
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPHROUTER : A GRAPH-BASED ROUTER FOR LLM
SELECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapidly growing number and variety of Large Language Models (LLMs)
present significant challenges in efficiently selecting the appropriate LLM for
a given query, especially considering the trade-offs between performance and
computational cost. Current LLM selection methods often struggle to generalize
across new LLMs and different tasks because of their limited ability to leverage
contextual interactions among tasks, queries, and LLMs, as well as their depen-
dence on a transductive learning framework. To address these shortcomings, we
introduce a novel inductive graph framework, named as GraphRouter, which
fully utilizes the contextual information among tasks, queries, and LLMs to en-
hance the LLM selection process. GraphRouter constructs a heterogeneous
graph comprising task, query, and LLM nodes, with interactions represented as
edges, which efficiently captures the contextual information between the query’s
requirements and the LLM’s capabilities. Through an innovative edge prediction
mechanism, GraphRouter is able to predict attributes (the effect and cost of
LLM response) of potential edges, allowing for optimized recommendations that
adapt to both existing and newly introduced LLMs without requiring retraining.
Comprehensive experiments across three distinct effect-cost weight scenarios have
shown that GraphRouter substantially surpasses existing routers, delivering a
minimum performance improvement of 12.3%. In addition, it achieves enhanced
generalization across new LLMs settings and supports diverse tasks with at least a
9.5% boost in effect and a significant reduction in computational demands. This
work endeavors to apply a graph-based approach for the contextual and adaptive
selection of LLMs, offering insights for real-world applications.

1 INTRODUCTION

The field of Large Language Models (LLMs) is advancing quickly, offering an increasingly diverse
range of models that vary in size, functionality, and computational demands (Bang, 2023; Liu et al.,
2023). Although larger models tend to deliver better performance, their high computational costs
make them inefficient for many less complex tasks (Snell et al., 2024; Chen & Varoquaux, 2024).
Additionally, LLMs demonstrate varied performance across different types of queries and tasks
(Ahmed et al., 2024; Zhang et al., 2024), especially with the development of domain-specific LLMs
(Singhal et al., 2022; Luo et al., 2022). These challenges make it difficult to recommend the optimal
LLM services to users that strike the balance between performance and cost for their specific needs.
Therefore, our paper aims to raise attention to this pressing research question: Given the vast and
continuously evolving landscape of LLMs, how to recommend appropriate LLMs for various user
queries with different implied tasks?

Existing researchers have proposed to develop a router to assign a specific LLM to each user query.
Hybrid LLM (Ding et al., 2024) trains a binary score router function to determine whether to select
a small LLM or a large LLM for a specific query. Although it balances cost and performance, it is
limited to just two LLMs, which falls short of addressing the real-world demand for a wide range of
LLMs. Some other studies (Dai et al., 2024; Chen et al., 2023) have introduced more advanced router
models to address the challenge of selecting among a limited set of LLMs (typically 3 to 5). More
specifically, FrugalGPT (Chen et al., 2023) proposes a router model based on BERT (Devlin, 2018)
to determine whether to switch to a larger LLM or not, and C2MAB-V (Dai et al., 2024) constructs a
bandit-based router to balance between the exploration and exploitation when choosing LLM for the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of GraphRouter with existing methods from three perspectives: contex-
tual info, generalization to new LLMs, and multi-task support. Compared to other approaches,
GraphRouter introduces an inductive graph framework that fully leverages contextual information,
enabling it to generalize to new LLMs and adapt to a variety of tasks.

Method Contextual Info Generalization to New LLMs Multi-task Support
Hybrid LLM (Ding et al., 2024) Indices ✗ ✗
FrugalGPT (Chen et al., 2023) LLM name ✗ ✗
C2MAB-V (Dai et al., 2024) One-hot embedding ✗ ✗

GraphRouter Graph-based contexts ✓ ✓

user. However, as shown in Table 1, they are still limited in the following aspects: 1) Relying solely
on basic BERT-based embeddings to distinguish queries, and on names or indices to distinguish
LLMs, they fail to fully leverage the contextual information from the interaction between the task,
query, and LLM. This makes it challenging to achieve a router with strong generalization capabilities.
2) These methods rely on a transductive learning framework (Arnold et al., 2007; Joachims, 2003),
which makes them ill-suited for real-world applications where new LLMs are frequently introduced.
When new LLMs are presented, these approaches require retraining with few-shot interaction data
before they can be used – a process that is impractical for recommending LLMs to a large number
of users in real-time; 3) They train a dedicated router for each specific task, greatly increases the
computational overhead and complexity in real-world applications when multiple tasks are present.

To address these challenges, we introduce GraphRouter, a graph-based router for LLM selection.
GraphRouter utilizes an inductive graph framework to effectively leverage contextual information,
allowing it to generalize to new LLMs and adapt to diverse tasks. Specifically, to fully utilize the
contextual information for different queries and tasks, GraphRouter constructs a heterogeneous
graph that contains three types of nodes: task node, query node and LLM node. The interaction
information between them is represented as edges in a graph. For instance, the reward (including
performance and cost) of an LLM responding to a query is modeled as an edge between the query node
and the LLM node. Then, we are able to transform the task of predicting the cost and performance
of an LLM-query pair to an edge prediction task. After forecasting the properties of the edges, we
recommend the most suitable LLM to the user based on their preferences for performance and cost.
In addition, in real-world scenarios, new LLMs are frequently developed, so an effective framework
should also have the ability to accommodate these evolving models. In order to make GraphRouter
generalizable to new LLMs, we make efforts in two key aspects. For the input, we utilize a generative
LLM such as GPT-4o to generate a descriptive text for each LLM, outlining key details such as its
strengths, token pricing, and context length. Based on this, we derive an initial embedding for each
LLM using a moderate-size pre-trained language model (e,g, BERT (Devlin, 2018)). This approach
offers an advantage over directly using one-hot encoding, as it enables us to generate inductive and
more informative initial embeddings for new LLMs. For the GraphRouter model, we further
develop a heterogeneous GNN that aggregates information from neighboring nodes of different types;
given few-shot data, we verified that a trained GraphRouter can generalize to new LLM nodes
without retraining.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first work to build router for LLM selections from
the graph perspective, which gives new insight to graph-enhanced LLM research.

• We propose an inductive graph framework that fully leverages contextual information among
tasks, queries, and LLMs, enabling it to generalize to new LLMs and adapt to a variety of
tasks without retraining.

• In three experiment settings with different performance and cost tradeoffs, GraphRouter
outperformed the baseline models by at least 12.3%. Furthermore, in scenarios where new
LLMs are introduced in the testing data, our method not only saves significant training time
but also improves performance by at least 9.5% compared to the baselines.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Task Query LLM Response Performance Cost

Alpaca Give three tips for staying healthy? LLaMA-3 (7b) Nutrition plays... 0.19 103.8

Alpaca What are the three primary colors? LLaMA-3 (70b) Red, blue, and yellow. 0.21 467.1

GSM8K How many musicians total...? LLaMA-3 (7b) There are 55... 0.00 230.1

GSM8K How many seats are there...? ? ... ? ?

Task
Query

User

Router

Response
Effect / Cost

Choose

Figure 1: Overview of GraphRouter’s LLM selection process. As depicted in the left section,
the LLM selection process begins with the user inputting a query that belongs to a certain task. When
the router receives the query and the task, it will analyze the input and choose the most appropriate
LLMn for generation. Then, LLMn is used to generate the response. In the end, this response, along
with the measured effectiveness and cost, is returned to the user. The right side of the figure illustrates
example interaction records, which contain contextual information like task, user query, selected
LLM, response, performance, and cost, in a table. These contextualized data are then utilized to train
the router.
2 GRAPHROUTER: GRAPH-BASED ROUTER FOR LLM SELECTION

2.1 PRELIMINARIES

We introduce the LLM selection problem in this section. As shown in the left part of Figure 1, the
process involves multiple steps, with the router being the most critical component. The router first
receives the user query containing task information. Its goal is to choose an appropriate LLM based
on the incoming information in the user query to ensure optimal performance and minimal cost
(LLM API cost). After calculation, the router chooses a suitable LLMn to answer the user query.
Finally, the response is returned to the user with its performance and cost. Such an interaction process
generates rich contextual data, which contains information on tasks, queries, selected LLM, response,
performance, and cost. We organize the data in a table, as shown on the right of Figure 1.

2.2 MOTIVATING EXAMPLES

Traditional LLM selection methods (Ding et al., 2024; Chen et al., 2023; Dai et al., 2024) often
only use ID or name information to model LLM information, which does not effectively utilize the
contextual information (introduced in Sec 2.1) generated from the interaction between LLM and
query. Here, we use some examples to illustrate the importance of contextual information. (1) We
first argue that contextual information is important because it captures the variance in the ability of
different LLMs to respond to diverse queries. We can first observe from Figure 3 that the performance
of different LLMs in response to queries can differ significantly. Therefore, understanding the
performance patterns of how LLMs handle queries is crucial for LLM selection, and these patterns
are embedded in the contextual information between the queries and the LLMs. In addition, from
Figure 2, we can also observe that smaller LLMs sometimes outperform larger LLMs on certain
queries. Even if we have unlimited budgets and can blindly rely on the largest LLM at a high cost,
we still may not achieve optimal performance. This also emphasizes the importance of capturing the
varying capabilities of LLMs in handling queries based on contextual information. (2) We also claim
that the importance of contextual information lies in its ability to capture the differences in how a
single LLM responds to queries across different tasks. Through Figures 3 and 4, we can observe that
certain LLMs exhibit significant differences in their performance across two different tasks, such
as Mixtral-8x7B (Jiang et al., 2024). These two examples indicate that the performance may vary
greatly on different LLMs and tasks. This suggests that in addition to understanding the capabilities
of LLMs, the router must also understand the differences and similarities of each task. However, as
these critical attributes of LLMs and tasks could not be sufficiently represented by their names or IDs,
an effective use of the contextual information that encompasses the interaction between task, query,
and LLM is needed.

2.3 GRAPHROUTER FRAMEWORK

Method Overview. As shown in Figure 5, GraphRouter first transforms the interaction data
among tasks, queries, and LLMs into a graph. Specifically, as shown in the right side of Figure 5, we
model tasks, queries, and LLMs in the left table as task nodes, query nodes, and LLM nodes, while

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ili

ty

Figure 2: The probability dis-
tribution of a small LLM
(LLaMA-3 (7b)) having a bet-
ter performance value than a
large LLM (LLaMA-3 (70b))
by t on the Alpaca dataset,
where t means the difference
in performance between the
small LLM and the large LLM
and t ∈ [−1, 1].

LLa
MA-3 (7

b)

Mixt
ral-8

x7
B

NousR
esearch

LLa
MA-2 (7

b)

Mist
ral-7

b

LLa
MA-3 (7

0b)

LLa
MA-3-Tu

rbo (8
b)

LLa
MA-3-Tu

rbo (7
0b)

Lla
ma-3.1-Tu

rbo (7
0b)

Qwen-1.5 (7
2b)

llm

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pe
rf

or
m

an
ce

Figure 3: Distribution of
the performance of different
LLMs in response to queries
on the Alpaca task. Specifi-
cally, we present a violin plot
illustrating the performance of
ten LLMs of varying sizes and
the dot in each distribution is the
median performance.

LLa
MA-3 (7

b)

Mixt
ral-8

x7
B

NousR
esearch

LLa
MA-2 (7

b)

Mist
ral-7

b

LLa
MA-3 (7

0b)

LLa
MA-3-Tu

rbo (8
b)

LLa
MA-3-Tu

rbo (7
0b)

Lla
ma-3.1-Tu

rbo (7
0b)

Qwen-1.5 (7
2b)

llm

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Pe
rf

or
m

an
ce

Figure 4: Distribution of
the performance of different
LLMs responding to queries
on the SQUAD task. In par-
ticular, the performance of ten
LLMs of varying sizes is dis-
played in a violin plot and the
dot in each distribution is the me-
dian performance.

Task Query LLM Performance Cost

Alpaca LLaMA-3 (7b) 0.19 103.8

Alpaca LLaMA-3 (70b) 0.21 467.1

GSM8K LLaMA-3 (7b) 0.00 230.1

GSM8K ? ? ?

Task Node

Query Node

LLM Node (observed)

(Effect /
Cost Edge)

(new)
?

Train Stage

Test Stage

AGG

Concat

Dot
product

Softmax

Translate to
Graph

L-th GNN Layer

Figure 5: Overview of GraphRouter methodology. GraphRouter first converts the interaction
data among tasks, queries, and LLMs into a graph. Specifically, as illustrated on the right side, tasks,
queries, and LLMs from the left table are represented as task nodes, query nodes, and LLM nodes,
respectively. Moreover, their relationships derived from the interaction data are modeled as edge
features. With this structure, we leverage a GNN to embed both node and edge features, ultimately
producing the probability distribution of the selected LLM.

the relationships derived from the interaction data are represented by edge features. We apply GNN
to embed the node and edge features and use them for training and testing.

Initialize node/edge features. As shown in Figure 5, we have three types of nodes (task node h
(l)
t ,

query node h
(l)
q , and LLM node h

(l)
m) and two types of edges (task-query edge wtq and LLM-query

edge wmq).

Given the inherent differences of task, query, and LLMs, during the initialization of their nodes,
we adopt different strategies. For the initialization of task nodes, we utilize an additional LLM,
such as GPT-4o, to generate descriptions of the tasks, and then encode the description to obtain its
embedding et. More specifically, we take the average output token embedding after feeding the
description into the moderate-size pre-trained language model (PLM), such as BERT (Devlin, 2018).
The initialization of query nodes is also obtained by embedding the query eq through the same PLM.
As for the initialization of LLM nodes, the traditional approach often initializes directly using the
name or ID of the LLM, which not only limits its ability to generalize to new LLMs but also omits
important background information. Here, we still adopt a prompt-based approach. We design prompts
for an LLM to describe the capabilities of each LLM. In addition, we also add information about the
cost of each LLM after the description. Then, similar to how we obtain the task’s embedding, we use
the same PLM to compute the initial embeddings el of the different LLMs. All the descriptions we
generate for different tasks and LLMs can be found in Appendix A.

As for the task-query edges, we assign a value of 1 for their initialization. For the initialization of
LLM-query edges, we jointly consider the performance and cost information in the interaction data,
and assign the concatenation of performance and cost as their initial features.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Predict via a heterogeneous GNN. We implement the predictive model fϕ over task nodes, query
nodes, and LLM nodes using a heterogeneous GNN, as shown in Figure 5. For aggregating different
types of nodes and edges, we use heterogeneous aggregation with different learnable weights. The
objective of the GNN is to learn expressive node embeddings h through an iterative weighted
aggregation of the local network neighborhoods. The l-th iteration of the GraphConv(·), or the node
embeddings update of the l-th layer, is represented as:

h
(l)
t = U

(l)
t CONCAT

(
MEAN

(
{RELU(W

(l)
t h(l−1)

q), q ∈ N (t)}
)
,h

(l−1)
t

)
, (1)

h(l)
q = U(l)

q CONCAT
(

MEAN
(
{RELU(w1[t∈Vt,m∈Vt]W

(l)
1[t∈Vd,m∈Vt]

h(l−1)
u , u ∈ N (v)}

)
,h(l−1)

q

)
,

(2)

h(l)
m = U(l)

m CONCAT
(

MEAN
(
{RELU(wT

mqW
(l)
m h(l−1)

q), q ∈ N (m)}
)
,h(l−1)

m

)
, (3)

where h(l) is the node embedding after l iterations, h
(l)
t ,h

(l)
q ,h

(l)
m have been initialized as

h
(0)
t ,h

(0)
q ,h

(0)
m = et, eq, em respectively as explained above, and N (v) denotes the direct neighbors

of v. 1[v ∈ Vd, u ∈ Vt] indicates the message type (whether from task to query, or LLM to query),
and U(l),W(l) are learnable parameters. In addition, w1[t∈Vt,m∈Vt] indicates that different edge
types correspond to different edge features; specifically, if it is from task to query, it is represented as
wtq , and from LLM to query, it is represented as wmq .

Following the update of the task, query, and LLM node embeddings, we obtain the query-task
combined embedding as h(l)

qt = MLP(CONCAT(h
(l)
t ,h

(l)
q)). We model the LLM selection problem

as an edge prediction problem and generate training data in the following way. We first determine
the best LLM for each query in the training set based on the performance (best reward described in
Sec 3.4) achieved by different LLMs and then set the edge labels of the query to other LLMs to 0
and the edge label of the query to the best LLM to 1. As such, LLM prediction can be made through
EdgePred(·) in the form of ŷlogits = MEAN

(
DOT(h

(l)
qt ,h

(l)
m)

)
. We have summarized the detailed

training process of GraphRouter in Algorithm 1, whose details are shown as follows. In addition,
in the testing of GraphRouter, we identify the LLM node that has maximum edge logits with the
query node as the best LLM, which can be computed as

ŷ = argmax
m

(
EdgePred(hqt, hm)

)
. (4)

Algorithm 1 Training of GraphRouter

Require: Dataset Dtrain = {(x, y)}. A parameterized heterogeneous GNN fϕ. Task-query edge
weights wtq and LLM-query edge weights wmq . Number of GNN layers L.

1: Initialize the embeddings of task nodes, query nodes, and LLM nodes, h(0)
t , h

(0)
q , h

(0)
m , using

PLM.
2: for each iteration i do
3: M ← SampleMiniEdgeBatch(Dtrain)

4: Mask the edges in Dtrain that are in M and obtain the labels of the edges in T
(i)
m

5: for l = 1 to L do
6: h

(l)
t ,h

(l)
q ,h

(l)
m ← GraphConv(h(l−1)

t ,h
(l−1)
q ,h

(l−1)
m ,wtq,wmq) with fϕ

7: ŷlogits ← EdgePred(h(l)
t ,h

(l)
q),h

(l)
m with fϕ

8: Backward
(

Criterion(ŷlogits, {{yj}j∈T
(i)
m
} ∈M)

)
GraphRouter for new LLMs setting. Traditional routers cannot generalize to new LLMs directly
under few-shots settings, as they require retraining through interactions with the query for each new
LLM. This is inadequate for keeping up with the rapidly evolving changes in LLMs in the real world.
To test our framework and baselines under this real-world setting, following (Cao et al., 2023; Fey
et al., 2023), we construct an auxiliary dataset with the interaction data of the new LLMs on queries
sampled uniformly from the training set. This auxiliary dataset is not involved in the training process
but serves as a few-shot examples during the testing phase.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 EXPERIMENTAL SETUP

3.1 DATASETS AND LLM DESCRIPTIONS

We select data from four different types of tasks, whose statistics are summarized in Table 2.

• Alpaca (Taori et al., 2023) is a hybrid question-answer (QA) dataset containing 52k samples used
for fine-tuning the Alpaca model. The dataset is automatically generated by the self-instruct
(Wang et al., 2022) framework, which iteratively prompts the language model to generate new
training instances given a few manually written instructions.

• GSM8K (Cobbe et al., 2021) evaluates the model’s ability for multi-step mathematical reasoning
with 8.5k linguistically diverse grade school math word problems.

• SQUAD (Rajpurkar, 2016) is a crowdsourced reading comprehension dataset based on Wiki
articles. It contains over 100k QA pairs connected to over 500 articles.

• Multi-News (Fabbri et al., 2019) is a benchmark on multi-document summarization. It consists of
56k news articles and summary pairs where the news articles are extracted from newser.com and
the summary is written by professional editors.

Furthermore, we introduced 10 LLMs of varying sizes into our problem, with their statistics shown
in Table 3. All of the LLMs and their token costs here are accessed through the Together API 1.

3.2 DATA PREPROCESSING AND SPLITTING
Table 2: Overview of Datasets.

Dataset Task Type Metric Cases

Alpaca Hybrid QA F1 600
GSM8K Reasoning Accuracy 600
SQUAD Reading Comprehension F1 600
Multi-News Summary F1 600

Given the above dataset and LLMs, we construct a
multi-task interaction dataset described in Sec 2.1.
Specifically, we combine all the datasets of four tasks
together first. For each query, we utilize ten LLMs
in Sec 3.1 to answer it and obtain the corresponding
response. Then the response is compared with its ground truth to get its performance using the metric
of each task described in Table 2. Furthermore, the cost is calculated with the number of input tokens
and output tokens and the cost of different LLMs in Table 3. Here we utilize GPT-2 as in (Chen et al.,
2023) to calculate the number of tokens.

After obtaining the multi-task interaction dataset, we split the dataset according to different experi-
mental settings. We mainly have two major settings. The first is the standard setting, where all LLMs
are visible in both the training and test sets, with some new queries appearing in the test set. The data
is divided into training, validation, and test sets in a ratio of 70% : 10%: 20%, based on different
queries. In the case of new LLM setting, we assume that the first six LLMs in Table 3 are observable,
while the remaining four are new LLMs. Therefore, based on the standard setting, we first remove
data related to the latter four LLMs from the training and validation sets, while keeping the test set as
it is in the standard setting. Furthermore, following (Cao et al., 2023; Fey et al., 2023), we construct
an auxiliary dataset with the interaction data of the four new LLMs on 80 queries sampled uniformly
from the training set. This auxiliary dataset is not involved in the training process but serves as a
few-shots during the testing phase.

3.3 BASELINE METHODS

We compare our GRAPHROUTER model with the following baselines. We first compare
GraphRouter with two rule-based baselines:

• Largest LLM always selects the largest LLM available.
• Smallest LLM always selects the smallest LLM available.

Then we compare GraphRouter with a prompt-based baseline:

• Prompt LLM incorporates the query, candidate models, and objectives (e.g., prioritizing effective-
ness) directly into the prompt, and feeds it into an external LLM (e.g., GPT-4) to select the most
suitable LLM from a pool of candidates.

1https://docs.together.ai/docs/inference-models

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Further, GraphRouter is compared with three representative routers for LLM selection:

• Hybrid LLM (Ding et al., 2024), when given a small LLM and a large LLM, trains a pre-trained
language model to assign queries to the small or large model. We use LLaMA-2 (7b) and Llama-
3.1-Turbo (70b) as our small and large LLM respectively, as they are the smallest and the largest
LLM available. We also replace DeBERTa (He et al., 2020) with RoBERTa (Liu, 2019) as the
pre-trained language model and observe better performance.

• FrugalGPT (Chen et al., 2023) utilizes a pre-trained language model to predict the score of the
generation result of all LLMs given a query, and then selects the LLM with the highest score within
a given cost. We also use RoBERTa (Liu, 2019) as the router’s backbone model.

• C2MAB-V (Dai et al., 2024) uses a bandit-based model for LLM selection, which regards each
LLM as an arm and implements an exploration mechanism to search for a better solution.

Finally, we set up a gold baseline as the optimal solution for LLM selection. The purpose of setting
up the baseline is to see how far GraphRouter is from the optimal solution.

• Oracle defines the theoretical upper bound of the reward, where each query has been routed to the
optimal LLM via oracle information.

3.4 METRICS Table 3: Statistics of different LLMs and
their costs on Together API.

LLM Size Cost per 1M tokens

LLaMA-3 (7b) 7b 0.2
Mixtral-8x7B 56b 0.6
NousResearch 34b 0.8
LLaMA-2 (7b) 7b 0.2
Mistral-7b 7b 0.2
LLaMA-3 (70b) 70b 0.9
LLaMA-3-Turbo (8b) 8b 0.2
LLaMA-3-Turbo (70b) 70b 0.9
Llama-3.1-Turbo (70b) 70b 0.9
Qwen-1.5 (72b) 72b 0.9

We utilize three metrics to evaluate the performance of
GraphRouter and baselines.

• Performance is to evaluate the average quality of
the responses across different queries given by each
method, which is introduced in Sec 3.2 and Table 2.

• Cost evaluates the average LLM inference cost when
responding to the queries, which is described in Sec
3.2.

• Reward is used to measure how well a method bal-
ances performance and cost. Different users may
have varying levels of emphasis on performance and
cost. Therefore, we define three scenarios: Per-
formance First, Balance, and Cost First, to cor-
respond to situations where users prioritize high performance, value both high performance
and low cost equally, or prioritize low cost, respectively. Specifically, to eliminate the influ-
ence of scale, we first normalize both performance and cost. Then, we define the score as
Reward = α · Performance− β · Cost. For the three scenarios, we set the values of α and β
to (1, 0), (0.5, 0.5), and (0.2, 0.8), respectively.

3.5 IMPLEMENTATION DETAILS

In the training stage, we set the graph neural network as a two-layer graph attention network, with a
32-dim hidden dimension. The batch size is 32, and the max training epoch is set to 1000. We use
Adam optimizer (Diederik, 2014) for model training and gradually decay the learning rate from 1e-3
to 0 with LambdaLR scheduler. We implement our proposed method using PyTorch2 and PyG3, and
all the experiments are conducted on a single NVIDIA A100 Tensor Core GPU. As for LLMs, we
rely on API calling from Together AI4 to obtain responses.

4 EXPERIMENTAL RESULTS

4.1 COMPARISON WITH EXISTING BASELINES.

As shown in Table 4, we compare GraphRouter with seven baselines in three scenarios. We can
observe that GraphRouter consistently and substantially surpasses existing routers, delivering

2 https://pytorch.org/
3 https://pytorch-geometric.readthedocs.io/en/latest/
4 https://www.together.ai/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Various Methods on Multi-task Interaction Dataset across Three
Distinct Performance-Cost Weight Scenarios. Bold and underline denote the best and second-best
results. All datasets are evaluated on Performance, Cost, and Reward. Each number is the average of
multiple rounds.

Scenario Performance First Balance Cost First
Performance Cost Reward Performance Cost Reward Performance Cost Reward

Largest LLM 0.431 0.871 0.431 0.431 0.871 -0.220 0.431 0.871 -0.701
Smallest LLM 0.279 0.031 0.279 0.279 0.031 0.124 0.279 0.031 -0.009

Prompt LLM 0.474 0.812 0.474 0.285 0.0551 0.115 0.283 0.108 -0.03

Hybrid LLM 0.510 0.871 0.510 0.470 0.451 0.009 0.276 0.151 -0.066
FrugalGPT 0.517 0.671 0.517 0.400 0.072 0.164 0.411 0.031 0.057
C2MAB-V 0.479 0.871 0.479 0.423 0.031 0.196 0.279 0.031 0.031

GraphRouter 0.539 0.725 0.539 0.448 0.031 0.209 0.446 0.031 0.064
Oracle 0.588 0.586 0.588 0.504 0.040 0.231 0.483 0.031 0.072

Table 5: Comparison of methods in the few-shot setting on Reward, Time Cost, and the
corresponding percentage Reward improvements and Time Cost reduction rate, relative to the
most costly method (C2MAB-V (Dai et al., 2024)).

Method Reward Reward Improvement(%) Time Cost Time Cost Reduction(%)
HybridLLM 0.01 -94.71 273.45 49.57
FrugalGPT 0.171 -9.52 63.15 88.35
C2MAB-V 0.189 0.00 542.25 0.00

GraphRouter (few-shots) 0.207 9.52 3.00 99.45
GraphRouter (Trained) 0.219 15.87 30.00 94.47

a minimum effect improvement of 12.28% on metric Reward compared to the strongest baselines.
Additionally, we observe that GraphRouter achieves at least 88.89% of the optimal solution (Table
4, row Oracle), further demonstrating the superiority of our framework. On the other hand, compared
with the two rule-based LLM, GraphRouter achieves a better trade-off between Performance and
Cost, therefore achieving a higher effect on Reward. Analyzing the effect of Prompt LLM, Hybrid
LLM (Ding et al., 2024), and FrugalGPT (Chen et al., 2023), we demonstrate that without sufficient
contextualized information, even LLM and trained moderate-size LM struggle to understand the query
and candidates LLM effectively, even if we ignore their high inference costs. These comparisons and
results validate our claim that effective usage of contextual information is crucial for selecting the
optimal LLM.

4.2 GENERALIZATION ABILITY TO NEW LLMS

To validate the generalization ability of GraphRouter when facing new LLMs, we conduct
experiments as described in Sec 3.2 in scenario Balance. To compare with other baselines, we add
the auxiliary dataset into their training dataset. Specifically, we compare GraphRouter (few-shots)
with HybridLLM, FrugalGPT, C2MAB-V, and GraphRouter (trained) on Reward and time cost
(training time + inference time). We report our results in Table 5. We can observe that in comparison
to the most costly C2MAB-V (Dai et al., 2024), GraphRouter (few-shots) not only achieves
substantial performance improvements in Reward by almost 10% but also greatly reduces Time
Cost by over 99%. The amount of Reward Improvement and Time Cost Reduction has significantly
surpassed those of other baselines. Additionally, compared to GraphRouter (trained), our approach
significantly reduces time cost with only a slight performance loss. These observations demonstrate
that GraphRouter is both effective and efficient in generalizing to new LLMs.

4.3 ABLATION STUDIES

How does GraphRouter perform with varying sizes of GNN? The size of a GNN is an important
factor to consider when designing GNN algorithms. It not only affects the performance of the GNN
but also introduces additional computational overhead if the size is too large. To find an optimal GNN
size for GraphRouter, we explored sizes ranging from 16 to 80, as shown in Figure 6. As depicted

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

16 32 48 64 80
Size

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Re
wa

rd

Figure 6: The Reward of GraphRouter
varies with the input size of the GNN.
Here, we set our in-channels equal to out-
channels. As observed in the figure, the Re-
ward of GraphRouter initially increases
and then decreases, achieving the highest Re-
ward when the size is 32.

0 1 2 3 4 5
Number of Layer

0.10

0.12

0.14

0.16

0.18

0.20

Re
wa

rd

Figure 7: The Reward of GraphRouter
varies with the number of GNN layers.
As shown in the figure, the Reward of
GraphRouter initially increases and then de-
creases, reaching its highest Reward when the
number of layers is 2.

in the figure, the Reward of GraphRouter initially improves as the size increases, reaching its peak
at a size of 32, after which it starts to decline.

What is the impact of different numbers of GNN layers on GraphRouter’s effectiveness?
The number of GNN layers has a significant impact on the expressiveness of the GNN. A shallow
GNN struggles to learn deep contextual information, whereas an overly deep GNN can lead to
issues such as over smoothing and overfitting. Moreover, increasing the number of layers also raises
the computational cost. To determine the optimal number of GNN layers for GraphRouter, we
conduct an exploration with the number of layers ranging from 0 to 5, as shown in Figure 7. As
depicted in the figure, the Reward of GraphRouter initially improves with more layers but then
declines, achieving its highest Reward when the number of layers is 2.

5 ADDITIONAL RELATED WORKS

LLM selection. With the scaling of the number of parameters in LLMs, their inference cost
is also rapidly increasing. To optimize inference cost, several works have proposed using model
switching to mitigate this issue. When given a small and a large LLM, Zhu et al. (2023) fine-tune a
pre-trained language model as the model router to predict whether using a small LLM is sufficient.
HybridLLM (Ding et al., 2024) improves on this by transforming training data to compensate for the
influence of imbalanced labels. Other approaches move beyond choosing between two LLMs and
introduce settings where multiple LLMs are present. Chen et al. (2023) train the router to predict
the reliability score given a query and an LLM index. Šakota et al. (2024) generalize the router’s
training objective to accommodate the scenario where additional cost or performance constraints
exist. Stripelis et al. (2024) examine the effectiveness of lighter routers built upon the k-nearest
neighbors algorithm or Multilayer Perceptrons. C2MAB-V (Dai et al., 2024) employs a bandit-based
model for LLM selection, treating each LLM as an arm and incorporating an exploration mechanism
to find an improved solution. Different from previous approaches, where the router only learns from
query-model interaction, our GRAPHROUTER fully utilizes the information in the training data by
jointly modeling the query-model, query-query, and model-model relationship. This allows us to
learn effective representations for tasks, queries, and models, enabling better generalizability.

Graph for modeling relationships. Graphs have demonstrated great potential in modeling complex
relationships (Fey et al., 2023; Cao et al., 2023; Gao & Xu, 2020; Chen et al., 2022; Wu et al.,
2022b; Yang et al., 2021). Solving relational data with graphs often involves extracting nodes and
edges from the data, and then modeling their relationships with embeddings. Traditional graph
algorithms, such as label propagation (Xie et al., 2022; Zhu & Ghahramani, 2002), directly utilize
edge relationships to propagate known labels to target nodes. With the advancement of deep learning,
graph neural networks (GNNs) have become the more popular approach for researchers to model
relationships within data. They are also found to have widespread application in fields such as

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

recommendation systems (Min et al., 2022) and social networks (Wu et al., 2020). GNNs can be
broadly classified into Message Passing Neural Networks (MPNNs), which include models like GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2017), as
well as non-MPNN architectures (Wu et al., 2022a; Ying et al., 2021). Additionally, Heterogeneous
Graph Neural Networks (HeterGNNs) (Peng et al., 2019; Hu et al., 2020; Schlichtkrull et al., 2017)
and Heterogeneous Graph Attention Networks (HGATs) (Wang et al., 2019) have also been proposed
to handle more complex graph data. In recent years, researchers have begun exploring the zero-
shot or few-shot capabilities of GNNs (Fey et al., 2023; Cao et al., 2023; Gao & Xu, 2020; Chen
et al., 2022), aiming to address more complex real-world challenges, such as the cold start problem
in recommendation systems. Building on these studies, we incorporate GNNs’ powerful ability
to represent contextual heterogeneous relationships and their zero-shot capabilities into the LLM
selection problem.

6 CONCLUSION AND DISCUSSION

Conclusion. We present GraphRouter, a graph inductive framework for LLM routing during
inference with multiple LLMs. This work is the first to address the LLM routing problem by
reframing it as an edge prediction task between query nodes and LLM nodes. Using graph structure,
we fully capture contextual information from prior interaction data to learn effective task, query,
and graph representations. Through our experiments on the combined dataset from four open-
domain QA datasets, and with three different application scenarios, we demonstrated the superiority
of GraphRouter over competitive LLM selection baselines and showed that our framework is
on par with the ideal ”God’s-eye view” solution. Beyond traditional settings, we also tested our
framework in a more challenging setting where new LLMs were introduced during test time, and we
demonstrated GraphRouter’s strong generalization ability compared to previous baselines. We
hope that GraphRouter, along with our approach of incorporating interaction data through graphs,
will facilitate future research on LLM routing.

Limitations This work primarily serves as exploratory work to validate the idea of how modeling
past interaction data in a graph could enhance the process of LLM selection. We acknowledge
that leveraging more complex graph signals, such as paths, or the taxonomy of LLMs (e.g., family
trees like LLaMA2 → LLaMA3 → LLaMA3.1 (Touvron et al., 2023)), could further improve
GraphRouter’s performance, but that is beyond the scope of this paper, and we leave it for future
work.

Future Work Some other interesting questions to explore in the future include: 1) When answering
complex queries, prompting methods like Chain-of-Thought (Wei et al., 2022), Tree-of-Thought
(Yao et al., 2024) are also widely used to enhance the reasoning ability of LLMs. Given the vast
number of these methods, predicting the generation result and selecting the best one remains a great
challenge. On the other hand, selecting the prompting method is similar to selecting the best LLM
for inference, as we are both aiming to predict the generation result based on past interaction data. As
a result, it is interesting to explore whether GraphRouter could also be adapted to this task. 2) In
a multi-agent system, it is critical to choose the appropriate LLM for each module on a specific query
and task. It would be valuable to conduct experiments on whether an inductive graph framework like
GraphRouter could also excel on this challenging task, where multiple LLMs are being selected
simultaneously. 3) How to enable LLMs to better understand numerical differences is a direction
for future consideration in modeling LLM features more effectively. Using current LLMs to model
and understand numerical information like token pricing and context length (Romera-Paredes et al.,
2024; Ahn et al., 2024; Imani et al., 2023; Lewkowycz et al., 2022) is still an open question. These
numerical details are significant factors affecting the performance of LLM selection.

REFERENCES

Toufique Ahmed, Christian Bird, Premkumar Devanbu, and Saikat Chakraborty. Studying llm
performance on closed-and open-source data. arXiv preprint arXiv:2402.15100, 2024.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrew Arnold, Ramesh Nallapati, and William W Cohen. A comparative study of methods for
transductive transfer learning. In Seventh IEEE international conference on data mining workshops
(ICDMW 2007), pp. 77–82. IEEE, 2007.

Fu Bang. Gptcache: An open-source semantic cache for llm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pp. 212–218, 2023.

Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations
between data and tasks. arXiv preprint arXiv:2303.07666, 2023.

Lihu Chen and Gaël Varoquaux. What is the role of small models in the llm era: A survey. arXiv
preprint arXiv:2409.06857, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiming Chen, Ziming Hong, Guosen Xie, Qinmu Peng, Xinge You, Weiping Ding, and Ling Shao.
Gndan: Graph navigated dual attention network for zero-shot learning. IEEE transactions on
neural networks and learning systems, 35(4):4516–4529, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xiangxiang Dai, Jin Li, Xutong Liu, Anqi Yu, and John Lui. Cost-effective online multi-llm selection
with versatile reward models. arXiv preprint arXiv:2405.16587, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning on
relational databases. arXiv preprint arXiv:2312.04615, 2023.

Junyu Gao and Changsheng Xu. Ci-gnn: Building a category-instance graph for zero-shot video
classification. IEEE Transactions on Multimedia, 22(12):3088–3100, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pp. 2704–2710, 2020.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Thorsten Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the 20th
international conference on machine learning (ICML-03), pp. 290–297, 2003.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR (Poster). OpenReview.net, 2017.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Junyi Liu, Liangzhi Li, Tong Xiang, Bowen Wang, and Yiming Qian. Tcra-llm: Token com-
pression retrieval augmented large language model for inference cost reduction. arXiv preprint
arXiv:2310.15556, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
Biogpt: generative pre-trained transformer for biomedical text generation and mining. Briefings in
bioinformatics, 23(6):bbac409, 2022.

Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Peilin Zhao, Junzhou Huang, Da Luo, Kangyi
Lin, and Sophia Ananiadou. Masked transformer for neighhourhood-aware click-through rate
prediction. CoRR, abs/2201.13311, 2022.

Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, and Philip S Yu.
Fine-grained event categorization with heterogeneous graph convolutional networks. arXiv preprint
arXiv:1906.04580, 2019.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, pp. 606–615, 2024.

M Schlichtkrull, TN Kipf, P Bloem, R Van Den Berg, I Titov, and M Welling. Modeling relational
data with graph convolutional networks. arxiv. arXiv preprint arXiv:1703.06103, 2017.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. arXiv preprint arXiv:2212.13138, 2022.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Shah, Han Jin, Yuhang Yao,
Salman Avestimehr, and Chaoyang He. Polyrouter: A multi-llm querying system. arXiv preprint
arXiv:2408.12320, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022a.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022b.

Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks
with markov random field reasoning for social spammer detection. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 1054–1061, 2020.

Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
classification. IEEE Transactions on Neural Networks and Learning Systems, 34(11):9287–9301,
2022.

Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S Yu. Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th
international ACM SIGIR conference on Research and development in information retrieval, pp.
2141–2145, 2021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Yaolun Zhang, Yinxu Pan, Yudong Wang, Jie Cai, Zhi Zheng, Guoyang Zeng, and Zhiyuan Liu. Py-
bench: Evaluating llm agent on various real-world coding tasks. arXiv preprint arXiv:2407.16732,
2024.

Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Barrett, Michael I Jordan, and Jiantao Jiao. On op-
timal caching and model multiplexing for large model inference. arXiv preprint arXiv:2306.02003,
2023.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. ProQuest number: information to all users, 2002.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DESCRIPTION FOR TASKS AND LLMS

Using descriptions generated by LLM and embeddings derived from BERT as initial node embeddings
for GNNs enhances their expressiveness and generalization capabilities. Here, we have listed
descriptions of different tasks and various LLMs obtained using GPT-4o. Specifically, GPT-4o
provides insights into the unique characteristics and challenges of different tasks, as well as the size,
cost, and particular strengths of different LLMs. The detailed descriptions are shown in the table
below.

Table 6: Description of Alpaca task.

The Alpaca dataset is designed for instruction-following tasks, where the model is required to
generate coherent and contextually appropriate responses to given instructions or prompts. It
focuses on understanding diverse user requests and providing informative and accurate outputs
based on those instructions.

Table 7: Description of GSM8K task.

The GSM8K dataset is tailored for mathematical problem-solving tasks. It consists of natural
language math problems that require the model to comprehend the problem statement, apply
the correct mathematical operations, and provide the solution. The primary challenge lies in
both parsing complex language and performing accurate calculations.

Table 8: Description of SQUAD task.

The SQuAD dataset is focused on question-answering tasks, where the model is given a
passage of text and needs to extract or generate a precise answer to a question based on
the content of the passage. The dataset emphasizes comprehension, retrieval of relevant
information, and concise answer generation.

B EXPERIMENTS ON DIFFERENT DATASETS AND API SETTINGS

B.1 GENERALIZATION CAPABILITY ON LARGER DATASETS

To validate whether our method is applicable to additional tasks and LLM models, we expanded upon
the dataset from Section 3.1 by adding two new datasets. The first, HumanEval (Chen et al., 2021), is a
dataset that measures LLMs’ coding capabilities, specifically consisting of 164 original programming
problems that assess language comprehension, algorithms, and simple mathematics, with some
problems comparable to basic software interview questions. The second dataset is HotpotQA (Yang
et al., 2018), a question answering dataset with 113k entries featuring natural, multi-hop questions
with strong supervision for supporting facts to enable more explainable question answering systems.
Similarly, we summarized the metrics and data volume for these datasets under our experimental
settings, as shown in Table 20. Additionally, we incorporated four more LLM models from the
Together AI API, based on the LLM models in Section 3.1: Qwen-2 (72b), Code Llama (34b),
Mixtral-8x22B, and Upstage. Likewise, the size and cost information of these LLMs are summarized
in Table 21. Further, similar to section 3.2, we constructed a dataset based on the extended dataset
and the interaction data from LLMs, which was then divided into training, validation, and test sets
in a ratio of 70% : 10% : 20%, based on different queries. We compared the performance of
GraphRouter with other baselines on this extended dataset and reported the experimental results
in Table 22. We observed that GraphRouter improved the Reward by at least 12.3% compared to

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 9: Description of Multi-News task.

The Multi-News dataset is aimed at text summarization tasks. It contains multiple news articles
on the same topic, and the model’s objective is to generate a concise and comprehensive
summary that integrates information from all the articles. The challenge is to distill key points
while maintaining coherence and avoiding redundancy.

Table 10: Description of LLaMA-3 (7b).

This is a relatively small-sized model (7 billion parameters) designed for general-purpose
language tasks. Its low cost per million tokens (0.2) makes it an affordable option for many
applications requiring quick responses with moderate accuracy.

the baselines, confirming that GraphRouter’s approach can be generalized to more datasets and
other LLMs.

B.2 DISCRIMINATIVE ABILITY FOR SIMILAR LLMS

To explore whether GraphRouter can effectively model and differentiate between similar LLMs,
we extracted data related to the LLaMA series of LLMs from the interaction dataset introduced in
section 3.2 for training and prediction. Specifically, we extracted interaction data for LLMs including
LLaMA-3 (7b), LLaMA-2 (7b), LLaMA-3 (70b), LLaMA-3-Turbo (8b), LLaMA-3-Turbo (70b), and
Llama-3.1-Turbo (70b). We compared the performance of GraphRouter and the best-performing
baseline, FrugalGPT, on this dataset and reported the specific results in Table 23. We observed
that, compared to FrugalGPT, GraphRouter improved the Reward by at least 10.8%. These
observations demonstrate that GraphRouter can effectively capture differences in the capabilities
of different LLMs through interactions, achieving good results.

C ADDITIONAL ABLATION STUDY

C.1 EFFECTS OF VARYING EDGE FEATURES

To investigate the performance of the Reward metric under different combinations of edge features
across three scenarios, we established three different edge feature combinations, in addition to
GraphRouter itself. Plus length and Plus time respectively represent the addition of token length
and LLM inference time to the GraphRouter base edge features. Plus length & time represents the
simultaneous addition of both aforementioned edge features to GraphRouter. As shown in Table
24, we compared the Reward values of these four edge feature combinations across three scenarios.
We found that adding token length or LLM inference time to the edge features significantly enhances
the performance in the Cost First scenario, while in the other two scenarios, the gains are minimal or
even result in a performance decline. This may be because, in the Performance First and Balance
scenarios, Performance significantly contributes to Reward, and both token length and LLM inference
time are more closely related to the Cost metric. Therefore, adding these edge features in these
scenarios creates certain redundancies, making it difficult to enhance performance. Conversely, in the
Cost First scenario, since Cost has a greater impact on Reward, incorporating token length and LLM
inference time into the edge features better aids prediction.

C.2 INFLUENCE OF TASK-QUERY RELATIONSHIPS

We attempted to propose a method based on embedding similarity for task-query edge relationships,
called Edge-similarity. Compared to the GraphRouter, it replaces the original task-query edge
weights, which were uniformly set to 1, with similarity values between the text embeddings of
different tasks and the query’s embedding. As shown in Table 25, we compared the performance

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Description of Mixtral-8x7B.

With a combined size of 56 billion parameters, this model aims to provide stronger language
modeling capabilities. Its cost per million tokens is 0.6, reflecting its balance between
performance and affordability for more complex tasks.

Table 12: Description of NousResearch (34b).

A mid-sized model with 34 billion parameters, suitable for handling moderately complex
language tasks. Its cost is higher at 0.8 per million tokens, indicating a greater computational
demand, likely due to its enhanced capabilities over smaller models.

of GraphRouter and Edge-similarity in terms of Reward across three scenarios. We found that
introducing this kind of task-query edge information did not improve performance on the Reward
metric. This may be due to the more complex semantic relationships between queries and tasks
that require modeling through more sophisticated relation extraction models rather than through
embedding similarity. The focus of our paper is not on this aspect, so we leave this topic for future
research.

C.3 CONSEQUENCES OF ADJUSTING LEARNING RATES

To explore the impact of different learning rates on the Reward of GraphRouter, we selected
five different learning rates and compared their effects on Reward in the Balance scenario while
keeping other hyperparameters consistent. As can be observed from Table 26, the Reward generally
shows a trend of first increasing and then decreasing as the learning rate increases, achieving the best
performance when the learning rate is 1e-4.

C.4 IMPACT OF DIFFERENT GNN ARCHITECTURES

We replaced the GNN in GraphRouter with a lightweight SGC (Wu et al., 2019) to explore its
effectiveness in the LLM selection task. Specifically, we conducted experiments in the Balance
scenario and compared the performance of SGC across different proportions of the training set, as
shown in Table 27. We found that under completely zero-shot conditions, the performance of SGC is
relatively poor. As the proportion of the training set increases, the performance of SGC improves.
When the training data ratio reaches 80%, it achieves 91% of the performance of GraphRouter
with a full training set. Further, under a full training set condition, the performance of SGC is very
close to that of GraphRouter. These observations validate the potential of the lightweight GNN
framework, and we will conduct further research and discussion in future work.

D ZERO-SHOT CAPABILITIES EXPLORATION OF GRAPHROUTER

To explore the impact of inner edges within LLM nodes on the LLM selection problem, we experi-
mented with the proposed LLM-link method. Specifically, LLM-link connects nodes within the same
size or the same LLM series (such as those within the LLaMA series). We compared the performance
of LLM-link and GraphRouter across three scenarios, as shown in Table 28. We observed that
adding inner edges to LLM nodes actually impaired the performance of the GraphRouter. This
may be because, in settings where all LLMs are observable, the similarities and differences in capa-
bilities of all LLMs can be captured through extensive message passing via query nodes, task nodes,
and their interaction edges, making these inner edges of LLMs redundant.

However, inspired by recommendation systems that often rely on the social networks of new and
old users to address the cold start problem of new users, we considered using the addition of inner
edges within LLM nodes to enable zero-shot capabilities for new LLMs in GraphRouter. Based

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Description of LLaMA-2 (7b).

A compact model at 7 billion parameters, it offers similar capabilities and pricing to LLaMA-3
(7b) at a cost of 0.2 per million tokens. It’s an efficient choice for tasks requiring decent
performance without high computational costs.

Table 14: Description of Mistral-7b.

With 7 billion parameters, Mistral-7b is optimized for lightweight tasks, balancing speed and
efficiency. Its cost per million tokens is 0.2, making it cost-effective for standard use cases
without the need for complex computations.

on this, we followed the training data settings described in section 4.2, without the need for few-shots
data, to conduct zero-shot LLM selection experiments. We set the first six LLMs in Table 3 as
visible during training, while the last four are used solely for zero-shot experiments. We connected
nodes within the same size or LLM series and conducted zero-shot experiments using this version of
GraphRouter in the Balance scenario, as shown in Table 29. We observed that under the zero-shot
setting, GraphRouter (zero-shot) not only had an extremely low time cost but also approached the
reward of the strongest baseline, C2MAB-V, in this scenario. All these findings demonstrate the great
potential of modeling inner links of LLM nodes for the zero-shot capabilities of the GraphRouter.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 15: Description of LLaMA-3 (70b).

A larger variant of LLaMA-3, this model has 70 billion parameters, providing advanced capa-
bilities for complex tasks. Its cost per million tokens is 0.9, indicating its higher computational
demand and enhanced performance.

Table 16: Description of LLaMA-3-Turbo (8b).

A variant optimized for speed and efficiency with 8 billion parameters. Its cost per million
tokens is only 0.2, suggesting that it is designed to handle tasks quickly while being highly
cost-effective.

Table 17: Description of LLaMA-3-Turbo (70b).

This model, at 70 billion parameters, is tailored for high performance with an emphasis on
efficiency. The cost is 0.9 per million tokens, reflecting its advanced capabilities for a broad
range of tasks requiring more computation.

Table 18: Description of Llama-3.1-Turbo (70b).

Large model with 70 billion parameters, likely to offer strong capabilities for various language
tasks. Its cost is also 0.9 per million tokens, suggesting similar performance and computational
needs as other 70b models.

Table 19: Description of Qwen-1.5 (72b).

With 72 billion parameters, Qwen-1.5 is among the largest models in the list, designed for
high-complexity tasks. Its cost per million tokens is 0.9, making it comparable to other
high-performance models in terms of both capability and expense.

Table 20: Overview of extended datasets.

Dataset Task Type Metric Cases

Alpaca Hybrid QA F1 600
GSM8K Reasoning Accuracy 600
SQUAD Reading Comprehension F1 600
Multi-News Summary F1 600
HumanEval Code Pass@1 600
HotpotQA Multi-hop QA EM 600

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 21: Statistics of larger LLMs set and their costs on Together API.

LLM Size Cost per 1M tokens

LLaMA-3 (7b) 7b 0.2
Mixtral-8x7B 56b 0.6
NousResearch 34b 0.8
LLaMA-2 (7b) 7b 0.2
Mistral-7b 7b 0.2
LLaMA-3 (70b) 70b 0.9
LLaMA-3-Turbo (8b) 8b 0.2
LLaMA-3-Turbo (70b) 70b 0.9
Llama-3.1-Turbo (70b) 70b 0.9
Qwen-1.5 (72b) 72b 0.9
Qwen-2 (72b) 72b 0.9
Code Llama (34b) 34b 0.8
Mixtral-8x22B 176b 1.2
Upstage 11b 0.3

Table 22: Comparison of various methods on large multi-task interaction dataset across Three
Distinct Performance-Cost Weight Scenarios. . Bold denotes the best results. Each metric reflects
average values from multiple evaluation rounds.

Model Performance First Balance Cost First
Performance Cost Reward Performance Cost Reward Performance Cost Reward

Largest LLM 0.321 0.611 0.321 0.321 0.611 -0.145 0.321 0.611 -0.425
Smallest LLM 0.180 0.018 0.180 0.180 0.018 0.081 0.180 0.018 0.022

Prompt LLM 0.260 0.654 0.260 0.180 0.026 0.077 0.184 0.024 0.018

Hybrid LLM 0.350 0.611 0.350 0.311 0.256 0.028 0.184 0.103 -0.046
FrugalGPT 0.277 0.357 0.277 0.259 0.143 0.058 0.272 0.034 0.027
C2MAB-V 0.254 0.366 0.254 0.295 0.122 0.087 0.261 0.036 0.023

GraphRouter 0.393 0.220 0.393 0.297 0.052 0.122 0.299 0.018 0.046
Oracle 0.432 0.429 0.432 0.432 0.398 0.171 0.330 0.018 0.052

Table 23: Comparison of various methods on LLaMA-series dataset. Bold denotes the best results.
Each metric reflects average values from multiple evaluation rounds.

Model Performance First Balance Cost First
Performance Cost Reward Performance Cost Reward Performance Cost Reward

FrugalGPT 0.382 0.299 0.382 0.367 0.043 0.162 0.372 0.030 0.050

GraphRouter 0.422 0.307 0.422 0.416 0.032 0.192 0.416 0.032 0.058
Oracle 0.489 0.376 0.489 0.459 0.051 0.204 0.436 0.032 0.062

Table 24: Impact on Reward with different edge features. We compared the Reward metric under
four different combinations of edge features across three scenarios.

Model Performance First Balance Cost First
GraphRouter 0.5390 0.2090 0.0640
Plus length 0.5283 0.2099 0.0660
Plus time 0.5245 0.2097 0.0663
Plus length & time 0.5343 0.2106 0.0679

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 25: Comparison of GraphRouter and Edge-similarity Across Different Scenarios Focusing
on Reward. This table evaluates reward variations between two models under three distinct scenarios.
Each number is formatted to three decimal places for precision.

Model Performance First Balance Cost First
GraphRouter 0.539 0.209 0.064
Edge-similarity 0.510 0.192 0.054

Table 26: Reward values of different learning rates.

Learning Rate 1e-1 1e-2 1e-3 1e-4 1e-5

Reward 0.0725 0.0639 0.0964 0.208 0.152

Table 27: Reward values for SGC corresponding to various training data ratios.

Training Data Ratio 0% 40% 80% 100%

Reward 0.0692 0.154 0.19 0.203

Table 28: Comparison of GraphRouter and LLM-link across different scenarios focusing on
Reward. This table evaluates reward variations between two models under three distinct scenarios.
Each number is formatted to three decimal places for precision.

Model Performance First Balance Cost First
GraphRouter 0.539 0.209 0.064
LLM-link 0.530 0.192 0.061

Table 29: Comparison of methods in the zero-shot and few-shot setting on Reward, Time Cost,
and the corresponding percentage Reward improvements and Time Cost reduction rate, relative
to the most costly method (C2MAB-V (Dai et al., 2024)). The experiment is conducted in the
Balance scenario.

Method Reward Reward Improvement(%) Time Cost Time Cost Reduction(%)
HybridLLM 0.01 -94.71 273.45 49.57
FrugalGPT 0.171 -9.52 63.15 88.35
C2MAB-V 0.189 0.00 542.25 0.00

GraphRouter (zero-shot) 0.182 -3.7 1.00 99.82
GraphRouter (few-shots) 0.207 9.52 3.00 99.45
GraphRouter (Trained) 0.219 15.87 30.00 94.47

20

	Introduction
	GraphRouter: Graph-based Router for LLM Selection
	Preliminaries
	Motivating Examples
	GraphRouter Framework

	Experimental Setup
	Datasets and LLM Descriptions
	Data Preprocessing and Splitting
	Baseline Methods
	Metrics
	Implementation Details

	Experimental Results
	Comparison with existing baselines.
	Generalization ability to new LLMs
	Ablation Studies

	Additional Related Works
	Conclusion and Discussion
	Description for tasks and LLMs
	Experiments on different datasets and API settings
	Generalization capability on larger datasets
	Discriminative ability for similar LLMs

	Additional ablation study
	Effects of Varying Edge Features
	Influence of Task-Query Relationships
	Consequences of Adjusting Learning Rates
	Impact of Different GNN Architectures

	Zero-Shot Capabilities Exploration of GraphRouter

