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A PROOF OF PRELIMINARY LEMMAS

A.1 PROOF OF LEMMA 1

This is a quite standard result, which can be found at tutorial materials (e.g., https://people.
math.wisc.edu/˜roch/mmids/roch-mmids-llssvd-6svd.pdf). We include a proof
here only for convenience of readers.

We start by introducing some notation. Let Zi = Xi − X̄ and let Z = [Z1, . . . , Zn] ∈ Rd,n.
Suppose the singular value decomposition of Z is given by Z = UZDZV

′
Z . Since H is a rank-

(K − 1) projection matrix, we have H = QQ′, where Q ∈ Rd,K−1 is such that Q′Q = IK−1.
Hence, we rewrite the optimization in (3) as follows:

minimize
n∑

i=1

(Xi − x0)
′(Id −QQ′)(Xi − x0), subject to Q′Q = IK−1.

For λ ∈ R, consider the Lagrangian objective function

S̃(x0, Q, λ) =

n∑
i=1

(Xi − x0)
′(Id −QQ′)(Xi − x0) + λ(Q′Q− IK−1). (A.1)

Setting its gradients w.r.t. x0 and Q to be 0 yields

∇x0
S̃(x0, Q, λ) = −2(Id −QQ′)

n∑
i=1

(Xi − x0) = 0, (A.2)

∇QS̃(x0, Q, λ) = −2Q′
n∑

i=1

(Xi − x0)(Xi − x0)
′ + 2λQ′ = 0. (A.3)

Firstly, we deduce from (A.2) that x̂0 = X̄ , which in view of (A.3) implies that Q′(ZZ ′−λId) = 0.
The above equations also implies that the (K − 1) columns of Q̂ should be the distinct columns of
UZ . Now, the objective function in (A.1) is given by

S̃(x0, Q, λ) =

n∑
i=1

Z ′
i(Id −QQ′)Zi = tr[(Id −QQ′)ZZ ′] = tr[(Id −QQ′)UZD

2
ZU

′
Z ]

= tr(DZ)
2 − tr[Q′UZD

2
ZU

′
ZQ] = tr(D2

Z)− ∥DZU
′
ZQ∥2F. (A.4)

Note that for each column of U ′
ZQ ∈ Rd,K−1, it has exactly one entry being 1 and its other entries

are all 0. Therefore, taking Q̂ = U maximizes ∥DZU
′
ZQ∥2F and hence minimizes the objective

function S̃ in (A.1), that is, Ĥ = UU ′. The proof is complete.

A.2 PROOF OF LEMMA 3

For the simplex formed by V ∈ Rd×K , we can always find an orthogonal matrix O ∈ Rd×d and a
scalar a such that

OV =

(
x1 x2 . . . xK

a a . . . a
0 0 . . . 0

)
, where xk ∈ RK−1 for k = 1, . . . ,K.

Denote x̄ = K−1
∑K

k=1 xk. Further we can represent

OṼ =

(
x1 − x̄ x2 − x̄ . . . xK − x̄

0 0 . . . 0

)
We write X̃ := (x1− x̄, x2− x̄, . . . , xK− x̄). Since rotation and location do not change the volume,

Volume(S0) = Volume(S(X̃)).
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where S(X̃) represents the simplex formed by X̃ . By Stein (1966), we have

Volume(S0) =
det(Ã)

(K − 1)!
, with Ã =


1 (x1 − x̄)′

1 (x2 − x̄)′

...
...

1 (xK − x̄)′


We also define

A =


1 (v1 − v̄)′

1 (v2 − v̄)′

...
...

1 (vK − v̄)′

 = [1K , Ṽ ′],

Since (Ã, 0) = A

(
1 0
0 O

)
, it follows that ÃÃ′ = AA′ and Volume(S0) =

√
det(AA′)

(K−1)! =
√

det(A′A)

(K−1)! . Note that A′A =

(
K 0

0 Ṽ Ṽ ′

)
by the fact that Ṽ 1K = 0. Then det(A′A) =

Kdet(Ṽ Ṽ ′). Further notice that rank(Ṽ Ṽ ′) = K − 1. We thus conclude that

Volume(S0) =

√
K

(K − 1)!

K−1∏
k=1

sk(Ṽ ).

This proves the first claim.

For the second and last claims, we first notice that V = Ṽ − v̄1′
K . Then V V ′ = Ṽ Ṽ ′ + Kv̄v̄′

again by Ṽ 1K = 0. Because both Ṽ Ṽ ′ and Kv̄v̄′ are positive semi-definite, by Weyl’s inequality
(see, for example Horn & Johnson (1985)), it follows that sK−1(V ) ≥ sK−1(Ṽ ) and sK(V ) =√
λmin(V V ′) ≤

√
K∥v̄∥2 =

√
K∥v̄∥.

A.3 PROOF OF LEMMA 4

We first prove claim (a). Let Π = [π1 − π̄, . . . , πn − π̄] ∈ RK,n. Recalling the definitions of G and
V , we have G = n−1ΠΠ′ and R = n−1/2VΠ, so that RR′ = n−1VΠΠ′V ′ = V GV ′.

Next, we prove claim (b). Recall that Ṽ = V − v̄1′K , so that Ṽ Ṽ ′ = (V − v̄1′K)(V − v̄1′K)′ =
V V ′ −Kv̄v̄′. Note that Since π′

i1K = π̄′1K = 1, we have Π′1K = 0, which implies that G1K =
n−1Π(Π′1K) = 0. We deduce from this observation that λK(G) = 0 and its associated eigenvector
is K−1/21K . Therefore, G−λK−1(G)IK+K−1λK−1(G)1K1′

K is a positive semi-definite matrix,
so that

V GV ′ − λK−1(G)Ṽ Ṽ ′ = V GV ′ − λK−1(G)V V ′ + λK−1(G)Kv̄v̄′

= V [G− λK−1(G)IK +K−1λK−1(G)1K1′
K ]V ′ ≥ 0.

In addition, observing that Π′1K = 0 due to the fact that ∥πi∥1 = ∥π̄∥1 = 1, we obtain that

Ṽ GṼ ′ = (V − v̄1′K)G(V − v̄1′K)′ = n−1(V − v̄1′K)ΠΠ′(V − v̄1′K)′ = V GV ′.

Therefore,

λ1(G)Ṽ Ṽ ′ − V GV ′ = λ1(G)Ṽ Ṽ ′ − Ṽ GṼ ′ = Ṽ [λ1(G)IK −G]Ṽ ′ ≥ 0,

which completes the proof of claim (b).

Finally, for claim (c), we obtain from (a) that σ2
K−1(R) = λK−1(RR′) = λK−1(V GV ′), which by

Weyl’s inequality (see, for example, Horn & Johnson (1985)) and in view of claim (b) implies that
λK−1(G)λK−1(Ṽ Ṽ ′) ≤ σ2

K−1(R) ≤ λ1(G)λK−1(Ṽ Ṽ ′). The proof is therefore complete.
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A.4 PROOF OF LEMMA 5

Recall that z1 ∼ χ2
d(0). Let bn be the value such that

P(z1 ≥ bn) = 1/n.

By basic extreme value theory, it is known that

max1≤i≤n{zi}
bn

→ 1, in probability.

We now solve for bn. It is seen that bn ≥ d. Recall that the density of χ2
d(0) is

1

2d/2Γ(d/2)
xd/2−1e−x/2, x > 0.

Note that for any x0 ≥ d,∫ ∞

x0

xd/2−1e−x/2dx = 2x
d/2−1
0 e−x0/2 +

∫ ∞

x0

(d− 2)xd/2−2e−x/2dx (A.5)

where the RHS is no greater than

≤ 2x
d/2−1
0 e−x0/2 +

(d− 2)

x0

∫ ∞

x0

xd/2−1e−x/2dx.

It follows that for all x0 ≥ d,

2x
d/2−1
0 e−x0/2 ≤

∫ ∞

x0

xd/2−1e−x/2dx ≤ x0 · xd/2−1
0 e−x0/2, (A.6)

where we have used
x0

x0 − d+ 2
≤ x0/2.

It now follows that there is a term a(x) such that when x ≥ d,

1 ≤ a(x) ≤ x/2

and
P(z1 ≥ x) = a(x)

1

2d/2γ(d/2)
2xd/2−1e−x/2.

Combining these, bn is the solution of

a(x)
1

2d/2γ(d/2)
2xd/2−1e−x/2 =

1

n
. (A.7)

We now solve the equation in (A.7). Consider the case d is even. The case where d is odd is similar,
so we omit it. When d is even, using

Γ(d/2) = (d/2− 1)! = (2/d)(d/2)! = (2/d)θ(
d

2e
)d/2,

where θ is the factor in the Stirling’s formula which is ≤ C
√
log(d). Plugging this into the left hand

side of (A.7) and re-arrange, we have

log(d/x) + (d/2) log(
ex

d
)− x/2 = − log(n) + o(log(n)). (A.8)

We now consider three cases below separately.

• Case 1. d ≪ log(n).

• Case 2. d = a0 log(n) for a constant a0 > 0.

• Case 3. d ≫ log(n).

4



Consider Case 1. In this case, it is seen that when

x = O(log(n)),

the LHS of (A.8) is
−x/2 + o(log(n)).

Therefore, the solution of (A.8) is seen to be

bn = (1 + o(1)) · 2 log(n).

Consider Case 2. In this case, d = a0 log(n). Let x = b1 log(n). Plugging these into (A.8) and
rearranging,

a1 − a0 log(a1) = 2 + a0 − a0 log(a0) + o(1). (A.9)

Now, consider the equation

a1 − a0 log(a1) = 2 + a0 − a0 log(a0).

It is seen that the equation has a unique solution (denoted by b0) that is bigger than 2. Therefore, in
this case,

bn = (1 + o(1))b0,

Consider Case 3. In this case, d ≫ log(n). Consider again the equation

log(d/x) + (d/2) log(
ex

d
)− x/2 = − log(n) + o(log(n)).

Letting y = x/d and rearranging, it follows that

y − log(y)− 1 = o(1), (A.10)

where for sufficiently large n, o(1) > 0 and o(1) → 0. Note that the function g(y) = y− log(y)−1
is a convex function with a minimum of 0 reached at y = 1, it follows

y = 1 + o(1).

Recalling y = x/d, this shows
bn = (1 + o(1))d.

This completes the proof of Lemma 5.

B ANALYSIS OF THE SPA ALGORITHM

Fix d ≥ K − 1. For any V = [v1, v2, . . . , vK ] ∈ Rd×K , let σk(V ) denote the kth singular value of
V , and define

γ(V ) = min
v0∈Rd

max
1≤k≤K

∥vk − v0∥, dmax(V ) = max
x∈S

∥x∥.

To capture the error bound for SPA, we introduce a useful quantity

β(X,V ) := max

{
max
1≤i≤n

Dist(Xi,S), max
1≤k≤K

min
i:ri=vk

∥Xi − vk∥
}
. (B.11)

In this quantity, the first term is the maximum distance from any outside Xi to the simplex, and the
second term is maximum radius of the neighborhood of a vertex containing no Xi. When β(V,X)
is small, it implies: (a) there is at least one data point near each true vertex, and (b) no point is too
far away from the true simplex.

Theorem A. Suppose for each 1 ≤ k ≤ K, there exists 1 ≤ i ≤ n such that πi = ek. Suppose
β(X,V ) satisfies that 450dmax max

{
1, dmax

σ∗

}
β ≤ σ2

∗. Let v̂1, v̂2, . . . , v̂r be the output of SPA. Up
to a permutation of these r vectors,

max
1≤k≤r

∥v̂k − vk∥ ≤
(
1 +

30γ

σ∗
max

{
1,

dmax

σ∗

})
β(X,V ).
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B.1 SOME PRELIMINARY LEMMAS IN LINEAR ALGEBRA

The following lemmas are proved in later subsections.
Lemma A. Let S∗ ⊂ RK be the standard probability simplex consisting of all weight vectors. Let
F : S∗ → S be the mapping with F (π) = V π. For any π and π̃ in S∗,

σK−1(V ) · ∥π − π̃∥ ≤ ∥F (π)− F (π̃)∥ ≤ γ(V ) · ∥π − π̃∥1. (B.12)

Fix 1 ≤ s ≤ K − 2. If π and π̃ share at least s common entries, then

∥F (π)− F (π̃)∥ ≥ σK−1−s(V )∥π − π̃∥. (B.13)

Lemma B. Fix m ≥ 2 and x1, . . . , xm ∈ Rd. Let a = mini̸=j ∥xi − xj∥ and b = maxi̸=j |∥xi∥ −
∥xj∥|. For any w1, . . . , wm ≥ 0 such that

∑m
i=1 wi = 1,∥∥∥ m∑

i=1

wixi

∥∥∥ ≤ L− a2 − b2

4L

m∑
i=1

wi(1− wi), with L :=

m∑
i=1

wi∥xi∥. (B.14)

Lemma C. Fix 1 ≤ s ≤ K − 2. For any projection matrix H ∈ Rd with rank s,

σK−1−s((Id −H)V ) ≥ σK−1(V ). (B.15)

Lemma D. Fix 0 ≤ s ≤ K−2. Suppose there are at least s indices, {k1, . . . , ks} ⊂ {1, 2, . . . ,K},
such that ∥vk∥ ≤ δ. If σ2

K−1−s(V ) ≥ 2(K − 2)δ2, then

max
1≤k≤K

∥vk∥ ≥
√
K − s− 1√
2(K − s)

σK−1−s(V ) ≥ 1

2
σK−1−s(V ). (B.16)

B.2 THE SIMPLICIAL NEIGHBORHOODS AND A KEY LEMMA

We need some preparations. Write β = β(X,V ), σ∗ = σK−1(V ), γ = γ(V ), and dmax = dmax(V )
for short. Let S∗ denote the standard probability simplex, and let F be as in Lemma A. Note that
vk = F (ek), where ek ∈ RK is a standard basis vector. By Lemma A,

∥vk − vℓ∥ ≥ σ∗∥ek − eℓ∥ ≥
√
2σ∗, for any 1 ≤ k ̸= ℓ ≤ K. (B.17)

Let Jk = {1 ≤ i ≤ n : πi(k) = 1}, for 1 ≤ k ≤ K. By definition,

max
1≤i≤n

Dist(Xi,S) ≤ β, max
1≤k≤K

min
i∈Jk

∥Xi − vk∥ ≤ β. (B.18)

Given ϵ ∈ (0, 1/2), we introduce K local neighborhoods, one for each vk:

Vk(ϵ) = {F (π) : π ∈ S∗, πi(k) ≥ 1− ϵ} ⊂ Rd, 1 ≤ k ≤ K. (B.19)

When x ∈ Vk, the kth entry of π := F−1(x) is at least 1− ϵ ≤ 1/2. Since each π ∈ S∗ cannot have
two entries larger than 1/2, these neighborhoods are disjoint:

Vk(ϵ) ∩ Vℓ(ϵ) = ∅, for any 1 ≤ k ̸= ℓ ≤ K. (B.20)

We verify that each Vk(ϵ) is indeed a “local” neighborhood. Let ek ∈ RK be the kth standard basis
vector. For any π ∈ S∗, ∥π − ek∥1 = 2[1− π(k)]. It follows from Lemma A that

max
x∈Vk(ϵ)

∥x− vk∥ = max
π∈S∗:π(k)≤1−ϵ

∥F (π)− F (ek)∥ ≤ 2γϵ. (B.21)

In the first iteration, i1 is selected to maximize ∥Xi∥. To study Xi1 , the key is to study the maximum
Euclidean norm for different regions of the true simplex S. Recall that dmax = maxx∈S ∥x∥. The
maximum is attained at one or multiple vertices. Let

K∗ = {k : ∥vk∥ = dmax}, where dmax := max
x∈S

∥x∥ = max
k

∥vk∥.

Given any h0 > 0 and ϵ0 > 0, define an index set K(h0) and a region V(ϵ0, h0) ⊂ S as follows:

K(h0) = {k : ∥vk∥ ≥ dmax − h0}, V(ϵ0, h0) = ∪k∈K(h0)Vk(ϵ0), (B.22)

where Vk(ϵ0) is the same as defined in (B.19). The following lemma is a key technical lemma:
Lemma E. Let K(h0) and V(ϵ0, h0) be as defined in (B.22). Suppose dmax ≥ σ∗/2. For any
C0 > 0, if we set h0 = σ∗/3 and 1/2 > ϵ0 ≥ 6C0σ

−1
∗ max{1, dmax/σ∗}β, then

∥x∥ ≤ dmax − C0β, for any x ∈ S \ V(ϵ0, h0).

6



B.3 PROOF OF THEOREM A (THEOREM 1 IN THE MAIN PAPER)

We now show the claim. The analysis consists of three steps. In Step 1, we study the first iteration
of SPA and show that v̂1 falls in the neighborhood of a true vertex. In Steps 2-3, we recursively
study the remaining iterations and show that, if v̂1, . . . , v̂k−1 fall into the neighborhoods of (k − 1)
true vertices, one per each, then v̂k will also fall into the neighborhood of another true vertex. For
clarity, we first study the second iteration in Step 2 (for which the notations are simpler), and then
study the sth iteration for a general s in Step 3.

Step 1: Analysis of the first iteration of SPA.

Applying Lemma D with s = 0, we have dmax ≥ σ∗/2. We then apply Lemma E. Let C0 = 7/3,
h0 = σ∗/3, and ϵ0 = 15max{σ∗, σ

−2
∗ dmax} (our assumption guarantees ϵ0 < 1/2). It follows by

Lemma E that
max

x∈S\V(ϵ0,h0)
∥x∥ ≤ dmax − 7β/3. (B.23)

At the same time, for any k ∈ K∗, it follows by (B.18) that there exists at least one i∗ ∈ Jk such
that ∥Xi − vk∥ ≤ β. It follows by triangle inequality that ∥Xi∗∥ ≥ dmax − β. Hence,

∥Xi1∥ ≥ ∥Xi∗∥ ≥ dmax − β. (B.24)

Combining (B.23) and (B.24), we conclude that Xi1 can only be inside V(ϵ0, h0) or outside S.
Suppose Xi1 is outside S. It follows by (B.18) that

∥ri1∥ ≥ ∥Xi1∥ − β ≥ dmax − 2β.

Combining it with (B.23), we conclude that ri1 must fall into V(ϵ0, h0). So far, we have shown that
one of the following cases must happen:

Case 1: Xi1 ∈ V(ϵ0, h0). Case 2: Xi1 /∈ S but ri1 ∈ V(ϵ0, h0). (B.25)

Recall that V(ϵ0, h0) is as defined in (B.22). In Case 1, since V1(ϵ0), . . . ,VK(ϵ0) are disjoint, there
is only one k1 ∈ K(h0) such that Xi1 ∈ Vk1(ϵ0). It follows by (B.21) that ∥Xi1 − vk1∥ ≤ 2γϵ0.
In Case 2, we similarly have ∥ri1 − vk1∥ ≤ 2γϵ0. In addition, since Xi1 /∈ S in this case, we have
∥Xi1 − ri1∥ ≤ β. Combining these arguments gives

∥Xi1 − vk1
∥ ≤ (1 + 2γϵ0)β ≤

(
1 +

30γ

σ∗
max

{
1,

dmax

σ∗

})
β, for some k1. (B.26)

Step 2: Analysis of the second iteration of SPA.

Let H1 = Id− 1
∥Xi1∥2Xi1Xi1 and X̃i = H1Xi, for 1 ≤ i ≤ n. The second iteration operates on the

data points X̃1, . . . , X̃n ∈ Rd. Write r̃i = H1ri, ϵ̃1 = H1ϵi, ṽk = H1vk, and Ṽ = [ṽ1, ṽ2, . . . , ṽK ].
It follows that

X̃i = Ṽ πi + ϵ̃i, 1 ≤ i ≤ n. (B.27)

Let S̃ ⊂ Rd denote the projected simplex, whose vertices are ṽ1, . . . , ṽK . Let F̃ denote the mapping
from the standard probability simplex S∗ to the projected simplex S̃ (note that F1 is not necessarily
a one-to-one mapping). We introduce the neighborhoods similar to those in (B.19)

Ṽk(ϵ) =
{
F̃ (π) : π ∈ S∗, πi(k) ≥ 1− ϵ

}
⊂ Rd, 1 ≤ k ≤ K. (B.28)

Let k1 be as in (B.26). Let d̃max := maxx∈S̃ ∥x∥. The maximum distance d̃max is attained at one or
multiple vertices. Same as before, let K̃∗ be the index set of k at which ∥ṽk∥ = d̃max. We similarly
define

K̃(h0) = {k : ∥ṽk∥ ≥ d̃max − h0}, Ṽ(ϵ0, h0) = ∪k∈K̃(h0)
Ṽk(ϵ0). (B.29)

At the same time, let β̃ = β(X̃, Ṽ ). It is easy to see that for any points x and y, ∥H1x −H1y∥ ≤
∥x− y∥. Hence, β̃ ≤ β. It follows that

max
1≤i≤n

Dist(X̃i, S̃) ≤ β, max
1≤k≤K

min
i∈Jk

∥X̃i − ṽk∥ ≤ β. (B.30)

7



Given (B.27)-(B.30), we can extend Lemma E. A quick look of the proof of this lemma suggests
that the same conclusion holds as long as we can show the following:

d̃max ≥ σ∗/2, min
(k,ℓ):k ̸=k1,
ℓ ̸=k1,k ̸=ℓ

∥ṽk − ṽℓ∥ ≥
√
2σ∗, and k1 /∈ K̃(h0). (B.31)

When (B.31) holds, we can similarly prove Lemma E. It is worth mentioning that dmax is changed to
a smaller number d̃max now, so the choice of (h0, ϵ0) will change accordingly. Similar to (B.23), by
choosing h0 = σ∗ and ϵ1 = 15max{σ∗, σ

−2
∗ d̃max}, we get maxx∈S̃\Ṽ(ϵ1,h0)

∥x∥ ≤ d̃max − 7β/3.

Note that ϵ1 ≤ ϵ0, and the set S̃ \ Ṽ (ϵ, h0) gets smaller as ϵ increases. We immediately have

max
x∈S̃\Ṽ(ϵ0,h0)

∥x∥ ≤ d̃max − 7β/3. (B.32)

At the same time, by (B.31), it is easy to get ∥X̃i2∥ ≥ d̃max−β. We can mimic the analysis between
(B.24) and (B.26) to get

∥X̃i2 − ṽk2
∥ ≤

(
1 +

30γ

σ∗
max

{
1,

d̃max

σ∗

})
β, for some k2 ̸= k1. (B.33)

Note that d̃max ≤ dmax. Hence, the above bound for is no larger than the one in (B.33).

It remains to show (B.31). Without loss of generality, we assume k1 = 1. By definition, Ṽ = H1V ,
where H1 is a rank-1 projection matrix. It follows by Lemma C that

σK−2(Ṽ ) ≥ σK−1(V ) = σ∗.

Note that d̃max ≥ maxk ̸=1 ∥ṽk∥. We apply Lemma D with s = 1 to get d̃max ≥ 1
2σK−2(Ṽ ) ≥ 1

2σ∗.
This proves the first claim in (B.31). For any k, ṽk = Ṽ ek, where ek ∈ RK is a standard basis
vector. For any 2 ≤ k ̸= ℓ ≤ K, ek and eℓ both have a zero at the first coordinate; and we apply
Lemma A with s = 1 to get ∥vk − vℓ∥ ≥ σK−2(Ṽ )∥ek − eℓ∥ ≥

√
2σ∗. This proves the second

claim in (B.31). Last, we show the third claim. Note that

ṽ1 = H1v1 = v1 −
v′1Xi1

∥Xi1∥2
Xi1 =

X ′
i1
(Xi1 − v1)

∥Xi1∥2
v1 −

v′1Xi1

∥Xi1∥2
(Xi1 − v1).

Here, ∥v1∥ ≤ dmax, and by (B.24), ∥Xi1∥ ≥ dmax−β. Since |X ′
i1
(Xi1−v1)| ≤ ∥Xi1∥·∥Xi1−v1∥,

we have |X
′
i1

(Xi1
−v1)

∥Xi1
∥2 |∥v1∥ ≤ ∥v1∥

∥Xi1
∥∥Xi1 − v1∥ ≤ dmax

dmax−β ∥Xi1 − v1∥, and v′
1Xi1

∥Xi1
∥2 ≤ ∥v1∥

∥Xi1
∥ ≤

dmax

dmax−β . Plugging these inequalities into the above equation and applying (B.26), we obtain:

∥ṽ1∥ ≤ 2dmax

dmax − β
∥Xi1 − ri1∥ ≤ 2dmax

dmax − β

(
β +

30γ

σ∗
max

{
1,

d̃max

σ∗

}
β
)
. (B.34)

By our assumption, 30dmax

σ∗
max

{
1, dmax

σ∗

}
β ≤ σ∗/15. Moreover, we have shown dmax ≥ d̃max ≥

σ∗/2. It further implies β ≤ σ2
∗

450dmax
≤ 1

225σ∗ ≤ 1
100 d̃max. As a result,

∥ṽ1∥ ≤ 200

99
(β +

σ∗

15
) ≤ 3

10
d̃max ≤ d̃max −

7

20
σ∗. (B.35)

At the same time, h0 = σ∗/3. Hence, ∥ṽ1∥ is strictly smaller than d̃max − h0. This shows that 1
cannot belong to the set K̃(h0) as defined in (B.29).

Step 3: Analysis of the remaining iterations of SPA.

Fix 3 ≤ s ≤ K − 1. We now study the sth iteration, for 3 ≤ s ≤ K − 1. Let i1, . . . , iK denote the
sequentially selected indices in SPA. Let X(1)

i = Xi and H1 be the same as in Step 1 of this proof.
We define X

(s)
i and Hs recursively to describe the iterations in SPA:

ŷs−1 =
X

(s−1)
is−1

∥X(s−1)
is−1

∥
, Hs = (Id − ŷs−1ŷs−1)Hs−1, X

(s)
i = HsX

(s−1)
i .
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It is seen that Hs−1 =
∏s−1

m=1(Id − ŷsŷs). Note that each ŷs is orthogonal to ŷ1, . . . , ŷs−1. As a
result, Hs−1 is a projection matrix with rank (s− 1). We apply Lemma C to obtain that

σK−s(Hs−1V ) ≥ σK−1(V ) ≥ σ∗, for 3 ≤ s ≤ K − 1. (B.36)

Let X̃i = Hk−1Xi and Ṽ = Hk−1V . We will follow similarsteps as in (B.27)-(B.33). Sup-
pose there exist distinct k1, k2, . . . , ks−1 such that (B.33) holds for each of them. Let Ms−1 =
{k1, k2, . . . , ks−1}. The analysis is very similar to (B.27)-(B.33), except that (B.31) is replaced by

d̃max ≥ σ∗/2, min
{k,ℓ}∩Ms−1=∅,

k ̸=ℓ

∥ṽk − ṽℓ∥ ≥
√
2σ∗, and Ms−1 ∩ K̃(h0) = ∅. (B.37)

Once this is proved, we will follow similar arguments as in the text around (B.32) to get (B.33).

It remains to show (B.37). Suppose we have already obtained (B.37) and (B.33) for each 1 ≤ j ≤
s− 1, and we would like to show (B.37) for s. First, consider the second claim in (B.37). For each
k /∈ Ms−1, it has (s − 1) zeros in the coordinates in Ms−1. We apply Lemma A and (B.37) to
obtain that

∥ṽk − ṽℓ∥ ≥
√
2σK−s(Ṽ ) ≥

√
2σ∗, for all k ̸= ℓ in {1, . . . ,K} \Ms−1.

Next, consider the third claim in (B.37). Note that Ms−1 = {k1, k2, . . . , ks−1}. For each 1 ≤ j ≤
s− 1, by definition, ṽkj

=
[∏

m≥j(Id − ŷmŷ′m)
]
· (Id − ŷj ŷj)Hj−1vkj

. It follows that

∥ṽkj
∥ ≤ ∥(Id − ŷj ŷj)Hj−1vkj

∥, where ŷj =
Hj−1Xij

∥Hj−1Xij∥
. (B.38)

Here, ∥Hj−1Xij∥ is the maximum Euclidean distance attained in the (j − 1)th iteration. Since we
have already established (B.37) for j, we immediately have ∥Hj−1Xij∥ ≥ σ∗/2. In addition, we
have shown (B.33) for j, which implies that

∥Hj−1vkj −Hj−1Xij∥ ≤
(
1 +

30γ

σ∗
max

{
1,

d̃max

σ∗

})
β.

Mimicking the proof of (B.34), we can get a similar bound as

∥ṽj∥ ≤ ∥(Id − ŷj ŷj)Hj−1vkj∥ ≤
(
1 +

30γ

σ∗
max

{
1,

d̃max

σ∗

})
β. (B.39)

We then mimic the argument in (B.34) to show that ∥vkj
∥ ≤ β̃max − 7σ∗/20 < β̃ − h0. This

implies that j /∈ K̃(h0). Last, consider the first argument in (B.37). Let ∆ denote the right hand side
of (B.39). We have shown that ∥ṽk∥ ≤ ∆, for all k ∈ Ms−1. By our assumption, we can easily
conclude that σ2

∗ ≥ 2(K − 2)∆. We then apply Lemma D to get d̃max ≥ σ∗/2. So far, we have
proved all three arguments in (B.37). This completes the proof of this theorem.

B.4 PROOF OF THE SUPPLEMENTARY LEMMAS

B.4.1 PROOF OF LEMMA A

By definition, F (π) =
∑K

k=1 π(k)vk. Since
∑K

k=1 π(k) = 1, for any v0 ∈ Rd, we can re-express
F (π) as F (π) = v0 +

∑K
k=1 π(k)(vk − v0). It follows immediately that

∥F (π)− F (π̃)∥ =

∥∥∥∥ K∑
k=1

[π(k)− π̃(k)](vk − v0)

∥∥∥∥ ≤ ∥π − π̃∥1 ·max
k

∥vk − v0∥.

At the same time, since 1′
K(π− π̃) = 0, the vector π− π̃ is an (K−1)-dimensional linear subspace.

It follows by basic properties of singular values that
∥F (π)− F (π̃)∥ ≥ σK−1(V ) · ∥π − π̃∥.

Combining the above gives (B.12).

Suppose there are 1 ≤ k1 < k2 < . . . < ks ≤ K such that π(kj) = π̃(kj), for 1 ≤ j ≤ s. Then, the
vector δ = π − π̃ satisfies (s+ 1) constraints: 1′

Kδ = 0, δ(kj) = 0, for 1 ≤ j ≤ s. In other words,
δ lives in a (K − 1− s)-dimensional linear space. It follows by properties of singular values that

∥F (π)− F (π̃)∥ ≥ σK−1−s(V ) · ∥π − π̃∥.
This proves (B.13)
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B.4.2 PROOF OF LEMMA B

Write for short x =
∑m

i=1 πixi ∈ Rd and L =
∑m

i=1 wi∥xi∥. By concavity of the norm function,

∥x∥ ≤ L.

In this lemma, we would like to get a lower bound for L− ∥x∥. By definition,

∥x∥2 =
∑
i

w2
i ∥xi∥2 +

∑
i ̸=j

wiwjx
′
ixj (B.40)

For any vectors u, v ∈ Rd, we have a universal equality: 2u′v = 2∥u∥∥v∥+(∥u∥−∥v∥)2−∥u−v∥2.
By our assumption, ∥xi − xj∥ ≥ a and (∥xi∥ − ∥xj∥)2 ≤ b2, for all i ̸= j. It follows that

x′
ixj ≤ ∥xi∥∥xj∥ − (a2 − b2)/2, 1 ≤ i ̸= j ≤ m. (B.41)

We plug (B.41) into (B.42) to get

∥x∥2 ≤
∑
i

w2
i ∥xi∥2 +

∑
i ̸=j

wiwj∥xi∥∥xj∥ −
1

2
(a2 − b2)

∑
i ̸=j

wiwj

= L2 − 1

2
(a2 − b2)

∑
i ̸=j

wiwj . (B.42)

Note that
∑

i ̸=j wiwj =
∑

i

∑
j:i ̸=j wj =

∑
i wi(1− wi). Combining it with (B.42) gives

∥x∥2 ≤ L2 − 1

2
(a2 − b2)

∑
i

wi(1− wi). (B.43)

At the same time, L+ ∥x∥ ≤ 2L. It follows that

L− ∥x∥ =
L2 − ∥x∥2

L+ ∥x∥
L2 − ∥x∥2

2L
≥ a2 − b2

4L

∑
i

wi(1− wi). (B.44)

This proves the claim.

B.4.3 PROOF OF LEMMA C

Since H is a projection matrix, there exists Q1 ∈ Rs and Q2 ∈ Rd−s such that Q = [Q1, Q2] is an
orthogonal matrix, H = Q1Q

′
1, and Id −H = Q2Q

′
2. It follows that

(Id −H)V V ′(Id −H) = Q2(Q
′
2V V ′Q2)Q

′
2.

Since Q2 has orthonormal columns, for any symmetric matrix M ∈ R(d−s)×(d−s), M and Q2MQ′
2

have the same set of nonzero eigenvalues. Hence,

σ2
K−1−s((Id −H)V ) = λK−1−s(Q

′
2V V ′Q2).

We note that Q′
2V V ′Q2 ∈ R(d−s)×(d−s) is a principal submatrix of Q′V V ′Q ∈ Rd×d. Using the

eigenvalue interlacing theorem (Horn & Johnson, 1985, Theorem 4.3.28),

λK−1−s(Q
′
2V V ′Q2) ≥ λK−1(Q

′V V ′Q).

The claim follows immediately by noting that λK−1(Q
′V V ′Q) = λK−1(V V ′) = σ2

K−1(V ).

B.4.4 PROOF OF LEMMA D

Write ℓmax = max1≤k≤K ∥vk∥. We target to show

ℓ2max ≥ K − s− 1

2(K − s)
σ2
∗, with σ∗ := σK−1−s(V ). (B.45)

The right hand side of (B.45) is minimized at s = K − 2, at which ℓ2max ≥ σ2
∗/4. We now show

(B.45). When s = 0, it is seen that

Kℓ2max ≥ trace(V ′V ) =
∑
k

∥vk∥2 ≥ (K − 1)σ2
∗(V ).
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Therefore, ℓ2max ≥ K−1
K σ2

∗, which implies (B.16) for s = 0. When 1 ≤ s ≤ K − 2. it is seen that

sδ2 + (K − s)ℓ2max ≥ trace(V ′V ) ≥ (K − 1− s)σ2
∗.

As a result,

ℓ2max ≥ (K − s− 1)σ2
∗ − sδ2

K − s
. (B.46)

Note that s
K−s−1 is a monotone increasing function of s. Hence, s

K−s−1 ≤ K − 2. The assumption
of 2(K − 2)δ2 ≤ σ2

∗ implies that 2s
K−s−1δ

2 ≤ σ2
∗, or equivalently, sδ2 ≤ K−s−1

2 σ2
∗. We plug it into

(B.46) to get ℓ2max ≥ K−s−1
2(K−s)σ

2
∗. This proves (B.16) for 1 ≤ s ≤ K − 2.

B.4.5 PROOF OF LEMMA E

Write K = K(h0), Vk = Vk(ϵ0), and V = V(ϵ0, h0) for short. By definition of K̄,
dmax − h0 ≤ ∥vk∥ ≤ dmax, for k ∈ K, ∥vk∥ ≤ dmax − h0, for k /∈ K. (B.47)

Same as before, let S denote the true simplex. Fix a point x ∈ S \ V , and let π = F−1(x) be its
barycentric coordinate in the simplex, where F is the mapping in Lemma A. By definition of V ,

max
k∈K

π(k) ≤ 1− ϵ0, whenever x := F (π) is in S \ V. (B.48)

We now show the claim. Define

ρ :=
∑
k∈K

πi(k), η :=

{
ρ−1

∑
k∈K π(k)vk, if ρ ̸= 0,

0d, otherwise.
(B.49)

By the triangle inequality,

∥x∥ =
∥∥∥ρη +

∑
k/∈K

π(k)vk

∥∥∥ ≤ ρ∥η∥+
∑
k/∈K

π(k)∥vk∥

≤ ρ∥η∥+ (1− ρ)(dmax − h0). (B.50)
We consider two different cases. In Case 1, 1−ρ ≥ ϵ0/2. Since ∥η∥ ≤ dmax, it follows from (B.50)
that

∥x∥ ≤ dmax − (1− ρ)h0 ≤ dmax −
h0ϵ0
2

if 1− ρ ≥ ϵ0
2 (Case 1). (B.51)

In Case 2, 1 − ρ ≤ ϵ0/2. If K = {k∗} is a singleton, then ρ = π(k∗). It follows by (B.48) that
1− ρ = 1− π(k∗) ≤ 1− ϵ0, which yields a contradiction. Hence, it must hold that |K| ≥ 2. Then,
η is a convex combination of more than one point in {vk : k ∈ K}. We hope to apply Lemma B.
By (B.47), for each k ∈ K, ∥vk∥ is in the interval [dmax − h0, dmax]. Hence, we can take b = h0 in
Lemma B. In addition, by (B.17), ∥vk − vℓ∥ ≥

√
2σ∗. Hence, we set a =

√
2σ∗ in Lemma B. We

apply this lemma to the vector η in (B.49). It yields

∥η∥ ≤ L− (2σ2
∗ − h2

0)

4L

∑
k∈K

π(k)[ρ− π(k)]

ρ2
, with L :=

∑
k∈K

π(k)

ρ
∥vk∥.

Since L ≤ dmax, the above inequality yields ∥η∥ ≤ dmax − 2σ2
∗−h2

0

4ρdmax

∑
k∈K π(k)[1 − ρ−1π(k)]. In

addition, 1−ρ−1π(k) = ρ−1[1−π(k)]− (ρ−1−1) ≥ ρ−1ϵ0− (ρ−1−1), where the last inequality
is from (B.48). Combining these arguments and using the fact that

∑
k∈K π(k) = ρ, we have

∥η∥ ≤ dmax −
(2σ2

∗ − h2
0)[ρ

−1ϵ0 − (ρ−1 − 1)]

4ρdmax

∑
k∈K

π(k) ≤ dmax −
(2σ2

∗ − h2
0)[ϵ0 − (1− ρ)]

4ρdmax
.

Since 1− ρ ≤ ϵ0/2, we immediately have ∥η∥ ≤ dmax − 2σ2
∗−h2

0

4ρdmax
. We plug it into (B.50) to get

∥x∥ ≤ dmax −
(2σ2

∗ − h2
0)ϵ0

4dmax
if 1− ρ ≤ ϵ0

2 (Case 2). (B.52)

We combine the above two cases. By setting h0 = σ∗/3, we have a unified expression:

∥x∥ ≤ dmax −min
{σ∗

6
,

4σ2
∗

9dmax

}
ϵ0.

Consequently, a sufficient condition for ∥x∥ ≤ dmax − C0β to hold is ϵ0 ≥ max{ 6C0

σ∗
, 9C0dmax

4σ2
∗

}β.
For notation simplicity, we simply set ϵ0 ≥ 6C0σ

−1
∗ max{1, σ−1

∗ dmax}. This proves the claim.
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C PROOF OF THE MAIN THEOREMS

We recall our pp-SPA procedure. On the hyperplane, we obtained the projected points

X̃i := H(Xi − X̄) + X̄ = (Id −H)X̄ +Hri +Hϵi

after rotation by U , they become Yi = U ′X̃i = U ′ri + U ′ϵi = U ′Xi ∈ RK−1. Denote Ỹi =
U ′
0Xi = U ′

0ri + U ′
0ϵi ∈ RK−1. In particular, U ′

0ϵi ∼ N(0, σ2IK−1). Then, without loss of
generality, the vertex hunting analysis on Ỹi is equivalent to that of Xi = ri + ϵi ∈ Rp, where
ϵi ∼ N(0, σ2Ip) with p = K − 1. We provide the following theorems for the rate by applying
D-SPA on the aforementioned low dimension p = K − 1 space. The proof of these two theorems
are postponed to Section C.2.

Theorem B. Consider Xi = ri + ϵi ∈ Rp, where ϵi ∼ N(0, σ2Ip) for 1 ≤ i ≤ n. Suppose
m ≥ c1n for a constant c1 > 0 and p ≪ log(n)/ log log(n). Let p/ log(n) ≪ δn ≪ 1. Let
c∗2 = 0.9(2e2)−1/p

√
(2/p)(Γ(p/2 + 1))1/p. Then, c2 → 0.9e−1/2 as p → ∞. . We apply D-SPA

to X1, X2, . . . , Xn and output X∗
1 , · · · , X∗

n where some X∗
i may be NA owing to the pruning. If we

choose N = log(n) and

∆ = c3σ
√
p
( log(n)
n1−δn

)1/p
for a constant c3 ≤ c∗2,

Then,

βnew(X
∗) ≤

√
δn · σ ·

√
2 log(n)

If the last inequality of (8 ) and (9 ) hold, then up to a permutation in the columns,

max
1≤k≤K

∥v̂k − vk∥ ≤ gnew(V ) ·
√
δn · σ ·

√
2 log(n).

The second theorem discuss the case there a fewer pure nodes.

Theorem C. Consider Xi = ri + ϵi ∈ Rp, where ϵi ∼ N(0, σ2Ip) for 1 ≤ i ≤ n. Fix 0 <
c0 < 1 and assume that m ≥ n1−c0+δ for a sufficiently small constant 0 < δ < c0. Suppose
p ≪ log(n)/ log log(n). Let c∗2 = 0.9(2e2−c0)−1/p

√
(2/p)(Γ(p/2 + 1))1/p. Then c2 → 0.9e−1/2

as p → ∞. Suppose we apply D-SPA to X1, X2, . . . , Xn and output X∗
1 , · · · , X∗

n where some X∗
i

may be NA owing to the pruning. If we choose N = log(n) and

∆ = c3σ
√
p
( log(n)
n1−c0

)1/p
for a constant c3 ≤ c∗2.

Then,

βnew(X
∗) ≤

√
c0 · σ ·

√
2 log(n)

If the last inequality of (8 ) and (9 ) hold, then up to a permutation in the columns,

max
1≤k≤K

∥v̂k − vk∥ ≤ gnew(V ) ·
√
c0 · σ

√
2 log(n).

for any arbitrary small constant δ < 0.

Based on the above two theorem, we have the results on {Ỹi}′s. However, what we really care
about is on {Yi}′s which differ from {Ỹi}′s by the rotation matrix. To bridge the gap, we need the
following Lemma.

Lemma F. Suppose that s2K−1(R) ≫ max{
√
σ2d/n, σ2d/n} and σ = O(1). Then, with proba-

bility 1− o(1),

∥U − U0∥ ≍ ∥H −H0∥ ≤ C

s2K−1(R)
max{

√
σ2d/n, σ2d/n} (C.53)
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C.1 PROOF OF THEOREMS 2 AND 3

With the help of Theorems B, C and Lemma F, we now prove Theorems 2 and 3. We will present
the detailed proof for Theorem 3. The proof of Theorem 2 is nearly identical to that of Theorem 3
with the only difference in employing Theorem C, and we refrain ourselves from repeated details.

Proof of Theorem 3. Recall that Yi = U ′Xi = U ′ri + U ′ϵi and Ỹi = U ′
0ri + U ′

0ϵi. Theorem B
indicates that applying D-SPA on Ȳi improves the rate to σ(1+o(1))

√
2c0 log(n). Note that ∥ri∥ ≤

1. Also, by Lemma 5, ∥ϵi∥ ≤ (1 + o(1))σ(
√
max{d, 2 log(n)}) simultaneously for all i, with

high probability. Under the assumption αn = o(1) for both cases and s2K−1(R) ≍ s2K−1(Ṽ ) by
Lemma 4, the first condition in Lemma F is valid. By the last inequality in (8 ), we have the norm of
ri should be upper bounded for all 1 ≤ i ≤ n and therefore sK−1(Ṽ ) ≤ Cmaxk ̸=l ∥ṽk − ṽℓ∥ ≤ C.
Further with the condition (9 ), we obtain that σ = O(1). Therefore, the conditions in Lemma F are
both valid. Then by employing Lemma F, we can derive that

∥Yi − Ỹi∥ = OP

(
σ
√
d√

ns2K−1(R)
(1 + σ

√
max{d, 2 log(n)} )

)
= OP(σαn)

where the last step is due to Lemma 4 under the condition (8 ).

Consider the first case that αn ≪ t∗n. And we choose ∆ = c3t
∗
nσ. It is seen that σαn ≪ ∆. We will

prove by contradiction that applying pp-SPA with (∆, log(n)) on {Yi}, the denoise step can remove
outlying points whose distance to the underlying simplex larger than σ[

√
2c0 log(n) + Cαn] for

some C > 0.

First, suppose that with probability c for a small constant c > 0, there is one point Yi0 away from
the underlying simplex by a distance larger than σ[

√
2c0 log(n) + Cαn] and it is not pruned out.

Since σαn ≪ ∆, we see that Ỹi0 is faraway to the simplex with distance σ
√
2c0 log(n) for certain

large C and it cannot be pruned out by (1.5∆, log(n)). However, by employing Theorem C on {Ỹi}
with p = K − 1 and noticing c∗2 = 1.8c2 with c2 defined in the manuscript, it can only happen with
negligible probability. This leads to a contradiction.

Second, suppose that with probability c for a small constant c > 0, all outliers can be removed but
a vertex v1 is also removed (which means all points near it are removed). Then, N(B(v1,∆)) <

log(n). For the corresponding vertex for {Ỹi}, denoted by ṽ1, it holds that N(B(ṽi,∆/2)) < log(n)

which means the vertex ṽ1 for {Ỹi} is also pruned. However, again by Theorem C, this can only
happen with probability o(1). This leads to another contradiction.

Let us denote by β(Y ∗, U ′
0V ) the maximal distance of points in Y ∗ to the simplex formed by U ′

0V .
By the above two contradictions, we conclude that with high probability,

β(Y ∗, U ′
0V ) ≤ σ[

√
2c0 log(n) + Cαn].

where U ′
0V is the underlying simplex of {Ỹi}. It is worth noting that αn = o(1). Then, under the

assumptions of the theorem, we can apply Theorem A (Theorem 1 in the manuscript). It gives that

max
1≤k≤K

∥v̂∗k − U ′
0vk∥ ≤ σgnew(V )[

√
2c0 log(n) + Cαn]

where we use (v̂∗1 , · · · , v̂∗K) to denote the output vertices by applying SP on {Yi}. Eventually, we
output each vertex v̂k = (IK −UU ′)X̄ +Uv̂∗k. It follows that up to a permutation of the K vectors,

max
1≤k≤K

∥v̂k − vk∥ ≤ max
1≤k≤K

∥Uv̂∗k − U ′
0vk∥+ ∥(Id − UU ′)X̄ − (Id − U0U

′
0)r̄∥

≤ max
1≤k≤K

∥v̂∗k − vk∥+ ∥U − U0∥+ ∥(Id − UU ′)X̄ − (Id − U0U
′
0)r̄∥

Further we can derive

∥(Id − UU ′)X̄ − (Id − U0U
′
0)r̄∥ ≤ ∥H −H0∥+ ∥X̄ − r̄∥

≤ σαn + ∥ϵ̄∥

≤ σαn +
2σ
√
max{d, 2 log(n)}√

n

13



this together with Lemma F, give rise to

max
1≤k≤K

∥v̂k − vk∥ ≤ σgnew(V )[
√

2c0 log(n) + Cαn] +
2σ
√
max{d, 2 log(n)}√

n
.

Consider the second case that αn ≫ t∗n where we choose ∆ = σαn. By Lemma 5, it is observed
that with high probability, max1≤i≤n d(Ỹi,S) < (1 + o(1))σ

√
2 log(n). Notice that ∥Yi − Ỹi∥ ≤

Cσαn with high probability. For Yi, if its distance to the underlying simplex is larger than σ[(1 +

o(1))
√
2 log(n)+C1αn] for a sufficiently large C1 > 3C+1, then d(Ỹi,S) ≥ d(Yi,S)−Cσαn >

σ[(1 + o(1))
√

2 log(n) + (2C + 1)αn]. Hence, B(Ỹi, (2C + 1)∆)) is away from the simplex by a
distance larger than σ(1+o(1))

√
2 log(n). It follows that N(B(Yi,∆)) ≤ N(B(Ỹi, (2C+1)∆)) <

log(n). This is equivalent to say that we do not prune out any points there. Consequently, with high
probability,

β(Y ∗, U ′
0V ) ≤ σ[(1 + oP(1))

√
2 log(n) + C1αn]

and further by Theorem A (Theorem 1 in the manuscript),

max
1≤k≤K

∥v̂∗k − U ′
0vk∥ ≤ σgnew(V )[

√
2 log(n) + Cαn]

Next, replicate the proof for max1≤k≤K ∥v̂k − vk∥ in the former case, we can conclude that

max
1≤k≤K

∥v̂k − vk∥ ≤ σgnew(V )[(1 + oP(1))
√
2 log(n) + C1αn] +

2σ
√
max{d, 2 log(n)}√

n

= σgnew(V )(1 + oP(1))
√
2 log(n).

This concludes our proof.

C.2 PROOF OF THEOREMS B AND C.

In the subsection, we provide the proofs of Theorems B and C. We show the proof of Theorem C in
detail and briefly present the proof of Theorems B as it is similar to that of Theorem C.

Proof of Theorem B. We first claim the limit of c∗2 = 0.9(2e2−c0)−1/p
√
(2/p)(Γ(p/2 + 1))1/p.

Note that Γ(p/2+ 1) = (p/2)! if p is even and Γ(p/2+ 1) =
√
π(p+1)!/(2p+1(p+1

2 )!) if p is odd.
Using Stirling’s approximation, it is elementary to deduce that

c∗2 = eO(1/p)−(1−log(p+1))(p+1)/2p−log(p)/2 → e−1/2.

Define the radius ∆ ≡ ∆n = c3σ
√
p
(

log(n)
n1−c0

)1/p
for a constant c3 ≤ c2. In the sequel, we will prove

that applying D-SPA to X1, · · · , Xn with (∆, N), we can prune out the points whose distance to
the underlying true simplex are larger than the rate in the theorem, while the points around vertices
are captured.

Denote d(x,S), the distance of x to the simplex S. Let

Rf := {x ∈ Rp : d(x,S) ≥ 2σ
√
log(n) }

We first claim that the number of points in Rf , denoted by N(Rf ), is bounded with probability
1− o(1). By definition, we deduce

N(Rf ) =

n∑
i=1

1(xi ∈ Rf ) ≤
n∑

i=1

1(∥εi∥ ≥ 2σ
√

log n )

The mean on the RHS is given by nP(∥εi∥ ≥ 2σ
√
log n) = nP(χ2

p ≥ 4 log n) ≤ ne−1.5 log(n) =

n−1/2. By similar computations, the order of the variance is again n−1/2. By Chebyshev’s inequal-
ity, we conclude that N(Rf ) = OP(1).

14



In the sequel, we use the notation B(x, r) to represent a ball centered at x with radius r and denote
N(B(x, r)) the number of points falling into this ball. And we also denote S the true underlying
simplex.

Based on these notation, we introduce

P :=P(∃ Xi satisfying σ
√
2c0 log(n) ≤ d(Xi,S) ≤ 2σ

√
log(n) cannot be pruned out )

We aim to show that P = o(1). To see this, we first derive

P =

(
n

N

)
N · P(X1, · · ·XN ∈ B(X1,∆) s.t. σ

√
2c0 log(n) ≤ d(X1,S) ≤ 2σ

√
log(n) )

≤
(
n

N

)
N ·

∫
an≤d(x,S)≤bn

fX1
(x)P(X2, · · · , XN ∈ B(x,∆))dx

≤
(
n

N

)
N ·

∫
an≤d(x,S)≤bn

fX1
(x)

N∏
t=2

P(Xt ∈ B(x,∆))dx

where an := σ
√
2c0 log(n) and bn := 2σ

√
log(n) for simplicity. We can compute that for any

2 ≤ t ≤ N ,

P(Xt ∈ B(x,∆)) = (2πσ2)−
p
2

∫
∥y−x∥≤∆

exp{−∥y − rt∥2/2σ2}dy

≤ (∆/σ)p

2p/2Γ(p/2 + 1)
exp

{
− (∥x− rt∥ −∆)2

2σ2

}
≤ (∆/σ)pCp exp

{
− ∥x− rt∥2

2σ2

}
where we used ∥x − rt∥∆/σ ≤ 2

√
log n∆/σ = o(1) due to our choice of ∆ so that ∆/σ is

sufficiently small; and we write Cp := 21−p/2/Γ(p/2 + 1). The above equation, together with
fX1(x) = (2πσ2)−

p
2 exp{−∥x− r1∥2/(2σ2)}, leads to

P ≤
(
n

N

)
NCN−1

p (∆/σ)p(k−1) ·
∫
an≤d(x,S)≤bn

(2πσ2)−
p
2 exp

{
−
∑N

t=1 ∥x− rt∥2

2σ2

}
dx

Also, notice that
∑N

t=1 ∥x− rt∥2 ≥ N∥x− r̄∥2 where r̄ = N−1
∑N

t=1 rt. Then,

P ≤
(
n

N

)
NCN−1

p (∆/σ)p(N−1) ·
∫
an≤d(x,S)≤bn

(2πσ2)−
p
2 exp

{
− N∥x− r̄∥2

2σ2

}
dx

≤
(
n

N

)
NCN−1

p (∆/σ)p(N−1)

∫
∥x−r̄∥≥an

(2πσ2)−
p
2 exp

{
− N∥x− r̄∥2

2σ2

}
dx

≤
(
n

N

)
NCN−1

p (∆/σ)p(N−1)N−p/2 · P(χ2
p ≥ 2Nc0 log n)

where we used the fact that ∥x− r̄∥ ≥ d(x,S) in the second step and we did change of variables so
that the integral reduces to the tail probability of χ2

p distribution. By Mills ratio, the tail probability
of χ2

p is given by

P(χ2
p ≥ 2Nc0 log n) ≤ Cn−Nc0(2Nc0 log n)

p/2−1,

we obtain

P ≤ C

(
n

N

)
NCN−1

p (∆/σ)p(N−1)N−p/2n−Nc0(2Nc0 log n)
p/2−1 .

Using the approximation
(
n
k

)
≤ C(en/k)k, we deduce that

P ≤ C

[
e(2Nc0 log n)

(p−2)/(2N)C1−1/N
p N (1−p/2)/N · n

1−c0(∆/σ)p(1−1/N)

N

]N
=: C

[
A(n, p,N) · n

1−c0(∆/σ)p(1−1/N)

N

]N
15



Now we plug in N = log(n) and ∆ = c3σ
√
p
(

log(n)
n1−c0

)1/p
for a constant c3 ≤ c2 where c2 =

0.9(2e2−c0)−1/p
√
(2/p)(Γ(p/2 + 1))1/p = 0.9e−(2−c0)/pC

−1/p
p /

√
p with Cp = 21−p/2/Γ(p/2 +

1). It is straightforward to compute that

A(n, p,N) · n
1−c0(∆/σ)p(1−1/N)

N

≤ e1−(2−c0)(1−1/ log(n))2
p−2

2 log(n) (c0 log(n))
p−2

2 log(n) (0.9)p(1−1/ log(n))
( n1−c0

log(n)

)1/ log(n)

≤ eo(1)(0.9)p < 1.01 · 0.9 < 1

under the condition that p ≪ log(n)/ log log(n). This implies P ≤ C(0.909)log(n) = o(1).

In the mean time, for each vertex vk,

N(B(vk,∆/2)) ≥
∑

i∈Mk

1(xi ∈ B(vk,∆/2)) =
∑

i∈Mk

1(∥εi∥ ≤ ∆/2) ≥ mp∆ − C
√

mp∆ log log(n).

with probability 1− o(1), and

p∆ := P(∥εi∥ ≤ ∆/2) = P(χ2
p ≤ 4−1(∆/σ)2) ≥ e−(∆/σ)2/82−p

2p/2Γ(p/2 + 1)
(∆/σ)p

Recall the condition that m ≥ nδn1−c0 . It follows that

mp∆ ≥ nδ e
−(∆/σ)2/82−p

2p/2Γ(p/2 + 1)
n1−c0(∆/σ)p = nδ e−(∆/σ)2/8

2p/2Γ(p/2 + 1)
· c log(n)

Cp
2−p(c3/c2)

p

≥ cnδ2−p(c3/c2)
p log(n) ≫ log(n)

where c > 0 is some small constant. The last step is due to the fact that nδ2−p(c3/c2)
p =

eδ log(n)−p log(2c2/c3) ≫ 1 as 2c2/c3 ≥ 2 is a constant and p ≪ log(n)/ log log(n). Thus, with
probability 1− o(1), N(B(vk,∆/2)) ≫ log(n). Under this event, for any point Xi0 ∈ B(vk,∆/2),
immediately B(vk,∆/2) ⊂ B(Xi0 ,∆) and further N(B(Xi0 ,∆)) ≫ log(n). Combining this, with
P = o(1) and N(Rf ) = OP(1), we conclude that we can prune out all points with a distance to the
simplex larger than σ

√
2c0 log(n) while preserve those points near vertices, with high probability.

Thus we finish the claim for βnew(X
∗).

The last claim follows directly from Theorem A (Theorem 1 in the manuscript) under condition (9).
We therefore conclude the proof.

We briefly present the proof of Theorem B below.

Proof. The proof strategy is roughly the same as that of Theorem C When m > c1n, we take

∆ = c3σ
√
p
(

log(n)
n1−δn

)1/p
where p/ log(n) ≪ δn ≪ 1 and c3 ≤ c2, then similarly we can derive

that N(B(vk,∆/2)) ≥ c log(n)nδnap = c log(n)eδn log(n)−p log(1/a) ≫ log(n) where c > 0 is
a small constant and 0 < a ≤ 1. This gives rise to the conclusion that with high probability,
N(B(Xi0 ,∆)) ≫ log(n) for any Xi0 ∈ N(B(vk,∆/2)).Moreover, in the same manner to the
above derivations, replacing c0 by δn, we can claim again that N(Rf ) = OP(1) and

P ≤ C

(
A(n, p, log(n)) · n

1−δn(∆/σ)p(1−1/ log(n))

log(n)

)log(n)

= o(1).

Consequently, all the claims follow from the same reasoning as the proof of Theorem C. We there-
fore omit the details and conclude the proof .
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C.3 PROOF OF LEMMA F

Recall that R = n−1/2[r1 − r̄, . . . , rn − r̄]. Let R = U0D0V0 be its singular value decomposition
and let H0 = U0U

′
0. Denote ϵ = [ϵ1, . . . , ϵn] ∈ Rd,n. We start by analyzing the convergence rate of

∥ZZ ′ − nRR′ − nσ2Id∥. Recall that X̄ = r̄ + ϵ̄, where ϵ̄ = n−1
∑n

i=1 ϵi. We obtain

Z = Xi − X̄ = ri + ϵi − r̄ − ϵ̄, Z =
√
nR+ ϵ− ϵ̄1′n. (C.54)

Observing the fact that R1n = 0, we deduce

ZZ ′ − nRR′ − nσ2Id = (
√
nR+ ϵ− ϵ̄1′n)(

√
nR+ ϵ− ϵ̄1′n)

′ − nRR′ − nσ2Id

=
√
n(ϵ− ϵ̄1′n)R

′ +
√
nR(ϵ− 1nϵ̄

′)′ + (ϵ− ϵ̄1′n)(ϵ− ϵ̄1′n)
′ − nσ2Id

=
√
nϵR′ +

√
nRϵ′ + (ϵϵ′ − nσ2Id)− nϵ̄ϵ̄′. (C.55)

The above equation implies that

∥ZZ ′ − nRR′ − nσ2Id∥ ≤ 2
√
n∥ϵR′∥+ ∥ϵϵ′ − nσ2Id∥+ n∥ϵ̄∥2. (C.56)

We proceed to bound the three terms ∥ϵR′∥, ∥ϵϵ′ − nσ2Id∥ and n∥ϵ̄∥2 respectively. First, notice
that ϵR′ ∈ Rd×d is a Gaussian random matrix with independent rows which follow N(0, RR′). By
Theorem 5.39 and Remark 5.40 in Vershynin (2010), we can deduce that with probability 1− o(1),

n∥Rϵ′ϵR′∥ ≤ dσ2[s21(R) + n/d+ c].

This, together with the fact that s1(R) ≤ c gives that
√
n∥ϵR′ +Rϵ′∥ ≤ 2σ

√
nd. (C.57)

Second, by Bai-Yin law (Bai & Yin (2008)), we can estimate the bound of ∥EE ′−nσ2Id∥ as follows.

∥ϵϵ′ − nσ2Id∥ ≤ nσ2(2
√

d/n+ d/n) ≤ σ2(2
√
nd+ d), (C.58)

with probability 1 − o(1). Third, observe that ϵ̄ ∼ N(0, σ2/nId). We therefore obtain that with
probability 1− o(1),

n∥ϵ̄∥2 ≤ σ2[d+ C
√

d log(n)].

By applying the condition that σ = O(1), combining the above equation with (C.56), (C.57) and
(C.58) yields that, with probability at least 1− o(1),

∥ZZ ′ − nRR′ − nσ2Id∥ ≤ 2σ
√
nd+ σ2[d+ C

√
d log(n)] + σ2(2

√
nd+ d)

≤ C(σ
√
nd+ σ2d). (C.59)

Now, we compute the bound for ∥Ĥ −H0∥. Let U⊥, U⊥
0 ∈ Rd,d−K+1 such that their columns are

the last (d−K + 1) columns of U and U0, respectively. It follows from direct calculations that

∥Ĥ −H0∥ = ∥U0U
′
0 − UU ′∥ ≤ ∥U⊥

0 (U⊥
0 )′(U0U

′
0 − UU ′)∥+ ∥U0U

′
0(U0U

′
0 − UU ′)∥

= ∥U⊥
0 (U⊥

0 )′UU ′∥+ ∥U0U
′
0U

⊥(U⊥)′∥ ≤ ∥(U⊥
0 )′U∥+ ∥U ′

0U
⊥∥ = 2∥ sinΘ(U0, U)∥.

Notably, U0, U
⊥
0 is also the eigen-space of ZZ ′ − nσ2Id. By Weyl’s inequality (see, for example,

Horn & Johnson (1985)),

max
1≤i≤d

∣∣λi(ZZ ′ − nσ2Id)− λi(ZZ ′)
∣∣ ≤ C∥ZZ ′ − nσ2Id − nRR′∥

Under the condition that s2K−1(R) ≫ max{
√
σ2d/n, σ2d/n}, by Davis-Kahan Theorem (Davis &

Kahan (1970)), we deduce that, with probability at least 1− o(1),

∥Ĥ −H0∥ ≤ 2∥ sinΘ(U0, U)∥ ≤ 2∥ZZ ′ − nRR′ − nσ2Id∥
λK−1(RR′)

≤ C
max{

√
σ2d/n, σ2d/n}
s2K−1(R)

. (C.60)

The proof is complete.
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D NUMERICAL SIMULATION FOR THEOREM A

In this short section, we want to provide a better sense of our bound derived in Theorem A and how it
compares with the one from the orthodox SPA. To make it easier for the reader to see the difference
between the two bounds, we consider toy example where we fix (K, d) = (3, 3) and

Ṽ = {(20, 20, 0), (20, 30, 0), (30, 20, 0)}

while we let
V = Ṽ + a · (0, 0, 1).

We consider 50 different values for a ranging from 10 to 1000. It is not surprising to see that when
a is close to 0 the bound of the orthodox SPA goes to infinity whereas as the simplex is bounded far
away from the origin, the Kth singular value will be bounded away from 0. However, our bound
still outperforms the traditional SPA bound even for very large values of a. Looking at two specific
values of a we have the following. For a = 10,

βnew = 0.03, β(V ) = 0.05

Moreover, as a changes, the Figure 1 below illustrate how much the ratio of

our whole bound
Gillis bound

changes as the parameter a changes. For example, when a = 10.

gnew(V )

g(V )
= 0.015,

and so
our whole bound

Gillis bound
= 0.009

so we reduce the bound by 111 . Similarly, when a = 1000,

gnew(V )

g(V )
= 0.19,

our whole bound
Gillis bound

= 0.105,

so we have reduced the bound by 9.5.

Figure 1: Factor of improvement of our bound over orthodox spa as the true simplex moves away
from origin by a distance a.
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