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Abstract: Language-based robot control is a powerful and versatile method to
control a robot manipulator where large language models (LLMs) are used to rea-
son about the environment. However, the generated robot motions by these con-
trollers often lack safety and performance, resulting in jerky movements. In this
work, a novel modular framework for zero-shot motion planning for manipulation
tasks is developed. The modular components do not require any motion-planning-
specific training. An LLM is combined with a vision model to create Python
code that interacts with a novel path planner, which creates a piecewise linear
reference path with bounds around the path that ensure safety. An optimization-
based planner, the BoundMPC framework [1], is utilized to execute optimal, safe,
and collision-free trajectories along the reference path. The effectiveness of the
approach is shown on various everyday manipulation tasks in simulation and ex-
periment, shown in the video at www.acin.tuwien.ac.at/42d2.
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1 Introduction
The rise of large language models (LLMs) is not just a technological advancement, but a signifi-
cant step towards enabling robots to understand and reason about the world. This development has
practical implications, as it allows for the simplified use of robots in everyday tasks and unseen envi-
ronments. Non-expert users can now control robots using natural language, which is a major stride
in human-robot interactions. This technology is particularly important in enabling robots to coop-
erate and help humans, such as in household tasks or robot-aided medical care. The generalization
capabilities of LLMs simplify the process of conveying instructions from a user to a robot, which
should act according to these instructions. However, transforming this language understanding into
safe, performant robotic motions remains an open topic with many possible solution approaches.

This research tackles the crucial issue of translating human-generated instructions into safe and
executable robotic actions. Previous studies have proposed various methods, including lexical anal-
ysis [2], step-by-step language instructions [3, 4], translation of language instructions into program
code [5, 6, 7], and end-to-end learning for low-level robot actions [8]. While these approaches can
accomplish the given tasks, they often fall short in terms of robot motion performance, leading to
jerky movements [5, 8, 9] or reliance on predefined motion primitives [10, 4], which restricts robot
motions to a predefined set of skills. To overcome these limitations, [11, 12] suggests learning
discrete Cartesian waypoints and utilizing existing robot motion planners to traverse them. How-
ever, this necessitates training a neural network for each task, which is computationally intensive
and lacks generalizability across different tasks. Moreover, the waypoint sequences require training
data, which is challenging to provide. This research addresses these issues by proposing a modu-
lar motion planner that seamlessly integrates with large language models, resulting in smooth and
performant robot trajectories that generalize well across tasks.

The controllers of robot manipulators operate at high-frequency (≥ 1 kHz) to control the input
torques of the robot joints. In contrast, human-generated instructions are high-level plans provided
at a significantly lower frequency.
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Figure 1: Overview of proposed modular motion planning framework.

Bridging this gap between high-level plans and low-level control requires considering various cog-
nitive, visual, spatial, and robotic requirements. Our approach tackles this challenge with a modular
architecture, see Fig. 1. This architecture includes an LLM to interpret human instructions, a visual
model to localize and reason about objects in the scene, a 3D information model to exploit spatial
data, a path planner to create Cartesian reference paths with collision-free bounds, and the model
predictive path-following concept BoundMPC [1] to execute a safe and efficient robot trajectory
along the reference path.

The generalization capabilities of the LLM can translate complex human-generated instructions into
program code to communicate robot behavior to the underlying modules. However, it cannot directly
deal with collision avoidance or the robot's kinematic and dynamic constraints. The LLM instructs
a path planner to find feasible collision-free paths toward different goals, like objects or locations in
the scene, which are specified from a zero-shot visual model [13]. The 3D information of the scene
is used to construct a graph of convex collision-free sets, which is the basis for planning a Cartesian
reference path. Based on these sets, the bounds around the reference paths are defined to avoid
collisions with the environment. The predictive path-following controller BoundMPC [1] guides the
robot towards the goal. BoundMPC computes and executes locally optimal trajectories in real-time
to follow the reference path within the given bounds. Splitting path and trajectory planning has the
advantage that no global trajectory optimization is needed, allowing shorter planning times. The
convex-set-based path planner allows simple interaction with the generalization capabilities of the
LLM, and the optimization-based trajectory planner BoundMPC creates fast and smooth trajectories.

The main contribution of this work is a novel modular motion planning pipeline. This pipeline com-
prises a path planner based on convex sets, which is a unique approach, as well as the interfaces of
this planner with an overlaying learning-based task planner, i.e., a pre-trained LLM and a pre-trained
vision model, and the underlying model predictive trajectory planner BoundMPC. This unique com-
bination allows reasoning in Cartesian space by leveraging the strength of learning-based models
deeply integrated with smooth and safe optimization-based motion planning in the joint space. The
capability to create smooth, performant trajectories for unseen tasks is demonstrated in simulation
and experiment by using a robot manipulator, showcasing the effectiveness of this approach. The
main novelties of the proposed approach can be summarized as follows:

1. The modular motion planning framework can plan smooth, safe, and performant motions
based on natural language instructions. This framework does not rely on motion primitives
but generates via-points and task-specific path constraints.

2. A convex-set-based Cartesian path planner with Cartesian bounding functions describes the
obstacle-free region around the path. This builds a crucial component for interfacing the
learning-based task planner with the optimization-based trajectory planner BoundMPC.

2 Related Works
The proposed work falls in task and motion planning (TAMP) [14, 15]. TAMP is concerned with
breaking down a complex task into, e.g., motion instructions for a robot [16, 17, 18]. Specifically,
this work deals with the manipulation among movable objects planning [19]. A recent and impor-
tant subfield is language-based motion planning, where tasks are specified as natural language
instructions and are translated to executable robot trajectories. Task understanding and ordering are
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assumed to happen within the language model. Extracting information from language has been stud-
ied extensively for general applications [20, 21, 22] and specifically for robots [23, 3, 24, 25, 2, 26].
These language-grounding tools can be applied to many problems, such as learning reward func-
tions in reinforcement learning [27, 28], instructing intelligent agents to obtain action policies [29],
or communicating domain knowledge [30]. This work focuses on grounding task instructions for
robotic manipulation tasks [5, 9]. In order to successfully plan motions for a manipulator, the lan-
guage instruction has to be grounded with visual information. The authors in [24] use a textual
description of the scene within a language model. More advanced works [31, 25, 12, 32] use image
embeddings in combination with language embeddings as inputs for a network. Training these net-
works for robotic tasks is computationally expensive and requires large datasets. Another approach
combines an LLM for language understanding and a vision model to correlate the language features
with the objects in the scene [5, 33, 34]. Since the language and vision models are pre-trained on
large general datasets, no additional training is needed, which makes the motion planner inherit the
generalization capabilities and zero-shot task understanding of the pre-trained networks without any
computational costs for training. Furthermore, the language model programs (LMPs) [6] demon-
strate strong coding capabilities, directly translating the natural language input into Python code.
However, these works lead to jerky and slow robot motions and do not consider the robot kinematics
for motion planning. These undesired motions occur in end-to-end learning frameworks [8] but also
for networks outputting discrete actions [5, 9] due to insufficient lower-level motion generation. In
contrast, our approach uses a path planner that systematically integrates with the language model
and outputs task-constrained Cartesian bounded reference paths executed with the trajectory plan-
ner BoundMPC [1] for fast, safe, and smooth motions with bounded path deviations, accounting for
the robot kinematics. Safety is an important feature in motion planning and is often addressed by
relying on underlying planners that guarantee safety. The work on drone swarms in [35] uses an
underlying safety filter, and the manipulation planning framework in [11] uses existing joint-space
motion planners with obstacle avoidance. The trajectory planner BoundMPC [1] fulfills a similar
role in this work. In addition to safety, it also allows the incorporation of task-specific Cartesian
constraints, e.g., keeping a cup upright or moving along a straight line.

Manipulator trajectory planning must consider the robot's kinematics, dynamics, and interaction
with the environment. Integrating these capabilities directly into LLM-based reasoning is infeasible
and does not generalize across tasks. Due to this complexity, different methods for trajectory plan-
ning have emerged, which are based on sampling [36, 37], optimization [38, 1], learning [39, 40], or
a combination of multiple methods [11]. Obstacles avoidance is commonly realized by parametriz-
ing the space occupied by obstacles and planning in the remaining space [38, 37, 5]. On the contrary,
planning based on convex sets finds convex obstacles-free regions and plans a trajectory within these
regions [41, 42]. The important difference between these two approaches is that the convex regions
do not necessarily cover the whole obstacle-free space but still allow task completion by finding
a path through the environment. The work [43] navigates through sets of convex regions using a
graph, which is insufficient for motion planning. The works [42, 41, 43] directly optimize a tra-
jectory over the path of sets. This is computationally expensive for robotic Cartesian task-space
trajectories. Therefore, we propose a novel Cartesian path planner, which computes a Cartesian
reference path inside connected convex regions and determines bounds of obstacle-free space for a
robot manipulator to move inside. Planning a path through a graph of convex sets can be done using
piecewise linear paths where each linear segment is contained in a convex set. The convexity of the
set guarantees that the whole path is within the convex sets. Due to their discontinuities, existing
path-following controllers, such as [44, 45, 46], struggle to follow such piecewise linear reference
paths. In this work, a novel path planner based on Cartesian convex sets is proposed and combined
with the path-following controller [1]. An alternative approach is planning a global offline trajec-
tory [36, 37, 47, 48, 49, 50, 51], which is computationally expensive. Furthermore, our path planner
provides an intuitive interface with natural language instructions and enables an easy specification
of task-specific constraints, while the online trajectory planner handles the robot's kinematics and
motion speed. This is computationally more efficient and allows for online adaptions.
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3 Safe Language-based Trajectory Generation
This paper solves the problem of generating a robot manipulator trajectory τ in joint space using
a language instruction L given by a user, e.g., “Put the cup on the table”. Furthermore, the robot
must perform this motion safely such that the joint-space trajectory is contained within the set of
safe trajectories τ ∈ τsafe. This can be defined as

find
τ ∈ τsafe

τ s.t. Isuccess(L) = 1 , (1)

where the indicator function Isuccess indicates a successful task execution. This problem formulation
is general and applicable to many different tasks. The generality makes solving the problem difficult
as many solutions may exist. Directly searching over τsafe is infeasible as there is a significantly
large number of feasible trajectories in general.

Therefore, the problem (1) is subdivided into subproblems. Thus, similar to [5], it is assumed that
the instruction L consists of n subtasks li such that L = {l1, l2, . . . , ln}, e.g., the instruction “Put
the cup on the table” may be subdivided into the subtasks “Detect the cup”, “Move to the cup”,
“Grasp the cup”, “Move to the table”, and “Release the cup”. Each of the subtasks li is successfully
performed by a corresponding trajectory τi. In this work, each trajectory τi is represented by a set of
via-points Wj = {wvia,j , j = 1, . . . ,m}, where each via-point consists of a desired end-effector
pose pvia,j , containing position and orientation, and a gripper state gvia,j ∈ [0, 1], corresponding
to closed (gvia,j = 1) or open (gvia,j = 0). Additionally, the collision-free space along the path
between the via-points is specified using bounds to ensure collision-free trajectories τi ∈ τsafe.

3.1 Motion Planning Framework

This section presents our developed motion planning framework for solving problem (1). An
overview of the framework is shown in Fig. 1. It consists of four distinct components, namely:

1. An LLM for breaking down the instructions L into actions A defined in Python code,
2. a vision model to align the actions A of the LLM with the RGB image of the scene and

retrieve spatial locations from a 3D point cloud,
3. a novel path planner based on convex sets using the IRIS algorithm [52] to plan a piecewise

linear bounded and collision-free reference path π,
4. and the model predictive controller BoundMPC [1] to traverse the reference path π.

The LLM is instructed to output Python code to perform the necessary actions A, see Fig. 1. This
work uses a combination of language model programs (LMPs) [6] with Chat-GPT4 [53]. To this
end, the generated Python code uses the 2D vision model and the LLM to retrieve specific objects
and locations from the scene. The corresponding 3D coordinates are obtained by querying the 3D
point cloud. In order to execute action A on the robot, the motion planner is employed to move the
robot's end-effector to the planned location. In turn, the path planner first determines an obstacle-
free path and bounds using convex sets of the scene. Finally, the model predictive path-following
controller BoundMPC executes the robot motion. The first three steps are performed offline, and the
final trajectory planning using BoundMPC is performed online at 10Hz. The planned trajectories
are sent to a computed-torque controller that computes the necessary joint torques at 8 kHz.

This idea is based on the work in [6] also used in [5] for robot motion planning. The main difference
to this work is the trajectory planning. The work in [5] uses smoothed 3D cost maps to plan the
end-effector trajectory, which is not guaranteed to be executable or collision-free. Furthermore,
the Cartesian trajectories are converted to joint-space trajectories by sending the desired Cartesian
end-effector pose of the current time step to a controller. This formulation leads to jerky and slow
robot motions. The following further explains the individual components of the proposed modular
framework.

3.1.1 Vision Model

Performing a task requires the robot to understand the surrounding scene visually. The vision model
comprises the zero-shot open-vocabulary object detection network OWL-ViT [13]. The model is
queried to detect objects of a specific kind, e.g., tables, shelves, and cups, and returns a list of
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Figure 2: 2D planning example using the convex-set-based path planner. (a) graph G of convex sets
Si, (b) environment for planning and the resulting reference path π.

objects with the corresponding areas in the RGB image that make up this object. After refining the
2D areas using the semantic segmentation network SegmentAnything [54], they are projected into
the 3D point cloud to locate the objects in the scene spatially.

The LLM creates Python code in this work, invoking the other components to complete the task.
The code queries the vision model to get information about the scene. For example, when the user
asks the robot to “move the cup to the table”, the code will query the vision model to locate the cup
and the table. If several cups are detected, the Python code will call the LLM to clarify the relevant
object instance for the current task. The combination of the LLM with the vision model is inspired
by VoxPoser [5].

3.1.2 Path Planner based on Convex Sets

In order to successfully perform a task, the LLM generates robot actions that move the end-effector
from the current pose p0 = pvia,0 to a desired pose pf = pvia,L. A novel path planner based on
convex sets is employed to find a collision-free path in Cartesian space. The core idea of the planner
is to compute collision-free convex sets in the Cartesian space [52] and connect them to a graph
based on their overlaps. A graph planner [43] then finds a path through the graph, which is converted
into a linear reference path with Cartesian bounds, to be executed by BoundMPC [1]. The novelty of
this planner is the computation of the bounded reference path π to traverse the graph. An alternative
approach would be to compute a collision-free reference path using existing path planning methods,
e.g., [36, 48]. However, this needs to consider the robot's kinematics into account which leads to
high computational complexity. Our approach defines a bounded Cartesian space along the path in
the offline step and utilizes online trajectory planning to account for the robot's kinematics. This is
computationally less expensive, and it is possible to incorporate task-specific constraints specified
by natural language during the reference path computation, see Appendix D for more details.

In the following, the functionality of the planner is explained in detail for an example 2D environ-
ment, see Fig. 2. The 2D environment in domain D ⊂ R2 contains six convex grey obstacles that
constitute the obstacle space O. The path planner must find an obstacle-free path π from the starting
point p0 to the end point pf . The IRIS algorithm [52] is employed to compute collision-free convex
sets Sk ∈ D\O around the sample points P = {ps,k : k = 1, . . . ,K}. Each set is represented as a
linear inequality Sk = {p ∈ D\O : Akp ≤ bk} with the matrix Ak and the vector bk, describing
the halfspaces that define the convex set Sk. The number of sample points K and their positions are
hyperparameters of the IRIS algorithm [52]. In this work, the sample points P include the starting
and end points p0 and pf , and six additional known collision-free points.
Remark. Providing a small set of known obstacle-free points is often easily possible. If this is not
the case, a rejection sampling approach can be adopted. More complex strategies can be developed
but are not part of this work, see, e.g., [41].

Once all collision-free convex sets are found, a graph G is constructed in which each convex set
Sk is represented by a node, similar to [41]. For each pair of convex sets Sa and Sb found by the
IRIS algorithm, an edge is added in graph G between the corresponding nodes, if their intersection
is not empty, i.e., Sa,b = Sa ∩ Sb ̸= ∅. The cost associated with this edge is chosen as ca,b =
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minp∈Sa,b
∥p−pf∥22 which is the projection of the end point pf onto the intersection set Sa,b. Note

that the graph is undirected as ca,b = cb,a, and each edge allows passing in both directions. The
constructed graph G for the 2D environment is shown in Fig. 2a. The shortest path through the
convex sets is then calculated using the optimizer proposed in [43].

The optimal path through the graph G using the cost ca,b is given as the sequence of sets Spath,l with
l = 1, . . . , L. As the sets describe safe regions for the robot to move in, constructing a reference path
is desirable to systematically consider the safe space when planning toward the endpoint pf . Linear
reference paths with Cartesian bounds achieve this goal, and their construction based on the sets
Spath,l is detailed in Appendix A. The resulting piecewise linear path is shown in Fig. 2b. Linear
paths have the advantage of being contained within a convex set as long as their start and end points
are. This is not the case for more complex formulations such as splines.

The robot must remain within the convex sets Spath,l to ensure collision freedom. This is ensured
using the bounding functions Ψi and Ψi around the path segment πl within BoundMPC. In order to
interact with the path-following controller in Section 3.1.3, it is desirable to obtain smooth bounding
functions, detailed in Appendix B, because BoundMPC is an optimization-based framework.

The above approach is used for the position reference path of the end-effector. Finding convex
sets for the orientation is more challenging due to the more complex space of orientations in three
dimensions. The current planner assumes knowledge of the orientation at the starting point p0 and
end point pf , which can be obtained from grasp pose detection, e.g., [55, 56]. Grasp pose detection
is an important feature, especially for complex object geometries. Adding a grasp pose detection
model to our framework is straightforward and will be part of future work. At each via-point pvia,l,
the orientation is a linear interpolation between the start and the end orientation.

Remark. The physical extent of the end-effector is taken into account by increasing the size of the
obstacles by the size of the end-effector. This works best with a symmetric end-effector.

3.1.3 Model Predictive Path-following Control

Following the path π from Section 3.1.2 requires a path-following controller that systematically
considers the Cartesian bounds Ψi and Ψi. In this work, the receeding-horizon planning BoundMPC
framework [1] is utilized. It allows the end-effector of a robot manipulator to follow the Cartesian
path π with bounds. As proposed in [1], a piecewise linear reference path formulation as constructed
in Section 3.1.2 provides a simplified yet performant choice for the reference path π. The bounds
guide the robot along the path π while ensuring collision freedom. Furthermore, the Cartesian path
π may be hard to follow exactly since it does not consider the kinematics of the robot. The bounds
enable the robot to deviate from the path and find optimal trajectories q(t) within the given safe and
collision-free Cartesian space, defined by the bounding functions Ψi and Ψi. The advantages over
state-of-the-art MPC formulations are discussed in Appendix D.1 and Appendix D.2. Currently,
the bounds ensure collision-freedom for the end-effector. However, it is straightforward to add
collision-avoidance terms to enforce safety for the entire kinematic chain of the robot, as shown
in Appendix E.

4 Experimental Results
The trajectory planning framework developed in Section 3 is evaluated in simulation and experiment
in this section. As a simple example, a cup is picked up and placed on the opposite side of a book,
placed upright on a table. Afterward, tasks are executed to show the proposed method's versatility,
generalization, and robustness. For the implementation of the path planner based on convex sets
in Section 3.1.2, the Drake software framework [57] is employed. Appendix G shows the LLM
prompts used in this section, which rely on the functions listed in Appendix F. More simulation re-
sults comparing the individual components of our proposed framework with state-of-the-art methods
are shown in Appendix D, and collision-avoidance examples are given in Appendix E.

The trajectory to pick up the cup for the prompt “Place the cup left to the book” is visualized in
Fig. 3a. The path planner from Section 3.1.2 plans a piecewise linear reference path π from the
starting point p0 to the end point pf with one via-point pvia,1. The BoundMPC framework follows
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Figure 3: Comparison of the end-effector trajectories for BoundMPC and the desired end-effector
trajectory of VoxPoser to (a) grasp the green cup while avoiding the yellow book and the grey
table and (b) grasp the green block from the yellow shelf in the environment shown in Fig. 5. The
trajectories are projected into the y-z-plane and x-z-plane, respectively. The light grey shaded area
is the enclosed area of the bounding functions where the robot's end-effector is allowed to move.
The starting points do not coincide due to a smoothing filter applied by VoxPoser, resulting in non-
smooth behavior at the beginning. The arrows in (b) indicate the end-effector's orientation around
the y-axis, where the path bounds are chosen high to allow BoundMPC to optimize the orientation.

Table 1: Comparison of our method with VoxPoser (VP) [5] for six tasks in terms of successful task
execution, collision-freedom, average path length, and intermediate stops.

Task Success Collision-free Avg. path length Stops
VoxPoser (VP) Ours VP Ours VP Ours VP Ours

Simple Move 33% 100% 83% 100% 1.44m 1.48m 3 2
Swapping 0% 100% 50% 100% - 4.43m 11 6
Reposition 100% 100% 100% 100% 1.41m 0.82m 3 2

Arrangement 0% 100% 0% 100% 4.33m 3.72m 11 6
Tea Cup 0% 50% 100% 100% 2.11m 2.02m 3 2
Wiping 100% 100% 100% 100% 1.84m 1.22m 4 1

π to reach pf without colliding with the book. This is compared to VoxPoser [5], where the desired
end-effector trajectory is planned based on 3D cost maps. The book and the table have a negative
cost in repelling the end-effector, while the cup has a positive cost in attracting the end-effector. The
planned trajectory gets stuck on the right side of the book and then jumps to the endpoint pf . This
results in a collision with the book. It is also not possible to tune the cost functions appropriately
to achieve a collision-free trajectory using VoxPoser, as it relies on RRTConnect to create a joint
trajectory from the desired Cartesian trajectory shown in Fig. 3. This procedure does not guarantee
that the desired Cartesian trajectory is followed and invalidates any collision-free guarantees in the
reference trajectory. BoundMPC ensures that the end-effector remains safe without any cost tuning.

The performance of our proposed methods is further evaluated in simulation in the environment
shown in Fig. 1 and Fig. 5 with the following tasks:

1. Simple Move: “Move the [obj] [into/onto] the [left/right] shelf”,
2. Swapping: “Swap the [obj] with [obj] by using the [table/right shelf]”,
3. Reposition: “Put the [obj][slowly/quickly] onto the [left/right] side of the table”,
4. Arrangement: “Arrange the three blocks as a [line/triangle] on the table”,
5. Tea Cup: “Place the tea cup onto the [left/right] shelf without spilling it”,
6. Wiping: “Wipe the table from [left/right] to [right/left]”,

where [obj] is chosen among [green block/blue block/yellow block]. This leads to a total of 42
distinct tasks. The simulation assumes perfect visual information such that the performance of
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the Python code created by the LLM is evaluated independently of the performance of the visual
model. Table 1 shows that the proposed method outperforms VoxPoser across all tasks. The Simple
Move task is challenging for VoxPoser due to the collision avoidance where a situation similar
to picking up the cup in Fig. 3 is encountered. The proposed method plans within collision-free
convex sets to avoid any collisions. In the Swapping task, the LLM used in VoxPoser returns
invalid instructions, which do not solve the task. This is caused by the independence of the subtask
execution in VoxPoser, i.e., each subtask li of the instruction L is assumed to be independent of
all other subtasks. This assumption is invalid for the swapping scenario, as the first object must be
removed, and the second object has to be moved to the previous position of the first object, which is
not considered in this subtask. The Reposition task repositions an object on the table. Both methods
perform this task successfully, but the proposed framework does this more efficiently regarding the
path length. In the Arrangement task, the block must be grasped from different heights on the shelf
and arranged on the table. VoxPoser creates a Cartesian path that the robot cannot follow due to its
joint limits, which is visualized in Fig. 3b. Using our method, the bounded deviations from the path
allows BoundMPC to utilize the orientation around the y-axis and find a suitable trajectory while
avoiding the joint limits. This emphasizes the advantage of considering the robot's kinematic limits
during planning and execution. The computed trajectory from VoxPoser leads to a collision with
the shelf and requires a constant orientation, which the robot cannot achieve. A similar situation
occurs in the Tea Cup task where a tea cup must be moved to a new position without spilling
the tea. VoxPoser outputs a non-executable Cartesian trajectory. The LLM instructs our planner
to keep the tea cup upright. BoundMPC then exploits the unconstrained rotation direction around
the z-axis and the path deviations regarding the position to find a suitable trajectory to accomplish
the task. Lastly, the Wiping task is solved by both frameworks. In this task, our method requires
fewer stops compared to VoxPoser. The task requires picking up the sponge and moving it to one
side of the table, from which the wiping motion starts. VoxPoser stops during the pick-up of the
sponge, which is necessary, but also at the beginning and end of the wiping motion, which is not
required. With our method, the robot moves smoothly without stopping at the via-points, leading to
faster task execution. Furthermore, our method specifies that the wiping segment is constrained in
position and orientation to follow the line and stay orthogonal to the table top. The LLM effectively
instructs the planner to consider these constraints. Especially in the Tea Cup and Wiping tasks,
the constraints specified by the LLM show a deep integration of the learning-based model and the
motion planner. The LLM specifies the task-relevant constraints, and the planner finds executable,
smooth, and collision-free trajectories that solve the task. The proposed framework performs well
in the tasks and outperforms VoxPoser regarding task success, collision avoidance, average path
length, and the number of intermediate stops.

We also demonstrate the performance of the developed framework in several experiments in the
video at www.acin.tuwien.ac.at/42d2. The video showcases the smooth trajectories and the
planner's generalizability while staying safe. More information is given in Appendix C.

5 Conclusion, Limitations and Future Work
This paper presents a modular language-driven zero-shot motion planning framework to create safe
and smooth manipulator trajectories. A novel Cartesian path planner is developed to interface the
learning-models with the trajectory generator. This allows the learning-based components to reason
in Cartesian space while smooth and safe trajectories that respect the robot's kinematic limits are
generated in the joint space. The strength of the proposed framework is validated in experiments
and simulations. However, some limitations exists. Prompt engineering is needed to query the LLM
successfully, which requires the user to invest upfront time. Furthermore, the modularity of the
approach requires suitable interfaces between the modules, which can be improved for more diverse
scenarios. This is especially important for the LLM and the vision module, where recent work on
vision language models can provide a helpful extension. The safety of the current approach is limited
by the discretization within BoundMPC [1]. In the literature, continuous-time methods guarantee
safety for the whole trajectory, e.g., based on reachability [58, 59, 60]. However, in practice, we
never encountered collisions due to the discretization.
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Figure 4: Computation of reference path bounding functions Ψi and Ψi based on the convex set
Spath,l and the path π.

A Piecewise linear reference path
For constructing the piecewise linear reference path π, the sequence of sets Spath,l is used. Each
set intersection Sinter,l = Spath,l ∩ Spath,l+1 with l = 1, . . . , L − 1 between two consecutive sets
Spath,l and Spath,l+1 in the solution path requires one via-point pvia,l. The L − 1 intersection sets
Sinter,l are used to compute L− 1 via-points by solving the optimization problem

pvia,l = argmin
p∈Sinter,l

∥p− p0∥22 + ∥p− pf∥22 + α∥max(Ainter,lp− binter,l) + β∥22 (2)

with the weights α ≥ 0 and β ≥ 0. Together with the starting point p0 = pvia,0 and the end point
pf = pvia,L, they make up the set of via-points. In (2), the matrix Ainter,l and the vector binter,l

define the intersection set Sinter,l, and the term ∥max(Ainter,lp−binter,l)+β∥22, with the maximum
taken over the vector entries, incentivises the via-point pvia,l to be β away from any border of the
intersection set Sinter,l. This moves pvia,l from the border of the set into the set and leads to more
symmetric bounds later. The piecewise linear reference path π is the linear connection between the
starting point p0 = pvia,0, the via-points pvia,l l = 1, . . . , L − 1, and the end point pf = pvia,L,
as shown in Fig. 2. This formulation ensures that the linear segment between pvia,l−1 and pvia,l is
completely contained in the convex set Spath,l, from which the bounding functions are computed
using geometric considerations.

B Path bounding functions
In the following, the computation of the bounding functions in the general case of three dimensions
is described for a given linear path segment πl, which connects the via-points pvia,l and pvia,l+1

and is contained in the corresponding convex set

Spath,l = {p : Apath,lp ≤ bpath,l} . (3)

A visual explanation of the procedure is shown in Fig. 4. This procedure also applies analogously
to the special case of two dimensions and the example in Fig. 2. In 3D, each linear path segment
has a constant unit-norm direction vector d and two unit-norm basis vectors b1 and b2. These basis
vectors are obtained using the Gram-Schmidt procedure explained in [1], such that an orthonormal
frame is created, i.e., b1⊥d, b2⊥d, and b1⊥b2. Furthermore, the mid point of the considered linear
segment πl is pmid. Next, Spath,l in (3) is transformed into the basis vector coordinates at the point
pmid by using the transformation z = P(p− pmid) = [b1 b2]

T
(p− pmid) as

Strans,l = {z : Apath,lP
Tz ≤ bpath,l −Apath,lpmid} . (4)

A rectangle that is aligned with the basis vectors b1 and b2 in the transformed set (4) is defined
by the four corner points zTrect,1 = [x1,1, x2,1], zTrect,2 = [−x1,2, x2,1], zTrect,3 = [x1,1,−x2,2],
and zTrect,4 = [−x1,2,−x2,2] with the parameter vector xT = [x1,1, x1,2, x2,1, x2,2]. The bounds
are computed by finding the largest-volume rectangle that is contained in the set Strans,l using the
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(a) Experimental scene (b) Simulation scene

Figure 5: A view of the experimental and simulation scenes: The experimental scene picture is
taken by the RGB-D Azure Kinect camera, also used by the vision module. The colored axes in the
simulation scene at the robot's base indicate the world frame.

optimization
xopt = argmax

x
(x1,1 + x1,2)(x2,1 + x2,2)

s.t. x ≥ 0 ,
zrect,i ∈ Strans,l , i = 1, . . . , 4 ,

(5)

where the constraints ensure that the rectangle is contained in the transformed set (4) and that the
path π is contained in the bounds at pmid with x ≥ 0. This rectangle is generally a conserva-
tive approximation of the transformed set (4). The rectangle parameters are used as the maximum
bounding function values in the linear segment πl. For each line segment, four bounding functions
exist, i.e., the upper bounding functions Ψi and the lower bounding functions Ψi for both basis di-
rections b1 and b2. The respective maximum and minimum values are chosen as max(Ψi) = xi,1

and min(Ψi) = −xi,2, shown as dotted lines in Fig. 2b. The value of the bounding functions at
the via-points pvia,l is zero, which the path-following controller requires. More information on the
bounding function formulation is given in [1]. When choosing the bounding function as piecewise
linear functions between zero at the via-points and max(Ψi) and min(Ψi) at pmid, it is ensured that
they remain within the set Spath,l because it is convex. However, the path-following controller ben-
efits from smooth bounds, so fourth-order polynomials are used in this work instead. This can result
in some parts of the bounds lying outside the set Spath,l. However, in practice, this does not cause
any issues due to the conservative approximation of the collision-free space of the IRIS algorithm
and the conservative approximation in (5). The bounding functions Ψi and Ψi, in combination with
the reference path π, are used for the trajectory generation in Section 3.1.3.

C Experimental Setup
The scene of the experiments is shown in Fig. 5. It consists of two shelves and a table in front of
the robot. An Azure Kinect RGB-D camera is mounted behind the robot to provide the required
data for the vision model, namely the RGB picture and the depth information used to obtain the
point cloud. The user provides a prompt at the beginning of an episode, and the LLM creates
the necessary Python code to execute the task. BoundMPC runs at 10Hz, and a computed torque
controller executes the created joint trajectories at 8 kHz.

The convex set planner from Section 3.1.2 requires a convex obstacles description of the scene. For
arbitrary scenes, a voxel grid based on the point cloud can be used in the planner. This may lead
to many obstacles and increases the computation time of the planner, but it allows the robot to act
safely in unknown environments. To speed up the computation, a known convex decomposition of
the scene is employed in this work. This results in an environment with 13 obstacles, leading to
computation times of about 0.15 s for the path planner.
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Common failures of the vision model are falsely detecting an object that is not present or not detect-
ing an object that is present. Further failure cases of the LLM and the vision model are discussed
in [5].

D Advantages of convex-set-based path planning with trajectory
optimization

This section compares the proposed motion planner, consisting of the convex-set-based path planner
from Section 3.1.2 and the trajectory planner BoundMPC [1] to existing approaches. The advantages
are summarized in Appendix D.4. Additionally, the simulation comparisons are shown in the video
at www.acin.tuwien.ac.at/42d3.

D.1 BoundMPC compared to Cartesian tracking MPCs (CT-MPC)

The current work uses an offline path planner in combination with the BoundMPC framework to
compute suitable joint space trajectories. Other formulations exist to plan such trajectories. This
section compares our proposed framework to an MPC trajectory tracking formulation [61, 62]. A
reference trajectory is created for the robot, and the goal is to follow this trajectory using a receding
horizon MPC while avoiding obstacles. The obstacles are commonly added as potential functions to
the MPC objective [63]. A reference trajectory consists of a reference path with a time parametriza-
tion. A Cartesian reference trajectory determines the end-effector's desired position and orientation
reference trajectory. This formulation is known as CT-MPC. The reference trajectory is generated
based on a sequence of via-points according to the procedure described in [64] and is not guaranteed
to be collision-free.

For a detailed simulation comparison, a green block is positioned in the lower shelf part inside the
left shelf of the environment shown in Fig. 5. The goal is given by the prompt “Move the green
block onto the left shelf.”. The comparison of the created trajectories is shown in Fig. 6. For the
simple CT-MPC formulation, only the desired grasping pose and drop off pose are provided as via-
points. This does not lead to a successful task execution as the robot gets stuck on the lower shelf
since it tries to move up straight but is blocked by obstacle avoidance. Thus, a more advanced
reference trajectory is needed. For the CT-MPC formulation with more via-points, the via-points
of the convex-set-based path planner from Section 3.1.2 are utilized to create a reference trajectory.
This leads to a successful task execution with a trajectory similar to our proposed method, showing
that a global reference path/trajectory is necessary for the task's success.

The CT-MPC formulation needs a reference trajectory but does not require bounds around this tra-
jectory as obstacle avoidance is performed using potential functions in the MPC objective function.
The objective of the CT-MPC is to minimize the tracking error between the end-effector pose and
the reference pose. This leads to problems when the reference trajectory is not followable due to
the robot's kinematics. An example is shown in Fig. 7. Here, the robot picks up a green block and
has to put it on the shelf behind itself. Based on the via-points, the created reference trajectory is
hard to follow because it passes very close to the robot's base's vertical axis. Hence, a large track-
ing error is needed to perform the task, as shown in Fig. 8b. However, the objective of CT-MPC
is to minimize this error, and the robot's kinematics hinder a minimization, leading to non-smooth
motions. The norm of the end-effector acceleration ac reflects this behavior. Furthermore, CT-MPC
does not perform the task successfully because the large reference tracking error eref leads to the
robot getting stuck in a local minimum above the desired shelf space, which leads to a non-zero
tracking error eref at the end of the trajectory. This is avoided by using a bounded reference path
π as this method determines which path deviations are suitable at which point in space. Hence, the
proposed approach finds a smoother and successful end-effector trajectory for this task.

D.2 BoundMPC compared to joint-space tracking MPCs (JT-MPC)

The two comparisons above showcase pick-and-place scenarios. These can also be solved using
a joint-space reference trajectory instead of a Cartesian one. We call this formulation JT-MPC. It
works well for pick-and-place tasks but struggles with tasks where Cartesian task-specific constraints
are given. The reference trajectory uses the inverse kinematics solutions of the via-points that result
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Figure 6: Comparison of trajectories of different MPC formulations for the prompt “Move the green
block onto the left shelf.” in the x-z-plane. This example showcases the need for a suitable reference
path/trajectory to execute the task successfully.

(a) Start position (b) Possible end position

Figure 7: Simulation setup for a turn-around task. The black spheres around the robot base are
only used in the obstacle avoidance example in Appendix E. The starting position is the same for
all formulations. Our framework can realize the end position shown. The colored axes at the robot's
base indicate the world frame.
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Figure 8: Comparison of our proposed framework with CT-MPC for a turn-around task.
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Figure 9: Comparison of trajectories of different MPC formulations for the prompt “Wipe the table
from left to right.” in the y-x-plane. Only the part of the trajectories relevant to the wiping is
shown. This example showcases the need for a Cartesian reference path/trajectory to execute the
task successfully.

Table 2: Comparison of the offline planning time of our method with the global planners VP-
STO [47], RRT* [65] and STOMP [51] for the turn-around task in Fig. 8. The planning time is
the combined time for the first and second trajectory planning.

Ours VPSTO RRT* STOMP
Planning time / s 0.3 53 30 411

from the convex-set-based planner outputs is using. The example of the wiping task from Section 4
is considered in Fig. 9, where the wiping motion along the table surface has to be a straight line. The
JT-MPC framework cannot take the Cartesian reference path π into account, leading to an undesired
arc-shaped trajectory. The proposed framework considers the task-specific constraints formulated
by the LLM and successfully finishes the task. This shows the advantages of a Cartesian reference
path to incorporate task-specific constraints.

D.3 Comparison to global trajectory planning

Our approach splits the motion planning problem into offline Cartesian reference path planning
and online trajectory planning. However, it is also possible to directly optimize a joint-space tra-
jectory from the starting pose p0 to the final pose pf . In this section, the turn-around example
from Appendix D.1 is considered with different global motion planners. It consists of two planned
trajectories: The first trajectories grabs the green block and the second trajectory transfers it to the
other shelf. Our approach is compared to VPSTO [47], RRT* [65], and STOMP [51]. A compar-
ison of the combined planning times for both trajectories is shown in Table 2. Our approach com-
putes a reference path π with collision-free bounding functions considerably faster than computing
a collision-free joint-space trajectory. Note that all methods manage to solve the task successfully.
Furthermore, a change in the environment will require a replanning, which is costly for the global
planners but not for our proposed method. This shows the advantages of using our proposed methods
instead of global trajectory planners.

D.4 Summary of advantages

The proposed approach of motion planning as a combination of convex-set-based Cartesian path
planning with trajectory planning using BoundMPC has the following advantages:

• Reference path: A reference path/trajectory is needed to perform the task successfully
and provide a global guide for the robot's motion. The example in Fig. 6 elaborates on this
point.

• Cartesian reference path: A Cartesian reference path/trajectory has the advantage that
task-specific constraints along the path are easy to incorporate compared to joint-space
reference paths/trajectories, see Fig. 9.

• Bounds around the reference path: Existing sampling-based methods are a powerful
tool to plan reference paths, e.g., RRT [66, 36] or PRM [67, 36]. However, they currently
have no notion of path deviation bounding functions. The examples in Fig. 6 and 8 show
the advantages of using such bounding functions. In these examples, deviating from the
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Table 3: Comparison of our method with CT-MPC and JT-MPC for a turn-around task with collision
avoidance of the robot's full kinematic chain. Nine experiments are compared, in which the six
obstacles in Fig. 7 are shifted along the x-axis in their x-coordinate between −0.4 and 0.4.

JT-MPC CT-MPC Ours
Successes 4/9 3/9 6/9
Collisions 5/9 0/9 0/9

Stuck at joint limits 0/9 3/9 3/9
Stuck at obstacles 0/9 3/9 0/9

reference path is necessary due to the robot's kinematics, which makes minimizing the
tracking error unsuitable, leading to non-smooth trajectories. The bounding functions guide
the robot towards the goal while keeping it in the collision-free part of the task space.
Furthermore, a Cartesian reference path is required to handle task-specific constraints, such
as following a straight line exactly or keeping a cup upright. Thus, bounding functions
around the reference path are a powerful tool for considering the robot's kinematics and
encoding task-specific constraints.

• Splitting up path and trajectory planning: Our approach first computes a bounded Carte-
sian reference path offline and then plans a joint-space trajectory online. Another approach
is to directly compute a joint-space trajectory offline using global planners, as shown in Ap-
pendix D.3. The advantages of our approach are the faster offline planning time and faster
adaption in case of environmental changes.

E Collision avoidance for the full kinematic chain of the robot
The bounded reference path computed in Section 3.1.2 considers collisions only for the robot's end-
effector. In this section, this collision avoidance is extended to the entire kinematic chain of the
robot using potential functions in BoundMPC's objective function. This approach is based on the
formulation in [63]. Additionally, it is compared to the Cartesian tracking (CT-MPC) and joint-space
tracking (JT-MPC) MPC formulation of Appendix D.

The example in Fig. 7, where the robot has to turn around and place an object, is considered again.
Six additional obstacles are positioned close to the robot base as shown by the black spheres in Fig. 7.
This is a very demanding task as the space where the robot can turn around is highly constrained due
to the obstacles. The resulting end-effector trajectories of our framework, CT-MPC, and JT-MPC
are depicted in the x-z and x-y-planes in Fig. 10a and b, respectively. Our framework and JT-MPC
successfully perform the task, but the CT-MPC gets stuck at about x = 0.05 while turning around
due to the obstacles. This is because the robot must deviate from the Cartesian reference trajectory
due to the kinematic constraints but has no guidance on which deviation directions are suitable. Our
framework uses the BoundMPC formulation, which defines the Cartesian bounding functions such
that the end-effector stays collision-free. It is the only formulation that can completely perform
the task successfully. Even though JT-MPC reaches the goal pose pf , a collision of a robot link
with one of the collision spheres is detected, as shown in Fig. 10c. In this example, a trade-off
between minimizing the trajectory error and the collision avoidance leads to an unsafe trajectory
of the robot. Our framework avoids such situations since the reference paths π are collision-free
by design. A possible improvement to JT-MPC would be providing a collision-free joint-space
trajectory for the JT-MPC. However, this is not trivial and would require a global trajectory planner,
which is computationally expensive, as discussed in Appendix D.3.

In order to evaluate the robustness of our proposed method, the obstacles were shifted along their
x-coordinate in the range −0.4 and 0.4. The evaluation of the resulting nine experiments is shown
in Table 3. JT-MPC always reaches the desired final pose pf but often collides with the environment
due to the collisions in the reference trajectory. The CT-MPC formulation never collides with the
environment but may get stuck at obstacles or joint limits. Our approach is the most successful
framework, which only sometimes gets stuck at joint limits when the reference path bounds do not
allow enough freedom to optimize a suitable joint trajectory. This comparison shows the robustness
of our approach compared to the state-of-the-art.
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(a) End-effector trajectories in x-z-plane
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Figure 10: Comparison of our proposed framework with CT-MPC and JT-MPC for a turn-around
task with additional obstacles. The distance dsphere is computed as the minimum distance of any
robot link to one of the collision spheres and has to fulfill dsphere > 0m to ensure collision freedom.
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F Functions used in the generated Python Code
The LLM generates Python code that can use the following functions:

• move to(pose: array, constraint: string, stop: bool)

Instructs the motion planner to move to pose. The argument constraint can be used to
specify constraints along the path, which are evaluated by an LLM query, and the argument
stop specifies whether to stop at pose or continue fluently towards the next motion goal.

• detect(object name: string) -> object

Invokes the vision module to detect objects with the name object name.

• close gripper()

Closes the gripper.

• open gripper()

Opens the gripper.

• move home()

Move the robot's end-effector to the home position.

• select object(object list: list, object name: string, instance:

string) -> object

Invoked in case multiple objects of the same type are detected with the detect() function.
Queries the LLM to clarify which object is relevant to the task based on the instance

string, e.g., finding the left shelf when instance is ‘left’ and multiple shelves are detected.

• set speed(max speed: float)

Sets the maximum path speed for BoundMPC to be max speed.

• find position(object move: object, object relative: object, hint:

string) -> object

Invokes the LLM with an object placing query. Finds a position for object move relative
to object relative specified by the hint. For example, placing a cup relative to a table
with the hint ‘onto right’ finds a position on top of the table to the right where the cup
can be placed. The found position is saved in the return object

• set position(position: array)

Sets the position based on the adaptions from the find position() function.

• get end effector() -> object

Returns the current end-effector state of the robot.

• empty constraint() -> constraint

Returns a constraints object where all constraints are unset.

• full constraint() -> constraint

Returns a constraints object where all constraints are set.

• set constraint(constraint)

Sets the constraint for the current segment.

G Prompts
The LLM prompts used in this work are given in this section. The planner prompt is the highest-
level prompt invoked with the natural language user input. The position prompt is used by the
find position() function. The constraint prompt is invoked within the move to() function, and
the selection prompt is used by the select object() function. The selection prompt lists the
objects and their center points and requires the LLM to provide an integer number of the relevant
object. All other queries provide examples for the LLM, which are listed below:

Planner prompt:

i m p o r t numpy as np
i m p o r t copy
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from p l a n u t i l s i m p o r t ( move home , move to , g e t e n d e f f e c t o r ,
d e t e c t , o p e n g r i p p e r , c l o s e g r i p p e r , s e l e c t o b j e c t , s e t s p e e d ,
f i n d p o s i t i o n )

# Query : go back t o d e f a u l t .
move home ( )
# done

# Query : s ave t h e c u r r e n t pose o f t h e p l a n t
d e t e c t e d o b j e c t s = d e t e c t ( [ ” p l a n t ” , ” t r e e ” , ” c h a i r ” ] )
p l a n t = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” p l a n t ” )
s a v e d p l a n t = copy . deepcopy ( p l a n t )
# done

# Query : move t h e t h r e e g r e e n b l o c k s i n t o t h e l e f t s h e l f
d e t e c t e d o b j e c t s = d e t e c t ( [ ” r e d b l o c k ” , ” usb s t i c k ” ,

” g r e e n b l o c k ” , ” s h e l f ” ] )
s h e l f = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” s h e l f ” , ” l e f t ” )
f o r i , o b j e c t i n enumera t e ( d e t e c t e d o b j e c t s [ ” g r e e n b l o c k ” ] ) :

move to ( o b j e c t )
c l o s e g r i p p e r ( )
a d a p t e d s h e l f = f i n d p o s i t i o n ( o b j e c t , r e l a t i v e t o = s h e l f ,

h i n t =” i n t o ” )
move to ( a d a p t e d s h e l f )
o p e n g r i p p e r ( )

move home ( )
# done

# Query : move t h e cup i n t o t h e r i g h t s h e l f t o t h e l e f t
d e t e c t e d o b j e c t s = d e t e c t ( [ ” cup ” , ” s h e l f ” , ” p l a t e ” , ” g l a s s ” ] )
cup = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” cup ” )
s h e l f = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” s h e l f ” , ” r i g h t ” )
a d a p t e d s h e l f = f i n d p o s i t i o n ( cup , r e l a t i v e t o = s h e l f ,

h i n t =” i n t o l e f t ” )
move to ( cup )
c l o s e g r i p p e r ( )
# A cup has t o be u p r i g h t t o n o t s p i l l a n y t h i n g
move to ( a d a p t e d s h e l f , c o n s t r a i n t =” u p r i g h t ” )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : move t h e b a l l from t h e t a b l e i n t o t h e r i g h t s h e l f and back
d e t e c t e d o b j e c t s = d e t e c t ( [ ” b a l l ” , ” s h e l f ” , ” b l o c k ” , ” c u r t a i n ” ] )
b a l l = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” b a l l ” )
# Copy t h e s t a r t p o s i t i o n o f t h e b a l l t o be a b l e t o r e t u r n t o i t
b a l l s t a r t = copy . deepcopy ( b a l l )
s h e l f = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” s h e l f ” , ” r i g h t ” )
a d a p t e d s h e l f = f i n d p o s i t i o n ( b a l l , r e l a t i v e t o = s h e l f , h i n t =” i n t o ” )
move to ( b a l l )
c l o s e g r i p p e r ( )
move to ( a d a p t e d s h e l f )
move to ( b a l l s t a r t )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : p l a c e t h e b l o c k i n t h e r i g h t s h e l f on to t h e t a b l e
d e t e c t e d o b j e c t s = d e t e c t ( [ ” b l o c k ” , ” phone ” , ” b a l l ” , ” s h e l f ” ,

” t a b l e ” ] )
b l o c k = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” b l o c k ” , ” r i g h t s h e l f ” )
t a b l e = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” t a b l e ” )
a d a p t e d t a b l e = f i n d p o s i t i o n ( b lock , r e l a t i v e t o = t a b l e ,

h i n t =” on to ” )
move to ( b l o c k )
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c l o s e g r i p p e r ( )
move to ( a d a p t e d t a b l e )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : p u t t h e t r a s h on to t h e f l o o r
d e t e c t e d o b j e c t s = d e t e c t ( [ ” t r a s h ” , ” f l o o r ” , ” b i n ” ] )
f o r o b j e c t i n d e t e c t e d o b j e c t s [ ” t r a s h ” ] :

t r a s h = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” t r a s h ” )
move to ( t r a s h )
c l o s e g r i p p e r ( )
move to ( f l o o r )
o p e n g r i p p e r ( )

move home ( )
# done

# Query : move t h e h i g h e s t g l a s s s l o w l y t o t h e bot tom of t h e l e f t
# s h e l f
d e t e c t e d o b j e c t s = d e t e c t ( [ ” g l a s s ” , ” s h e l f ” , ” bowl ” , ” u m b r e l l a ” ] )
g l a s s = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” g l a s s ” , ” h i g h e s t ” )
s h e l f = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” s h e l f ” , ” l e f t ” )
a d a p t e d s h e l f = f i n d p o s i t i o n ( g l a s s , r e l a t i v e t o = s h e l f ,

h i n t =” bot tom ” )
move to ( g l a s s )
c l o s e g r i p p e r ( )
s e t s p e e d ( 0 . 5 )
move to ( a d a p t e d s h e l f )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : c r e a t e a tower o f a l l b l u e b l o c k s on t h e t a b l e a t t h e
# r i g h t s i d e
d e t e c t e d o b j e c t s = d e t e c t ( [ ” b l u e b l o c k ” , ” g r e e n b l o c k ” ,

” r e d b l o c k ” , ” t a b l e ” ] )
t a b l e = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” t a b l e ” )
f o r i , b l o c k i n enumera t e ( d e t e c t e d o b j e c t s [ ” b l u e b l o c k ” ] ) :

move to ( b l o c k )
c l o s e g r i p p e r ( )
a d a p t e d t a b l e = f i n d p o s i t i o n ( b lock , r e l a t i v e t o = t a b l e ,

h i n t = f ” s t a c k h e i g h t { i } r i g h t ” )
move to ( a d a p t e d t a b l e )
o p e n g r i p p e r ( )

move home ( )
# done

# Query : move a l l books t o t h e midd le o f t h e l e f t s h e l f
d e t e c t e d o b j e c t s = d e t e c t ( [ ” f l o w e r s ” , ” p l a t e ” , ” book ” , ” s h e l f ” ] )
s h e l f = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” s h e l f ” , ” l e f t ” )
f o r book i n d e t e c t e d o b j e c t s [ ” book ” ] :

move to ( book )
c l o s e g r i p p e r ( )
a d a p t e d s h e l f = f i n d p o s i t i o n ( book , r e l a t i v e t o = s h e l f ,

h i n t =” midd le ” )
move to ( a d a p t e d s h e l f )
o p e n g r i p p e r ( )

move home ( )
# done

# Query : move t h e g r e e n mug t o t h e t a b l e and t h e w h i t e mug t o t h e
# p r e v i o u s p o s i t i o n o f t h e g r e e n mug
d e t e c t e d o b j e c t s = d e t e c t ( [ ” mug ” , ” lamp ” , ” t a b l e ” ] )
t a b l e = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” t a b l e ” )
whi te mug = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ”mug ” , ” w h i t e ” )
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green mug = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ”mug ” , ” g r e e n ” )
p r e v g r e e n m u g = copy . deepcopy ( green mug )
a d a p t e d t a b l e = f i n d p o s i t i o n ( white mug , r e l a t i v e t o = t a b l e ,

h i n t =” on to ” )
# Grasp t h e g r e e n mug
move to ( green mug )
c l o s e g r i p p e r ( )
# Move t h e g r e e n mug on to t h e t a b l e
move to ( a d a p t e d t a b l e )
o p e n g r i p p e r ( )
# Move t h e w h i t e mug t o t h e p r e v i o u s p o s i t i o n o f t h e g r e e n mug
move to ( whi te mug )
c l o s e g r i p p e r ( )
move to ( p r e v g r e e n m u g )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : p u t t h e usb s t i c k c l o s e t o t h e f l o w e r s
d e t e c t e d o b j e c t s = d e t e c t ( [ ” usb s t i c k ” , ” cupboard ” , ” f l o w e r s ” ] )
usb = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” usb s t i c k ” )
f l o w e r s = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” f l o w e r s ” )
a d a p t e d f l o w e r s = f i n d p o s i t i o n ( usb , r e l a t i v e t o = f l o w e r s ,

h i n t =”5cm n e x t t o ” )
move to ( usb )
c l o s e g r i p p e r ( )
move to ( a d a p t e d f l o w e r s )
o p e n g r i p p e r ( )
move home ( )
# done

# Query : p l a c e t h e cup l e f t t o t h e c o f f e e machine and r e t u r n t o
# t h e i n i t i a l p o s i t i o n o f t h e cup
d e t e c t e d o b j e c t s = d e t e c t ( [ ” cup ” , ” c o f f e e machine ” , ” t a b l e ” ] )
cup = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” cup ” )
c o f f e e m a c h i n e = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” c o f f e e machine ” )
p r e v c u p = copy . deepcopy ( cup ) # Save t h e p o s i t i o n o f t h e cup
a d a p t e d c o f f e e m a c h i n e = f i n d p o s i t i o n ( cup ,

r e l a t i v e t o = c o f f e e m a c h i n e ,
h i n t =”10cm l e f t ” )

# Grasp t h e cup
move to ( cup )
c l o s e g r i p p e r ( )
# Move 10cm n e x t t o t h e c o f f e e machine and p l a c e t h e cup w h i l e
# k e e p i n g i t u p r i g h t
move to ( a d a p t e d c o f f e e m a c h i n e , c o n s t r a i n t =” u p r i g h t ” )
o p e n g r i p p e r ( )
# Move back t o t h e i n i t i a l cup p o s i t i o n
move to ( p r e v c u p )
# done

# Query : s e t up t h e spoon f o r my soup
d e t e c t e d o b j e c t s = d e t e c t ( [ ” bowl ” , ” spoon ” , ” k n i f e ” , ” f o r k ” ] )
bowl = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” bowl ” )
# Fork and k n i f e a r e n o t needed t o each a soup
spoon = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” spoon ” )
s p o o n p l a c e = f i n d p o s i t i o n ( spoon , r e l a t i v e t o =bowl ,

h i n t =”10cm r i g h t ” )
move to ( spoon )
c l o s e g r i p p e r ( )
move to ( s p o o n p l a c e )
o p e n g r i p p e r ( )
move home ( )
# done
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# Query : sweep a l l p a r t i c l e s o f f t h e t a b l e a t t h e l e f t s i d e .
d e t e c t e d o b j e c t s = d e t e c t ( [ ” p a r t i c l e ” , ” t a b l e ” , ” s h e l f ” ] )
t a b l e = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” t a b l e ” )
e n d e f f e c t o r = g e t e n d e f f e c t o r ( )
f o r p a r t i c l e i n d e t e c t e d o b j e c t s [ ” p a r t i c l e ” ] :

# The p r e sweep p o s i t i o n i s t o t h e r i g h t o f t h e p a r t i c l e t o be
# a b l e t o push i t t o t h e l e f t
p r e s w e e p = f i n d p o s i t i o n ( e n d e f f e c t o r , r e l a t i v e t o = p a r t i c l e ,

h i n t =”3cm r i g h t ” )
p o s t s w e e p = f i n d p o s i t i o n ( e n d e f f e c t o r , r e l a t i v e t o = t a b l e ,

h i n t =” l e f t s i d e ” )
# Move t o t h e p r e sweep p o s i t i o n , s t o p p i n g t h e r e i s n o t
# n e c e s s a r y
move to ( pre sweep , s t o p = F a l s e )
# Dur ing t h e sweep t h e c o n s t r a i n t t h e movement t o be e x a c t t o
# f o l l o w a s t r a i g h t l i n e t o t h e p o s t sweep p o s i t i o n
move to ( pos t sweep , c o n s t r a i n t =” e x a c t ” )

move home ( )
# done

# Query : push c l o s e t h e topmos t d rawer .
d e t e c t e d o b j e c t s = d e t e c t ( [ ” d rawer ” , ” t a b l e ” , ” s h e l f ” ] )
t o p m o s t d r a w e r = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” d rawer ” ,

” topmos t ” )
e n d e f f e c t o r = g e t e n d e f f e c t o r ( )
c l o s e d r a w e r = f i n d p o s i t i o n ( e n d e f f e c t o r ,

r e l a t i v e t o = t o p m o s t d r a w e r ,
h i n t =”30cm push ” )

move to ( t o p m o s t d r a w e r , s t o p = F a l s e )
move to ( c l o s e d r a w e r , c o n s t r a i n t =” e x a c t ” )
move home ( )
# done

# Query : wipe t h e b l a c k b o a r d from l e f t t o r i g h t
d e t e c t e d o b j e c t s = d e t e c t ( [ ” sponge ” , ” b l a c k b o a r d ” , ” s h e l f ” ] )
sponge = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” sponge ” )
b l a c k b o a r d = s e l e c t o b j e c t ( d e t e c t e d o b j e c t s , ” b l a c k b o a r d ” )
p r e w i p e = f i n d p o s i t i o n ( sponge , r e l a t i v e t o = b l a c k b o a r d ,

h i n t =” l e f t s i d e ” )
p o s t w i p e = f i n d p o s i t i o n ( sponge , r e l a t i v e t o = b l a c k b o a r d ,

h i n t =” r i g h t s i d e ” )
# P ick up t h e sponge
move to ( sponge )
c l o s e g r i p p e r ( )
# Wipe t h e b l a c k b o a r d
move to ( p re wipe , s t o p = F a l s e )
move to ( p o s t w i p e , c o n s t r a i n t =” e x a c t ” )
move home ( )
# done

Position prompt:

import numpy as np
from a d a p t u t i l s import s e t p o s i t i o n

# Given da ta :
# − h i n t : h i n t f o r t h e d e s i r e d p o s i t i o n on goa l o b j e c t / s t r i n g

# Query : ”cup” t o ” r i g h t s h e l f ” , h i n t : ” on to ”
cup = o b j e c t s . movable
s h e l f = o b j e c t s . g o a l
( max x , max y , max z ) = s h e l f . max bounds
# Onto means t h e maximum z p l u s h a l f t h e s i z e o f t h e o b j e c t
x = s h e l f . c e n t e r [ 0 ]
y = s h e l f . c e n t e r [ 1 ]
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z = max z + cup . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”cube” t o ” s h e l f ” , h i n t : ” i n t o ”
cube = o b j e c t s . movable
s h e l f = o b j e c t s . g o a l
# I n t o means we use t h e c e n t e r p o s i t i o n
s e t p o s i t i o n ( s h e l f . c e n t e r )
# done

# Query : ”book” t o ” t a b l e ” , h i n t : ” t o p ”
book = o b j e c t s . movable
t a b l e = o b j e c t s . g o a l
( max x , max y , max z ) = t a b l e . max bounds
x = t a b l e . c e n t e r [ 0 ]
y = t a b l e . c e n t e r [ 1 ]
z = max z + book . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”mug” t o ” f l o w e r s ” , h i n t : ”10cm l e f t ”
f l o w e r s = o b j e c t s . g o a l
( max x , max y , max z ) = f l o w e r . max bounds
# Add 10cm t o t h e l e f t bo rde r o f t h e f l o w e r due t o t h e ”10cm l e f t ”
# h i n t
x = f l o w e r s . c e n t e r [ 0 ]
y = max y + 0 . 1
z = f l o w e r s . c e n t e r [ 2 ]
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ” b l o c k ” t o ” f l o o r ” , h i n t : ” s t a c k h e i g h t 1”
# F i r s t s t a c k h e i g h t means we add o n l y t h e s i z e o f t h e b l o c k i n
# z d i r e c t i o n
b l o c k = o b j e c t s . movable
f l o o r = o b j e c t s . g o a l
x = f l o o r . c e n t e r [ 0 ]
y = f l o o r . c e n t e r [ 1 ]
z = f l o o r . max bounds [ 2 ] + b l o c k . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )

# Query : ” b l o c k ” t o ” f l o o r ” , h i n t : ” s t a c k h e i g h t 2”
# Second s t a c k h e i g h t means we add t w i c e i n z d i r e c t i o n
b l o c k = o b j e c t s . movable
f l o o r = o b j e c t s . g o a l
x = f l o o r . c e n t e r [ 0 ]
y = f l o o r . c e n t e r [ 1 ]
z = f l o o r . max bounds [ 2 ] + 1 . 5 * b l o c k . s i z e [ 2 ]
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ” p i c t u r e ” t o ” m i r r o r ” , h i n t : ” i n f r o n t ”
m i r r o r = o b j e c t s . g o a l
x = m i r r o r . c e n t e r [ 0 ] − 0 . 1
y = m i r r o r . c e n t e r [ 1 ]
z = m i r r o r . c e n t e r [ 2 ]
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ” g l a s s ” t o ” t a b l e ” , h i n t : ” on to ”
g l a s s = o b j e c t s . movable
t a b l e = o b j e c t s . g o a l
( max x , max y , max z ) = t a b l e . max bounds
x = t a b l e . c e n t e r [ 0 ]
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y = t a b l e . c e n t e r [ 1 ]
z = max z + g l a s s . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”phone” t o ”box ” , h i n t : ” on to l e f t ”
phone = o b j e c t s . movable
box = o b j e c t s . g o a l
( max x , max y , max z ) = box . max bounds
( min x , min y , min z ) = box . min bounds
# Onto means t h a t we need t o choose t h e max z
# L e f t on t h e box i s t h e maximum i n y− d i r e c t i o n
x = box . c e n t e r [ 0 ]
y = max y
z = max z + g l a s s . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”stamp” t o ” t a b l e ” , h i n t : ” lower l e f t ”
box = o b j e c t s . movable
t a b l e = o b j e c t s . g o a l
( min x , min y , min z ) = t a b l e . min bounds
( max x , max y , max z ) = t a b l e . max bounds
# The lower l e f t c o r n e r o f t h e t a b l e t o p i s a t maximum y and
# t h e minium x p o s i t i o n
x = min x
y = max y
z = max z + box . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”usb” t o ” cupboard ” , h i n t : ” r i g h t ”
usb = o b j e c t s . movable
cupboard = o b j e c t s . g o a l
( min x , min y , min z ) = cupboard . min bounds
( max x , max y , max z ) = cupboard . max bounds
# The r i g h t o f t h e cupboard r e f e r s t o t h e minimum y
x = cupboard . c e n t e r [ 0 ]
y = min y
z = max z + usb . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”pen” t o ” paper ” , h i n t : ”10cm r i g h t ”
pen = o b j e c t s . movable
p a p e r = o b j e c t s . g o a l
( min x , min y , min z ) = p a p e r . min bounds
# 10cm r i g h t o f t h e paper r e f e r s t o t h e minimum y o f t h e paper
# minus 10cm
x = cupboard . c e n t e r [ 0 ]
y = min y − 0 . 1
z = max z + usb . s i z e [ 2 ] / 2
s e t p o s i t i o n ( [ x , y , z ] )
# done

# Query : ”end e f f e c t o r ” t o ”drawer ” , h i n t : ”10cm push”
e n d e f f e c t o r = o b j e c t s . movable
drawer = o b j e c t s . g o a l
normal = drawer . normal
# 10cm push means moving a long t h e n e g a t i v e normal f o r 10cm
p u s h p o s = e n d e f f e c t o r . c e n t e r − 0 . 1 * normal
s e t p o s i t i o n ( p u s h p o s )
# done

Constraint prompt:
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from c o n s t r a i n t l i b import ( e m p t y c o n s t r a i n t , f u l l c o n s t r a i n t ,
s e t c o n s t r a i n t )

# Query : ”no c o n s t r a i n t ”
c o n s t r a i n t = e m p t y c o n s t r a i n t ( )
s e t c o n s t r a i n t ( c o n s t r a i n t )
# done

# Query : ” e x a c t ”
# Exac t means t h a t e v e r y t h i n g i s c o n s t r a i n e d
c o n s t r a i n t = f u l l c o n s t r a i n t ( )
s e t c o n s t r a i n t ( c o n s t r a i n t )
# done

# Query : ” u p r i g h t ”
c o n s t r a i n t = e m p t y c o n s t r a i n t ( )
# U p r i g h t means t h e r e s h o u l d be no r o t a t i o n around t h e x or y a x i s
c o n s t r a i n t . r o t a t i o n x = True
c o n s t r a i n t . r o t a t i o n y = True
s e t c o n s t r a i n t ( c o n s t r a i n t )
# done

# Query : ” h o r i z o n t a l p l a n e ”
c o n s t r a i n t = e m p t y c o n s t r a i n t ( )
# The x−y−p l a n e i s t h e h o r i z o n t a l p l a n e
c o n s t r a i n t . p o s i t i o n x = True
c o n s t r a i n t . p o s i t i o n y = True
s e t c o n s t r a i n t ( c o n s t r a i n t )
# done

# Query : ” z r o t a t i o n ”
c o n s t r a i n t = e m p t y c o n s t r a i n t ( )
c o n s t r a i n t . r o t a t i o n z = True
s e t c o n s t r a i n t ( c o n s t r a i n t )
# done
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