732	5.598	0.667	5.126	0.745	

1163 1164

1154

1165

1167

1166 F DURATION-CONTROLLABLE SPEECH TRANSLATION

The goal of the speech translation task is to translate speech from one language to another while 1168 preserving the original semantic, timbre, and prosody. In some scenarios, we also need to ensure 1169 that the total duration remains relatively unchanged, such as in cross-lingual dubbing. Our model 1170 can achieve this seamlessly, with the ability to control the total duration and, through in-context 1171 learning, use the pre-translation speech as a prompt to maintain the timbre and prosody. To quantify 1172 the capabilities of our model, we randomly select 200 samples from SeedTTS test-zh and 200 samples 1173 from SeedTTS test-en. Additionally, we sample 200 examples for each language of Japanese, Korean, 1174 German, and French from each of the test sets provided in [48]. Subsequently, we utilize GPT4o-1175 mini [73] to translate each sample into one of the other five languages, using the translated text as 1176 the target text. We use the duration of prompt speech as the duration of target speech. This process yields 30 sets of test data. Table 15 shows the results of the 30 sets of experiments. We observe that 1177 MaskGCT maintains a good level of speaker similarity across translations between the six languages. 1178 Both "X to En" and "En to X" generally perform well, characterized by relatively low WER values 1179 and moderate SIM-O scores. "X to Ja" also achieve low WER values. However, for languages other 1180 than English, "X to Zh", "X to De", and "X to Fr" exhibit higher WER values. We hypothesize 1181 that the primary reasons for this include the difficulty in maintaining accurate pronunciation while 1182 preserving the same duration before and after translation, as well as the limited training data for Fr 1183 and De. Achieving more robust cross-lingual translation remains a focus for future work. We also 1184 show some examples of speech translation in our demo page. 1185

¹¹⁸⁶

¹¹https://huggingface.co/pyp1/VoiceCraft/blob/main/830M_TTSEnhanced.pth

¹² https://huggingface.co/model-scope/CosyVoice-300M

¹³ttps://huggingface.co/openai/whisper-medium

	2	Zh]	En		Ja]	Ко]	De]	Fr
	WER	SIM-O										
Zh	-	-	7.466	0.678	7.864	0.720	9.751	0.736	25.54	0.724	16.21	0.687
En	7.411	0.535	-	-	5.870	0.544	12.18	0.543	12.43	0.579	17.48	0.590
Ja	13.93	0.647	7.387	0.642	-	-	10.98	0.703	12.85	0.649	14.61	0.645
Ko	31.30	0.734	14.61	0.697	12.79	0.749	-	-	26.58	0.722	33.96	0.712
De	19.54	0.714	5.148	0.740	6.072	0.678	12.02	0.667	-	-	14.53	0.672
Fr	32.84	0.672	12.17	0.682	6.076	0.640	12.07	0.582	21.65	0.682	-	-

Table 15: Evaluation results in cross-lingual speech translation with consistent total duration.

G POST-TRAINING FOR EMOTION CONTROL

1199 MaskGCT can unlock more extensive capabilities with post-training. We take emotion control as 1200 an example. After being pretrained on a large-scale dataset, we fine-tune the T2S model by adding 1201 an additional emotion label as a prefix to the original input sequence. We use an emotion dataset, 1202 ESD [61], which consists of 350 parallel utterances with an average duration of 2.9 seconds spoken 1203 by 10 native English and 10 native Mandarin speakers, to fine-tune our model. The experimental 1204 results show that MaskGCT can unlock emotion control capabilities for zero-shot in-context learning 1205 scenarios. For the construction of the train and test datasets, we selected one male and one female 1206 speaker each from native English and native Mandarin backgrounds, resulting in a total of four 1207 speakers for the test dataset. The remaining 16 speakers were allocated to the training dataset. For the 350 parallel Chinese utterances, we randomly chose 22 utterances for the test set, with the remaining 1208 utterances designated for training. Similarly, for the 350 parallel English utterances, we randomly 1209 selected 21 utterances for the test set, with the rest used for training. To assess the consistency 1210 between the generated audio and the target emotion label, we trained an emotion classification model 1211 using the constructed train dataset. This model achieved a classification accuracy of 72% on the test 1212 dataset. We show some examples in our demo page.

1213 1214

1188

1198

1215 H SPEECH CONTENT EDITING

1216

Based on the mask-and-predict mechanism, our text-to-semantic model supports zero-shot speech content editing with the assistance of a text-speech aligner. By using the aligner, we can identify the editing boundary of the original semantic token sequence, mask the portion that needs to be edited, and then predict the masked semantic tokens using the edited text and the unmasked semantic tokens. However, we have observed that our system is not very robust in editing tasks. A possible conjecture is that we need to adopt a training paradigm better suited for editing tasks, such as fill-in-mask [9, 74]. We show some examples in our demo page.

1223 1224 1225

I VOICE CONVERSION

1226 MaskGCT supports zero-shot voice conversion by fine-tuning the S2A with a modified training 1227 strategy. The zero-shot voice conversion task aims to alter the source speech to sound like that of 1228 a target speaker using a reference speech from the target speaker, without changing the semantic 1229 content. We can directly use the semantic tokens S_{src} extracted from the source speech and the prompt 1230 acoustic tokens A_{ref} extracted from the reference speech to predict the target acoustic tokens A_{tef} . 1231 Since S_{src} may retain some timbre information, we perform timbral perturbation on the semantic 1232 features input to the semantic codec encoder. Specifically, we apply timbral perturbation to the input mel-spectrogram features of the W2v-BERT 2.0 model, following the method outlined in 1233 FreeVC [75]. We fine-tune our S2A model using this training strategy. We show some examples in 1234 our demo page. 1235

We also employ an additional method to further unlock the voice conversion capabilities of MaskGCT. We fine-tune the S2A model by utilizing a weak but efficient voice conversion model (such as OpenVoice [76]) to perform real-time voice conversion on the target speech using a randomly sampled prompt speech, thereby achieving timbre perturbation. The perturbed semantic tokens are then used as input to predict target acoustic tokens with the prompt in the S2A model. We denote the fine-tuned S2A model as MaskGCT-VC. We use the VCTK [77] dataset to evaluate our system, randomly selecting 200 samples as source speech. For each sample, we randomly select another

sample from the same speaker as the prompt speech. We compare MaskGCT-VC with some SOTA models on voice conversion, including HireSpeech++ [78], LM-VC [79], and UniAudio [80]. In addition to utilizing the SIM-O and WER metrics, we use DNSMOS [81] and NISQA [82] to evaluate the quality of the generated speech. The results are shown in Table 16. MaskGCT-VC demonstrates significant improvements compared to the previous SOTA voice conversion baselines on all metrics.

Table 16: Evaluation results for the voice conversion task.

Model	SIM-O ↑	WER \downarrow	DNSMOS ↑	NISQA ↑
HireSpeech++ [78]	0.379	4.87	3.402	3.794
LM-VC [79]	0.286	8.35	3.457	3.927
UniAudio [80]	0.249	9.00	3.472	4.279
MaskGCT-VC	0.532	4.49	3.510	4.469

J HARD CASES EVALUATION

We evaluate the performance of MaskGCT on some hard cases (SeedTTS test-hard), which refer to instances where large-scale TTS models, particularly those AR-based models, often exhibit hallucinations. These cases include phrases with repeating words, tongue twisters, and other complex linguistic structures. Examples of such cases include: "the great greek grape growers grow great greek grapes", "How many cookies could a good cook cook If a good cook could cook cookies? A good cook could cook as much cookies as a good cook who could cook cookies", and " thought a thought. But the thought I thought wasn't the thought I thought I thought. If the thought I thought I thought had been the thought I thought, I wouldn't have thought so much".

 Table 17: The evaluation results of MaskGCT and AR + SoundStorm on SeedTTS *test-hard*.

System	SIM-O ↑	WER↓
SeedTTS tes	t-hard	
AR + SoundStorm	0.692	34.16
AR + SoundStorm (<i>rank 5</i>)	0.739	17.05
MaskGCT	0.748	10.27
MaskGCT (rank 5)	0.776	6.258

K DISCUSSION ABOUT CONCURRENT WORKS

SimpleSpeech [30], DiTTo-TTS [31], E2 TTS [32], and F5-TTS [83] are also NAR-based models that do not necessitate precise alignment information between text and speech, nor do they forecast phoneme-level duration. These are concurrent works with MaskGCT. The three models all employ diffusion modeling on speech representations within continuous spaces. SimpleSpeech models the latent representation of a way codec based on finite scalar quantization (FSQ) [84], DiTTo-TTS utilizes the latent representation of a way codec based on residual vector quantization (RVQ), and E2 TTS and F5-TTS directly model the mel-spectrogram with flow matching. However, Both F5-TTS and A2Flow [85] mention that direct modeling mel-spectrogram is characterized by slow convergence and difficulty in achieving convergence on small datasets. To further investigate this issue, we train the T2S models on small datasets (LibriTTS [86] and a 1K hours subset of Emilia) while reusing the S2A model (which is entirely self-supervised and does not require text). The results in Table 18 demonstrate that our model performs well even when trained on small datasets. This is likely due to the ease of predicting semantic tokens and the powerful modeling capabilities of masked generative models.

Model	SIM-O↑	WER \downarrow
SeedTTS test-el	n	
MaskGCT (LibriTTS 0.58K hours)	0.677	3.043
MaskGCT (Emilia 1K hours)	0.696	3.378
MaskGCT (Emilia 100K hours)	0.728	2.466
SeedTTS test-z	h	
MaskGCT (Emilia 1K hours)	0.754	3.012
MaskGCT (Emilia 100K hours)	0.777	2.183

Table 18: The evaluation results of MaskGCT on small training datasets.

We also compare MaskGCT with a direct text-to-acoustic approach using masked generative models
(which can be seen as removing semantic tokens as a condition and adding text as a condition based
on the S2A model) on a 10K hours subset. The results in Table 19 indicate that directly predicting
acoustic tokens from text is challenging to converge, resulting in lower SIM and significantly higher
WER, demonstrating that the two-stage model reduces the overall modeling difficulty.

Table 19: Comparison of MaskGCT and Text-to-Acoustic.

Model	SIM-O ↑	WER \downarrow
SeedTTS test-en		
Text-to-Acoustic (Emilia 10K hours)	0.651	12.75
MaskGCT (Emilia 10K hours)	0.719	2.872
SeedTTS test-zh		
Text-to-Acoustic (Emilia 10K hours)	0.727	17.08
MaskGCT (Emilia 10K hours)	0.762	3.302

L BOARDER IMPACT

Given that our model can synthesize speech with high speaker similarity, it carries potential risks of misuse, including spoofing voice identification or impersonating specific speakers. Our experiments were conducted under the assumption that the user consents to be the target speaker for speech synthesis. To mitigate misuse, it is essential to develop a robust model for detecting synthesized speech and to establish a system for reporting suspected misuse.

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347