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Abstract

Recent promising results have generated a surge of interest in continuous optimization
methods for causal discovery from observational data. However, there are theoretical lim-
itations on the identifiability of underlying structures obtained solely from observational
data. Interventional data, on the other hand, provides richer information about the un-
derlying data-generating process. Nevertheless, extending and applying methods designed
for observational data to include interventions is a challenging problem. To address this
issue, we propose a general framework based on neural networks to develop models that
incorporate both observational and interventional data. Notably, our method can handle
the challenging and realistic scenario where the identity of the intervened upon variable is
unknown. We evaluate our proposed approach in the context of graph recovery, both de
novo and from a partially-known edge set. Our method achieves strong benchmark results
on various structure learning tasks, including structure recovery of synthetic graphs as well
as standard graphs from the Bayesian Network Repository.

1 Introduction

Structure discovery concerns itself with the recovery of the graph structure of Bayesian networks from data.
When Bayesian networks are used to model cause-e�ect relationships and are augmented with the notion of
interventions and counterfactuals, they can be represented as structural causal models (SCM). While Bayesian
networks can uncover statistical correlations between factors, SCMs can be used to answer higher-order
questions of cause-and-e�ect, up in the ladder of causation (Pearl & Mackenzie, 2018). Causal structure
learning using SCMs has been attempted in several disciplines including biology (Sachs et al., 2005; Hill et al.,
2016), weather forecasting (Abramson et al., 1996) and medicine (Lauritzen & Spiegelhalter, 1988; Korb &
Nicholson, 2010).

Structure can be learned from observational or interventional data. Observational data is sampled from the
distribution without interventions; alone, it contains only limited information about the underlying causal
graph (Spirtes et al., 2000). Without making restrictive assumptions about the data generating process
(Shimizu et al., 2006), interventional data is needed in order to fully identify the true causal graph (Eberhardt
& Scheines, 2007; Eberhardt, 2012; Eberhardt et al., 2012).

Recently, there has been a surge of interest in using continuous optimization methods, often involving neural
networks, to discover causal relationships from observational data (Zheng et al., 2018; Yu et al., 2019). These
methods frame the search for a causal graph or directed acyclic graph (DAG) as a continuous optimization
problem, avoiding the need to search through a super-exponential number of graphs (Heinze-Deml et al.,
2018a). While these methods have shown competitive performance compared to classic causal discovery
approaches, they are limited to working with only observational data. Our proposed method Structure
Discovery from Interventions (sdi) is among the first causal discovery methods based on neural networks that
utilize both observational and interventional data. Several subsequent works have built upon our proposed
method, sdi. For instance, some works have explored the use of di�erent gradient estimates (Brouillard et al.,
2020; Lippe et al., 2021), while others have applied SDI in the active causal learning setting to determine
where to intervene (Scherrer et al., 2021).

We introduce a novel neural network-based method for causal discovery called Structure Discovery from
Interventions (sdi). Unlike previous methods, sdi utilizes both observational and interventional data. Our
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model outperforms previous methods on both synthetic and naturalistic Causal Bayesian Networks (CBNs).
In addition, interventions in the real world may be performed by unknown agents, making them unknown
interventions. Our model, sdi, can handle such unknown interventions by predicting the index of the node
where the intervention may have occurred.

In some cases, the graph structure may be partially provided but needs to be completed. An example
is protein structure learning in biology, where we may have definite knowledge about some parts of the
protein-protein interaction structure but need to fill out other parts (Glymour et al., 2019). We refer to this
as partial graph completion. In this setting, we evaluate our model and demonstrate its strong performance.

To summarize, the main contributions of the paper is as follows. 1) We propose a novel neural network based
causal discovery algorithm sdi, which leverages both observational and interventional data. 2) We show that
sdi outperforms previous methods on both synthetic data, as well as naturalistic data. 3) We show that sdi
is e�ective even in the presence of unknown interventions. 4) We demonstrate that sdi generalizes well to
unseen interventions. 5) We show that sdi is e�ective for partial graph discovery.

2 Background

Causal modeling. A Structural Causal Model (SCM) (Pearl, 1995; Peters et al., 2017) over a finite number
M of random variables Xi is a set of structural assignments

Xi := fi(Xpa(i,C), Ni) , ’i œ {0, . . . , M ≠ 1} (1)

where Ni is jointly-independent noise and pa(i, C) is the set of parents (direct causes) of variable i under
hypothesized configuration C of the SCM directed acyclic graph, i.e., C œ {0, 1}M◊M , with cij = 1 if node i

has node j as a parent (equivalently, Xj œ Xpa(i,C); i.e. Xj is a direct cause of Xi). In our setup, all variables
are observed.

Intervention. According to Eaton and Murphy (Eaton & Murphy, 2007b), there are several types of
interventions that may be available, including:

No intervention: where only observational data is obtained from the ground truth model.

Hard/perfect intervention: where the value of one or more variables is fixed, and then ancestral sampling is
performed on the remaining variables.

Soft/imperfect intervention: where the conditional distribution of the variable on which the intervention is
performed is altered.

Unknown intervention: where the learner does not know which variable was directly a�ected by the intervention.

In this work, we permit interventions on all variables. Furthermore, we use soft interventions because they
include hard interventions as a limiting case and are thus more general.

Identifiability. In a purely-observational setting, it is known that causal graphs can be distinguished only
up to a Markov equivalence class. In order to identify the true causal graph structure, intervention data
is needed (Eberhardt et al., 2006; Eberhardt & Scheines, 2007; Eberhardt et al., 2012; Eberhardt, 2012).
When an infinite amount of single-node interventional data samples are available, the underlying causal graph
can be identified (Eberhardt et al., 2006). Empirically, we have observed that even with a small number of
samples per intervention, our model can make reasonable predictions, and its performance improves as more
data becomes available.

Structure discovery using continuous optimization. Structure discovery is a search problem though
the super-exponentially sized space of all possible directed acyclic graphs (DAGs). Previous continuous-
optimization structure learning works (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019) mitigate
the problem of searching in the super-exponential set of graph structures by considering the degree to which
a hypothesis graph violates “DAG-ness” as an additional penalty to be optimized. Despite the success of
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these methods, their ability for causal discovery is significantly limited because they can only operate on
observational data.

3 Related Work

The recovery of the underlying structural causal graph from observational and interventional data is a
fundamental problem (Pearl, 1995; 2009; Spirtes et al., 2000). Di�erent approaches have been studied:
score-based, constraint-based, asymmetry-based and continuous optimization methods. Score-based methods
search through the space of all possible directed acyclic graphs (DAGs) representing the causal structure
based on some form of scoring function for network structures (Heckerman et al., 1995; Chickering, 2002;
Tsamardinos et al., 2006; Hauser & Bühlmann, 2012; Goudet et al., 2017; Cooper & Yoo, 1999; Zhu & Chen,
2019). Out of these approaches, only Hauser & Bühlmann (2012); Goudet et al. (2017); Cooper & Yoo (1999)
can handle interventional data. Constraint-based methods (Spirtes et al., 2000; Sun et al., 2007; Zhang et al.,
2012; Monti et al., 2019) infer the DAG by analyzing conditional independences in the data, none of these
handles interventional data. Eaton & Murphy (2007c) use dynamic programming techniques to accelerate
Markov Chain Monte Carlo (MCMC) sampling in a Bayesian approach to structure learning for discrete
variable DAGs, the method utilizes interventional data. Asymmetry-based methods (Shimizu et al., 2006;
Hoyer et al., 2009; Peters et al., 2011; Daniusis et al., 2012; Budhathoki & Vreeken, 2017; Mitrovic et al.,
2018) assume asymmetry between cause and e�ect in the data and try to use this information to estimate
the causal structure, none of these methods can handle interventional data. Peters et al. (2016); Ghassami
et al. (2017); Rojas-Carulla et al. (2018) exploit invariance across environments to infer causal structure,
which faces di�culty scaling due to the iteration over the super-exponential set of possible graphs, all three
methods can handle interventional data. Mooij et al. (2016) propose a modelling framework that leverages
existing methods while being more powerful and applicable to a wider range of settings, however, it can only
handle observational data. Recently, (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019) framed the
structure search as a continuous optimization problem, however, the methods only uses observational data
and are non-trivial to extend to interventional data. In our paper, we present a method that uses continuous
optimization methods that works on both observational and interventional data.

For interventional data, it is often assumed that the models have access to full intervention information, which
is rare in the real world. Rothenhäusler et al. (2015) have investigated the case of additive shift interventions,
while Eaton & Murphy (2007b) have examined the situation where the targets of experimental interventions
are imperfect or uncertain. This is di�erent from our setting where the intervention is unknown to start with
and is assumed to arise from other agents and the environment. Bengio et al. (2019) propose a meta-learning
framework for learning causal models from interventional data. However, the method Bengio et al. (2019)
explicitly models every possible set of parents for every child variable and attempts to distinguish the best
amongst the combinatorially many such parent sets. It cannot scale beyond trivial graphs and only 2 variable
experiments are presented in the paper. Several subsequent studies have built upon our proposed method
SDI. Some of these studies have modified the gradient estimate (Brouillard et al., 2020; Lippe et al., 2021),
while others have utilized SDI in the active causal learning setting to determine where to intervene (Scherrer
et al., 2021).

Learning based methods have been proposed (Guyon, 2013; 2014; Lopez-Paz et al., 2015) which only handles
observational data. There also exist recent approaches using the generalization ability of neural networks to
learn causal signals from purely observational data (Kalainathan et al., 2018; Goudet et al., 2018). Neural
network methods equipped with learned masks, such as (Ivanov et al., 2018; Li et al., 2019; Yoon et al., 2018;
Douglas et al., 2017), exist in the literature, but only a few (Kalainathan et al., 2018) have been adapted
to causal inference. This last work is, however, tailored for causal inference on continuous variables and
from observations only. Adapting it to a discrete-variable setting is made di�cult by its use of a Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) framework.
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Figure 1: Our proposed method sdi. Phase 1 fits the MLP (functional) parameters on observational data.
Phase 2 samples a small set of graphs under the model’s current belief about the edge structure, and then
scores these graphs against interventional data and assigns rewards according to graphs’ ability to predict
interventions. These rewards are then used to update the beliefs about the edge structure. The convergence
of the method can be determined when the believed edge probabilities have reached saturation, approaching
either 0 or 1. In our practical implementation, we train our model for 50, 000 steps and report the results.

4 Structure Discovery from Interventions (SDI)

The proposed model, sdi, is a neural-network-based approach for causal discovery that integrates both
observational and interventional data. The model models the causal mechanisms (conditional probability
distributions) and the causal graph structure using two distinct sets of parameters. We refer to the parameters
that capture the conditional probability between variables and their causal parents as functional parameters,
denoted by ◊. The other set of parameters that describe the causal graph structure are referred to as structural

parameters, represented by “. The structural parameters “ correspond to the learned adjacency matrix that
encodes the graph structure of the SCM. Details given below.

Parametrization. Given a graph of M variables, the structural parameter “ is a matrix RM◊M such that
‡(“ij) is our belief in random variable Xj being a direct cause of Xi, where ‡(x) = 1/(1 + exp(≠x)) is the
sigmoid function. The matrix ‡(“) is thus a softened adjacency matrix.

The set of all functional parameters ◊ comprises the parameters ◊i that model the conditional probability
distribution of Xi given its parent set Xpa(i,C), with C ≥ Ber(‡(“)) a hypothesized configuration of the
SCM’s DAG.

Hypothesis. According to the Independent Causal Mechanisms (ICM) principle (Schölkopf et al., 2012b),
the causal generative process of a system’s variables comprises autonomous modules that operate independently
of one another. In probabilistic terms, this means that each variable’s conditional distribution, given its
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Figure 2: MLP Model Architecture for M = 3, N = 2 (fork3) SCM. The model computes the conditional
probabilities of A, B, C given their parents using a stack of three independent MLPs. The MLP input layer
uses an adjacency matrix sampled from Ber(‡(“)) as an input mask to force the model to make use only of
parent nodes to predict their child node.

causes (i.e., its mechanism), does not a�ect or influence the other mechanisms. Therefore, by having the
SCM and knowledge of performed interventions, we can precisely predict unseen interventions. Based on this
assumption, we hypothesize that the graph structure that better predicts unseen interventions is more likely
to reflect the correct causal structure. This assumption has been verified experimentally for 2 variable cases
in Bengio et al. (2019).

Following the aforementioned hypothesis, we adopt a two-phase training approach for our model, as illustrated
in Figure 1. Since the structural and functional parameters are interdependent and influence each other, we
train them in alternating phases, akin to a block coordinate descent optimization.

In the first phase, we train the functional parameters using observational data to infer the relationships
between variables. In the second phase, we sample a few graphs from the model’s current belief of the graph
structure and evaluate their performance in predicting unseen intervention outcomes. We use this evaluation
as a reward signal to update our structure parameters “. We will now elaborate on the aforementioned
process in detail.

Model. Shown in Figure 2, our model consists of M MLPs, where M is the number of variables in the
graph. Let ◊i = {W0i, B0i, W1i, B1i} define a stack of M one-hidden-layer MLPs, one for each random variable
Xi. A more appropriate model, such as a CNN, can be chosen using domain-specific knowledge; the primary
advantage of using MLPs is that the hypothesized DAG configurations cij can be readily used to mask the
inputs of MLP i, as shown in Figure 2.

To force the structural equation fi corresponding to Xi to rely exclusively on its direct ancestor set pa(i, C)
under hypothesis adjacency matrix C (See Eqn. 1), the one-hot input vector Xj for variable Xi’s MLP
is masked by the Boolean element cij . An example of the multi-MLP architecture with M=3 categorical
variables of N=2 categories is shown in Figure 2. For more details, refer to Appendix A.4.
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4.1 Phase 1: Distribution Fitting

During Phase 1, the functional parameters ◊ are trained to learn causal mechanisms (conditional probability
distributions) by fitting them to observational data. To be specific, they maximize the likelihood of randomly
drawn observational data under graphs randomly drawn from our current beliefs about the edge structure.
We draw graph configurations Cij ≥ Ber(‡(“ij)) and batches of observational data from the SCM, then
maximize the log-likelihood of the batch under that configuration using stochastic gradient descent (SGD).
The use of graph configurations sampling from Bernoulli distributions is analogous to dropout on the inputs
of the functional models (in our implementation, MLPs), giving us an ensemble of neural networks that can
model the observational data. To be specific, parameters ◊ is trained using maximum likelihood estimation
on observation data X, such that ◊

ú = argmin◊L(◊), where

L(◊) = ≠ log P (X|C ; ◊) (2)

4.2 Phase 2: Graph Learning

During Phase 2, several graph configurations are sampled from the current learned edge beliefs parametrized
by “, and scored on data samples drawn from the intervened SCM.

To be more specific, we first sample p graph configurations C from the current and learned edge beliefs
(structural parameters “). We then obtain k data samples X from an intervention and evaluate the log-
likelihood of the intervened data within the sampled graph configurations. This log-likelihood is denoted
as log P (X|C; ◊). However, we make one modification: we mask the contribution of the intervened (or
predicted-intervened) random variable Xi to the total log-likelihood of the sample.

Since Xi was intervened upon (using a Pearl do-operation, soft or hard), the values obtained for that variable
should be treated as fixed rather than contributors to the total log-likelihood of the sample, and a correction
gradient should not propagate through it (because the variable’s CPT or MLP did not actually determine
the outcome). It is assumed that the intervention is known at this stage, and we will explain in Section 4.2.1
how we predict the intervention when it is unknown.

4.2.1 Credit Assignment to Structural Parameters

The scores of the interventional data over various graph configurations are aggregated into a gradient for the
structural parameters “. Because a discrete Bernoulli random sampling process was used to sample graph
configurations under which the log-likelihoods were computed, we require a gradient estimator to propagate
gradient through to the “ structural parameters. Several alternatives exist, but we adopt for this purpose the
REINFORCE-like gradient estimator gij with respect to “ij proposed by Bengio et al. (2019):

gij =
q

k(‡(“ij) ≠ c
(k)
ij )LC

(k)
,i (X)

q
k LC

(k)
,i (X) , ’i, j œ {0, . . . , M ≠1} (3)

where the (k) superscript indicates the values obtained for the k-th draw of C under the current edge beliefs
parametrized by “. The L(k)

C,i(X) is the pseudo log-likelihood of variable Xi in the data sample X under the
k’th configuration, C

(k), drawn from our edge beliefs. Using the estimated gradient, we then update “ with
SGD, and return to Phase 1 of the continuous optimization process.

Acyclic Constraint. We include a regularization term JDAG(“) that penalizes length-2 cycles in the
learned adjacency matrix ‡(“), with a tunable strength ⁄DAG. The regularization term is JDAG(“) =q

i ”=j cosh(‡(“ij)‡(“ji)), ’i, j œ {0, . . . , M ≠1} and is derived from Zheng et al. (2018). The details of
the derivation are in the Appendix. We explore several di�erent values of ⁄DAG and their e�ects in our
experimental setup. Suppression of longer-length cycles was not found to be worthwhile for the increased
computational expense.
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Predicting Intervention. If the target of the intervention is known, then no prediction is needed. However,
in the case of an unknown intervention, we employ a simple heuristic to predict it. During the initial stage of
Phase 2 in iteration t, a small set of holdout interventional data samples is provided to the model. We then
calculate the average log-likelihood for each individual variable Xi across these samples. The variable Xi

exhibiting the most significant decline in log-likelihood is assumed to be the target of the intervention.

The rationale behind this approach is that if our model has e�ectively learned to represent the underlying
causal graph, it should be capable of predicting the values of all variables Xj , except for the one that has
undergone intervention. Initially, when our model has not yet acquired a reliable representation of the
underlying causal graph, this prediction might be inaccurate. However, as training progresses and our model
improves its predictive capabilities, the accuracy in predicting the intervention target becomes significantly
enhanced. In section 6.4, we present the results of our causal discovery experiments based on either predicting
the intervention for unknown interventions or having knowledge of the intervention target. We observe that
the model’s performance in predicting the intervention closely corresponds to having access to the ground
truth.

5 Synthetic Data

This section discusses the generation process of synthetic data.

Conditional Probability Distributions. The conditional probability distributions (CPD) of the sythetic
data are modeled by randomly initialized neural networks. All neural networks are 2 layered feed forward
neural networks (MLPs) with Leaky ReLU activations between layers. The parameters of the neural network
are initialized orthogonally within the range of (≠2.5, 2.5). This range was selected such that they output a
non-trivial distribution. The biases are initialized uniformly between (≠1.1, 1.1). These values are selected
to ensure that the CPDs are non-trivial and interesting, meaning they are neither almost deterministic nor
uniformly distributed.

Graph Structures. In order to conduct a systematic analysis of our model’s performance, we evaluate its
performance on di�erent graph structures. Our selection of synthetic graphs explores various extremes in
the space of DAGs, stress-testing sdi. The chain graphs are the sparsest connected graphs possible, and
are relatively easy to learn. The bidiag graphs are extensions of chain where there are 2-hops as well as
single hops between nodes, doubling the number of edges and creating a meshed chain of forks and colliders.
The jungle graphs are binary-tree-like graphs, but with each node connected directly to its grandparent in
the tree as well. Half the nodes in a jungle graph are leaves, and the out-degree is up to 6. The collider
graphs deliberately collide independent M ≠ 1 ancestors into the last node; They stress maximum in-degree.
Lastly, the full graphs are the maximally dense DAGs. All nodes are direct parents of all nodes below them
in the topological order. The maximum in- and out-degree are both M ≠ 1. Please refer to Figure 3 for
illustrative examples of 3-variable graphs, and consult Figure 6 for the complete collection of graphs.

A

B

C

chain3

A

B C

fork3

A B

C

collider3

A

B

C

confounder3

Figure 3: Example graphs for 3-variable connected DAG.

Interventions. In all experiments, observational and interventional data are used. To generate interventional
data, random and soft interventions are performed. The process begins by randomly selecting a variable,
denoted as Xi, to be intervened on. Subsequently, a soft intervention is applied to the intervened variable Xi,
replacing the conditional probability distribution p(Xi|pa(Xi)) with a di�erent CPD denoted as p

Õ(Xi|pa(Xi)).
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To be specific, the MLP (Multilayer Perceptron) parameters of the conditional distribution are reinitialized
randomly within the range of (-2.5, 2.5), which aligns with the range of values used for the initial random
initialization of the conditionals.

6 Experimental Setup and Results

We evaluate the performance of sdi across a range of experiments with increasing di�culties. We first evaluate
sdi on a synthetic dataset where we have control over the number of variables and causal edges in the ground-
truth SCM. This allows us to analyze the performance of the proposed method under various conditions.
We then evaluate the proposed method on real-world datasets from the BnLearn dataset repository. We
also consider the two variations: Recovering only part of the graph (when the rest is known), and exploiting
knowledge of the intervention target.

The summary of our findings is: 1) We show strong results for graph recovery for all synthetic graphs in
comparisons with other baselines, measured by Hamming distance. 2) The proposed method achieves high
accuracy on partial graph recovery for large, real-world graphs. 3) The proposed method’s intervention target
prediction heuristic closes the gap between the known- and unknown-target intervention scenarios. 4) The
proposed method generalizes well to unseen interventions. 5) The proposed method’s time-to-solution scaling
appears to be driven by the number of edges in the groundtruth graph moreso than the number of variables.

Hyperparameters. Unless specified otherwise, we maintained identical hyperparameters for all experiments.
In the subsequent paragraph, we examine the impact of DAG and sparsity penalties. The experiments
involving sdi were executed for a total of 50,000 steps, as illustrated in Figure 10, and most experiments
reached convergence within that timeframe. For additional information regarding the hyperparameter
configuration, please refer to Appendix §A.5.

Baseline Comparisons We compare sdi against a range of state-of-the-art methods, including both
classic and neural network-based approaches. Specifically, we consider DAG-no-tears (Zheng et al., 2018),
DAG-GNN (Yu et al., 2019), ICP (Peters et al., 2016), non-linear ICP (Heinze-Deml et al., 2018b), and
(Eaton & Murphy, 2007b). Our comparison encompasses both synthetic and naturalistic data. DAG-no-tears
and DAG-GNN are neural network-based causal discovery methods and can only handle observational data.
On the other hand, ICP, non-linear ICP, and Eaton & Murphy (2007b) are designed for interventional data.
Notably, Eaton & Murphy (2007b) addresses uncertain interventions, while ICP and non-linear ICP handle
unknown interventions. However, none of these methods attempt to predict the intervention. All methods are
provided with both observational and interventional data, which is identical to the data given to sdi, except
for the methods that solely handle observational data, in which case only observational data is provided.

6.1 Results on Synthetic Data

We first evaluate the model’s performance on synthetic data generated from multiple SCMs (Structural
Causal Models) with specific and representative graph structures. These SCMs are randomly initialized using
the procedure described in Section 5. Since the number of possible DAGs grows super-exponentially with
the number of variables, for M=4 up to 13 a selection of representative and edge-case DAGs are chosen.
chainM and fullM (M=3-13) are the minimally- and maximally-connected M -variable DAGs, while treeM
and jungleM are tree-like intermediate graphs. colliderM is the (M ≠1) æ 1 collider graph. The details of
the setup is in Appendix A.6.

Results. The model can recover most synthetic DAGs with high accuracy, as measured by Structural
Hamming Distance (SHD) between learned and ground-truth DAGs. Table 1 shows the hamming distance
between the groundtruth and and the learned graphs for all methods, we threshold our edge beliefs at
‡(“) = 0.5 to derive a graph. As shown in the table, our proposed method sdi outperforms all other methods,
and learns all graphs perfectly for 3 to 13 variables (excepting full).

In Figure 10, we present visualizations of the cross-entropy loss and AUROCs (Area Under the Receiver
Operating Characteristic Curve) obtained during the training process of sdi. The continuous decrease in the
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Figure 4: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned graph
against ground-truth for synthetic SCMs. Error bars represent ±1‡ over PRNG seeds 1-5. Left to right,

up to down: chainM,jungleM,fullM,M = 3 . . . 8 (9 . . . 13 in Appendix A.6.1). Graphs (3-13 variables) all
learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to converge.

cross-entropy loss indicates sdi’s convergence towards the correct causal model. Notably, for graphs with up
to 10 variables, the AUROCs consistently reach a value of 1.0, signifying perfect classification into edge and
non-edge categories.

Method Asia Sachs collider chain jungle collider full
M 8 11 8 13 13 13 13

Zheng et al. (2018) 14 22 18 39 22 24 71
Yu et al. (2019) 10 19 7 14 16 12 77
Heinze-Deml et al. (2018b) 8 17 7 12 12 7 28
Peters et al. (2016) 5 17 2 2 8 2 16
Eaton & Murphy (2007a) 0 OOM 7 OOM OOM OOM OOM

Proposed Method (sdi) 0 6 0 0 0 0 7

Table 1: Baseline comparisons: Structural Hamming Distance (SHD) (lower is better) for learned and
ground-truth edges on various graphs from both synthetic and real datasets, compared to (Peters et al.,
2016), (Heinze-Deml et al., 2018b), (Eaton & Murphy, 2007b), (Yu et al., 2019) and (Zheng et al., 2018).
The proposed method (sdi) is run on random seeds 1 ≠ 5 and we pick the worst performing model out of the
random seeds in the table. OOM: out of memory. Our proposed method correctly recovers the true causal
graph, with the exception of Sachs and full 13, and it significantly outperforms all other baseline methods.

Note that Eaton & Murphy (2007b) runs out of memory for graphs larger than M = 10 because modelling of
uncertain interventions is done using “shadow” random variables (as suggested by the authors), and thus
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recovering the DAG internally requires solving a d = 2M -variable problem. Their method’s extremely poor
time- and space-scaling of O(d2d) makes it unusable beyond d > 20.

6.2 Results on Real-World Datasets: BnLearn

The Bayesian Network Repository (www.bnlearn.com/bnrepository) is a collection of commonly-used causal
Bayesian networks from the literature, suitable for Bayesian and causal learning benchmarks. We evaluate
the proposed method on the Earthquake (Korb & Nicholson, 2010), Cancer (Korb & Nicholson, 2010), Asia
(Lauritzen & Spiegelhalter, 1988) and Sachs (Sachs et al., 2005) datasets (M =5, 5, 8 and 11-variables
respectively, maximum in-degree 3) in the BnLearn dataset repository.

Results. As shown in Table 1, sdi perfectly recovers the DAG of Asia, while making a small number of
errors (SHD=6) for Sachs (11-variables). It thus significantly outperforms all other baselines models. Figures
8 & 9 visualize what the model has learned at several stages of learning. Results for Cancer and Asia can be
found in the appendices, Figure 15 and 16.

6.3 Generalization to Previously Unseen Interventions

Table 2: Evaluating the consequences of a previously

unseen intervention: (test log-likelihood under interven-
tion)

fork3 chain3 confounder3 collider3
Baseline -0.5036 -0.4562 -0.3628 -0.5082

sdi -0.4502 -0.3801 -0.2819 -0.4677

It is often argued that machine learning ap-
proaches based purely on capturing joint dis-
tributions do not necessarily yield models that
generalize to unseen experiments, since they
do not explicitly model changes through inter-
ventions. By way of contrast, causal models
use the concept of interventions to explicitly
model changing environments and thus hold the
promise of robustness even under distributional
shifts (Pearl, 2009; Schölkopf et al., 2012a; Pe-
ters et al., 2017). To test the robustness of causal modelling to previously unseen interventions (new values for
an intervened variable), we evaluate a well-trained causal model against a variant, non-causal model trained
with cij = 1, i ”= j. An intervention is performed on the SCM, fresh interventional data is drawn from it,
and the models, with knowledge of the intervention target, are asked to predict the other variables given
their parents. The average log-likelihoods of the data under both models are computed and contrasted. The
intervention variable’s contribution to the log-likelihood is masked. For all 3-variable graphs (chain3, fork3,
collider3, confounder3), the causal model attributes higher log-likelihood to the intervention distribution’s
samples than the non-causal variant, thereby demonstrating causal models’ superior generalization ability in
transfer tasks. Table 2 collects these results.

6.4 Variant: Predicting interventions

Table 3: Intervention Prediction Accuracy: (identify on which
variable the intervention took place)

3 variables 4 variables 5 variables 8 variables

95 % 93 % 85 % 71 %

In Phase 2 (described in §4.2), the contri-
bution of the intervened (or predicted-
intervened) random variable Xi is
masked from the total log-likelihood of
the sample. To predict the interven-
tion target variable, we employ a simple
heuristic. Experimental results demon-
strate that this heuristic performs well in
practice, yielding accurate predictions more frequently than chance alone (see Table 3). In this section, we
conduct ablation studies to thoroughly examine the significance of intervention prediction. We compare
several scenarios to evaluate their impact on the overall results.

In the first scenario, referred to as ’guessing intervention,’ we randomly guess the intervention variable and
subsequently mask out its contribution. The second scenario, termed ’no information on intervention,’ involves
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not guessing the intervention variable at all, which means all variables, including the intervened-on variable,
contribute to the log-likelihood used in Phase 2. The third scenario, ’predicting unknown intervention,’ entails
asking the model to predict the intervened variable and subsequently masking out its contribution. Lastly,
in the ’known intervention’ scenario, we provide the model with the ground truth information about the
intervened variable, enabling the masking of its contribution.

Notably, both the first and second scenarios, where either the model randomly guesses the intervention or
doesn’t use any intervention information at all, result in a significant decline in model performance. This
decline holds true even for graphs with only three variables, as demonstrated in Figure 5 (Left). Conversely,
when training sdi with intervention prediction, the model’s performance closely aligns with training that
incorporates the ground-truth intervention. This alignment persists even for larger graphs comprising seven
variables, as depicted in Figure 5 (Right)
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Figure 5: Ablation Study of Intervention Prediction Cross-entropy loss over time on multiple graphs and
intervention prediction modes. Left: All 3-variable graphs. Solid/dashed lines: Ground-truth & Prediction
strategies. Dotted lines: Random- & No-Prediction strategies. Training with prediction closely tracks
ground-truth. Right: Comparison for 7-variable graphs, ground-truth against prediction strategy. Training
with predicted interventions still closely tracks using ground-truth interventional information at larger scales.

6.5 Variant: Partial Graph Recovery

Instead of learning causal structures de novo, we may have partial information about the black-box SCM and
may only need to fill in missing information. An example is protein structure discovery in biology (Glymour
et al., 2019), where some causal relationships have been definitely established and others remain open hypothe-
ses. This is an easier task compared to full graph recovery, since the model only has to search for missing edges.

Table 4: Partial Graph Recovery on Alarm (Beinlich
et al., 1989) and Barley (Kristensen & Rasmussen, 2002).
The model is asked to predict 50 edges in Barley and 40
edges in Alarm. The accuracy is measured in Structural
Hamming Distance (SHD). sdi achieved over 90% accuracy
on both graphs.

Graph Alarm Barley

Number of variables 37 48
Total Edges 46 84
Edges to recover 40 50
Recovered Edges 37 45
Errors (in SHD) 3 5

We evaluate sdi on Barley (Kristensen & Ras-
mussen, 2002) (M = 48) and Alarm (Bein-
lich et al., 1989) (M = 37) from the BnLearn
repository. The model is asked to predict 50
edges from Barley and 40 edges from Alarm.
The model reached Ø 90% accuracy on both
datasets, as shown in Table 4.

Among the methods evaluated in Table 1, the
top three performers were ICP, non-linear ICP,
and the method proposed by Eaton & Murphy
(2007a). However, it should be noted that these
methods are not scalable to larger graphs, specif-
ically in the case of Barley and Alarm datasets.
Consequently, a direct comparison with these
methods was not feasible.
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6.6 Ablation and analysis

As shown in Figure 11, larger graphs (such as M > 6) and denser graphs (such as full8) are progressively
more di�cult to learn. For denser graphs, the learned models have higher sample complexity, higher variance
and slightly worse results. Refer to Appendix §A.9 for complete results on all graphs.

Importance of regularization. Valid configurations C for a causal model are expected to be a) sparse
and b) acyclic. To promote such solutions, we introduce DAG and sparsity regularization with tunable
hyperparameters. For all experiments, we set the DAG penalty to 0.5 and sparsity penalty to 0.1. We run
ablation studies on di�erent values of the regularizers and study their e�ect. We find that smaller graphs are
less sensitive to di�erent values of regularizer than larger graphs. For details, refer to Appendix §A.13.

Importance of dropout. To train functional parameter for an observational distribution, sampling
adjacency matrices is required. We "drop out" each edge (with a probability of ‡(“)) in our experiments
during functional parameter training of the conditional distributions of the SCM. Please refer to Appendix
§A.14 for a more detailed analysis.

7 Conclusion

In this work, we introduced an experimentally successful method (sdi) for causal structure discovery using
continuous optimization, combining information from both observational and interventional data. We show
in experiments that it can recover true causal structure, that it generalizes well to unseen interventions, that
it compares very well against the start-of-the-art causal discovery methods on real world datasets, and that it
scales even better on problems where only part of the graph is known.

References

Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L Winkler. Hailfinder: A bayesian
system for forecasting severe weather. International Journal of Forecasting, 12(1):57–71, 1996.

Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring
system: A case study with two probabilistic inference techniques for belief networks. In AIME 89, pp.
247–256. Springer, 1989.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh
Goyal, and Christopher Pal. A meta-transfer objective for learning to disentangle causal mechanisms.
arXiv preprint arXiv:1901.10912, 2019.

Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre Drouin.
Di�erentiable causal discovery from interventional data. Advances in Neural Information Processing

Systems, 33:21865–21877, 2020.

Kailash Budhathoki and Jilles Vreeken. Causal inference by stochastic complexity. arXiv:1702.06776, 2017.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine learning

research, 3(Nov):507–554, 2002.

Gregory F. Cooper and Changwon Yoo. Causal Discovery from a Mixture of Experimental and Observational
Data. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99, pp.
116–125, San Francisco, CA, USA, 1999.

Povilas Daniusis, Dominik Janzing, Joris Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, and
Bernhard Schölkopf. Inferring deterministic causal relations. arXiv preprint arXiv:1203.3475, 2012.

Laura Douglas, Iliyan Zarov, Konstantinos Gourgoulias, Chris Lucas, Chris Hart, Adam Baker, Maneesh
Sahani, Yura Perov, and Saurabh Johri. A universal marginalizer for amortized inference in generative
models. arXiv preprint arXiv:1711.00695, 2017.

12



Under review as submission to TMLR

Daniel Eaton and Kevin Murphy. Belief net structure learning from uncertain interventions. J Mach Learn

Res, 1:1–48, 2007a.

Daniel Eaton and Kevin Murphy. Exact bayesian structure learning from uncertain interventions. In Artificial

Intelligence and Statistics, pp. 107–114, 2007b.

Daniel Eaton and Kevin Murphy. Bayesian structure learning using dynamic programming and MCMC. In
Uncertainty in Artificial Intelligence, pp. 101–108, 2007c.

Frederick Eberhardt. Almost optimal intervention sets for causal discovery. arXiv preprint arXiv:1206.3250,
2012.

Frederick Eberhardt and Richard Scheines. Interventions and causal inference. Philosophy of Science, 74(5):
981–995, 2007.

Frederick Eberhardt, Clark Glymour, and Richard Scheines. N-1 experiments su�ce to determine the causal
relations among n variables. Innovations in machine learning, 194:97–112, 2006.

Frederick Eberhardt, Clark Glymour, and Richard Scheines. On the number of experiments su�cient and in
the worst case necessary to identify all causal relations among n variables. arXiv preprint arXiv:1207.1389,
2012.

AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Kun Zhang. Learning causal structures
using regression invariance. In Advances in Neural Information Processing Systems, pp. 3011–3021, 2017.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in genetics, 10:524, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing

systems, pp. 2672–2680, 2014.

Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag.
Causal generative neural networks. arXiv preprint arXiv:1711.08936, 2017.

Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and Michele Sebag.
Learning functional causal models with generative neural networks. In Explainable and Interpretable Models

in Computer Vision and Machine Learning, pp. 39–80. Springer, 2018.

Isabelle Guyon. Cause-e�ect pairs kaggle competition, 2013. URL https://www. kaggle. com/c/cause-e�ect-

pairs, pp. 165, 2013.

Isabelle Guyon. Chalearn fast causation coe�cient challenge, 2014. URL https://www. codalab.

org/competitions/1381, pp. 165, 2014.

Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional markov equivalence
classes of directed acyclic graphs. Journal of Machine Learning Research, 13(Aug):2409–2464, 2012.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combination of
knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

Christina Heinze-Deml, Marloes H Maathuis, and Nicolai Meinshausen. Causal structure learning. Annual

Review of Statistics and Its Application, 5:371–391, 2018a.

Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for nonlinear
models. Journal of Causal Inference, 6(2), 2018b.

Steven M Hill, Laura M Heiser, Thomas Cokelaer, Michael Unger, Nicole K Nesser, Daniel E Carlin, Yang
Zhang, Artem Sokolov, Evan O Paull, Chris K Wong, et al. Inferring causal molecular networks: empirical
assessment through a community-based e�ort. Nature methods, 13(4):310–318, 2016.

13



Under review as submission to TMLR

Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal
discovery with additive noise models. In Advances in neural information processing systems, pp. 689–696,
2009.

Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with arbitrary conditioning.
arXiv preprint arXiv:1806.02382, 2018.

Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag. Sam: Structural
agnostic model, causal discovery and penalized adversarial learning. arXiv preprint arXiv:1803.04929,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Kevin B Korb and Ann E Nicholson. Bayesian artificial intelligence. CRC press, 2010.

Kristian Kristensen and Ilse A Rasmussen. The use of a bayesian network in the design of a decision support
system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33
(3):197–217, 2002.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based neural
dag learning. arXiv preprint arXiv:1906.02226, 2019.

Ste�en L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society: Series B (Methodological),
50(2):157–194, 1988.

Yang Li, Shoaib Akbar, and Junier B Oliva. Flow models for arbitrary conditional likelihoods. arXiv preprint

arXiv=1909.06319, 2019.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. E�cient neural causal discovery without acyclicity
constraints. arXiv preprint arXiv:2107.10483, 2021.

David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. Towards a learning theory
of cause-e�ect inference. In International Conference on Machine Learning, pp. 1452–1461, 2015.

Jovana Mitrovic, Dino Sejdinovic, and Yee Whye Teh. Causal inference via kernel deviance measures. In
Advances in Neural Information Processing Systems, pp. 6986–6994, 2018.

Ricardo Pio Monti, Kun Zhang, and Aapo Hyvarinen. Causal discovery with general non-linear relationships
using non-linear ica. arXiv preprint arXiv:1904.09096, 2019.

Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts. arXiv

preprint arXiv:1611.10351, 2016.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and e�ect. Basic Books, 2018.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Identifiability of causal graphs using functional models.
In Proceedings of the 27th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 589–598,
2011.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 78(5):947–1012, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and

learning algorithms. MIT press, 2017.

14



Under review as submission to TMLR

Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for causal
transfer learning. The Journal of Machine Learning Research, 19(1):1309–1342, 2018.

Dominik Rothenhäusler, Christina Heinze, Jonas Peters, and Nicolai Meinshausen. Backshift: Learning causal
cyclic graphs from unknown shift interventions. In Advances in Neural Information Processing Systems, pp.
1513–1521, 2015.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lau�enburger, and Garry P Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bernhard Schölkopf,
Michael C Mozer, Yoshua Bengio, Stefan Bauer, and Nan Rosemary Ke. Learning neural causal models
with active interventions. arXiv preprint arXiv:2109.02429, 2021.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On
causal and anticausal learning. In J. Langford and J. Pineau (eds.), Proceedings of the 29th International

Conference on Machine Learning (ICML), pp. 1255–1262, New York, NY, USA, 2012a. Omnipress.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal
and anticausal learning. arXiv preprint arXiv:1206.6471, 2012b.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian acyclic model
for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

Peter Spirtes, Clark N Glymour, Richard Scheines, David Heckerman, Christopher Meek, Gregory Cooper,
and Thomas Richardson. Causation, prediction, and search. MIT press, 2000.

Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, and Kenji Fukumizu. A kernel-based causal learning
algorithm. In Proceedings of the 24th international conference on Machine learning, pp. 855–862. ACM,
2007.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Machine learning, 65(1):31–78, 2006.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Gain: Missing data imputation using generative
adversarial nets. arXiv preprint arXiv:1806.02920, 2018.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural networks.
arXiv preprint arXiv:1904.10098, 2019.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional independence
test and application in causal discovery. arXiv preprint arXiv:1202.3775, 2012.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS: Continuous
optimization for structure learning. In Advances in Neural Information Processing Systems, pp. 9472–9483,
2018.

Shengyu Zhu and Zhitang Chen. Causal discovery with reinforcement learning. arXiv preprint

arXiv:1906.04477, 2019.

15


