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Abstract

Estimating the effect of a treatment on an individual’s outcome of interest is an impor-
tant challenge in various fields, such as healthcare, economics, marketing, and education.
Previous work in machine learning has focused on estimating the expected value of the
treatment effect. However, effective personalized decision-making requires more than just
the treatment expected effect; it requires the entire treatment effect distribution. Know-
ing this distribution allows analyzing the treatment’s expected utility or quantifying the
uncertainty regarding a treatment’s effect. This information is essential for prescribing op-
timal treatments. The ability of a model to predict accurate individual treatment effect
distributions is captured by its likelihood. In light of this, we propose a novel neural ar-
chitecture, NOFLITE, that uses normalizing flows to directly optimize this likelihood, while
simultaneously learning flexible estimates of the individual treatment effect distribution.
Experiments on various semi-synthetic data sets show that NOFLITE outperforms existing
methods in terms of loglikelihood and performs competitively in terms of PEHE and IoU.

1 Introduction

Knowing how a certain treatment or action will affect an instance’s outcome of interest is of great importance
in various domains, such as healthcare (Berrevoets et al., 2020), marketing (Devriendt et al., 2021), education
(Olaya et al., 2020), and economics (Vanderschueren et al., 2023). A wide variety of existing work has looked
at using machine learning (ML) for estimating the individual treatment effect, to help decision-makers
optimize treatment assignment at an individual level. Existing work on treatment effect estimation in ML
has proposed novel approaches based on a variety of different ML algorithms, including neural networks
(Johansson et al., 2016; Shalit et al., 2017; Zhang et al., 2020; Curth & van der Schaar, 2021a), Gaussian
processes (Alaa & van der Schaar, 2017), and decision trees (Hill, 2011; Rzepakowski & Jaroszewicz, 2012;
Wager & Athey, 2018), as well as general meta-learners (Künzel et al., 2019; Curth & van der Schaar, 2021b).

In spite of this growing body of literature, existing work has almost exclusively focused on accurately esti-
mating the expected value of the treatment effect. We argue, however, that a more comprehensive approach is
needed: to effectively support decision-making, we require accurately modeling the effect’s entire distribution.
Such an approach is essential for adopting ML for treatment decision-making in practice. First, it unlocks a
wide range of descriptive statistics, enabling a more detailed analysis of the treatment effect. For exam-
ple, it allows for reasoning about uncertainty of events resulting from a treatment: e.g., to get uncerainty
intervals or estimate the probability of the treatment’s effect being positive. This way, the treatment effect
distribution subsumes other common estimands which focus on a single attribute of this distribution, such
as the mean, median, or other quantiles. Second, the treatment effect distribution is essential for deciding
upon the optimal treatment. By pairing the treatment effect distribution with a utility function, we can
obtain the expected utility (see Figure 1 for a graphical illustration). Utility functions have been influential
in a variety of fields, including economics (Hall, 1920; Kahneman & Tversky, 1979), game theory (Nash Jr,
1950), insurance (Spence & Zeckhauser, 1978), design (Thurston, 1991), and healthcare (Pliskin et al., 1980).

Contributions. The goal in this work is to estimate individual treatment effect distributions. To obtain
good estimates of this distribution, we require learning a model with a high likelihood from observational
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Figure 1: Optimizing treatment decisions requires knowing the treatment effect distribution.
Predicting the treatment effect distribution p(τ) allows for assessing a treatment’s utility by pairing it with
a utility function u(τ) and obtaining its expected utility E

(
u(τ)

)
. Consequently, the individual treatment

effect distribution is instrumental to analyzing treatment utilities (on the left) and comparing treatment
preferences (on the right). Left: For a given treatment and the corresponding treatment effect distribution
p(τ), we can compare different utility functions u(τ) and their expected utilities. Right: Similarly, for a given
utility function u(τ), different treatment effect distributions p(τ) incur different expected utilities. These
types of analyses are not possible using only the individual’s expected treatment effect E(τ), illustrating the
importance of estimating the entire treatment effect distribution p(τ) for personalized decision-making.

data. This work addresses treatment effect estimation through this lens and, in doing so, makes three
contributions. 1. To learn models with high likelihood, we propose a novel neural architecture, NOFLITE,
which employs normalizing flows to learn flexible estimates of the treatment effect distributions. 2. We
propose an end-to-end training strategy to directly maximize the metric of interest–the model’s likelihood–
while regularizing to account for treatment assignment bias. This way, we aim to learn an unbiased model
with high likelihood given the (unknown) test distribution from observational training data. 3. We evaluate
our method empirically and compare performance to other state-of-the-art approaches using three semi-
synthetic data sets. Contrary to existing work, this evaluation is centered around the model’s likelihood.

2 Related work

Our work builds upon existing work in individual treatment effect estimation and normalizing flows. In this
section, we discuss the most closely related literature for each category in turn.

2.1 Treatment effect estimation

A wide variety of methodologies have been proposed for estimating the expected individualized treatment
effect (ITE). For a complete overview, we refer to Yao et al. (2021). Even though estimating the distribution
of the ITE has received far less attention, several methods that were originally proposed for estimating the
expected value are nevertheless capable of learning distributional estimands. These methods include Bayesian
Additive Regression Trees (BART) (Hill, 2011) and Causal Multi-task Gaussian Processes (CMGP) (Alaa
& van der Schaar, 2017). Particularly relevant to our work are recent approaches based on generative neural
networks. On the one hand, generative adversarial networks have been used to learn the counterfactual
distribution and deal with confounding bias, for binary treatments (GANITE; Yoon et al., 2018) and mul-
tiple treatments with continuous dosages (SCIGAN; Bica et al., 2020). On the other hand, variational
autoencoders have been used to adjust for a hidden confounder using a (noisy) proxy (Louizos et al., 2017).

To the best of our knowledge, the only work explicitly looking at learning individual treatment effect distri-
butions is the recently proposed Collaborating Causal Networks (CCN) (Zhou et al., 2022). As opposed to
NOFLITE, CCN does not learn by maximizing the model’s likelihood, but rather uses collaborating networks
(Zhou et al., 2021), where one network is trained to estimate the cumulative distribution function and an-
other model estimates its inverse. An additional, more subtle distinction is that they focus on estimating
and evaluating the distribution of the potential outcomes, instead of the treatment effect distribution. A
structured comparison of existing methodologies and the proposed NOFLITE is provided in Table 1.

In this work, we rely on a generative neural network. More specifically, we estimate the treatment effect
distribution using normalizing flows, a flexible type of generative model that transforms a distribution to
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Method Neural? Likelihood? Confounding? Reference
BART ✗ ✓ ✗ Hill (2011)
CMGP ✗ ✓ ✓ Alaa & van der Schaar (2017)

CEVAE ✓ ✗ ✗ Louizos et al. (2017)
GANITE ✓ ✗ ✓ Yoon et al. (2018)

CCN ✓ ✗ ✓ Zhou et al. (2022)
NOFLITE ✓ ✓ ✓ (Ours)

Table 1: Literature table. We compare NOFLITE with existing methodologies for estimating individual
treatment effect distributions. Three dimensions are considered: (1) whether a neural network is used, (2)
whether the model’s likelihood Lθ is optimized directly, and (3) whether it adjust for confounding.

a simple prior through a series of learned transformations. Similar in spirit to our work is the recent
Interventional Normalizing Flows (Melnychuk et al., 2022). They propose to use normalizing flows to estimate
the density of the average treatment effect resulting from an intervention, building upon the theoretical results
of Kennedy et al. (2021). In contrast, we aim to predict distributions at an individual level.

2.2 Normalizing flows

Our approach builds upon a type of deep generative model called normalizing flows. Normalizing flows offer
distinct advantages over other types of generative models like generative adversarial networks (Goodfellow
et al., 2014) or variational autoencoders (Kingma & Welling, 2014). The key benefit of using normalizing
flows is that they allow for an exact evaluation of the density. Consequently, the model can be directly
optimized for the metric we are interested in: the model’s likelihood. We provide a brief introduction to
normalizing flows below. For a more detailed overview, we refer to Papamakarios et al. (2021).

A normalizing flow is an invertible mapping g : Y 7→ Z from the empirical/original data space Y to a
latent space Z (Rezende & Mohamed, 2015; Dinh et al., 2017). During training, the flow learns to map the
empirical distribution p(y) to a known (simple) prior distribution p(z), typically a Gaussian distribution.
The mapping g consists of a series of invertible transformations g(y) = g1 ◦ · · · ◦ gk(y) with parameters θ
learned by a neural network. This way, the density can be obtained using the change of variables formula:

p(y) = pZ

(
g(y)

) ∣∣∣det
(

∂g(y)
∂y

)∣∣∣ . (1)

Using this formulation, we can evaluate the model’s density exactly. Consequently, we can optimize the
mapping g to directly maximize the model’s likelihood. After training, inference can be done by sampling
from the simple prior p(z) and transforming the sample based on the inverse flow g−1(z).

Normalizing flows have been successfully applied in a wide range of tasks, such as generating images (Dinh
et al., 2014; 2017; Kingma & Dhariwal, 2018), audio (Oord et al., 2018; Kim et al., 2018; Tran et al., 2019;
Prenger et al., 2019), and graphs (Madhawa et al., 2019), as well as reinforcement learning (Haarnoja et al.,
2018; Ward et al., 2019; Schroecker et al., 2019) and energy forecasting (Dumas et al., 2022; Ge et al., 2020).

Different families of transformations g have been proposed in the literature on normalizing flows. In this work,
we use deep sigmoidal flows (Huang et al., 2018). Our choice is motivated by sigmoidal flows offering a flexible
transformation – the resulting flow is a universal approximator – and their excellent empirical performance.
Deep sigmoidal flows use a transformation g that is a strictly monotonic neural network. The parameters
of this network are given by a conditioner network. To comply with the monotinicity requirement, the
learned transformer parameters are restricted to strictly positive weights and strictly monotonic activation
functions–more specifically, a sigmoid activation. Although the inverse transformation g−1 is not known
analytically, it can be approximated numerically. There is a wide variety of other flow transformations that
could potentially also be used with NOFLITE, including gaussianizations flows (Chen & Gopinath, 2000; Meng
et al., 2020), residual flows (Chen et al., 2019), or neural spline flows (Durkan et al., 2019).
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3 Problem Formulation

Notation. We describe our problem setting using the Neyman-Rubin potential outcomes framework (Ru-
bin, 2005). Let each instance be defined by covariates X ∈ X ⊂ Rd, a binary treatment indicator
T ∈ T = {0, 1}, and an outcome Y ∈ Y ⊂ R. Let the potential outcomes Y (0), Y (1) ∈ Y ⊂ R be de-
fined as the outcomes that would be observed given treatment T = 0 and T = 1.

Goal. Given an individual’s covariates x, we are interested in predicting its individual treatment effect
p(τ), i.e., the difference between both potential outcomes τ = Y (1)− Y (0). Most existing work aims to learn
an individual’s expected treatment effect:

E(τ) = E
(
Y (1) − Y (0) | X = x

)
. (2)

We argue, however, that this expectation itself is insufficient for decision-making in many applications.
Instead, we need to learn the distribution of the individual treatment effect:

p(τ) = P
(
Y (1) − Y (0) | X = x

)
= P

(
Y (1) | X = x

)
− P

(
Y (0) | X = x

)
. (3)

This distribution can be used to optimize an individual’s treatment. For example, a decision-maker can use
it to assess probabilistic statements, such as the probability of the treatment effect being strictly positive
p(τ > 0). Alternatively, the ITE distribution can be used to evaluate treatment decisions by pairing it with
a (personalized) utility function to obtain the expected utility: E

(
u(τ)

)
=
∫

u(τ)p(τ) dτ , see Figure 1.

Our goal is to obtain good estimates of the treatment effect distribution, i.e., to obtain a model θ ∈ Θ
with a high likelihood p(τ |θ) = Πn

i=1 p(τi|θ) = Πn
i=1 p

(
y

(1)
i − y

(0)
i |θ

)
given a (hypothetical) test set Dtest =

{(xi, y
(0)
i , y

(1)
i )}n

i=1 containing both counterfactuals. Compared to point estimates such as the mean squared
error, the likelihood can incorporate uncertainty and capture the entire data distribution. This way, it
provides a more comprehensive measure of model performance and facilitates more robust decision-making.

Data and assumptions. We assume access to an observational datasetDtrain = {(xi, ti, y
(ti)
i )}m

j=1 sampled
from the joint distribution p(X, T, Y ). Learning a model for estimating the individual treatment effect
distribution from this data is challenging for several reasons. We only observe one factual outcome Y (t)

in practice, while the other, counterfactual outcome Y (1−t) is never observed. Consequently, the treatment
effect itself is never observed, which is known as the fundamental problem of causal inference (Holland, 1986).
Additionally, because the data are observational, treatments were assigned by a (potentially unknown) policy
based on instance covariates. Therefore, it is necessary to adjust for confounding in order to obtain unbiased
estimates of p(y(t)) and, consequently, p(τ). A final challenge is that we need to learn each individual’s entire
distribution based on only one sample for each individual by leveraging data from similar individuals.

To identify the individualized treatment effect from observational data, we require the following standard
assumptions (Rosenbaum & Rubin, 1983; Rubin, 2005):

Assumption 1 (Consistency) An instance’s observed outcome given a treatment is equal to its potential
outcome: Y |X, T = Y (t)|X.

Assumption 2 (Overlap) Each instance has a strictly positive probability of receiving each treatment:
0 < P(T = t | X = x) < 1, ∀ t ∈ T, ∀ x ∈ X .

Assumption 3 (Unconfoundedness) Potential outcomes are independent of the treatment given the co-
variates:

(
Y (0), Y (1)) ⊥⊥ T | X.

4 NOFLITE: Estimating ITE distributions using normalizing flows

To tackle the problem formulated above, we propose NOFLITE1: a neural architecture using normalizing flows
for estimating individual treatment effects distributions. A high-level overview of the architecture is shown

1All code is available at https://anonymous.4open.science/r/NOFLITE-CB0E.
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Figure 2: NOFLITE architecture overview. We visualize the S-learner configuration of our method. Opti-
mization: NOFLITE learns (1) a conditional prior p(z|x, t) for each instance, and (2) an invertible mapping
g(y) from that conditional prior to the empirical distribution p(y(t)|x), possibly conditioned on x and/or t.
Both the encoder and normalizing flow use neural networks and are trained with gradient descent. Inference:
Based on input (x, t), the conditional prior p(z|x, t) is estimated. Samples z are drawn from this prior and
transformed using the inverse flow g−1(z) to estimate the distribution of each potential outcome p(y(t)|x).

in Figure 2. NOFLITE consists of two parts. The first part learns to predict a simple, conditional prior
p(z|x, t), in this case a Gaussian distribution parametrized by (µ, σ). The second part learns to transform
this prior to a more complex posterior distribution of the potential outcome p(y|x, t). The entire model is
trained end-to-end by directly maximizing its likelihood, while regularizing to deal with confounding. Both
the model architecture and training procedure are explained in more detail below.

4.1 Architecture

NOFLITE’s architecture consists of two parts (see Figure 2): (1) an encoder f , i.e., a neural network that
estimates a simple, parametrized prior distribution, and (2) a normalizing flow g−1 to transform this prior to
a more complex posterior distribution. In the following, we provide a detailed description of both modules.

4.1.1 Encoder: learning conditional priors

The first part of the model is a neural network that encodes the input (x, t) as a simple prior distribution
p(z|x, t). This prior can be seen as a first approximation of the empirical distribution. We use a normal
distribution defined by parameters µ and σ: f : (X, T ) 7→ (M, Σ). Depending on the application, other
distributions could be used, such as a uniform or log-normal distribution. The only requirements are that
the distribution is defined by a finite set of parameters and that its likelihood can be computed analytically.

To deal with confounding, x is first transformed to a balanced representation ϕ. This is achieved by learning
a representation in which the distributional distance between the treated and non-treated representations is
minimized (Johansson et al., 2016; Shalit et al., 2017). The training procedure is discussed in detail below.

4.1.2 Normalizing flow: learning complex posteriors

Although the encoder could be trained on its own to maximize the likelihood of the conditional prior,
the model’s hypothesis space would in that case be limited to simple parametric distributions, such as the
normal distribution. Therefore, to augment the representational capacity of our model, the second part of the
network uses a normalizing flow that gradually transforms the simple prior distribution p(z|t, x) into a more
complex posterior distribution p(y(t)|x, t) that can match more complex potential outcome distributions.
The number of flow transformations k in g is a hyperparameter that can be tuned. This number can be used
to tune the complexity of the transformation and, therefore, the complexity of the posterior distribution.

Normalizing flows are an active field of research and, as such, new flow transforms continue to be proposed. In
principle, any type of normalizing flow is compatible with NOFLITE, as long as some requirements are fulfilled.
First, they have to be compatible with a univariate distribution (e.g. coupling layers (Dinh et al., 2017) are
not suitable). Second, we have to be able to compute both g and g−1. Nevertheless, these requirements
leave a variety of flow transformations (e.g., Durkan et al., 2019; Chen et al., 2019), with several potential
candidates that have been shown to be universal approximators (e.g., Huang et al., 2018; Meng et al., 2020).
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In this work, g is instantiated with a sigmoidal flow (Huang et al., 2018). The benefit of this flow type is
that it is a flexible transformation, with the resulting normalizing flow being a universal approximator. The
flow transformation uses a monotonic transformer network that is parametrized by a conditioner network.
This conditioner network can also take different factors as input, such as covariates x and/or treatment t.

4.1.3 Metalearner configuration

We implement our model in two metalearner configurations. For the S-learner configuration, the encoder
concatenates the balanced representation ϕ with the treatment t and uses this combination as inputs to
predict the parameters of the conditional prior p(z|x, t). For the T-learner configuration, both treatments
have individual output heads after the shared balanced representation ϕ. Similarly, we define two corre-
sponding metalearners for the normalizing flow. The S-learner shares the flow across treatments, potentially
conditioning the flow transformation on the treatment–depending on the flow type. The T-learner learns a
separate flow per treatment. Either one might be more suitable, depending on the data generating process;
we see this is a hyperparameter that can be tuned.

4.2 Optimization

The model is trained end-to-end to simultaneously estimate accurate treatment effect distributions by max-
imizing the likelihood, while regularizing to deal with confounding:

LNOFLITE = −LLL + λLMMD (4)

with hyperparameter λ ∈ R+ trading-off likelihood maximization and balancing.

To calculate the model likelihood, the encoder and normalizing flow cooperate and meet in the middle, i.e., in
the latent space Z. On the one hand, the encoder maps the inputs (x, t) to a prior distribution N (µ, σ). On
the other hand, the normalizing flow g maps the outcome y to a latent z. The goal of both components is to
cooperate and maximize the likelihood of z given N (µ, σ). This results in the following training objective:

LLL = log pZ

(
g(y)

)
+ log

∣∣∣det
(

∂g(y)
∂x

)∣∣∣ . (5)

The first term, the likelihood of g(y), can be computed analytically given the Gaussian prior from the encoder.
The second term, the log determinant of the Jacobian, can be calculated from the flow transformation. This
way, using a normalizing flow allows computing the likelihood exactly and, therefore, optimizing it directly. In
practice, we minimize the negative log-likelihood −LLL, which is equivalent to maximizing this log-likelihood.

We learn a balanced representation to deal with confounding (Johansson et al., 2016; Shalit et al., 2017). This
is achieved by minimizing the distributional distance between the representations of different treatments.
Specifically, we use the linear Maximum Mean Discrepancy (MMD) (Gretton et al., 2012):

LMMD = 2

∥∥∥∥∥∥ 1
n0

∑
i∈D0

ϕ(xi) + 1
n1

∑
j∈D1

ϕ(xj)

∥∥∥∥∥∥
2

, (6)

where D0 and D1 denote the control and treatment group with n0 and n1 elements (per batch), respectively.

4.3 Inference

Inference is done in two steps. For each instance, samples are first drawn from its prior distribution z ∼
N
(
µ(x, t), σ(x, t)

)
. Then, these samples are transformed to samples from the posterior using the inverse

mapping: ŷ = g−1(z). After this process is repeated for both treatments, a sample for the ITE is obtained
by taking the difference between both potential outcomes: τ = ŷ(1) − ŷ(0). This procedure is repeated for
each sample. For more stability, we draw samples from a truncated normal distribution (see Appendix A.3).
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5 Results

In this section, we evaluate our proposed approach and compare it with several benchmarks. Our main goal is
to assess whether NOFLITE learns to predict accurate individual treatment effect distributions from different
types of observational data sets, compared to existing methods. We start by describing our experimental
setup, including data sets and benchmark methodologies in Section 5.1 and evaluation metrics in Section 5.2.
The empirical results are presented in Section 5.3. More information on hyperparameter tuning for NOFLITE is
provided in Appendix A.2. A sensitivity analysis for the truncation probability is provided in Appendix A.3.

5.1 Data and benchmarks

Evaluating individualized estimates of the treatment effect is challenging, because only one outcome is
observed and, because of that, we do not have access to the ground truth. To overcome this challenge, we
follow existing work and evaluate based on semi-synthetic data. More specifically, in this work, we evaluate
NOFLITE using commonly used benchmark data sets: IHDP, EDU, and News. These are introduced briefly
in the following; Appendix A.1 provides more detailed information on the data generating processes.

IHDP. The Infant Health and Development Program (IHDP; Hill, 2011) is a semi-synthetic data set that
is commonly used to evaluate machine learning models for causal inference. Covariates are based on a
real-world randomized experiment in which some infants (n = 747) were targeted with child care and home
visits. The resulting outcome is simulated based on these covariates (x ∈ R25) and the treatment, with the
resulting treatment effect following a normal distribution. Although this dataset has recently been criticized
(Curth et al., 2021), we include it due to it being a widely-used benchmark.

EDU. The Education data set (EDU; Zhou et al., 2022) measures the effect of providing a mother with
adult education benefits on their children’s learning. The data is simulated based on covariates x ∈ R32

using two (non-linear) neural networks, with added Gaussian (t = 0) or exponential noise (t = 1). For both
potential outcomes, the noise level depends on one of the covariates; more specifically, a single binary variable.
Confounding is introduced through covariate-based propensities and removing well-balanced subjects.

News. The News data set (Johansson et al., 2016) shows the effect of reading an article on either mobile
or desktop (t) on the reader’s experience (y), based on the article’s content in word counts (x). The data is
simulated using a topic model z(x), which is used to define two centroids in the topic space: zc

0 (desktop)
and zc

1 (mobile). Device assignment and reader experience are both simulated based on the similarity of the
article’s topic z(x) to the centroids zc

0 and zc
1. The resulting data is very high-dimensional (d = 3,477).

Benchmark methodologies. We compare NOFLITE with several other machine learning models capable
of learning distributions. First, we compare against Causal Multi-task Gaussian Processes2 (CMGP; Alaa
& van der Schaar, 2017). Second, we compare against other methods relying on generative neural networks.
The Causal Effect Variational Autoencoder (CEVAE; Louizos et al., 2017) uses a variational autoencoder
to model latent confounders given noisy proxies. GANITE (Yoon et al., 2018) uses generative adversarial
networks to deal with selection bias and to obtain a probabilistic estimate of the treatment effect. Finally,
we compare against Causal Collaborating Networks (CCN; Zhou et al., 2022).

5.2 Performance metrics

The main goal in this work is to predict accurate individual treatment effect distributions. Therefore, the
main metric of interest is the model’s loglikelihood, which allows for a comprehensive assessment of each
instance’s predicted distribution, by quantifying how likely the test data is given the predicted distributions.
We estimate the loglikelihood as follows. For each instance i, we sample 500 samples from the model θ based
on the covariates xi. Then, for each instance, we fit a Gaussian kernel density estimator kdei(xi, θ) using

2For the high dimensional News data set, we take the first 100 principal components to avoid excessive training times. This
number was tuned based on a validation set.
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IHDP (n=747; d=25) EDU (n=8,627; d=32) News (n=5,000; d=3,477)

LL (↑)
√

PEHE (↓) IoU (↑) LL (↑)
√

PEHE (↓) IoU (↑) LL (↑)
√

PEHE (↓)
CMGP −1.53±0.07 0.73±0.09 0.77±0.01 −1.25±0.01 0.22±0.01 0.56±0.00 −2.29±0.03 2.21±0.05

GANITE — 6.39±0.09 0.01±0.00 — 1.34±0.10 0.37±0.03 — 94.75±57.30
CEVAE −2.92±0.09 5.71±0.09 0.25±0.01 −2.63±0.03 2.20±0.25 0.25±0.00 −2.83±0.04 3.74±0.18

CCN −1.73±0.09 1.46±0.17 0.66±0.02 −1.06±0.01 0.31±0.01 0.64±0.01 −2.20±0.02 2.14±0.04

NOFLITE −1.49±0.02 1.13±0.18 0.74±0.00 −1.04±0.00 0.31±0.01 0.61±0.01 −2.14±0.02 2.18±0.05

Table 2: Empirical results. We benchmark our method against a variety of existing methods using several
metrics. Arrows indicate whether lower (↓) or higher (↑) is better. The best result is denoted in bold. We
highlight the loglikelihood ( LL ) in gray to emphasize that this is the main metric of interest. For all data
sets, GANITE achieves a loglikelihood of less than −10; this is indicated by an em dash (—).

these samples and estimate the loglikelihood of the true treatment effect according to this kernel density
estimator log p(τi|kdei(xi, θ)). The loglikelihood is averaged over all instances:

LL = 1
n

n∑
i=1

log p
(
τi | kdei(xi, θ)

)
. (7)

The loglikelihood evaluates the predicted distributions globally. To facilitate a more holistic assessment of
performance, we present additional metrics that analyze specific properties of the predicted distribution.
First, we use the square root of the precision in estimation of heterogeneous effects (

√
PEHE, see Hill, 2011)

to evaluate the accuracy of the expected value of the individual treatment effect:

PEHE = 1
N

N∑
i=1

((
y

(1)
i − y

(0)
i

)
− E

(
ŷ

(1)
i − ŷ

(0)
i

))2

= 1
N

N∑
i=1

(τi − τ̂i)2. (8)

For some data sets, the treatment effect distribution that was used to generate the potential outcomes is
known. In these case, we can additionally assess the accuracy of the predicted confidence intervals. To this
end, we propose to evaluate the coverage of the model’s 90% confidence intervals using the intersection-over-
union (IoU) comparing the predicted confidence interval with the theoretical ground truth:

IoU = CI ∩ ĈI

CI ∪ ĈI
. (9)

This metric is bounded between 0 and 1. The worst value, 0, indicates an empty intersection. The best
value, 1, indicates an intersection equal to the union and, consequently, an estimated confidence interval that
is equal to the ground truth. For all metrics and models, we use 500 samples (per instance) for evaluation.

5.3 Empirical results

We compare the different models for the IHDP, EDU, and News data sets in Table 2. In terms of loglikelihood,
NOFLITE obtains the best performance out of all methods under consideration for each data set. These
findings demonstrate NOFLITE’s ability to learn accurate individual treatment effect distributions from a
variety of observational data sets and associated data generating processes. For the IHDP data set, NOFLITE
slightly outperforms the next-best model, CMGP. Both methods use a Gaussian prior, which matches IHDP’s
data generating process. On the EDU data set, the data generating process is more complex and requires
more flexiblity. Indeed, the Gaussian prior of CMGP results in relatively worse performance and the more
complex models, such as NOFLITE and CCN, perform better. This illustrates how the normalizing flows can
allow for a more flexible model of posterior when required. Finally, the good performance on the News data
set illustrates NOFLITE’s ability of learning from high dimensional data. As opposed to CMGP, which needs
PCA preprocessing, it can also handle this high dimensional data out-of-the-box.
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Figure 3: NOFLITE illustration. We visualize NOFLITE’s output for selected test instances for one iteration of
the News data set. Individual treatment effect distributions: Figures (a-c) visualize one particular instance’s
treatment effect distribution and related statistics based on samples from the model. Distribution hetero-
geneity: Figure (d) compares the predicted individual treatment effect distributions of several instances.

When we look at the metrics evaluating statistics derived from the treatment effect distribution, i.e. the
PEHE and IoU, there is no clear winner overall: either CMGP or CCN result in the best performance.
Nevertheless, for both of these metrics, NOFLITE’s performance is competitive with the best performing
methodology for each data set. This illustrates how optimizing the likelihood and learning distributions
results in good performance for the metrics evaluating properties of this distribution. Nevertheless, if there
is one particular metric of interest (e.g., PEHE), other objectives than NOFLITE’s loglikelihood might be
preferable (e.g., the mean squared error).

Finally, we illustrate how NOFLITE can be used for practical applications. We do this by training our model
on an iteration of the News data set and showing the model’s output for a few selected test instances, see
Figure 3. Figures 3a to 3c show the ITE distribution and related statistics based on samples from the learned
model. This not only allows for visualizing the estimated distribution p(τi) and its associated expected value
E(τ), but also for assessing the uncertainty using the 90% confidence interval or a boxplot. Moreover, due
to the News data set being semi-synthetic, we can compare the ground truth τobserved with the estimated
distribution. Finally, the model can be used to consider the treatment decision for an instance by, e.g.,
looking at the probability of its treatment effect being strictly positive. Figure 3d shows the heterogeneity
in distributions of different instances, both in terms of expected value and shape.

6 Conclusion

Estimating an instance’s individual treatment effect distribution is an essential requirement for personalized
decision-making. To this aim, we presented NOFLITE, a flexible neural method for estimating treatment
effect distributions that directly optimizes the metric of interest for this task: the model’s likelihood. By
leveraging normalizing flows, the model is not constrained to any particular parametric distribution, but
can instead trade off a simple normal distribution with a more complex posterior, depending on the data.
Experiments on a variety of data sets demonstrated NOFLITE’s good performance in practice and underlined
its excellent representational capacity, as illustrated by its ability to obtain high likelihoods for a variety of
data set sizes, dimensionalities, and data generating processes.

Future work in normalizing flows could benefit our method, as novel flow transformations will be compatible
with our method and help address potential limitations of our work. First, depending on the flow transfor-
mation that is used, training or inference can be slow in normalizing flows. Second, NOFLITE introduces a
variety of hyperparameters. Therefore, novel flow transformation with less hyperparameters might benefit
adoption of our method in practice. Related to these points, it would be interesting to incorporate advances
in other types of generative models, such as diffusion models (see e.g. Yang et al., 2022), in future work.
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A Appendix

A.1 Data sets and associated data generating processes

This section gives more extensive details on the different semi-synthetic data sets used in this work. We
describe each data set and the underlying data generating process that were used to simulate it.

IHDP (n = 747, d = 25; Hill, 2011). We use data based on the standard response surface B. In this
setting, potential outcomes are generated as

Y
(0)

i = exp((xi + A)β) + ε and Y
(1)

i = xiβ − ω + ε (10)

where ε ∼ N (0, 1), W is a (fixed) offset matrix with each value equal to 0.5, β is a sparse coefficient vector
with each element sampled from (0, 0.1, 0.2, 0.3, 0.4) with corresponding probabilities (0.6, 0.1, 0.1, 0.1, 0.1).
For each iteration of the data set, ω is set to ensure that the conditional average treatment effect for the
treated (CATT) and conditional average treatment effect on the controls (CATC) both equal 4 on average.
We use the 100 replications from github.com/clinicalml/cfrnet (Shalit et al., 2017).

EDU (n = 8,627, d = 32; Zhou et al., 2021). For each treatment group, a neural network fy(t) is trained
based on the observed outcomes. The potential outcomes are then simulated as

Y
(0)

i = fy(0)(xi) + (2− x23
i )ε0 and Y

(1)
i = fy(1)(xi) + (2− x23

i )ε1, (11)

with ε0 ∼ N (0, 0.52) and ε1 ∼ exp(2). x23 refers to the 23rd covariate, which is a binary covariate indicating
whether the instance’s mother has received previous education.

News (n = 5,000, d = 3,477; Johansson et al., 2016). First, based on a topic model z, two treatment-
specific centroids zc

0 and zc
1 are estimated in the topic space z(x). Each potential outcome is then generated

as the similarity between z(xi) and zc
t as

Y
(t)

i = C
(
z(xi)⊺zc

0 + ti · z(xi)⊺zc
1
)

+ ε,

with scaling factor C and ε ∼ N (0, 1). Treatment assignment is modeled as p(ti = 1|xi) =
exp(κ·z(xi)⊺zc

1)
exp(κ·z(xi)⊺zc

1)+exp(κ·z(xi)⊺zc
1) with κ = 10.

A.2 Hyperparameter optimization

We add more information on the chosen hyperparameters in Table 3. Given the absence of the ground truth
in observational data, hyperparameter tuning was done using wandb (Biewald, 2020) using the potential
outcome’s loglikelihood, PEHE, and IoU of a validation set. Additionally, to tune the hyperparameter λ for
the de-biasing term, we use an inverse propensity weighted loglikelihood, allowing us to assess performance
under covariate shift. Training is done using gradient descent with the Adam optimizer (Kingma & Ba,
2015). We use several types of regularization: ℓ1, ℓ2, and noise regularization (Rothfuss et al., 2019). The
encoder networks uses exponential linear units (ELU) as activation functions (Clevert et al., 2015).
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Hyperparameter IHDP EDU News
— General —

Metalearner T T T
— Encoder —

Hidden layers balancer 2 1 3
Hidden layers encoder – shared 3 0 0
Hidden layers encoder – separate 2 2 3
Hidden neurons encoder 16 25 32

— Flow —
Number of flow transformations k 0 4 1
Flow type — SigmoidX SigmoidX
Hidden neurons transformer — 4 2
Hidden neurons conditioner — 16 32
Hidden layers conditioner — 2 1

— Training settings —
Learning rate 5e-4 5e-4 5e-4
Batch size 128 512 128
Training steps 5,000 5,000 10,000
Regularization λℓ1 1e-3 0 5e-4
Regularization λℓ2 5e-4 1e-3 5e-3
λmmd 1 1e-2 1e-2
Noise regularization x 0 0 1
Noise regularization y 5e-1 1e-1 5e-1
Truncation probability 1e-3 1e-2 1e-2

Table 3: Hyperparameter tuning. We show the optimal hyperparameters for the different data sets.
The flow type ‘SigmoidX’ refers to the deep sigmoidal flow (DSF) of Huang et al. (2018) conditioned on the
balanced representation of x.

The optimal hyperparameters additionally give some insights into how NOFLITE can deal with a diversity
of data generating processes. For instance, the best metalearner was the T-learner for all data sets. The
potential outcomes were generated separately for all data sets under consideration, which corresponds more
closely to the T-learner’s hypothesis space. Moreover, the complexity of the distribution can be tweaked
depending on the data generating process: NOFLITE does not use any flows for IHDP, uses only one flow
for News, and uses four flow transformations for EDU. These settings match the increasingly more complex
distributions being used in the corresponding the data generating processes.

A.3 Truncation probability: sensitivity analysis

During inference, we sample from a truncated normal distribution. We view this truncation probability as a
hyperparameter which can be used to trade-off between different metrics. We illustrate this by analyzing the
sensitivity of NOFLITE to this hyperparameter in terms of the LL, PEHE and IoU for the different data sets:
IHDP (Figure 4), EDU (Figure 5) and News (Figure 6). Generally, the LL first improves as the truncation
probability increases and, after reaching some optimal value, decreases again. Simultaneously, we find that
the LL’s variance increases as the truncation probability increases. In terms of PEHE, there similarly seems
to exist an optimal truncation value. Conversely, in terms of IoU, we see that truncation is only beneficial
for the IHDP data set, with the optimal IoU being obtained without truncation for EDU and News. This
makes sense intuitively, as truncation could result in worse coverage of the confidence intervals.
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Figure 4: Truncation probability – IHDP. We analyze the sensitivity of the LL, PEHE and IoU to the
truncation probability for the IHDP data set. We show NOFLITE in blue and the (next-)best model in green.
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Figure 5: Truncation probability – EDU. We analyze the sensitivity of the LL, PEHE and IoU to the
truncation probability for the EDU data set. We show NOFLITE in blue and the (next-)best model in green.
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Figure 6: Truncation probability – News. We analyze the sensitivity of the LL and PEHE to the
truncation probability for the News data set. We show NOFLITE in blue and the (next-)best model in green.
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