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A PROOF OF PRELIMINARY LEMMAS

A.1 PROOF oF LEMMA[I]

This is a quite standard result, which can be found at tutorial materials (e.g., https://people.
math.wisc.edu/~-roch/mmids/roch-mmids-11ssvd-6svd.pdf). We include a proof
here only for convenience of readers.

We start by introducing some notation. Let Z; = X; — X and let Z = Z1,...,2Z,] € R4,
Suppose the singular value decomposition of Z is given by Z = UzDzV}. Since H is a rank-
(K — 1) projection matrix, we have H = QQ’, where Q € R%X~1 is such that Q'Q = Ix ;.
Hence, we rewrite the optimization in (@) as follows:

minimize Z —x0) (Ia — QQ")(X; — xp), subjectto Q'Q = Ix ;.

For A € R, consider the Lagrangian objective function

n

S0, Q,N) =Y (Xi = 20) (Ia — QQ')(Xi — w0) + MQ'Q — Ic 1) (A.D)

i=1
Setting its gradients w.r.t. g and @ to be 0 yields

n

Vo S(20,Q, 3) = —2(Ig — QQ) Y _(X; — w0) = 0, (A2)
=1
VoS(x0, Q) = —2Q' Z i —20)(X; — x0) +20Q" = 0. (A.3)

Firstly, we deduce from (A.2) that 2o = X, which in view of (A.3)) implies that Q' (ZZ’ — A1) = 0.

The above equations also implies that the (K — 1) columns of @ should be the distinct columns of
Uz. Now, the objective function in (A) is given by

S(20,Q.N) =3 Z1s — QQ)Z: = wl(1s — QQ")22') = t[(Ls — QQUz D3UY)]

=tr(Dy)? —tr[Q' Uz DZULQ] = tr(D%) — || D2ULQ| 3. (A4)

Note that for each column of U,Q € R%X~1 it has exactly one entry being 1 and its other entries
are all 0. Therefore, taking ) = U maximizes ||DzU,Q||% and hence minimizes the objective
function S in 1) that is, H = UU’. The proof is complete.

A.2 PROOF OF LEMMA 3]

For the simplex formed by V' € R?*¥  we can always find an orthogonal matrix O € R?*¢ and a
scalar a such that

xrpT X2 TK
OVv=|a a ... a |, where z,ecREfork=1,... K.
o o0 ... O

- —1vK
Denote z = K ' >, x. Further we can represent

&>  [(T1—T To—T ... Tk —T
OV( 0 0 0 >

We write X := (x1 —Z,x9—=,...,xx — ). Since rotation and location do not change the volume,

Volume(Sy) = Volume(S(X)).


https://people.math.wisc.edu/~roch/mmids/roch-mmids-llssvd-6svd.pdf
https://people.math.wisc.edu/~roch/mmids/roch-mmids-llssvd-6svd.pdf

where S(X) represents the simplex formed by X. By Stein| (1966), we have

i Lz —2)
Volume(Sp) = (;1?5_(141))!7 with A= 1 (2 — )
1 (zx —2)
We also define
L (o —o)
a= | DT e

1 (vx — o)

Since (A,0) = A (é g), it follows that AA’ = AA’ and Volume(S,) = % =

e 4 K ~
VEriY . Note that A’A = (0 V%/’) by the fact that V1x = 0. Then det(A’'A) =
Kdet(VV"). Further notice that rank(VV’) = K — 1. We thus conclude that

K-1
Volume(Sy) = (K\/—KI)' H se(V).
T k=1

This proves the first claim.

For the second and last claims, we first notice that V. = V — 1%. Then VV' = VvV + Kov'
again by V1 = 0. Because both V'V’ and Kvv' are positive semi-definite, by ‘Weyl’s inequality

(see, for example Horn & Johnson| (1985)), it follows that sx_1(V) > sx_1(V) and s (V) =

Vanin(VV') < VE][[0]? = VE]0].

A.3 PROOF OF LEMMA [4]
We first prove claim (a). Let I = [r; — 7, ..., 7, — 7] € R¥:", Recalling the definitions of G’ and
V, we have G = n~ I’ and R = n~Y/2VTI, so that RR' = n~VIII'V’' = VGV".

Next, we prove claim (b). Recall that V = V — 41’ so that VV’ = (V — 51/ )(V — 91}) =
V'V’ — Kv9'. Note that Since 71 = 7'1x = 1, we have II'1 x = 0, which implies that G1x =
n~I(II'"1x) = 0. We deduce from this observation that A (G) = 0 and its associated eigenvector
is K~1/21 . Therefore, G —A\rc_1(G)Ix +K '\ 1(G)1x 1% is a positive semi-definite matrix,
so that
VGV = A1 (G)WVV' = VGV = A _1(G)VV' + Ag_1(G) Kot
=V[G Ak 1(G) Ik + K "\ _1(G)1g1%]V’ > 0.

In addition, observing that II'1 ;- = 0 due to the fact that ||7;||; = ||7||1 = 1, we obtain that
VGV = (V = 51%)G(V — 5l%) = n YV — 51T (V — 51%) = VGV'.
Therefore,
MGV — VGV = \M(G)VV' = VGV = VI\N(G)Ix — GV >0,
which completes the proof of claim (b).

Finally, for claim (c), we obtain from (a) that 0% _;(R) = Ax—1(RR’) = Ax—1(VGV’), which by
Weyl’s inequality (see, for example, [Horn & Johnson (1985)) and in view of claim (b) implies that
A —1(G)Ak—1(VV') < 0% (R) < M (G)Ak—1(V V). The proof is therefore complete.



A.4 PROOF OF LEMMA [3]

Recall that 27 ~ x2(0). Let b, be the value such that
P(z, > b,) = 1/n.
By basic extreme value theory, it is known that

%M 51, in probability.

We now solve for b,,. It is seen that b,, > d. Recall that the density of X?Z(O) is

1 d/2-1

—x/2
2420(dj2)" ¢

x> 0.

Note that for any z¢ > d,

/ a2 e %/2qy = 2$g/2_1€7z0/2 + / (d— 2)1“”272671/26[58
o

g
where the RHS is no greater than

< 9q /21 g=wo/2 | (d—2) / pd/2-1 /2 g,

i) o

It follows that for all zo > d,

oo
2al/2T=w0/2 < / 221 ma/2qy < g /21 emwol2)

zo

where we have used

o
— < 2.
To—d+ 2 _IE()/

It now follows that there is a term a(x) such that when = > d,

1<a(z) <x/2

and )
P > — - opd/2-1 7:r/2.
(71 > ) a(x)Qd/Zy(d/Q) x e
Combining these, b,, is the solution of
1 1
9pd/2=1p—2/2 _ =
a(x)72d/2fy(d/2) x e .

(AS)

(A.6)

(A7)

We now solve the equation in (A.7). Consider the case d is even. The case where d is odd is similar,

so we omit it. When d is even, using

I(d/2) = (d/2 = 1)t = (2/d)(d/2)! = (2/d)9(2%)d/2,

where 0 is the factor in the Stirling’s formula which is < C'y/log(d). Plugging this into the left hand

side of (A7) and re-arrange, we have
log(d/x) + (d/2) log( 1) — /2 = —log(n) + oflog(n)).
We now consider three cases below separately.

* Case l. d < log(n).
* Case 2. d = aglog(n) for a constant ag > 0.
 Case 3. d > log(n).

(A.8)



Consider Case 1. In this case, it is seen that when
x = O(log(n)),

the LHS of is
—x/2 + o(log(n)).
Therefore, the solution of (A-8) is seen to be

b = (1+0(1)) - 2log(n).
Consider Case 2. In this case, d = aglog(n). Let z = by log(n). Plugging these into (A.8) and

rearranging,
a1 — aglog(a1) =2+ ag — ag log(ap) + o(1). (A9)

Now, consider the equation
a; — ap log(al) =2+ apg — Qg log(ao).

It is seen that the equation has a unique solution (denoted by bg) that is bigger than 2. Therefore, in
this case,

b, = (14 0(1))bo,
Consider Case 3. In this case, d > log(n). Consider again the equation
log(d/x) + (d/2) log(%) —x/2 = —log(n) + o(log(n)).
Letting y = x/d and rearranging, it follows that

y —log(y) — 1 =o0(1), (A.10)

where for sufficiently large n, o(1) > 0 and o(1) — 0. Note that the function g(y) = y —log(y) — 1
is a convex function with a minimum of 0 reached at y = 1, it follows

y=1+o0(1).

Recalling y = z/d, this shows
bn, = (1 +0(1))d.
This completes the proof of Lemma 3]

B ANALYSIS OF THE SPA ALGORITHM

Fixd > K — 1. Forany V = [v1,vs,...,vx] € R*K let 03, (V) denote the kth singular value of
V', and define
y(V) = min max lor —voll,  dmax(V) = max|lz].

To capture the error bound for SPA, we introduce a useful quantity

X,V):=ma ax Dist(X;,S a i X; — . B.11
506 V) = max{ ax DICELS), s win X} @)
In this quantity, the first term is the maximum distance from any outside X; to the simplex, and the
second term is maximum radius of the neighborhood of a vertex containing no X;. When 5(V, X)
is small, it implies: (a) there is at least one data point near each true vertex, and (b) no point is too
far away from the true simplex.

Theorem A. Suppose for each 1 < k < K, there exists 1 < i < n such that m; = ex. Suppose
B(X, V) satisfies that 450d % max{L d;% }ﬁ < 02. Let 01,13, ...,0, be the output of SPA. Up
to a permutation of these r vectors,

R 30’}/ dmax
_ < (1 1, —= ) X .
11;1’?%&”% vkl _< + o max {1, o, 18X, V)



B.1 SOME PRELIMINARY LEMMAS IN LINEAR ALGEBRA

The following lemmas are proved in later subsections.

Lemma A. Let S* C RY be the standard probability simplex consisting of all weight vectors. Let
F : 8 — S be the mapping with F(r) = Vx. For any w and 7 in 8%,

ox-1(V) - |lm =7l < |[F(m) = F@)[| < (V) - |7 = 7. (B.12)
Fix1 < s < K — 2. If 7 and 7 share at least s common entries, then
|F(m) = F(7)| > ox—1-s(V)|l7 — 7. (B.13)
LemmaB. Fixm > 2and z1,...,7,, € RL Let a = min;; ||z; — x| and b = max;; ||| —
lz;||. For any w, ..., wy, > 0suchthaty . w; =1,
H;wxz <L-"— ;wi(uwi), with L::;wi\\xiﬂ. (B.14)

Lemma C. Fix 1 < s < K — 2. For any projection matrix H € R4 with rank s,

UKflfs((Id—H)V) Z O'Kfl(V). (BlS)
LemmaD. Fix0 < s < K —2. Suppose there are at least s indices, {k1, ..., ks} C {1,2,..., K},
such that ||vg|| < 6. If 0% _,_ (V) > 2(K — 2)4?, then

K—-—s—1 1
> > — . .
12}%}{1( H’Uk” = Q(K = 5) O'K_l_s(V) = 20’}(_1_3(‘/) (B 16)

B.2 THE SIMPLICIAL NEIGHBORHOODS AND A KEY LEMMA

We need some preparations. Write 8 = 8(X, V), 0. = ox-1(V), v =v(V), and dipax = dmax(V)
for short. Let S* denote the standard probability simplex, and let F" be as in Lemma [A] Note that
v, = F(ex), where ey, € RX is a standard basis vector. By Lemma

o — vell > ouller — e > V20., forany 1 <k #(< K. (B.17)

Let Jy = {1 <i<n:m(k) =1}, for 1 <k < K. By definition,
Dist(X;,S) < 4, in || X; — vkl < 8. B.18
2 Dist(Xe8) <8, max min X — ol < 8 (B18)

Given € € (0,1/2), we introduce K local neighborhoods, one for each vy:
Vi(e) = {F(n) : m € 8*,mi(k) >1— ¢} CRY, 1<k<K. (B.19)
When z € Vj, the kth entry of m := F~!(z) is at least 1 —e < 1/2. Since each 7 € S* cannot have
two entries larger than 1/2, these neighborhoods are disjoint:
Vi(e) N Ve(e) = 0, forany1 <k #¢< K. (B.20)
We verify that each Vy(¢) is indeed a “local” neighborhood. Let e;, € R be the kth standard basis
vector. For any 7 € 8*, || — e;|[1 = 2[1 — 7(k)]. It follows from Lemma [A]that
- = F(r)-F < 27e. B.21
ol —vl = omax | [[F(r) = Flex)]| < 29e (B.21)

In the first iteration, ¢; is selected to maximize || X;||. To study X, , the key is to study the maximum
Euclidean norm for different regions of the true simplex S. Recall that dy,,x = max,es ||z||. The
maximum is attained at one or multiple vertices. Let

K* ={k: ||lvk|| = dmax}, where  dpax = max ||z|| = max ||vg]|.
zeS k

Given any hg > 0 and ¢y > 0, define an index set /C(hg) and a region V(eg, ho) C S as follows:
K(ho) = {k : [|vll = dmax — ho}, V(€o, ho) = Urekc(ho) Vi (€0)s (B.22)

where Vj,(eo) is the same as defined in . The following lemma is a key technical lemma:

Lemma E. Let K(hy) and V(eo, ho) be as defined in . Suppose dyax > 04/2. For any

Co >0, if weset hg = 0. /3 and 1/2 > ¢y > 6Coo, ! max{1, dyax/0+} 5, then
Hx” < dmax - 0067 fOr any r S \ V(eo, ho).



B.3 PROOF OF THEOREM[A](THEOREM 1 IN THE MAIN PAPER)

We now show the claim. The analysis consists of three steps. In Step 1, we study the first iteration
of SPA and show that 97 falls in the neighborhood of a true vertex. In Steps 2-3, we recursively
study the remaining iterations and show that, if 01, ..., 05— fall into the neighborhoods of (k — 1)
true vertices, one per each, then ¥ will also fall into the neighborhood of another true vertex. For
clarity, we first study the second iteration in Step 2 (for which the notations are simpler), and then
study the sth iteration for a general s in Step 3.

Step 1: Analysis of the first iteration of SPA.

Applying Lemma D] with s = 0, we have dyax > 0./2. We then apply LemmaE] Let Cy = 7/3,
ho = 0./3, and ¢y = 15 max{o., 0, 2dmax } (our assumption guarantees €y < 1/2). It follows by
Lemma [El that

max z|| < dmax — 78/3. B.23
z€8\V(eo,ho) ” ” - B /8/ ( )

At the same time, for any k& € K*, it follows by (B.18) that there exists at least one i* € Jj such
that | X; — vg|| < 8. It follows by triangle inequality that || X;«|| > dmax — 3. Hence,

[ X, | > [ Xi= || > dimax — B- (B.24)

Combining (B.23)) and , we conclude that X;, can only be inside V(eg, ho) or outside S.
Suppose X“ is outside S Tt Tollows by (B.18) that

il 21X | = B = dmax — 28

Combining it with (B.23), we conclude that r;, must fall into V(eq, hg). So far, we have shown that
one of the following cases must happen:

Case 1: X;, € V(eg, ho). Case2: X;, ¢ Sbutr;, € V(eg, ho). (B.25)

Recall that V(eq, ho) is as defined in (B.22). In Case 1, since Vi (), . . ., Vi (€o) are disjoint, there
is only one k; € K(hg) such that X;, € Vi, (€p). It follows by l-) that 1 X3, — vk, || < 2veo.
In Case 2, we similarly have ||r;, — vg, | < 2vep. In addition, since X;, ¢ S in this case, we have
| Xi, — 7, ]| < B. Combining these arguments gives

30 dmax
1Xi, — vk, || < (14 2v€0)8 < (1 + =0 max{1, )ﬁ, for some k. (B.26)
Ox Ox

Step 2: Analysis of the second iteration of SPA.

Let Hy = 15— =, “2X“)Q1 and X H, X, for 1 <i < n. The second iteration operates on the

data points Xl, .. X € R, Write #; = Hyr;, €, = Hye;, ¥, = Hyu, and V= [01,D2,...,0k].
It follows that o

X, =Vm+é6, 1<i<n. (B.27)
Let S C R? denote the projected simplex, whose vertices are 91, . .., Uk . Let F denote the mapping

from the standard probability simplex S* to the projected simplex S (note that F is not necessarily
a one-to-one mapping). We introduce the neighborhoods similar to those in (B.19)

Vi(e) = {F(r):m€ 8", m(k) > 1— e} CRY, 1<k<K. (B.28)

Let k; be as in l) Let dyyoy = max, . |z||- The maximum distance domax is attained at one or

multiple vertices. Same as before, let K* be the index set of k at which || 7| = dmax. We similarly
define

K(ho) = {k : |8kl = dimax —ho}, V{0, ho) = Upegng) Vi(o). (B.29)

At the same time, let § = B(X, V). It is easy to see that for any points z and y, |Hyz — Hyy|| <
|l — y||. Hence, 8 < . It follows that

Dist (X < X, — < B.
e DX S) < B a1 = 0l <6 (B30



Given (B.27)-(B-30), we can extend Lemma [E] A quick look of the proof of this lemma suggests
that the same conclusion holds as long as we can show the following:

dinax > 04/2, min |0 — o) > V20", and ki ¢ K(ho). (B.31)
(k,0):k#k,
O£k kL

When (B-31)) holds, we can similarly prove LemmalE] It is worth mentioning that d.,x is chan ed to
a smaller number dy,ax now, so the choice of (ho, €o) will change accordingly. Similar to , by
choosing hg = 0, and ¢; = 15 max{o,, o, 2 max} We et MaX, . & (e, ho) =] < dmax — 76/3

Note that €1 < €g, and the set S \ 17(6, ho) gets smaller as € increases. We immediately have

max  ||z| < dmax — 76/3. (B.32)
z€8\V(eo,ho)

At the same time, by (B.31), it is easy to get ||X12 I > Amax — 5. We can mimic the analysis between

(B-24) and (B:26) to get

N 30
1%, = il < (14 L max{1,

nax }),8, for some ko # ky. (B.33)
O«

Note that dyax < dmax. Hence, the above bound for is no larger than the one in 1;

It remains to show 1i Without loss of generality, we assume k; = 1. By definition, V=HV,
where H; is a rank-1 projection matrix. It follows by Lemma [C] that

UK,Q(V) Z O'Kfl(V) = O .

Note that dyay > maxyz; ||0x]|. We apply Lemma@with s =110 get dpmax > %UK_Q(‘N/) > 1o,

This proves the first claim in (B.31). For any k, v, = ‘~/ek, where e, € RX is a standard basis
vector. For any 2 < k # ¢ < K, e; and e, both have a zero at the first coordinate; and we apply

Lemma!A with s = 1 to get ||vy — ve|| > ox—2(V)|ex — ecl| > v/20,. This proves the second
(B.31]

claim in (B.31)). Last, we show the third claim. Note that
~ vllXil X’L/l (X'Ll - Ul) UllXil
v =Hivy =11 — —=X;, = v — (X, — ).
1, 127 12X, 2 1, 2"
Here, [[vy | <dmax,andby- 1 X, | = dmax = 8. Since [ X, (X, —v1)| < [ X, || X, —val;
i ( i U) /Xi
we have | X oy | < 1, — vill < glmsliX, - ol and 255 < el <
ﬁ Plugging these inequalities into the above equation and applying (B.26)), we obtain:
- 2d 2d 30y dom,
lo1]] < 7dma:1i(ﬂ 1 X, —riy || < A mi(ﬁ (ﬁ + o max{1, ;dx }B) (B.34)
30d 5

30max max {1, d‘“a" }B < 0./15. Moreover, we have shown diax > dmax >

o4 /2. It further 1mphes ﬂ < o <Llg <L dmax. As a result,

By our assumption,

450dmax — 225 = 100
200 3 = ~ 7
dmwx S dm X T Yk B35
I91]l < T (B+ 35) < 1 max < duax = 350 (35)

At the same time, hy = 0. /3. Hence, ||01]| is strictly smaller than Jmax — hg. This shows that 1
cannot belong to the set K(hg) as defined in .

Step 3: Analysis of the remaining iterations of SPA.

Fix 3 < s < K — 1. We now study the sth iteration, for 3 < s < K — 1. Let ¢1,...,ix denote the

1)

sequentially selected indices in SPA. Let X; * = X; and H; be the same as in Step 1 of this proof.

We define X i(s) and H recursively to describe the iterations in SPA:
X(Sfl)
Ys—1 = O Hy = (Id - :’)s—lfgs—l)Hs—la X(é) = HSX»(S_I).
1XE) i i

el



It is seen that H,_; = an;ll(fd — Usys). Note that each ¢ is orthogonal to §1,...,Js—1. As a
result, H;_; is a projection matrix with rank (s — 1). We apply Lemmato obtain that
OK_S(HS_1V) ZUK—I(V) ZO'*, fOI‘3SS§K—1. (B36)
Let X; = Hp_1X; and V = Hy,_,V. We will follow similarsteps as in l|l| Sup-
pose there exist distinct k1, ko, ..., ks—1 such that (B.33) holds for each of them. Let M;_; =
{k1,k2, ..., ks—_1}. The analysis is very similar to (B.27)-(B.33), except that (B.31)) is replaced by

dinax > 04/2, min |0 — 3| > V20", and M, NK(ho)=0.  (B.37)
{k7£}mMs—1:®1
]
Once this is proved, we will follow similar arguments as in the text around (B:32) to get (B.33).

It remains to show (B.37)). Suppose we have already obtained (B.37) and foreach1 < j <
s — 1, and we would like to show (B.37) for s. First, consider the second claim in (B:37). For each

k ¢ Mg_q, it has (s — 1) zeros in the coordinates in M,_;. We apply Lemma [A| and (B.37) to
obtain that

|0k — Bel| > V20k_s(V) > V20,,  forallk# £in{l,...,K}\ M, ;.
Next, consider the third claim in (B.37). Note that M1 = {kq,ka,...,ks_1}. Foreach 1 < j <
s — 1, by definition, oy, = [[1,,,5;(la — 9mr,)] - (Ia — §;9;) H;j -1, 1t follows that
Hj 1 Xy,
12 X,
Here, || H;_1 X}, || is the maximum Euclidean distance attained in the (j — 1)th iteration. Since we

have already established (B.37) for j, we immediately have ||H;_1X;,[| > 0./2. In addition, we
have shown (B.33) for j, which implies that

0k, | < [[(Ja — 959;)Hj—1vg,|l, ~ where §; = (B.38)

30 Dnase
HHj—lvkj — Hj_1Xij|| < (1 + 0_7 HlaX{l7 p })ﬂ

Mimicking the proof of (B:34), we can get a similar bound as

_ o 30 Anae
19511 < 112 = 653, Hyron, | < (14 = ma{1, S221) 6. (8.39)

We then mimic the argument in l| to show that ||vg, || < Bmax — 70./20 < B — hg. This

implies that j ¢ IC(hg). Last, consider the first argument in (B.37). Let A denote the right hand side
of (B-39). We have shown that ||7;|| < A, for all k € M,_1. By our assumption, we can easily
conclude that 02 > 2(K — 2)A. We then apply Lemma@ to get dmax > 04/2. So far, we have
proved all three arguments in (B.37). This completes the proof of this theorem.

B.4 PROOF OF THE SUPPLEMENTARY LEMMAS
B.4.1 PROOF OF LEMMA [A]

By definition, F'(7) = Zszl m(k)vk. Since Zszl 7(k) = 1, for any vy € RY, we can re-express
F(m)as F(m) = v + Z,If:l (k) (v — vg). It follows immediately that

K
> [r(k) — 7 (k)] (vx — vo)
k=1
At the same time, since 1% (7 — 7) = 0, the vector 7 — 7 is an (K — 1)-dimensional linear subspace.
It follows by basic properties of singular values that

IF(m) = F(7)|| =2 ox-1(V) - ||lm — 7.
Combining the above gives (B.12).

Suppose there are 1 < k1 < kp < ... < ks < K such that w(k;) = 7(k;), for 1 < j < s. Then, the
vector 6 = 7 — 7 satisfies (s + 1) constraints: 16 = 0, 6(k;) = 0, for 1 < j < s. In other words,
d livesin a (K — 1 — s)-dimensional linear space. It follows by properties of singular values that

|F(m) = F(7)]| =2 ox—1-5(V) - |7 — 7.

[1F(m) = F(7)|| = < lm =l - max oy —wvol-

This proves



B.4.2 PROOF OF LEMMA [BI

Write for short = >°7" | mz; € R4 and L = Y"1 | w;||x;|. By concavity of the norm function,
llz]| < L.

In this lemma, we would like to get a lower bound for L — ||z||. By definition,

llz||? = ZU}QHLIJZHQ + Zw Wi (B.40)
i#]
For any vectors u, v € R?, we have a universal equality: 2u'v = 2||u||||v]|+(|Ju||—|[v])? = |Ju—2|>.
By our assumption, ||z; — z;|| > a and (||z;| — ||z;]])* < b2, for all i # j. It follows that
iwy < ailllzgll = (@ = %)/2,  1<i#j<m. (B.41)

We plug (B-A) into (B:42) to get
ol < 3wl + 3wyl = (ot =6 3w

i) i#]
=12 5(a? b)Y wiw;. (B.42)
i#]
Note that },; wiw; =32, > 54 w; = >, wi(1 — w;). Combining it with (B.42) gives
1
2 2 2 _ ;2
l2l|* < 2% = S(a® = b )zi:wi(l—wi). (B.43)

At the same time, L + ||z|| < 2L. It follows that

o o el
> 2wl

ol —
lel = 2z

w;) (B.44)

This proves the claim.

B.4.3 PROOF OF LEMMA[C

Since H is a projection matrix, there exists @Q; € R® and Q2 € R?~* such that Q = [Q1, Q-] is an
orthogonal matrix, H = Q1Q1, and I; — H = Q2Q). It follows that

(Is — H)VV'(I4 — H) = Q2(Q2VV'Q2) Q5.

Since ), has orthonormal columns, for any symmetric matrix M € R(4=5)X(4=5) AT and Qo M Q)
have the same set of nonzero eigenvalues. Hence,

ok 1-s((la = H)V) = Ax—1-5(Q5VV'Q2).

We note that Q,VV' Qo € R(@=*)%(4=9) jg a principal submatrix of Q'VV’Q € R?*9. Using the
eigenvalue interlacing theorem (Horn & Johnson, [1985] Theorem 4.3.28),

A—1-s(Q5VV'Q2) > A1 (Q'VV'Q).
The claim follows immediately by noting that A\ 1 (Q'VV'Q) = Ax_1(VV') = 0% _ (V).

B.4.4 PROOF OF LEMMA [D]

Write {iax = maxi<k<i ||Uk||. We target to show
02 K s — 102
max = 2(K7 S) * )
The right hand side of (B.45)) is minimized at s = K — 2, at which /2 >
(B:43). When s = 0, it 1s seen that

K2 > trace(V'V) ZHkaQ —1)a%(V).

with o, := o _1-5(V). (B.45)

o2 /4. We now show

10



> “max

Therefore, (2, > £=102, which implies (B.16) for s = 0. When 1 < s < K — 2. it is seen that

502 + (K — s)02,, > trace(V'V) > (K — 1 — s)o?
As a result,
K —s—1)02 562
e >t - . B.46
max = K—3 ( )
Note that 7=—%— is a monotone 1ncreasmg function of s. Hence, z—"— < K — 2. The assumption
of 2(K 2)52 < o2 implies that 4 52 < 02, or equivalently, 3(52 § K = K—s5-152 We plug it into

to get /2, > ;iKS S% - ThlS proves (B.16) for 1 < s < K — 2.

B.4.5 PROOF OF LEMMA[E

Write K = K(hg), Vi = Vi(€o), and V = V(e, hg) for short. By definition of K,
dmax — ho < ||vg]] € dmax, fork € K, ||vg|| < dmax — ho, fork ¢ K. (B.47)

Same as before, let S denote the true simplex. Fix a point x € S\ V, and let 7 = F~1(z) be its
barycentric coordinate in the simplex, where F' is the mapping in Lemma[A] By definition of V,

max (k) <1 — e, whenever z := F(m)isin S\ V. (B.48)
€

We now show the claim. Define

—1 .
pi= m(k), 0= {gd e (B.49)

otherwise.
ke

By the triangle inequality,
lall = [|on + 3 w(kpex| < plinll + Z B)llox
k¢K

< pllnll + (1 = p)(dmax — ho)- (B.50)
We consider two different cases. In Case 1, 1 — p > €/2. Since ||n]| < dmax. it follows from (B.50)

that
hoeo

%] < dimax — (1 = p)ho < dmax — if1—p>% (Casel). (B.51)

In Case 2, 1 — p < e9/2. If K = {k*} is a singleton, then p = w(k*). It follows by (B.48) that

1—p=1-—mn(k*) <1— ey, which yields a contradiction. Hence, it must hold that |[K| > 2. Then,
7 1is a convex combination of more than one point in {v;, : k € K}. We hope to apply Lemma

By (B.47), for each k € K, is in the interval [dmax ho, dmax]- Hence, we can take b = hg in
Lemma E In addition, by B 17 . Hence, we set a = v/20, in Lemrnal We
apply this lemma to the Vector n in (B:49). It ylelds

Il < L — (207 — h) Z (k’)[p—ﬂ'(k?)]’ with [ — Zﬂ-(pk’i)nvk'

2
4L ke P kex

Since L < dpay, the above inequality yields ||7]] < dmax — 4‘;;’1" Y wex (k)1 — p~lw(k)]. In

addition, 1 — p~ 7 (k) = p~1[1 —7(k)] = (p~' —1) > p~leg — (p~1 — 1), where the last inequality
is from (B.48). Combining these arguments and using the fact that ) 7, .- (k) = p, we have

il s — E= PO =07 2 DL ) < g, - G20 = (2]

4pdmax kekC 4pdmax
Since 1 — p < €p/2, we immediately have ||| < dmax — i‘;;;:lf We plug it into (B.50) to get
202 — h)e .
]| < dinax — % if1—p< % (Case2). (B.52)

We combine the above two cases. By setting hg = 0. /3, we have a unified expression:

O 403

6" dmax }60

Consequently, a sufficient condition for ||z|| < dmnax — CofS to hold is €y > max{%, %}B.

For notation simplicity, we simply set ¢g > 6Co; * max{1, o, *dyayx }. This proves the claim.

l2]] < dmax — mln{

11



C PROOF OF THE MAIN THEOREMS

We recall our pp-SPA procedure. On the hyperplane, we obtained the projected points
Xi = H(XZ —X)-FX: (Id—H)X+HTi+H€i

after rotation by U, they become Y; = U'X, =Ur,+U¢ = U'X; € RE-1. Denote Y; =
UlX; = Ulri + Ule; € RE=L In particular, Uje; ~ N(0,0%Ix_1). Then, without loss of
generality, the vertex hunting analysis on Y; is equivalent to that of X; = r; + ¢; € RP, where
€ ~ N(0,0%1,) with p = K — 1. We provide the following theorems for the rate by applying
D-SPA on the aforementioned low dimension p = K — 1 space. The proof of these two theorems
are postponed to Section

Theorem B. Consider X; = r; + ¢; € RP, where ¢; ~ N(Opzfp)forl < i < n. Suppose
m > cin for a constant ¢; > 0 and p < log(n)/loglog(n). Let p/log(n) < 6, < 1. Let
¢ = 0.9(2e2)71P\/(2/p)(T(p/2 4+ 1))Y/P. Then, c; — 0.9e=/? as p — oo. . We apply D-SPA
to X1,Xs,..., X, and output X{,--- , X} where some X may be NA owing to the pruning. If we
choose N = log(n) and

log(n)\1/r
8( )) for a constant c3 < c3,

A= 030\/]3(

nl—0n
Then,
Bnew(X*) < \/a g - \/m

If the last inequality of (8]) and (9)) hold, then up to a permutation in the columns,

max ||0x — k|| < gnew(V) - V/on - 0 - 1/2log(n).

1<k<K

The second theorem discuss the case there a fewer pure nodes.

Theorem C. Consider X; = r; + ¢; € RP, where ¢; ~ N(0,0%1,) for 1 < i < n. Fix0 <
co < 1 and assume that m > n'=°%9 for a sufficiently small constant 0 < § < co. Suppose
p < log(n)/loglog(n). Let ¢ = 0.9(2¢*>=%) =P /(2/p)(T(p/2 + 1))1/P. Then cy — 0.9e~ /2
as p — oo. Suppose we apply D-SPA to X1, Xo, ..., X,, and output X5 ,--- , X where some X
may be NA owing to the pruning. If we choose N = log(n) and

1 1/p
A= CSU\/ﬁ( 0g(n)) for a constant cs < c5.

nl—Co
Then,
ﬂnew(X*) S \/% c0 - 210g(n)

If the last inequality of (8]) and (9)) hold, then up to a permutation in the columns,

max Hﬁk - vk” S gnew(v) . \/% -0 2log(n)

1<k<K
for any arbitrary small constant § < 0.

Based on the above two theorem, we have the results on {}N’Z}’ s. However, what we really care

about is on {Y;}'s which differ from {Y;}'s by the rotation matrix. To bridge the gap, we need the
following Lemma.

Lemma F. Suppose that s3._;(R) > max{+/o2d/n,0?d/n} and o = O(1). Then, with proba-
bility 1 — o(1),

C
U —Us| < ||H — Ho| < 2w max{+\/o2d/n,o*d/n} (C.53)
K-1

12



C.1 PROOF OF THEOREMS [2]AND

With the help of Theorems and Lemma [F] we now prove Theorems 2] and [3] We will present
the detailed proof for Theorem 3| The proof of Theorem 2]is nearly identical to that of Theorem 3|
with the only difference in employing Theorem [C} and we refrain ourselves from repeated details.

Proof of Theorem 3] Recall that Y; = U'X; = U'r; + U'¢; and 37- = Ujr; + Ule. Theoreml
indicates that applying D-SPA on Y; improves the rate to o(1+0(1))+/2co log(n). Note that ||r;| <
1. Also, by Lemma ||€zH < (14 o(1))o(y/max{d,2log(n )}) 51mu1taneously for all i, with
high probability. Under the assumption a,, = o(1) for both cases and s% _,(R) =< s%_,(V) by
Lemmafd] the first condition in Lemmal[His valid. By the last inequality in (8 (8]), we have the norm of
r; should be upper bounded for all 1 < i < n and therefore sx_1 (V) < C'maxgy |0k — 0| < C.

Further with the condition (@] ), we obtain that o = O(1). Therefore, the conditions in Lemmal are
both valid. Then by employing Lemma[F we can derive that

lY: — )71|| = Op (?/g(l + oy/max{d,2log(n)} )) = Op(oay)

nsg_1(R)
where the last step is due to Lemma @] under the condition (§]).
Consider the first case that «,, < t7.. And we choose A = ¢3t} 0. Itis seen that oo, < A. We will

prove by contradiction that applying pp-SPA with (A, log(n)) on {Y;}, the denoise step can remove

outlying points whose distance to the underlying simplex larger than o[y/2¢qlog(n) + Cay,] for
some C' > 0.

First, suppose that with probability c for a small constant ¢ > 0, there is one point Y;, away from
the underlying simplex by a distance larger than o[\/2¢o log(n) + Ca,] and it is not pruned out.
Since o, < A, we see that Y;, is faraway to the simplex with distance o1/2¢g log(n) for certain

large C' and it cannot be pruned out by (1.5A,log(n)). However, by employing Theorem on {Y;}
with p = K — 1 and noticing ¢5 = 1.8ce with ¢y defined in the manuscript, it can only happen with
negligible probability. This leads to a contradiction.

Second, suppose that with probability ¢ for a small constant ¢ > 0, all outliers can be removed but
a vertex vy is also removed (which means all points near it are removed). Then, N (B(v1,A)) <
log(n). For the corresponding vertex for {Y;}, denoted by @, it holds that N'(B(%;, A/2)) < log(n)
which means the vertex v; for {f/z} is also pruned. However, again by Theorem |C] this can only
happen with probability o(1). This leads to another contradiction.

Let us denote by S(Y™*, U/ V') the maximal distance of points in Y* to the simplex formed by UV
By the above two contradictions, we conclude that with high probability,
BY*,ULV) < oly/2¢olog(n) + Cay,).

where U}V is the underlying simplex of {Y;}. It is worth noting that v, = o(1). Then, under the
assumptions of the theorem, we can apply Theorem [A](Theorem 1 in the manuscript). It gives that

max |05 — Ujvk|| < 0gnew(V)[v/2c0log(n) + Cav,]

1<k<K

where we use (07, -+, 0} ) to denote the output vertices by applying SP on {Y;}. Eventually, we
output each vertex 9y = (Ix — UU’)X + U®;. It follows that up to a permutation of the K vectors,

(max [[oe —oxll < max U0 — Ugill + [1(1a = U)X = (1o = UoUp)7|

< max |05 — vl + |U = Uo|l + [(Ia = UU)X — (I — UoUg)7 |

1<k<K
Further we can derive
I(Za = UU")X — (Ia — UoUg)7|| < |1 H — Holl + || X — 7]
< ooy + ||€|
20 /max(d, Zog (]
NG

SO’O&n—l—
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this together with Lemma|[F] give rise to

20v/max{d, 2log(n)}
- < .
A 1ok — vill < OGnew (V[ 2¢0log(n) + Ca,] + Jn

Consider the second case that o, > t), where we choose A = oay,. By Lemma@ it is observed
that with high probability, maxi <<, d(Y;,S) < (1 + o(1))o+/2log(n). Notice that |Y; — V;|| <
Coa,, with high probability. For Y}, if its distance to the underlymg s1mplex is larger than o[(1 +
1))v/2log(n) + Cray,] for a sufficiently large Cy > 3C+1, then d(Y;,S) > d(V;,S) — Coay, >
o[(1+0(1))y/2log(n) + (20 + 1)a,]. Hence, B(Y;, (2C 4 1)A)) is away from the simplex by a

distance larger than o'(1+0(1))+/2log(n). It follows that N (B(Y;, A)) < N(B(Y;, (2C+1)A)) <
log(n). This is equivalent to say that we do not prune out any points there. Consequently, with high
probability,

ﬂ(Y*,U(SV) <0’ 1—|—O[p> \/210g —‘rClOén

and further by Theorem |A| (Theorem 1 in the manuscript),

max |05 — Ujvk|| < 0gnew(V)[v/21og(n) + Cay,]

1<k<K
Next, replicate the proof for maxi <<k ||0x — vk || in the former case, we can conclude that

20v/max{d, 2log(n)}
— < 1 21
1£r}€a<XK 19k — &l < 0Gnew (V)[(1 4+ 0p(1))y/21log(n) + Cha,] + Jn

= Ugnew<v)(1 + OlP’(l)) 2 log(n)

This concludes our proof.

C.2 PROOF OF THEOREMS [BIAND

In the subsection, we provide the proofs of Theorems[B|and[C} We show the proof of Theorem[C|in
detail and briefly present the proof of Theorems [B|as it is similar to that of Theorem [C]

Proof of Theorem[B] We first claim the limit of ¢; = 0.9(2¢%7%)~1/?,/(2/p)(T'(p/2 + 1))'/7.
Note that T'(p/2 + 1) = (p/2)! if pisevenand I'(p/2 + 1) = /7w (p+ 1)1/ (2P (EEL)) if p is odd.
Using Stirling’s approximation, it is elementary to deduce that

5 = e0(1/p)—(1-log(p+1))(p+1)/2p—log(p)/2 _, ,—1/2

1/p
Define the radius A = A,, = c30,/p ( iflgf?(? ) for a constant c3 < co. In the sequel, we will prove

that applying D-SPA to X1, ---, X, with (A, N), we can prune out the points whose distance to
the underlying true simplex are larger than the rate in the theorem, while the points around vertices
are captured.

Denote d(z, S), the distance of x to the simplex S. Let

Ry :={x e RP:d(x,S) > 20+/log(n) }

We first claim that the number of points in R, denoted by N(Ry), is bounded with probability
1 — o(1). By definition, we deduce

N(Ry) = Zl (z; € Ry) < Zl(HE,H > 20+/logn)
i=1

=1

The mean on the RHS is given by nP(||e;|| > 20+/logn) = nP(x2 > 4logn) < ne~!518(n) =
n~1/2. By similar computations, the order of the variance is again n~'/2. By Chebyshev’s inequal-
ity, we conclude that N(R ;) = Op(1).
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In the sequel, we use the notation B(z, ) to represent a ball centered at = with radius r and denote
N(B(x,r)) the number of points falling into this ball. And we also denote S the true underlying
simplex.

Based on these notation, we introduce
P :=P(3 X; satisfying o1/2¢g log(n) < d(X;,S) < 20+/log(n) cannot be pruned out )
We aim to show that P = o(1). To see this, we first derive

P (J’;)N B(Xy,- Xy € B(X1,A) st oy/2e0 log(n) < d(X1,S) < 20/log(n) )

< (n>N/ le(x)P(X2,~-~ ,XNEB<.’II,A))C1$
N an<d(2,5)<bn

N

< <]T\L[)N / ey P (2) [[ P(X: € Bz, A))dz

t=2

where a,, := 04/2¢glog(n) and b,, := 20+/log(n) for simplicity. We can compute that for any
2<t<N,

PO € B, &) = @2no®)F [ exp(-lly = rlP/20%)dy
ly—zl|<A

Sfoy _( a=rl =Py
= (p2 1 1) 252

2
(AJfo)PC, exp{ - %}
where we used || — r¢||]A/o < 2y/lognA/oc = o(1) due to our choice of A so that A/o is
sufficiently small; and we write C,, := 2'7P/2/T'(p/2 + 1). The above equation, together with
fx, () = (2m0?) "% exp{—||z — r1|?/(20?)}, leads to

n N k—1 2y-2 ZN— [l — ]|
P< <N> NCN=Y(A /)P / (2m0?)~% exp{ - HT}dx
Also, notice that 37 | ||z — 7¢]|2 > N|jx — 7|2 where # = N~ S_~ | ;. Then,

P Nz — 7|
pP< (Z) NCZ])V_I(A/U)p(N_l) . / (2mo?)~2 exp{ — 7”33 il }dx

2
an<d(2,8)<bn 20

n » Nz — 17||2
< NCN-1(A/g)PN 1)/ 2mo2) "3 | e |
(N> Cp ( /U) \|17F\|>an( 7 ) eXp{ 202 }dx

IN

n<d(z,8)<bn

< (;é) NG (A/o)PNTINTPE B(x, > 2N e log )

where we used the fact that ||z — 7|| > d(x, S) in the second step and we did change of variables so
that the integral reduces to the tail probability of xi distribution. By Mills ratio, the tail probability

of X2 is given by
2 —Nco p/2—1
P(x; > 2Ncylogn) < Cn (2N¢plogn) ,

we obtain

pP< C’(Z_)NCIJ)V_l(A/U)p(N_l)N_p/Qn_NCO(2Nco logn)p/Q_1 .

Using the approximation (}) < C(en/k)*, we deduce that

1=co(A Jg)p=1/N) N
N

P<C [6(21\700 log n)(P~D/CN) G1=1/N N (A=p/2/N . n

nt=c(A/g)P1-1/N) } N

::C{A(n,p,N)- N
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, log(n) | /7
Now we plug in N = log(n) and A = ¢ af( ) for a constant c3 < cg where co =

0.9(2¢27<0)=1/2 /(2/p)(T(p/2 + 1))/? = 0.9~ 2=<0)/pC P /. /5 with €, = 21P/2T(p/2 +
1). Tt is straightforward to compute that
nl—co (A/U)p(l—l/N)

N

p— p— 1—co | 1/log(n)

< 1= (2—c0)(1-1/log(n)) o 3iagtay Tzt (0.9)P(1—1/ log(n)) (L)
<e 2 (colog(n)) (0.9) Tog(n)
<e?D(0.9)P <1.01-09< 1

A(n,p,N) -

under the condition that p < log(n)/ loglog(n). This implies P < C/(0.909)"°8(") = o(1).

In the mean time, for each vertex vy,

N(B(w.A/2) > 3 1 € BuwA/2) = 3 (el < A/2) > mpa — Cy/mpa loglog(n).
1EMy, €My,
with probability 1 — o(1), and

. C AJ9) = P2 < 41 AJ)) > e—(8/0)?/89—p
pa =P(leill < 8/2) = P0G <47(8/0)°) 2 Gmre iy

Afo)?
Recall the condition that m > ndnl=< It follows that
—(A/0)?/89—p —(A/0)?/8 1
o e = R
2p/2T (p/2 + 1) 2°/2T(p/2 + 1) Cy
> en®277(c3/c2)? log(n) > log(n)

mpa 2 n

where ¢ > 0 is some small constant. The last step is due to the fact that n°27P(c3/cp)? =
edlog(n)=plog(2c2/es) . 1 as 2cy/c3 > 2 is a constant and p < log(n)/loglog(n). Thus, with
probability 1 — o(1), N (B(vg, A/2)) > log(n). Under this event, for any point X;, € B(vi, A/2),
immediately B(vi, A/2) C B(X,,,A) and further N (B(X;,,A)) > log(n). Combining this, with
P =o0(1) and N(Ry) = Op(1), we conclude that we can prune out all points with a distance to the
simplex larger than o+/2c¢q log(n) while preserve those points near vertices, with high probability.
Thus we finish the claim for B¢, (X ™).

The last claim follows directly from Theorem [A](Theorem 1 in the manuscript) under condition (9).
We therefore conclude the proof.

O
We briefly present the proof of Theorem [B|below.

Proof The proof strategy is roughly the same as that of Theorem [C| When m > cin, we take

1/p
=c af(log(" ) where p/log(n) < 6, < 1 and c3 < co, then similarly we can derive

il

that N (B(vg, A/2)) > clog(n)n’»a? = clog(n)e’r'08(m)—plog(1/a) 5 1og(n) where ¢ > 0 is
a small constant and 0 < a < 1. This gives rise to the conclusion that with high probability,
N(B(X;,,A)) > log(n) for any X;, € N(B(vi,A/2)).Moreover, in the same manner to the
above derivations, replacing cg by d,,, we can claim again that N(Rs) = Op(1) and

log(n)
(A/g) (1-1/log(n))
P < ¢ (A0, p.logtn) - —of1).
log(n)
Consequently, all the claims follow from the same reasoning as the proof of Theorem [C| We there-
fore omit the details and conclude the proof . [
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C.3 PROOF OF LEMMA[H

Recall that R = n~1/ 2[ry —7,...,rn — 7). Let R = UpDgVj be its singular value decomposition
and let Hy = UpU}. Denote € = [e1, . . ., €,] € R:™. We start by analyzing the convergence rate of
|ZZ" — nRR' — no?14|. Recall that X = 7+ € where e =n~' Y7 | ;. We obtain

Z=X;,—X=r;4+¢—7—F¢, Z =+/nR+e—¢el,. (C.54)
Observing the fact that R1,, = 0, we deduce
Z7' —nRR —no’l; = (VnR+e—éll)(vVnR +e—él) —nRR —no’ly
= Vn(e —el) )R 4+ /nR(e — 1,&) + (e — él!)) (e — €l!)) — no?ly

= VneR' + /nRe + (e€ —no’l;) — nee. (C.55)
The above equation implies that
122" —nRR' —no?I,|| < 2v/n||eR'|| + |lee’ — no? 1| + n|€|?. (C.56)

We proceed to bound the three terms |[eR’||, ||e€’ — no?1,4|| and n||€||? respectively. First, notice
that e R’ € R?*4 is a Gaussian random matrix with independent rows which follow N (0, RR’). By
Theorem 5.39 and Remark 5.40 in|Vershynin| (2010), we can deduce that with probability 1 — o(1),

n|Ré'eR’|| < do*[s3(R) +n/d + c].
This, together with the fact that s1 (R) < ¢ gives that

Vnl|leR' + Ré'|| < 20vnd. (C.57)
Second, by Bai-Yin law (Bai & Yin|(2008)), we can estimate the bound of || £’ —no?1,]| as follows.
e’ — no?I,|| < no?(2\/d/n +d/n) < o*(2Vnd + d), (C.58)

with probability 1 — o(1). Third, observe that € ~ N(0,0%/nl;). We therefore obtain that with

probability 1 — o(1),

n||é|* < o*[d + C+\/dlog(n)].
By applying the condition that ¢ = O(1), combining the above equation with (C.56), (C.57) and
(C.58) yields that, with probability at least 1 — o(1),

1ZZ' —nRR' —no’ly| < 20Vnd + o*[d + C\/dlog(n)] + o*(2V'nd + d)
< C(oVnd + o?d). (C.59)

Now, we compute the bound for || H — Hy||. Let U, Ug- € RE4=K+1 guch that their columns are
the last (d — K + 1) columns of U and Uy, respectively. It follows from direct calculations that

1H — Holl = |[UoUg — UU'|| < |[Ug (Ug) (UoU — UU") || + |UeUg (UoUg — UU)|

= |Us Us") UU'|| + |UUU (U)' || < (U ) UI| + |UGU || = 2| sin ©(Up, U)-
Notably, Uy, Ug- is also the eigen-space of ZZ' — na?I,;. By Weyl’s inequality (see, for example,
Horn & Johnson! (1985)),

max \\i(Z2Z' —no®ly) — N(Z2Z")| < C|ZZ' — no®Is — nRR|

Under the condition that s2,_, (R) > max{\/02d/n,c%d/n}, by Davis-Kahan Theorem (Davis &
Kahan| (1970)), we deduce that, with probability at least 1 — o(1),
2(|ZZ" —nRR' — no?ly||
Ak—1(RR')
p 2
SCmaux{\/;f d/n,o d/n} (C.60)
k1 (R)

1 — Hol| < 2| sin ©(Uo, )| <

The proof is complete.
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D NUMERICAL SIMULATION FOR THEOREM

In this short section, we want to provide a better sense of our bound derived in Theorem[A]and how it
compares with the one from the orthodox SPA. To make it easier for the reader to see the difference
between the two bounds, we consider toy example where we fix (K, d) = (3, 3) and

V = {(20,20,0), (20, 30,0), (30,20,0)}

while we let
V=V+a-(0,0,1).

We consider 50 different values for a ranging from 10 to 1000. It is not surprising to see that when
a is close to 0 the bound of the orthodox SPA goes to infinity whereas as the simplex is bounded far
away from the origin, the K*" singular value will be bounded away from 0. However, our bound
still outperforms the traditional SPA bound even for very large values of a. Looking at two specific
values of a we have the following. For a = 10,

ﬂnew = 003; B(V) =0.05
Moreover, as a changes, the Figure [I|below illustrate how much the ratio of

our whole bound
Gillis bound

changes as the parameter a changes. For example, when a = 10.

gnew(v)

=0.015,
g(V)

and so
our whole bound

Gillis bound
so we reduce the bound by 111 . Similarly, when a = 1000,

= 0.009

Inew(V) our whole bound
—— = =0.19 — =0.105
g(V) ’ Gillis bound ’
so we have reduced the bound by 9.5.
120
100 4
80 1
T 60
40
201
6 260 460 660 860 lObO

Figure 1: Factor of improvement of our bound over orthodox spa as the true simplex moves away
from origin by a distance a.
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