
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOKAGGLE: A MULTI-AGENT FRAMEWORK FOR
AUTONOMOUS DATA SCIENCE COMPETITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data science tasks involving tabular data present complex challenges that require
sophisticated problem-solving approaches. We propose AutoKaggle, a powerful
and user-centric framework that assists data scientists in completing daily data
pipelines through a collaborative multi-agent system. AutoKaggle implements
an iterative development process that combines code execution, debugging, and
comprehensive unit testing to ensure code correctness and logic consistency. The
framework offers highly customizable workflows, allowing users to intervene at
each phase, thus integrating automated intelligence with human expertise. Our
universal data science toolkit, comprising validated functions for data cleaning,
feature engineering, and modeling, forms the foundation of this solution, enhanc-
ing productivity by streamlining common tasks. We selected 8 Kaggle competi-
tions to simulate data processing workflows in real-world application scenarios.
Evaluation results demonstrate that AutoKaggle achieves a validation submission
rate of 0.85 and a comprehensive score of 0.82 in typical data science pipelines,
fully proving its effectiveness and practicality in handling complex data science
tasks. 1

1 INTRODUCTION

In recent years, with the rapid development of large language models (LLMs) (OpenAI, 2022; 2023),
automated data science has gradually become possible. LLM-based agents have shown great po-
tential in the data domain, as they can automatically understand, analyze, and process data (Has-
san et al., 2023; Lucas, 2023; Zhang et al., 2024a), thereby promoting the democratization and
widespread application of data science.

However, existing research still has significant shortcomings in addressing complex data science
problems. Many studies are limited to simple, one-step data analysis tasks (Zhang et al., 2024c;
Hu et al., 2024), which are far from the actual application scenarios of data science. While recent
work (Jing et al., 2024) attempts to evaluate data science capabilities through more comprehensive
tasks, it still focuses on relatively constrained scenarios that represent only portions of a complete
data science pipeline. Other research relies on pre-built knowledge bases (Guo et al., 2024), raising
the barrier to use and limiting the flexibility and adaptability of solutions. Moreover, current research
focuses excessively on improving task completion rates and optimizing performance metrics, while
neglecting the interpretability and transparency of intermediate decision-making steps in logically
complex data science tasks. This neglect not only affects users’ understanding of solutions but also
diminishes their credibility and practicality in real-world applications.

To address these issues, we propose AutoKaggle, a universal multi-agent framework that provides
data scientists with end-to-end processing solutions for tabular data, helping them efficiently com-
plete daily data pipelines and enhance productivity. AutoKaggle has the following features:

(i) Phase-based Workflow and Multi-agent Collaboration. AutoKaggle employs a phase-based
workflow and multi-agent collaboration system. It divides the data science competition process
into six key phases: background understanding, preliminary exploratory data analysis, data cleaning
(DC), in-depth exploratory data analysis, feature engineering (FE), and model-building, -validation,
and -prediction (MBVP). To execute these phases, five specialized agents (Reader, Planner,

1All code and data are available: https://anonymous.4open.science/r/AutoKaggle-B8D2.

1

https://anonymous.4open.science/r/AutoKaggle-B8D2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Developer, Reviewer, and Summarizer) work collaboratively to execute these phases, from
problem analysis to report generation.

(ii) Iterative Debugging and Unit Testing. AutoKaggle ensures code quality through iterative de-
bugging and unit testing. The Developer employs three main tools (code execution, debugging,
and unit testing) to verify both syntactic correctness and logical consistency.

(iii) Machine Learning Tools Library. AutoKaggle integrates a comprehensive machine learn-
ing tools library covering data cleaning, feature engineering, and model-building, -validation, and
-prediction. The library includes expert-written code snippets and custom tools, enhancing code
generation efficiency and quality. By combining predefined tools with self-generated code, AutoK-
aggle handles complex tasks while reducing reliance on LLMs for domain-specific knowledge.

(iv) Comprehensive Reporting. AutoKaggle generates detailed reports after each phase and at the
competition’s conclusion, showcasing its decision-making process, key findings, actions, and rea-
soning. This feature makes the data processing workflows transparent, increasing user trust in Au-
toKaggle.

AutoKaggle provides a universal and comprehensive solution for a wide variety of data science tasks.
By simply providing a task overview, it can automatically complete the entire process from develop-
ment to testing, making it exceptionally easy to use. AutoKaggle is highly adaptable, allowing users
to customize it according to their specific needs. Moreover, it offers clear interpretability throughout
the automated data science process, enhancing users’ understanding and trust in the system.

We chose competitions from the Kaggle platform to evaluate our framework. Kaggle data science
competitions simulate the real challenges faced by data scientists, covering the complete process
from data cleaning to model deployment. These competitions require participants to execute a series
of complex and interdependent tasks. These include: data cleaning and preprocessing, exploratory
data analysis, feature engineering, and modeling. Each step demands professional knowledge and
meticulous planning, often necessitating multiple iterations. This complexity makes Kaggle an ideal
platform for assessing the effectiveness of data science automation tools. In the 8 Kaggle data
science competitions we evaluated, AutoKaggle achieved 0.85 in valid submission rate and 0.82 in
comprehensive score. We summarize our contributions as follows:

• We propose AutoKaggle, a novel multi-agent framework for Kaggle data science competi-
tions, achieving high task completion rates and competitive performance above the average
human level in our evaluations.

• We introduce a phase-based workflow integrated with multi-agent collaboration, incorpo-
rating iterative debugging and unit testing, which systematically addresses the complexities
of data science tasks and ensures robust, correct code generation.

• We develop a machine learning tools library and integrate it into our framework, enhancing
code generation efficiency and quality for complex data science tasks.

• We implement a comprehensive reporting system that provides detailed insights into the
decision-making process at each phase, making AutoKaggle both a solution provider and an
educational tool for data science competitions, thereby contributing to the democratization
of data science skills.

2 AUTOKAGGLE

2.1 OVERALL FRAMEWORK

In this section, we introduce AutoKaggle, a fully automated, robust, and user-friendly framework
designed to produce directly submittable prediction results using only the original Kaggle data.
Given the diversity of data science problems, the range of potential solutions, and the need for
precise reasoning and real-time understanding of data changes, effectively handling complex data
science tasks on Kaggle is challenging. Our technical design addresses two primary issues: (i) how
to decompose and systematically manage complex data science tasks; and (ii) how to efficiently
solve these tasks using LLMs and multi-agent collaboration.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Data Science
Task

Table
Data

 Background
 Understanding

1.Preliminary
EDA

Cooperative
Engagement

2.Data
Cleaning

Cooperative
Engagement

3.In-depth EDA

Cooperative
Engagement 4.Feature

Engineering

5.ModellingDocuments Planner Developer Reviewer

Cooperative Engagement

3

Summarizer Documents

States of Problem-Solving

Define

Human in the Loop1

Modify

Human in the Loop2

Tools

Cooperative
Engagement

Tools

Reader

ML Tools Library

RAG

Cooperative
Engagement

Tools

RAG

Figure 1: Overview of AutoKaggle. AutoKaggle integrates a phase-based workflow with specialized
agents (Reader, Planner, Developer, Reviewer, and Summarizer), iterative debugging
and unit testing, a comprehensive machine learning tools library, and detailed reporting.

The core concept of AutoKaggle is phase-based multi-agent reasoning. This method leverages
LLMs to reason and solve tasks within a structured workflow, addressing different facets of the
data science process through the collaboration of multiple agents. AutoKaggle comprises two main
components: a phase-based workflow and a multi-agent system, which complement each other, as
shown in Figure 1.

Phase-based Workflow. The data science process is divided into six key phases: understanding the
background, preliminary exploratory data analysis, data cleaning, in-depth exploratory data anal-
ysis, feature engineering, and model-building, -validation, and -prediction. Data cleaning, feature
engineering, and model-building, -validation, and -prediction are fundamental processes required
for any data science competition. We designed two additional data analysis phases to provide essen-
tial information and insights for data cleaning and feature engineering, respectively. Given that our
initial input is only an overview of a Kaggle data science competition and the raw dataset, we added
a background understanding phase to analyze various aspects of the competition background, objec-
tives, file composition, and data overview from the raw input. This structured approach ensures that
all aspects of the problem are systematically and comprehensively addressed, with different phases
decoupled from each other. It allows thorough unit testing at each phase to ensure correctness and
prevent errors from propagating to subsequent phases.

Multi-agent System. The system consists of five specialized agents: Reader, Planner,
Developer, Reviewer, and Summarizer. Each agent is designed to perform specific tasks
within the workflow. They collaborate to analyze the problem, develop strategies, implement solu-
tions, evaluate results, and generate comprehensive reports. Detailed setup and interaction processes
of agents are described in Appendix D.1.

Code Generated by

Agent Developer

Interpreter

Tool

Not Contain
Bugs Test n

False(Detail)

True

Doc

Finish all Tests in a State

Unit Test Tool

 Detailed failed tests information

Contain Bugs

Figure 2: Iterative debugging and testing.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We summarize the pseudo-code of AutoKaggle in Algorithm 1. Let C represent the competition, D
the dataset, and Φ = {ϕ1, ϕ2, . . . , ϕ6} the set of all phases in the competition workflow. For each
phase ϕi, a specific set of agents Aϕi

is assigned to perform various tasks. The key agents include
Planner, Developer, Reviewer, and Summarizer.

2.2 DEVELOPMENT BASED ON ITERATIVE DEBUGGING AND TESTING

In AutoKaggle, the Developer adopts a development approach based on iterative error correction
and testing. It ensures the robustness and correctness of generated code through iterative execution,
debugging, and testing.

Figure 2 shows the overall process of iterative debugging and testing. Specifically, the Developer
first generates code based on the current state st, the plan Pϕi

created by the Planner, and the
historical context H: Cϕi

= GenerateCode(st, Pϕi
,H). Cϕi

is the generated code for phase ϕi,
and GenerateCode(·) represents the code generation function executed by the Developer. The
historical context H includes previous phases’ code, outputs, and other relevant information from
other agents’ activities.

After the initial code generation, it enters an iterative debugging and testing process. This process
can be described by Algorithm 2.

Developer utilize three primary tools: code execution, code debugging, and unit testing.

(i) Code Execution. The Code Execution tool runs the generated code and captures any runtime
errors. When an error is detected, the system restores a file to record the error messages.

(ii) Code Debugging. The Code Debugging tool analyzes error messages and attempts to fix the
code. It utilizes error messages along with the current code and historical context to generate fixes:
C ′

ϕi
= DebugCode(Cϕi

, Eϕi
,H). C ′

ϕi
is the debugged version of the code.

Following previous work (Tyen et al., 2024), we designed the debugging process into three main
steps: error localization, error correction, and merging of correct and corrected code segments. We
set a maximum of 5 attempts for the Developer to self-correct errors. Additionally, we’ve intro-
duced an assistance mechanism. We record all error messages encountered during the debugging
process. When the number of correction attempts reaches 3, the Developer evaluates the feasibil-
ity of continuing based on historical information. If past error messages are similar, it suggests that
the Developer might lack the ability to resolve this particular error, and continuing might lead to
a loop. In such cases, we allow the Developer to exit the correction process and regenerate the
code from scratch.

(iii) Unit Testing. Unit testing runs predefined tests to ensure code meets requirements. For each
phase ϕi, a set of unit tests Tϕi is defined: Tϕi = {t1, t2, . . . , tk}. The unit testing process can be
represented as: Rϕi = ExecuteUnitTests(Cϕi , Tϕi). Rϕi is the set of test results, with each result
rj ∈ {0, 1} indicating whether the corresponding test passed (1) or failed (0).

In complex and accuracy-demanding tasks like Kaggle data science competitions, merely ensuring
that the code runs without errors is not enough. These competitions often involve intricate data
processing and sophisticated algorithms, where hidden logical errors can significantly affect the final
results. Therefore, it is necessary to design meticulous unit tests that not only verify the correctness
of the code but also ensure it meets the expected logical and performance standards. Otherwise,
hidden errors may accumulate through successive phases, making the completion of each subsequent
phase increasingly difficult. For example, unnoticed logical defects during the data cleaning phase
may lead to poor feature extraction, thereby affecting the model building in subsequent phases.

To mitigate these risks, unit tests for each phase must be carefully designed to cover a wide range
of scenarios, including edge cases and potential failure points. This involves not only checking the
correctness of the output but also ensuring that the intermediate steps conform to the expected logic.
For instance, in the data cleaning phase, unit tests should verify whether missing values are handled
correctly, outliers are appropriately managed, and data transformations are accurately applied.

By implementing comprehensive unit tests, we can catch and correct errors early in the development
process, preventing them from propagating to later phases. This systematic testing approach ensures

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

that the code at each phase is not only error-free but also functionally correct and aligned with the
overall project goals.

In conclusion, the iterative debugging and testing method employed by Developer ensures the
generation of robust, error-free, and effective code for each phase of the competition. By employing
advanced error handling, iterative debugging, and comprehensive unit testing, the system can adapt
to various challenges and consistently produce high-quality code outputs.

2.3 MACHINE LEARNING TOOLS LIBRARY

Generating machine learning code from scratch using LLMs can be challenging due to the intri-
cacies of various tasks. These models need to encompass specialized knowledge across a range
of processes, from data processing and feature engineering to model-building, -validation, and -
prediction. In many cases, leveraging expert-crafted machine learning tools is more efficient than
relying solely on LLM-generated code. This is because LLMs often lack domain-specific expertise,
potentially leading to suboptimal or inaccurate code. Furthermore, when tasked with complex oper-
ations, the generated code may suffer from syntactical or logical errors, increasing the likelihood of
failures.

Our machine learning library is categorized into three core toolsets: data cleaning, feature engineer-
ing, and model-building, -validation, and -prediction, each serving a specific role in the workflow.
The data cleaning toolkit comprises seven tools, including FillMissingValues, RemoveColumns
WithMissingData, DetectAndHandleOutliersZscore, DetectAndHandleOutliersIqr, RemoveDupli-
cates, ConvertDataTypes and FormatDatetime, all designed to ensure clean, consistent, and reli-
able data preparation. The feature engineering module encompasses eleven tools aimed at enhanc-
ing model performance, such as OneHotEncode, FrequencyEncode, CorrelationFeatureSelection,
and ScaleFeatures, employing various techniques like correlation analysis and feature scaling to
optimize data representation. The model-building, -validation, and -prediction category provides
TrainAndValidationAndSelectTheBestModel to support the full model development lifecycle, in-
cluding model selection, training, evaluation, prediction, ensemble integration, and hyperparame-
ter optimization, facilitating robust model deployment and effective performance. Each tool comes
with comprehensive explanations, input/output specifications, anomaly detection, and error handling
guidance.

This comprehensive library is crucial for efficient multi-agent collaboration in tackling complex
Kaggle competitions. Each tool provides standardized, reliable functionality, enabling AutoKaggle
to seamlessly share and process data, enhance feature quality, and optimize model performance,
ultimately improving overall workflow efficiency and ensuring coordinated, high-quality solutions
in a competitive environment. Moreover, our machine learning library reduces the burden on Au-
toKaggle in detailed programming tasks, enabling them to focus more on higher-level task planning
and code design. This shift of focus allows AutoKaggle to navigate complex tasks more effectively,
ultimately improving their overall performance. More details of our machine learning tools can be
found in Appendix D.3.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Task Selection. We select eight Kaggle competitions that predominantly use tabular datasets, focus-
ing on classification and regression tasks. These competitions are categorized into two types: classic
Kaggle and Recent Kaggle. Classic Kaggle competitions are those that begin before October 2023
with at least 500 participants, whereas Recent Kaggle competitions begin in 2024 or later. As our
analysis relies on GPT-4o, which is trained on data available until October 2023, it includes most
of the Classic Kaggle competitions. To evaluate the generalization capabilities of AutoKaggle, we
therefore focus on competitions initiated after 2024. Additionally, we classify these competitions
into three difficulty levels: easy, medium, and hard. For each dataset, we access the corresponding
competition’s homepage on Kaggle, extract content from the overview and data description sections,
and compile this information into a file named overview.txt. This file, along with the original com-
petition data files, forms the primary input for AutoKaggle. More details of our datasets can be
found in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Notably, we do not incorporate the nine tabular datasets from MLE-Bench (Hong et al., 2024) due
to their substantial size, which would significantly increase computational runtime. Resource lim-
itations prevent us from adhering to MLE-Bench’s experimental setup, which specifies a 24-hour
participation window per agent and a 9-hour code execution timeout.

Table 1: Made submission, valid submission and comprehensive score on 8 Kaggle tasks. Each
experiment is repeated with 5 trials. The best performances on individual tasks are underlined, and
the best performances across all tasks are bolded.

Metric Setting / Task Classic Recent
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Avg.

Made Submission
AutoKaggle gpt-4o 1 0.80 0.80 1 0.80 0.80 0.80 0.80 0.85
AutoKaggle o1-mini 1 0.60 0.60 1 0.60 0.80 0.60 0.60 0.73
AIDE gpt-4o 1 0.40 0.20 0.60 1 0.80 0.80 0 0.60

Valid Submission
AutoKaggle gpt-4o 1 0.80 0.80 1 0.80 0.60 0.80 0.80 0.83
AutoKaggle o1-mini 1 0.60 0.60 1 0.60 0.60 0.60 0.60 0.70
AIDE gpt-4o 1 0.40 0.20 0.40 1 0.80 0.80 0 0.58

Comprehensive Score
AutoKaggle gpt-4o 0.888 0.786 0.831 0.862 0.810 0.728 0.848 0.812 0.821
AutoKaggle o1-mini 0.879 0.680 0.729 0.863 0.709 0.735 0.742 0.735 0.759
AIDE gpt-4o 0.872 0.597 0.542 0.561 0.918 0.793 0.848 0 0.641

Evaluation metric. We evaluate the capability of the AutoKaggle from four perspectives: Made
Submission, Valid Submission, Average Normalized Performance Score and Comprehensive Score.
The first two metrics refer to MLE-bench and are primarily used to assess the ability to generate a
submission.csv file. The last two metrics come from Data Interpreter (Chan et al., 2024), we made
modifications to adapt them to the evaluation of our framework.

(i) Made Submission (MS). Made Submission refers to the percentage of times a submission.csv
file is generated.

(ii) Valid Submission (VS). Valid Submission indicates the percentage of those submission.csv files
that are valid—meaning they can be successfully submitted to the Kaggle website, produce results
without errors, and have no issues related to data scale or category mismatches.

(iii) Comprehensive Score (CS). In the evaluations, performance metrics are divided into two cate-
gories: bounded metrics, which range from 0 to 1 where higher values indicate better performance,
and unbounded metrics, where lower values denote superior performance. To normalize these dif-
ferent types of metrics, we utilize the normalized performance score (NPS), defined as follows:

NPS =

{
1

1+s , if s is smaller the better
s, otherwise.

(1)

For multiple trials of a task, we calculate the Average Normalized Performance Score (ANPS) as
the average of the successful attempts:

ANPS =
1

Ts

Ts∑
t=1

NPSt (2)

Table 2: Ablation study on machine learning tools. Evaluated with completion rate and comprehen-
sive score. Best performance are underlined.

Task 1 Task 2 Task 3 Task 5 Avg.

VS

No Tools 0.80 0.60 0.50 0.40 0.58
DC Tools 0.80 0.70 1.00 1.00 0.88

DC & FE Tools 0.80 0.60 0.60 0.60 0.65
All Tools 1.00 0.80 0.80 0.80 0.85

CS

No Tools 0.781 0.697 0.666 0.602 0.687
DC Tools 0.781 0.721 0.928 0.909 0.835

DC & FE Tools 0.787 0.684 0.735 0.713 0.730
All Tools 0.888 0.786 0.831 0.810 0.829

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Ts represents the total number of successful attempts for a task, and NPSt is the NPS value
for the t-th attempt.

To comprehensively evaluate both the pass rate and the average performance, we define the Com-
prehensive Score (CS) as the average of VS and ANPS:

CS = 0.5× VS + 0.5× ANPS (3)

Experiment Details. We evaluated AutoKaggle’s performance based on both GPT-4o and o1-mini
models. Notably, different models were assigned to specific agents based on their functional re-
quirements. The Reader, Reviewer, and Summarizer, which perform tasks requiring min-
imal logical reasoning and coding capabilities, were implemented using the GPT-4o-mini model.
The Planner, responsible for task decomposition and planning that demands sophisticated logi-
cal reasoning, operates on either the GPT-4o or o1-mini model. Although the Developer’s tasks
traditionally necessitate advanced logical reasoning and coding skills, the Planner’s effective task
decomposition methodology has moderated these requirements, therefore it is based on GPT-4o
model.

In our experiments, Each task undergoes five trials, with each phase in the workflow allowing for a
maximum of three iterations. During an iteration, the Developer may debug the code up to five
times. If unsuccessful, they proceed with the same phase, deriving insights and adjusting strategies
based on previous attempts. Failure to resolve issues after three iterations is considered a definitive
failure.

Baseline. We employ AIDE (Schmidt et al., 2024) as our baseline, which is the best-performing
framework in MLE-bench evaluation results. We use AIDE’s default settings, only modifying
agent.base.model to the GPT-4o model.

3.2 MAIN RESULTS

The comprehensive performance of AutoKaggle across 8 Kaggle data science competitions is pre-
sented in Table 1. In order to facilitate understanding, we uniformly name the eight tasks as task
1-8. The real task names and detailed dataset information are available in Appendix C.

Figure 3: Average normalized performance score for different settings/tasks.

Made submission and Valid submission. We first evaluated the success rate of valid submis-
sion.csv file generation across different experimental configurations. The AutoKaggle framework,
implemented with GPT-4o, demonstrated superior performance with an average valid submission

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.0

0.9

0.8

0.7

No Tools •DC Tools •DC & FE Tools •All Tools

0.875
0.850 0.835 0.829

0.730
0.687

0.6」。.575

0.650

0.5

0.4
Completion Rate (CR) Comprehensive Score (CS)

Figure 4: Left. Debugging time and Right. Average performance in competitions.

rate of 83% across all 8 Kaggle tasks, surpassing the AIDE framework by 28%. These results under-
score the robustness of our framework in executing comprehensive data science workflows. While
the AIDE framework successfully processed Tasks 1-7, which involved single-variable classifica-
tion or regression on tabular data, it failed to generate valid submissions for Task 8, a multi-variable
classification problem. This differential performance demonstrates our framework’s versatility in
handling diverse tabular data tasks.

Another interesting observation is that within the AutoKaggle framework, the GPT-4o model
achieved better results than the o1-mini model, despite the latter’s purported superior reasoning
capabilities. This performance difference emerged solely from varying the model used in the Plan-
ner component. We hypothesize that this counterintuitive result stems from o1-mini’s tendency
toward excessive planning complexity, which proves disadvantageous in our streamlined, phase-
based workflow architecture. This same consideration influenced our decision to maintain GPT-4o
as the Developer’s base model, as our experiments indicated that an o1-mini-based Developer
would significantly increase code verbosity, expanding 100-line solutions to approximately 500 lines
through the introduction of superfluous components such as logging systems.

Comprehensive Score. Subsequently, we compared the overall performance of different settings
across 8 Kaggle tasks. AutoKaggle with GPT-4o achieved the highest comprehensive score in 5
tasks and demonstrated the best overall performance. Figure 3 illustrates the comparison of different
settings based on the average normalized performance score metric, where AutoKaggle with o1-
mini achieved the highest overall score. This indicates that although the o1-mini-based Planner
generated overly complex plans that increased development difficulty, successfully executing these
plans according to specifications led to superior performance outcomes.

3.3 ABLATION STUDY

Apart from the modules involved in the ablation study, all other experimental settings are identical
to those in the formal experiment.

Study on Machine Learning Tools. To evaluate the effectiveness of the machine learning tools
module and the impact of tools across different phases on the results, we conduct ablation exper-
iments. We begin without any tools and progressively add them at each phase until all machine
learning tools are implemented. The results are presented in Table 2. Notably, the completion rate
increases by 30% with the use of data cleaning phase tools, and by 27.5% when all tools are utilized,
compared to the scenario with no tools. However, the completion rate exhibits a decline during the
feature engineering phase, particularly in the house prices and academic success competitions. This
decline can be attributed to the relatively large number of features involved, alongside the com-
plexity and high encapsulation of the tools used in this phase, which necessitate the addition and
removal of features, thereby complicating their usage. Furthermore, this complexity poses chal-
lenges for Developers in debugging erroneous code. As illustrated in Figure 4 (a), the frequency
of debugging instances is greater when employing tools from the feature engineering phase.

Figure 4 (b) provides a clearer comparison, demonstrating that while the best normalized perfor-
mance scores across four scenarios are similar, the completion rate significantly increases with the
use of the tool. This suggests that although the machine learning tool library we develop does not
substantially elevate the solution’s upper limit, it functions as a more stable tool that enhances Au-
toKaggle’s completion rate. This outcome aligns with expectations, as the machine learning tool

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

library is a redevelopment based on widely used libraries such as pandas and scikit-learn. It does
not introduce new functionalities but instead combines and re-packages existing ones, incorporating
error handling and manual testing to ensure compatibility with our framework.

Study on Unit Tests. To evaluate the effectiveness of the unit tests module, we conduct ablation
experiments. The results are presented in Table 3. In the absence of unit tests, the completion rate
significantly decreases, making it nearly impossible to complete the tasks. This emphasizes that for
tasks like data science, which demand high levels of precision and logic, it is not enough for each
phase of the code to merely execute without errors. Comprehensive unit testing is required to ensure
that the code is logical and achieves the objectives of each phase.

Study on Debugging Times. We conduct ablation experiments to investigate the impact of the num-
ber of allowed debugging times on the results. The experimental setup permits five code debugging
attempts within each phase, with each phase being executable up to three times. Consequently, we
analyze scenarios with allowable corrections set at 0, 5, and 10. The results are shown in Figure 5.
It can be observed that when AutoKaggle is required to pass without any errors, there is only one
successful record on the Titanic task. Allowing five debugging attempts significantly improves the
completion rate, and further increases in allowable debugging attempts lead to rises in all metrics.
This demonstrates the efficacy of our code debugging module. However, the performance when
the number of allowable debugging attempts is set to 10 and 15, suggesting that the agent’s self-
correction abilities are limited. There are complex errors that it cannot resolve independently, and
further increasing the number of allowable debugging attempts does not address these errors.See
more details in Section B.

Figure 5: Comprehensive Score across different debugging times.

Study on Competition Date. To further evaluate the generalization capabilities of our AutoKaggle
framework, we conducted an analysis stratified by competition dates. Tasks 1-4 corresponded to
competitions potentially included in the training data of models such as GPT-4o and O1-mini, while
tasks 5-8 were derived from competitions launched in the current year. This temporal stratification
enabled us to assess the framework’s performance on out-of-distribution tasks. For classic Kaggle
tasks, AutoKaggle with GPT-4o achieved a valid submission rate of 0.90 and a comprehensive score
of 0.842. On recent tasks, these metrics were 0.75 and 0.800 respectively, demonstrating only
marginal performance degradation. These results indicate that our task decoupling approach and

Table 3: Ablation study on unit tests. Better performance are underlined.

Task 1 Task 2 Task 3 Task 5 Avg.

CR w/o Unit Tests 0.20 0 0.20 0 0.10
w/ Unit Tests 1.00 0.80 0.80 0.80 0.85

CS w/o Unit Tests 0.478 0 0.482 0 0.240
w/ Unit Tests 0.888 0.831 0.786 0.810 0.829

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

predefined execution pathways enable effective handling of novel competitions, even in scenarios
where the underlying model lacks prior exposure to the domain.

4 RELATED WORK

A concise framework of agents consists of brain, perception, and action modules (Xi et al., 2023).
The perception module processes external information, the brain plans based on that information,
and the action module executes these plans (Xi et al., 2023; Zhou et al., 2023). LLMs, acting as brain
modules, exhibit impressive zero-shot abilities and are applied in fields like data science and music
composition (Brown et al., 2020; Hong et al., 2024; Deng et al., 2024). While the chain-of-thought
method enhances reasoning (Wei et al., 2023), it still faces challenges related to hallucinations and
unfaithfulness (Turpin et al., 2023), potentially due to internal representations (Yao et al., 2023).
The ReAct paradigm addresses this by integrating thoughts and actions, refining outputs through
interaction with external environments (Yao et al., 2023; Madaan et al., 2023; Shinn et al., 2023;
Zhou et al., 2024).

While an individual agent can achieve basic natural language processing (NLP) tasks, real-world
tasks have higher complexities. In human societies, people chunk complex tasks into simple sub-
tasks that different people can easily handle. Inspired by this division of labor principle, multi-agent
systems enhance performance (Talebirad & Nadiri, 2023) using cooperative interactions (Xi et al.,
2023; Li et al., 2023) to achieve shared goals. Another interaction method is adversarial interactions
(Lewis et al., 2017), where several agents compete with each other for better results, or one agent
critiques and reviews the generation of another agent (Gou et al., 2024).

In order to address the well-defined requirements of data science tasks, a feasible approach is to de-
sign hierarchical systems (Hong et al., 2024; Zhang et al., 2024b; Chi et al., 2024) to complete tasks
such as task understanding, feature engineering, and model building. In each hierarchy, separately
design two agents for the code planning and code generation respectively (Hong et al., 2024), and use
unit tests (Zhang et al., 2024b) to verify the quality of code generation. Beyond self-debugging by
autonomous multi-agents, human-in-the-loop (Hong et al., 2024; Zhang et al., 2024b) mechanisms
also provide oversight and corrections to LLM outputs, reducing hallucinations in each hierarchy.
Tang et al. (2024) introduces ML-Bench, a benchmark for language agents for machine learning
tasks.

In summary, multi-agent systems and LLM-based agents have demonstrated significant potential
across domains such as NLP and data science. While individual agents excel in basic tasks, inte-
grating multiple agents is crucial for tackling complex real-world challenges. By combining task-
specific agents with human-in-the-loop mechanisms and unit testing, these systems improve code
quality and address issues like hallucinations. Our framework, AutoKaggle, advances these efforts
by integrating LLM-based reasoning with multi-agent collaboration, ensuring adaptability, correct-
ness, and user control in data science competitions.

5 CONCLUSION

In this paper, we introduce AutoKaggle, a robust framework designed to leverage phase-based work-
flows and multi-agent collaboration for solving complex Kaggle data science competitions. Au-
toKaggle employs an iterative development process, incorporating thorough code debugging, unit
testing, and a specialized machine learning tools library to address the intricate requirements of data
science tasks. Our framework enhances reliability and automation in managing sophisticated data
workflows, while maintaining user control through customizable processes. Extensive evaluations
across various Kaggle competitions demonstrate AutoKaggle’s effectiveness, marking a significant
advancement in AI-assisted data science problem-solving and expanding the capabilities of LLM-
based systems in tackling real-world challenges.

REFERENCES

Ryan Holbrook Addison Howard, Ashley Chow. Spaceship titanic, 2022. URL https://
kaggle.com/competitions/spaceship-titanic.

10

https://kaggle.com/competitions/spaceship-titanic
https://kaggle.com/competitions/spaceship-titanic

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

DataCanary Anna Montoya. House prices - advanced regression tech-
niques, 2016. URL https://kaggle.com/competitions/
house-prices-advanced-regression-techniques.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu, Tianqi
Pang, Jacky Kwok, Ceyao Zhang, Bang Liu, and Chenglin Wu. Sela: Tree-search enhanced
llm agents for automated machine learning, 2024. URL https://arxiv.org/abs/2410.
17238.

Will Cukierski. Titanic - machine learning from disaster, 2012. URL https://kaggle.com/
competitions/titanic.

Qixin Deng, Qikai Yang, Ruibin Yuan, Yipeng Huang, Yi Wang, Xubo Liu, Zeyue Tian, Jiahao
Pan, Ge Zhang, Hanfeng Lin, Yizhi Li, Yinghao Ma, Jie Fu, Chenghua Lin, Emmanouil Benetos,
Wenwu Wang, Guangyu Xia, Wei Xue, and Yike Guo. Composerx: Multi-agent symbolic music
composition with llms, 2024. URL https://arxiv.org/abs/2404.18081.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Auto-
mated data science by empowering large language models with case-based reasoning, 2024. URL
https://arxiv.org/abs/2402.17453.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist, 2023. URL https://arxiv.org/abs/2305.13657.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo
Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying
Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data
science, 2024. URL https://arxiv.org/abs/2402.18679.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia
Yang, and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks, 2024. URL
https://arxiv.org/abs/2401.05507.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts?, 2024. URL https://arxiv.org/abs/2409.07703.

Wendy Kan. Ghouls, goblins, and ghosts... boo!, 2016. URL https://kaggle.com/
competitions/ghouls-goblins-and-ghosts-boo.

Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-
to-end learning for negotiation dialogues, 2017. URL https://arxiv.org/abs/1706.
05125.

11

https://kaggle.com/competitions/house-prices-advanced-regression-techniques
https://kaggle.com/competitions/house-prices-advanced-regression-techniques
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2410.17238
https://arxiv.org/abs/2410.17238
https://kaggle.com/competitions/titanic
https://kaggle.com/competitions/titanic
https://arxiv.org/abs/2404.18081
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2402.17453
https://arxiv.org/abs/2305.13657
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2401.05507
https://arxiv.org/abs/2409.07703
https://kaggle.com/competitions/ghouls-goblins-and-ghosts-boo
https://kaggle.com/competitions/ghouls-goblins-and-ghosts-boo
https://arxiv.org/abs/1706.05125
https://arxiv.org/abs/1706.05125

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large language model society, 2023.
URL https://arxiv.org/abs/2303.17760.

Killian Lucas. GitHub - KillianLucas/open-interpreter: A natural language interface for computers
— github.com. https://github.com/KillianLucas/open-interpreter, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/
chatgpt, 2022.

OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.

Dominik Schmidt, Zhengyao Jiang, and Yuxiang Wu. Introducing Weco AIDE. https://www.
weco.ai/blog/technical-report, April 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents, 2023. URL https://arxiv.org/abs/2306.03314.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024. URL https://arxiv.org/abs/
2311.09835.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL https:
//arxiv.org/abs/2305.04388.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location, 2024. URL https://arxiv.
org/abs/2311.08516.

Ashley Chow Walter Reade. Binary classification with a bank churn dataset, 2024a. URL https:
//kaggle.com/competitions/playground-series-s4e1.

Ashley Chow Walter Reade. Multi-class prediction of obesity risk, 2024b. URL https:
//kaggle.com/competitions/playground-series-s4e2.

Ashley Chow Walter Reade. Steel plate defect prediction, 2024c. URL https://kaggle.com/
competitions/playground-series-s4e3.

Ashley Chow Walter Reade. Classification with an academic success dataset, 2024d. URL https:
//kaggle.com/competitions/playground-series-s4e6.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey,
2023. URL https://arxiv.org/abs/2309.07864.

12

https://arxiv.org/abs/2303.17760
https://github.com/KillianLucas/open-interpreter
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://www.weco.ai/blog/technical-report
https://www.weco.ai/blog/technical-report
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://kaggle.com/competitions/playground-series-s4e1
https://kaggle.com/competitions/playground-series-s4e1
https://kaggle.com/competitions/playground-series-s4e2
https://kaggle.com/competitions/playground-series-s4e2
https://kaggle.com/competitions/playground-series-s4e3
https://kaggle.com/competitions/playground-series-s4e3
https://kaggle.com/competitions/playground-series-s4e6
https://kaggle.com/competitions/playground-series-s4e6
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2309.07864

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks, 2024a. URL https://
arxiv.org/abs/2304.14979.

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. Pybench: Evaluating llm agent on various
real-world coding tasks, 2024b. URL https://arxiv.org/abs/2407.16732.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking
data science agents, 2024c. URL https://arxiv.org/abs/2402.17168.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru
Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source
framework for autonomous language agents, 2023. URL https://arxiv.org/abs/2309.
07870.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Sym-
bolic learning enables self-evolving agents, 2024. URL https://arxiv.org/abs/2406.
18532.

13

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2407.16732
https://arxiv.org/abs/2402.17168
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ALGORITHM

Algorithm 1: AutoKaggle Workflow
Input : Competition C, Dataset D
Output: Solution S, Comprehensive reportR

1 Initialize state s0 with first phase ϕ1: ”Understand Background”;
2 t← 0;
3 Φ← {ϕ1, ϕ2, ..., ϕ6} ; /* Set of all phases */
4 Define Aϕ for each ϕ ∈ Φ ; /* Agents for each phase */
5 do
6 st ← GetCurrentState();
7 ϕcurrent ← GetCurrentPhase(Φ);
8 At ← Aϕcurrent ;
9 for a ∈ At do

10 if a is Planner then
11 ra ← a.execute(st);
12 st ← UpdateState(st, ra);
13 if UserInteractionEnabled() then
14 st ← UserReview(st) ; /* User Review plan */

15 else if a is Developer then
16 ra ← a.execute(st);
17 st ← UpdateState(st, ra);
18 if NoErrors(ra) then
19 T ← ExecuteUnitTests(ϕcurrent);
20 if ¬PassTests(T) then
21 st ← Debug(st);

22 else
23 ra ← a.execute(st);
24 st ← UpdateState(st, ra);

25 if AllAgentsCompleted(At) and PassTests(T) then
26 ϕcurrent ← NextPhase(Φ);
27 t← t+ 1;
28 while ∃ϕ ∈ Φ : not completed(ϕ);
29 S ← ExtractSolution(st);
30 R ← GenerateReport(st);

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2: Development based on Iterative Debugging and Testing
Input : Initial code Cϕi

, Current state st, Plan Pϕi
, Historical contextH, Maximum tries

max tries, Error threshold threshold
Output: Debugged and tested code C ′

ϕi
, Execution flag execution flag

1 round← 0;
2 error flag ← false;
3 execution flag ← true;
4 retry flag ← false;
5 error history ← ∅;
6 while round < max tries do
7 if round = 0 or retry flag then
8 Cϕi

← GenerateCode(st, Pϕi
,H);

9 error history ← ∅;
10 retry flag ← false;
11 error flag, Eϕi

← RunCode(Cϕi
);

12 if error flag then
13 error history ← error history ∪ {Eϕi

};
14 if |error history| >= threshold then
15 retry flag ← EvaluateRetry(error history);
16 if retry flag then
17 continue;

18 Cϕi ← DebugCode(Cϕi , Eϕi ,H);
19 else
20 Rϕi

← ExecuteUnitTests(Cϕi
, Tϕi

);
21 if ∃rj ∈ Rϕi

: rj = 0 then
22 Cϕi

← DebugTestFailures(Cϕi
, Rϕi

,H);
23 else
24 execution flag ← true;
25 break;

26 round← round+ 1;
27 if round = max tries then
28 execution flag ← false;
29 return Cϕi

, execution flag

B ERROR ANALYSIS

In each subtask phase of AutoKaggle, errors may occur, with data cleaning and feature engineering
experiencing the highest error rates at 25% and 22.5%, respectively. Notably, failures during the
feature engineering phase result in direct competition failures in 31.25% of cases.

In the context of the proposed AutoKaggle framework, which aims to assist data scientists in solv-
ing complex tabular data challenges through a collaborative multi-agent system, Table 4 provides
an overview of the different types of errors encountered during the iterative development process.
AutoKaggle’s workflow includes code execution, debugging, and comprehensive unit testing, and
the listed errors are indicative of the various challenges encountered while automating these stages.
The most frequently observed errors are Value Errors (49 occurrences), related to mismatched input
types or ranges, and Key Errors (44 occurrences), resulting from attempts to access non-existent dic-
tionary keys. Additionally, Type Errors (25 occurrences) and Model Errors (8 occurrences) highlight
operational issues due to data type mismatches or incorrect model configurations, respectively. The
table also details other errors such as Timeout, FileNotFound, and Index Errors, each contributing
to the debugging process. Understanding these error types is crucial for improving AutoKaggle’s
robustness and aligning automated workflows with human interventions, ultimately enhancing pro-
ductivity in typical data science pipelines.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In addition, we provide a detailed debugging process for developers. Below, we illustrate this using
a FileNotFoundError as an example of the debugging workflow:

• Error Localization: The developer initially encounters issues executing a Python script
involving file-saving operations with libraries like Matplotlib and Pandas. The specific er-
ror, FileNotFoundError, is traced to nonexistent directories or incorrect file paths. Through
an iterative analysis, the problematic sections of the code are identified, focusing on the
need to properly manage directory paths and handle filenames.

• Error Correction: To address these issues, several modifications are suggested. First,
the importance of ensuring that directories exist before performing file operations is high-
lighted by incorporating os.makedirs to create any missing directories. Additionally, a file-
name sanitization approach is recommended to prevent errors related to invalid characters
in file paths. A custom sanitize filename function is introduced to ensure filenames contain
only valid characters, thereby avoiding issues caused by special symbols or whitespace.

• Merging Correct and Corrected Code Segments: The final step involves merging the
corrected segments back into the original code to create a seamless and robust solution.
The revised script includes improvements such as verifying directory existence, creating
necessary directories, and applying filename sanitization to ensure compatibility across
different operating systems. The corrected code is delivered with a focus on enhancing
reliability, particularly in file-saving processes, making it resilient against common pitfalls
like missing directories or invalid filenames.

C DETAILED DATASET DESCRIPTION

Here is the detailed description of our dataset. Note that we use task labels to represent the differ-
ent datasets. Task 1 refers to Titanic (Cukierski, 2012), Task 2 refers to Spaceship Titanic (Addi-
son Howard, 2022), Task 3 refers to House Prices (Anna Montoya, 2016), Task 4 refers to Monsters
(Kan, 2016), Task 5 refers to Academic Success (Walter Reade, 2024d), Task 6 refers to Bank Churn
(Walter Reade, 2024a), Task 7 refers to Obesity Risk (Walter Reade, 2024b), and Task 8 refers to
Plate Defect (Walter Reade, 2024c).

Our framework deliberately avoids selecting competitions with excessively large datasets. The rea-
son for this is that larger datasets significantly extend the experimental runtime, making it impracti-
cal to dedicate a machine to a single experiment for such prolonged periods.

Table 4: Error Types of AutoKaggle in the Problem-Solving Stage

Error Type (Count) Description
Value Error (49) Fail to match the expected type or range of the input values
Key Error (44) Attempt to access a dictionary element using a key that does not exist
File Error (8) Attempt to access a file that does not exist in the specified location
Model Error (8) Incorrect setup in the parameters or structure of a model, leading to opera-

tional failures
Type Error (25) Mismatch between expected and actual data type, leading to operational

failure
Timeout Error (6) Failure to complete a process within the allocated time period
Index Error (3) Attempt to access an element at an index that is outside the range of a list

or array
Assertion Error (1) An assertion condition in the code is not met, indicating an unmet expected

constraint
Name Error (2) Use of an undeclared variable that is not recognized by the system
Attribute Error (2) Attempt to access an attribute or method that does not exist for an object
Indentation Error (1) Incorrect indentation disrupts code structure, preventing proper parsing

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

First, we intentionally avoided selecting competitions with datasets that were too large, as larger
datasets can significantly extend the experimental runtime, making it impractical to use a single
machine for extended experiments. Second, we adhered to real-world competition settings by gen-
erating submission files and submitting them manually for evaluation. Simply splitting the training
data would result in a test set with a distribution very similar to the training data, which could in-
flate performance metrics—similar to the difference often seen between validation scores and real
test scores. Third, our dataset clearly identifies the contest type, i.e., tabular data. Fourth, since
datasets for large language modeling include publicly available Kaggle contests, we selected only
those released after 2024. Our framework requires agents to independently interpret contest tasks,
understand the data, and determine appropriate optimization strategies without relying on predefined
guidance.”

Table 5: Selected Kaggle tasks. For each task, we show its number, category, difficulty level, number
of teams, train size and test size in dataset.

Category No. Task Name Task Level Teams Train Test

Classic

1 Titanic Classification Medium 13994 891 418
2 Spaceship Titanic Classification Easy 1720 8693 4277
3 House Prices Regression Medium 4383 1460 1459
4 Monsters Classification Easy 763 371 529

Recent

5 Academic Success Regression Medium 2684 76.5K 51K
6 Bank Churn Regression Easy 3632 165K 110K
7 Obesity Risk Classification Easy 3587 20.8K 13.8K
8 Plate Defect Regression Medium 2199 19.2K 12.8K

D IMPLEMENTATION DETAILS

D.1 AGENT DETAILS

D.1.1 AGENT BASE

The base agent is a father class of other agents (Reader, Planner, Developer, Reviewer,
and Summarizer) in the AutoKaggle. This agent can act with various tools for tasks related to
data analysis, model evaluation, and document retrieval etc.

D.1.2 READER

Reader is designed for reading documents and summarizing information. It processes overview.txt
in each competition, subsequently providing a well-organized summary of the competition’s back-
ground

Prompt of Agent Reader / Task Prompt

Role: reading documents and summarizing information
Description: The Reader only appears in the Understand
Background phase, it reads the overview.txt file of the
Kaggle competition, the sample data of both training and
testing sets and summarizes it into a clearly structured
competition info.txt in markdown format.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt of Agent Reader / Task Prompt

CONTEXT
{phases_in_context}
Currently, I am at phase: Background Understand.

#############
TASK
{task}

#############
RESPONSE
Let’s work this out in a step by step way.

#############
START ANALYSIS
If you understand, please request the overview of this data science competition, and

data preview from me.

Please conduct a comprehensive analysis of the competition, focusing on the following
aspects:

1. Competition Overview: Understand the background and context of the topic.
2. Files: Analyze each provided file, detailing its purpose and how it should be used

in the competition.
3. Problem Definition: Clarify the problem’s definition and requirements.
4. Data Information: Gather detailed information about the data, including its

structure and contents.
4.1 Data type:

4.1.1. ID type: features that are unique identifiers for each data point,
which will NOT be used in the model training.

4.1.2. Numerical type: features that are numerical values.
4.1.3. Categorical type: features that are categorical values.
4.1.4 Datetime type: features that are datetime values.

4.2 Detailed data description
5. Target Variable: Identify the target variable that needs to be predicted or

optimized, which is provided in the training set but not in the test set.
6. Evaluation Metrics: Determine the evaluation metrics that will be used to assess

the submissions.
7. Submission Format: Understand the required format for the final submission.
8. Other Key Aspects: Highlight any other important aspects that could influence the

approach to the competition.
Ensure that the analysis is thorough, with a strong emphasis on :
1. Understanding the purpose and usage of each file provided.
2. Figuring out the target variable and evaluation metrics.
3. Classification of the features.

D.1.3 PLANNER

Planner is designed for creating task plans and roadmaps. The agent’s main function is to structure
and organize tasks into executable plans, primarily by leveraging available tools and previously
generated reports.

Prompt of Agent Planner / Task Prompt

Role: creating task plans and roadmaps
Description: In the first execution, the Planner collects
the competition information, the current state, and the
user’s rules to generate a new plan. This generation
involves several rounds of interaction with a LLM to gather
task details, reorganize data into structured formats
(Markdown and JSON), and finalize a plan.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt of Agent Planner / Task Prompt

CONTEXT
{phases_in_context}
Currently, I am at phase: {phase_name}.

#############
INFORMATION
{background_info}

{state_info}

#############
NOTE
PLANNING GUIDELINES
1. Limit the plan to a MAXIMUM of FOUR tasks.
2. Provide clear methods and constraints for each task.
3. Focus on critical steps specific to the current phase.
4. Prioritize methods and values mentioned in USER RULES.
5. Offer detailed plans without writing actual code.
6. ONLY focus on tasks relevant to this phase, avoiding those belonging to other

phases. For example, during the in-depth EDA phase:
- you CAN perform detailed univariate analysis on KEY features.
- you CAN NOT modify any feature or modify data.

DATA OUTPUT PREFERENCES
1. Prioritize TEXT format (print) for statistical information.
2. Print a description before outputting statistics.
3. Generate images only if text description is inadequate.

METHODOLOGY REQUIREMENTS
1. Provide highly detailed methods, especially for data cleaning.
2. Specify actions for each feature without omissions.

RESOURCE MANAGEMENT
1. Consider runtime and efficiency, particularly for:

- Data visualization
- Large dataset handling
- Complex algorithms

2. Limit generated images to a MAXIMUM of 10 for EDA.
3. Focus on critical visualizations with valuable insights.

OPTIMIZATION EXAMPLE
When using seaborn or matplotlib for large datasets:
- Turn off unnecessary details (e.g., annot=False in heatmaps)
- Prioritize efficiency in plot generation

#############
TASK
{task}

#############
RESPONSE
Let’s work this out in a step by step way.

#############
START PLANNING
Before you begin, please request the following documents from me, which contain

important information that will guide your planning:
1. Report and plan from the previous phase
2. Available tools in this phase
3. Sample data for analysis

Please design plan that is clear and specific to each FEATURE for the current
development phase: {phase_name}.

The developer will execute tasks based on your plan.
I will provide you with INFORMATION, RESOURCE CONSTRAINTS, and previous reports and

plans.
You can use the following reasoning pattern to design the plan:
1. Break down the task into smaller steps.
2. For each step, ask yourself and answer:

- "What is the objective of this step?"
- "What are the essential actions to achieve the objective?"
- "What features are involved in each action?"
- "Which tool can be used for each action? What are the parameters of the tool?"
- "What are the expected output of each action? What is the impact of the action

on the data?"
- "What are the constraints of this step?"

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.1.4 DEVELOPER

Developer is responsible for implementing and debugging code based on the structured plans
generated by the Planner. The Developer’s key function is to translate the high-level task roadmap
into executable code, resolve any arising issues, and perform unit tests to ensure the functionality of
the solution.

Prompt of Agent Developer / Task Prompt

Role: write and implement code according to plan
Description: The Developer first reviews the task plan
and the relevant competition information. It can gathers
code from previous phases when necessary and uses LLMs
to generate new code. The Developer also cleans up any
redundant code sections, writes functions, and ensures the
code runs correctly by debugging and performing unit tests.
It iterates through the process until the code passes all
tests.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt of Agent Developer / Task Prompt

CONTEXT
{phases_in_context}
Currently, I am at phase: {phase_name}.

#############
INFORMATION
{background_info}

{state_info}

#############
PLAN
{plan}

#############
TASK
{task}

#############
RESPONSE: BLOCK (CODE & EXPLANATION)
TASK 1:
THOUGHT PROCESS:
[Explain your approach and reasoning]
CODE:
‘‘‘python
[code]
‘‘‘
EXPLANATION:
[Brief explanation of the code and its purpose]

TASK 2:
[Repeat the above structure for each task/subtask]

...

#############
START CODING
Before you begin, please request the following information from me:
1. Code from previous phases
2. All features of the data
3. Available tools

Once you have this information, provide your complete response with code and
explanations for all tasks in a single message.

Develop an efficient solution based on the Planner’s provided plan:
1. Implement specific tasks and methods outlined in the plan
2. Ensure code is clear, concise, and well-documented
3. Utilize available tools by calling them with correct parameters
4. Consider data types, project requirements, and resource constraints
5. Write code that is easily understandable by others

Remember to balance efficiency with readability and maintainability.

D.1.5 REVIEWER

Reviewer is responsible for evaluating the performance of other agents in completing tasks and
providing constructive feedback.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt of Agent Reviewer / Task Prompt

Role: assess agent performance and offer feedback
Description: The Reviewer agent evaluates the performance
of multiple agents. In each evaluation phase, it merges
suggestions and scores from different agents into a unified
report. It interacts with a LLM to generate detailed
feedback, iterating through rounds to assess task results,
merging agent responses, and producing both final scores and
constructive suggestions.

Prompt of Agent Reviewer

CONTEXT
{phases_in_context}
Each phase involves collaboration between multiple agents. You are currently

evaluating the performance of agents in Phase: {phase_name}.

#############
TASK
Your task is to assess the performance of several agents in completing Phase: {

phase_name}.
I will provide descriptions of each agent, the tasks they performed, and the outcomes

of those tasks.
Please assign a score from 1 to 5 for each agent, with 1 indicating very poor

performance and 5 indicating excellent performance.
Additionally, provide specific suggestions for improving each agent’s performance, if

applicable.
If an agent’s performance is satisfactory, no suggestions are necessary.

#############
RESPONSE: JSON FORMAT
Let’s work this out in a step by step way.

#############
START EVALUATION
If you are ready, please request from me the role, description, input, task and

execution result of the agent to be evaluated.

D.1.6 SUMMARIZER

Summarizer is responsible for generating summaries, designing questions, and reorganizing both
questions and answers to produce structured reports based on the competition phases.

Prompt of Agent Summarizer / Task Prompt

Role: assess agent performance and offer feedback
Description: The agent Summarizer works through various
phases, each focusing on a specific task like choosing
relevant images, designing key questions, answering
phase-related questions, and organizing the responses
into a structured report. Each phase involves interaction
with provided inputs such as competition information, the
planner’s plan, and the reviewer’s evaluation to synthesize
the most relevant insights.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt of Agent Summarizer

TASK
Please reorganize the answers that you have given in the previous step, and synthesize

them into a report.

#############
RESPONSE: MARKDOWN FORMAT
‘‘‘markdown
REPORT
QUESTIONS AND ANSWERS
Question 1
What files did you process? Which files were generated? Answer with detailed file path

.
Answer 1
[answer to question 1]

Question 2
Which features were involved in this phase? What changes did they undergo? If any

feature types were modified, answer which features are modified and how they are
modified. If any features were deleted or created, answer which features are
deleted or created and provide detailed explanations. (This is a FIXED question
for each phase.)

Answer 2
[answer to question 2]

Question 3
[repeat question 3]
Answer 3
[answer to question 3]

Question 4
[repeat question 4]
Answer 4
[answer to question 4]

Question 5
[repeat question 5]
Answer 5
[answer to question 5]

Question 6
[repeat question 6]
Answer 6
[answer to question 6]
‘‘‘

#############
START REORGANIZE QUESTIONS

D.2 UNIT TESTS

In data science competitions, code generated by agents may be executable in the Python interpreter,
but this execution does not guarantee correctness. To ensure that data dependencies are properly
handled, a Unit Test Tool is necessary. In our research, where the framework operates iteratively,
we aim to separate tasks corresponding to different states in data science competitions. Each phase
builds upon the results of the previous one, making it crucial to confirm that logic remains sound,
data processing is accurate, and information transfers seamlessly from one state to the next. Our
Unit Test Tool plays a key role in supporting the self-refine phase of LLM agents.

We developed unit tests (in the accompanying Table 6) based on issues identified during the execu-
tion of weak baseline, strong baseline and our AutoKaggle. If the code fails to run in the Python
interpreter, an error message is relayed to the agent Reviewer. If the code passes this initial stage,
it progresses to the Unit Test Tool, where all required tests are executed in a loop. If a test fails, the
reason is logged as short-term memory and passed to the next review state. The review and planning
stages work in an adversarial interaction: the review phase compiles the reasons for failed unit tests,
while the planner addresses these failures in subsequent iterations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: Overview of unit tests for state DC, FE, and MBVP. These unit tests handle to detect
missing values, outliers, duplicates, and other data consistency issues.

State Unit test name Unit test description

State DC

test document exist Test if cleaned train.csv and cleaned test.csv
data exist.

test no duplicate cleaned train Test if there are any duplicate rows in the
cleaned train.csv.

test no duplicate cleaned test Test if there are any duplicate rows in the
cleaned test.csv.

test readable cleaned train Test if the cleaned train.csv is readable.
test readable cleaned test Test if the cleaned test.csv is readable.
test cleaned train no missing values Test if the cleaned train.csv contains missing

value.
test cleaned test no missing values Test if the cleaned test.csv contains missing

value.
test cleaned train no duplicated features Test if the cleaned train.csv contains duplicate

features.
test cleaned test no duplicated features Test if the cleaned test.csv contains duplicate

features.
test cleaned difference train test columns Test if the cleaned train.csv and

cleaned test.csv have the same features
except for target variable.

test cleaned train no missing target Test if the target variable is in cleaned train.csv.

State FE

test document exist Test if processed train.csv and pro-
cessed test.csv data exist.

test processed train feature number Test if the feature engineering phase is per-
formed well in processed train.csv.

test processed test feature number Test if the feature engineering phase is per-
formed well in processed test.csv.

test file size Test if processed data is larger than a threshold.
test processed train no duplicated features Test if the processed train.csv contains dupli-

cate features.
test processed test no duplicated features Test if the processed test.csv contains duplicate

features.
test processed difference train test columns Test if the processed train.csv and pro-

cessed test.csv have the same features except
for target varibale.

test processed train no missing target Test if the target variable is in pro-
cessed train.csv.

State MBVP

test document exist Test if a submission file exists.
test no duplicate submission Test if there are any duplicate rows in the sub-

mission file.
test readable submission test if the submission file is readable.
test file num submission Test if the submission file and sam-

ple submission.csv have the same number
of rows.

test column names submission Test if the submission file and sam-
ple submission.csv have the same column
names.

test submission validity 1) Test if the submission file and sam-
ple submission.csv have the same data in-
dex. 2) Test if the submission file and sam-
ple submission.csv have the same numerical
range.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.3 MACHINE LEARNING TOOLS DETAILS

Table 7: Overview of Tools for state DC, FE, and MBVP. This table presents various tools catego-
rized by their functionality.

State Tool name Tool description

State DC

FillMissingValues Fills missing values or removes columns with
missing values based on a threshold.

RemoveColumns
WithMissingData

Removes columns containing missing values from a
DataFrame based on a threshold.

DetectAndHandleOutliersZscore Detects and handles outliers in specified columns using
the Z-score method.

DetectAndHandleOutliersIqr Detects and handles outliers in specified columns using
the Interquartile Range (IQR) method.

RemoveDuplicates Removes duplicate rows from a DataFrame.

ConvertDataTypes Converts the data type of specified columns in a
DataFrame.

FormatDatetime Formats datetime columns to a specified format.

State FE

OneHotEncode Performs one-hot encoding on specified categorical
columns.

LabelEncode Performs label encoding on specified categorical
columns.

FrequencyEncode Performs frequency encoding on specified categorical
columns.

TargetEncode Performs target encoding on specified categorical
columns.

CorrelationFeatureSelection Performs feature selection based on correlation analy-
sis.

VarianceFeatureSelection Performs feature selection based on variance analysis.

ScaleFeatures Scales numerical features in the specified columns of a
DataFrame.

PerformPca Performs Principal Component Analysis (PCA) on the
specified columns of a DataFrame.

PerformRfe Performs Recursive Feature Elimination (RFE) on the
specified columns of a DataFrame.

CreatePolynomialFeatures Creates polynomial features from specified columns of
a DataFrame.

CreateFeatureCombinations Creates feature combinations from specified columns of
a DataFrame.

State MBVP TrainAndValidation
AndSelectTheBestModel

Trains, evaluates, and selects the best machine learning
model based on the training data and labels, returning
the best performing model along with the performance
scores of each model and their best hyperparameters.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Examples of Tool Schema. In this paper, we provide two schema formats for each machine learning
tool: JSON and Markdown. Here, we take the FillMissingValues tool as an example and provide
schemas in both formats.

Markdown-formatted tool schema for FillMissingValues

Description: Fill missing values in specified columns of a DataFrame. This tool can handle
both numerical and categorical features by using different filling methods.
Applicable Situations: Handle missing values in various types of features.
Parameters:

• data:
– Type: pd.DataFrame
– Description: A pandas DataFrame object representing the dataset.

• columns:
– Type: string | array
– Description: The name(s) of the column(s) where missing values should be

filled.
• method:

– Type: string
– Description: The method to use for filling missing values.
– Enum: auto | mean | median | mode | constant
– Default: auto

• fill value:
– Type: number | string | null
– Description: The value to use when method is constant.
– Default: None

Required: data, columns
Result: Successfully fill missing values in the specified column(s) of data.
Notes:

• The auto method uses mean for numeric columns and mode for non-numeric
columns.

• Using mean or median on non-numeric columns will raise an error.
• The mode method uses the most frequent value, which may not always be appro-

priate.
• Filling missing values can introduce bias, especially if the data is not missing com-

pletely at random.
• Consider the impact of filling missing values on your analysis and model perfor-

mance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

JSON-formatted tool schema for FillMissingValues

{
"name": "fill_missing_values",
"description": "Fill missing values in specified columns
of a DataFrame. This tool can handle both numerical and
categorical features by using different filling methods
.",
"applicable_situations": "handle missing values in
various types of features",
"parameters": {

"data": {
"type": "pd.DataFrame",
"description": "A pandas DataFrame object

representing the dataset."
},
"columns": {

"type": ["string", "array"],
"items": {

"type": "string"
},
"description": "The name(s) of the column(s)

where missing values should be filled."
},
"method": {

"type": "string",
"description": "The method to use for filling

missing values.",
"enum": ["auto", "mean", "median", "mode", "

constant"],
"default": "auto"

},
"fill_value": {

"type": ["number", "string", "null"],
"description": "The value to use when method is ’

constant’.",
"default": null

}
},
"required": ["data", "columns"],
"result": "Successfully fill missing values in the
specified column(s) of data",
"additionalProperties": false,
"notes": [

"The ’auto’ method uses mean for numeric columns and
mode for non-numeric columns.",

"Using ’mean’ or ’median’ on non-numeric columns will
raise an error.",

"The ’mode’ method uses the most frequent value,
which may not always be appropriate.",

"Filling missing values can introduce bias,
especially if the data is not missing completely at
random.",

"Consider the impact of filling missing values on
your analysis and model performance."
]

}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Tool use. During execution, we extract the machine learning tools specified in the plan generated
by Planner and use them as queries to search the entire documentation of machine learning tools.
Since the plan includes multiple tools, we retrieve several tools based on their similarity to the
queries. The Developer then uses the retrieved tools to carry out the task.

D.4 TOOL UTILIZATION

In the multi-agent framework designed for autonomous data science tasks, tools serve not only as
automation resources but also as integral components of the workflow. The framework enables
agents to dynamically access and execute tools as they transition through various problem-solving
states, ensuring adaptability and efficiency.

The tool utilization process in this framework is structured around a systematic approach. Tool in-
formation is first stored in the system’s Memory, which is implemented as a vector database. This
Memory holds detailed explanations regarding each tool’s functionality, usage, and context. A con-
figuration file is used to map specific tools to the states in which they are required, allowing agents
to reference and identify the appropriate tools at each stage of the problem-solving process. To de-
termine which tools are required in each state, the table 7 provides an overview of tools categorized
by their functionality. As an agent moves into a particular state, it consults the configuration file to
determine the relevant tools. From the figure 1 shown, the agent subsequently queries the Memory
to retrieve detailed explanations for the tool’s use, and finally, executes the tool with precision based
on the retrieved information.

This dynamic interaction between the Memory, configuration file, and agents facilitates seamless
tool integration, empowering agents to operate autonomously while maintaining flexibility and en-
suring accurate tool application throughout the autonomous process.

D.5 USER INTERACTION

At each stage of problem-solving, two Human-in-the-Loop methods are employed. Before the
Planner formulates a plan, human can interact with the command line. The input consists of
meticulously manually crafted rules, each one carefully cataloged in a handbook. Memory module
subsequently retrieved these predefined rules, integrating this human-driven knowledge in prompt
engineering to guide the Planner’s next steps. After generating the plan, humans can review and
and refine the Planner’s output. They inspect areas where the logical flow seems inconsistent, fo-
cusing particularly on points where the output diverges from reality to address hallucination issues.

E CASE STUDY: TITANIC

E.1 BACKGROUND UNDERSTANDING

In this step, the system employs a LLM (GPT-4o) to extract and summarize the key information from
the Titanic Kaggle competition. Upon completion of this process, a markdown file is automatically
generated containing essential competition details, which include the competition overview, dataset
information, and evaluation metrics. Below is an excerpt of the generated markdown file:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Background Understanding

Competition Information
1. Competition Overview
The Titanic competition challenges participants to build a predictive model to

determine which passengers survived the shipwreck of the RMS Titanic on April 15,
1912, using passenger data such as name, age, gender, and socio-economic class.

2. Files
- **train.csv**: Contains data for 891 passengers, including whether they survived (

ground truth).
- **test.csv**: Includes data for 418 passengers, but without survival outcomes-these

need to be predicted.
- **sample_submission.csv**: A template showing the required format for submissions.

3. Problem Definition
The objective is to predict the survival of passengers based on various features in

the dataset. Participants build a model using the training set to learn from the
data and apply this model to make predictions on the test set.

......

6. Evaluation Metrics
The evaluation metric is **accuracy**: the percentage of correct predictions made by

the model.

7. Submission Format
Submissions must be in CSV format with exactly 418 entries plus a header row,

containing:
- ‘PassengerId‘: Sorted in any order.
- ‘Survived‘: Binary predictions (1 for survived, 0 for deceased).

8. Other Key Aspects
- The competition runs indefinitely with a rolling leaderboard.
- Kaggle provides a community forum for discussion and collaboration.
- It’s beneficial to explore shared notebooks for additional insights and approaches.

E.2 PRELIMINARY EXPLORATORY DATA ANALYSIS

In this state, an autonomous exploratory analysis is conducted to understand the Titanic dataset. The
LLM will plan a process: 1) the dataset is loaded and inspected to reveal its structure, including data
types, basic statistics, and missing values. A univariate analysis follows, where the distributions
of key numerical features like age and fare are explored, as well as the frequencies of categorical
features such as passenger class and gender. 2) A bivariate analysis is performed to examine the
relationship between each feature and the target variable, survival. This step involves visualizing
the survival rates across different categories and examining how numerical features vary between
survivors and non-survivors. 3) A correlation analysis investigates relationships between numerical
features, visualized through a correlation matrix and additional pairwise comparisons. This analysis
provides a deeper understanding of feature interactions, highlighting those that may have the most
significant impact on survival. Below is an excerpt of the generated file:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Preliminary Exploratory Data Analysis Plan

Great, thank you for the information. Let’s move forward with a detailed plan for the
Preliminary Exploratory Data Analysis phase. The main objectives of this phase are
to understand the data structure, examine distributions, and identify any initial
patterns or anomalies. We will break down the task into four key steps:

1. Understanding Data Structure
Objective:
To get a high-level overview of the data types, missing values, and basic statistics.

Actions:
1. **Load the Data**:

- Use Pandas to read the ‘train.csv‘ and ‘test.csv‘ files.
- Tools: ‘pd.read_csv()‘
- Expected Output: DataFrames for train and test data.

2. **Inspect Data Types and Missing Values**:
......

3. **Basic Statistical Summary**:
......

2. Univariate Analysis of Numerical Features
Objective:
To understand the distribution of each numerical feature.

Actions:
1. **Histograms for Numerical Features**:

......
2. **Box Plots for Numerical Features**:

......

3. Analysis of Categorical Features
Objective:
To examine the distribution and frequency of each categorical feature.

Actions:
1. **Bar Plots for Categorical Features**:

......
2. **Value Counts**:

......

4. Initial Insights and Summary
Objective:
To summarize the initial findings and identify any immediate data quality issues or

patterns.

Actions:
1. **Summarize Key Findings**:

......
2. **Identify Next Steps**:

......

Constraints:
- **Efficiency**: Ensure that visualizations and computations are efficient and

reproducible.
- **Clarity**: Provide clear and concise visualizations and summaries to aid

understanding.

Expected Outputs:
1. DataFrames for train and test sets.
2. Summary of data types and missing values.
3. Basic statistical summaries.
4. Histograms and box plots for numerical features.
5. Bar plots and frequency distributions for categorical features.
6. A detailed summary of initial insights and recommended next steps.

By following this plan, you’ll gain a comprehensive preliminary understanding of your
data, setting a solid foundation for subsequent phases.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Preliminary Exploratory Data Analysis Code

import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

File paths
train_file_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/

titanic/train.csv’
test_file_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/

titanic/test.csv’

Loading datasets
train_df = pd.read_csv(train_file_path)
test_df = pd.read_csv(test_file_path)

Output dataset shapes
print(f"Train dataset shape: {train_df.shape}")
print(f"Test dataset shape: {test_df.shape}")

Inspect data types and missing values
print("Missing values in train dataset:")
print(train_df.isnull().sum())
print("\nMissing values in test dataset:")
print(test_df.isnull().sum())

Basic statistical summary for numerical features
print("Statistical summary for numerical features in train dataset:")
print(train_df.describe())

Plot histograms for numerical features
numerical_features = [’Age’, ’Fare’, ’SibSp’, ’Parch’]
for feature in numerical_features:

plt.figure(figsize=(8, 4))
sns.histplot(train_df[feature], bins=30, kde=True)
plt.title(f’Histogram of {feature}’)
plt.xlabel(feature)
plt.ylabel(’Frequency’)
plt.savefig(f’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/pre_eda/images/histogram_{feature}.png’)
plt.close()

Plot bar charts for categorical features
categorical_features = [’Pclass’, ’Sex’, ’Embarked’, ’Survived’]
for feature in categorical_features:

plt.figure(figsize=(8, 4))
sns.countplot(x=train_df[feature])
plt.title(f’Bar chart of {feature}’)
plt.xlabel(feature)
plt.ylabel(’Count’)
plt.savefig(f’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/pre_eda/images/bar_chart_{feature}.png’)
plt.close()

Summarize key findings
key_findings = """
Key Findings from Preliminary EDA:
1. Missing Values:

- Age has 177 missing values in the train dataset.
- Cabin has significant missing values.
- Embarked has 2 missing values in the train dataset.

2. Numerical Features:
- Age distribution shows a right skew.
- Fare distribution is highly skewed.

3. Categorical Features:
- More males than females in the train dataset.
- Most passengers embarked from port ’S’ (Southampton).
- Survival rate is around 38% in the train dataset.

"""
print(key_findings)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Preliminary EDA

Train Dataset Head:
PassengerId Survived Pclass ... Fare Cabin Embarked

0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S

[5 rows x 12 columns]

Test Dataset Head:
PassengerId Pclass ... Cabin Embarked

0 892 3 ... NaN Q
1 893 3 ... NaN S
2 894 2 ... NaN Q
3 895 3 ... NaN S
4 896 3 ... NaN S

[5 rows x 11 columns]

......

Missing Values in Test Dataset:
PassengerId 0
Pclass 0
Name 0
Sex 0
Age 86
SibSp 0
Parch 0
Ticket 0
Fare 1
Cabin 327
Embarked 0
dtype: int64

Frequency of Pclass:
Pclass
3 491
1 216
2 184
Name: count, dtype: int64

Frequency of Sex:
Sex
male 577
female 314
Name: count, dtype: int64

Frequency of Embarked:
Embarked
S 644
C 168
Q 77
Name: count, dtype: int64

E.3 DATA CLEANING

We demonstrate the data analysis capabilities of our framework using the age column from the
Titanic competition’s training set as an example. In the pre-EDA phase, the distribution of the age
histogram is as shown in Figure 6. During the data cleaning phase, we filter out missing values
using unit tests. You can see a comparison of the age box plots before and after the outliers have
been processed in Figure 7. In the deep-EDA phase, the distribution of the age histogram is as shown
in Figure 8.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 6: The histogram of age before outliers are processed

Figure 7: Comparison of age box plots before and after treatment of outliers.The image on the left
is before the outliers are processed and the one on the right is after the process is done

Figure 8: The histogram of age after outliers are processed

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Data Cleaning Code

import sys
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sys.path.extend([’.’, ’..’, ’../..’, ’../../..’, ’../../../..’, ’multi_agents’, ’
multi_agents/tools’, ’multi_agents/prompts’])

sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from tools.ml_tools import *

def generated_code_function():
Load datasets
train_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/train.csv’
test_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/test.csv’
train_df = pd.read_csv(train_path)
test_df = pd.read_csv(test_path)

Handle missing values
for df in [train_df, test_df]:

df = fill_missing_values(df, columns=[’Age’, ’Fare’], method=’median’)
df = fill_missing_values(df, columns=[’Embarked’], method=’mode’)
df = remove_columns_with_missing_data(df, columns=[’Cabin’])

Convert data types
for df in [train_df, test_df]:

df = convert_data_types(df, columns=[’PassengerId’, ’Pclass’], target_type=’
str’)
train_df = convert_data_types(train_df, columns=[’Survived’], target_type=’str’)

Plot outliers and handle using IQR method
def plot_outliers(data, columns, suffix):

output_dir = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/data_cleaning/images/’

os.makedirs(output_dir, exist_ok=True)
for column in columns:

plt.figure(figsize=(10, 5))
sns.boxplot(x=data[column])
plt.title(f’Boxplot of {column} {suffix}’)
plt.savefig(f’{output_dir}{column}_{suffix}.png’)
plt.close()

columns_with_outliers = [’Age’, ’Fare’]
plot_outliers(train_df, columns_with_outliers, ’before_outliers’)

for df in [train_df, test_df]:
df = detect_and_handle_outliers_iqr(df, columns=columns_with_outliers, factor

=1.5, method=’clip’)

plot_outliers(train_df, columns_with_outliers, ’after_outliers’)

Save cleaned datasets
train_df.to_csv(’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/cleaned_train.csv’, index=False)
test_df.to_csv(’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/
titanic/cleaned_test.csv’, index=False)

if __name__ == "__main__":
generated_code_function()

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Data Cleaning Result

Missing values in train dataset before handling:
PassengerId 0
...
Sex 0
Age 177
...
Cabin 687
Embarked 2
dtype: int64

Missing values in test dataset before handling:
PassengerId 0
...
Age 86
...
Fare 1
Cabin 327
Embarked 0
dtype: int64

Missing values in train dataset after handling:
Age 0
Embarked 0
...
...
SibSp 0
Ticket 0
dtype: int64

Missing values in test dataset after handling:
Age 0
Embarked 0
...
...
SibSp 0
Ticket 0
dtype: int64

Data types in train dataset after conversion:
Age float64
Embarked object
Fare float64
Name object
Parch int64
PassengerId object
Pclass object
Sex object
SibSp int64
Survived object
Ticket object
dtype: object

Data types in test dataset after conversion:
Age float64
Embarked object
Fare float64
Name object
Parch int64
PassengerId object
Pclass object
Sex object
SibSp int64
Ticket object
dtype: object
Cleaned training data saved to /mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/

competition/titanic/cleaned_train.csv
Cleaned test data saved to /mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/

competition/titanic/cleaned_test.csv

E.4 IN-DEPTH EXPLORATORY DATA ANALYSIS

In this state, the AutoKaggle delves further into the Titanic dataset. 1) The process begins with an
extended univariate analysis to explore the distribution of both numerical and categorical features.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Key statistical summaries are generated for numerical features such as age and fare, while bar charts
and frequency tables are created for categorical features like passenger class and gender. 2) A bi-
variate analysis investigates the relationship between individual features and the survival outcome.
Box plots and violin plots are used to analyze how numerical features vary between survivors and
non-survivors, while count plots are generated for categorical features to visualize survival rates
across different groups. 3) A correlation analysis is conducted to explore the relationships between
numerical features, visualized through a correlation matrix and heatmap. This helps to identify any
strong correlations between features and the target variable, survival. 4) A multivariate analysis is
performed to explore interactions between key features such as passenger class, gender, and age,
in relation to survival. Visualizations, such as stacked bar charts and facet grids, are used to high-
light these complex interactions, providing deeper insights into the data.Below is an excerpt of the
generated file:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

In-depth Exploratory Data Analysis Plan

Great! Based on the information provided, we will proceed with a detailed plan for the

In-depth Exploratory Data Analysis (EDA) phase. The aim is to perform a
thorough analysis of each feature to uncover deeper insights that can inform
feature engineering and model building.

Plan for In-Depth Exploratory Data Analysis

Task 1: Detailed Univariate Analysis

Objective: Understand the distribution and characteristics of each individual
feature.

1. **Age:**
- **Actions:**

- Plot a histogram to observe the distribution.
- Use a boxplot to identify any remaining outliers.

- **Tools & Parameters:**
- ‘seaborn.histplot(data=cleaned_train, x=’Age’, bins=30)‘
- ‘seaborn.boxplot(data=cleaned_train, x=’Age’)‘

- **Expected Output:**
- Histogram showing the age distribution.
- Boxplot indicating the presence of outliers.

- **Constraints:**
- Ensure plots are clear and readable.

2. **Fare:**
......

3. **Categorical Features (Pclass, Sex, Embarked):**
......

Task 2: Bivariate Analysis

Objective: Explore relationships between pairs of features, especially with the
target variable ‘Survived‘.

1. **Survived vs. Age:**
......

2. **Survived vs. Fare:**
......

3. **Survived vs. Categorical Features (Pclass, Sex, Embarked):**
......

Task 3: Multivariate Analysis

Objective: Understand interactions between multiple features and their combined
effect on the target variable.

1. **Pairplot:**
......

2. **Correlation Heatmap:**
......

Task 4: Insights Summary

Objective: Summarize key findings from the in-depth EDA to inform the next phases.

1. **Actions:**
......

2. **Tools & Parameters:**
......

3. **Expected Output:**
......

4. **Constraints:**
......

By following this detailed plan, you will be able to gain a thorough understanding of
the dataset, which will be invaluable for the subsequent phases of feature
engineering and model building.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

In-depth Exploratory Data Analysis Code

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

Load the cleaned training data
cleaned_train = pd.read_csv(’cleaned_train.csv’)
Task 1: Univariate analysis on the Age and Fare features

Histogram and Boxplot for Age and Fare
for feature in [’Age’, ’Fare’]:

plt.figure(figsize=(10, 6))
cleaned_train[feature].hist(bins=30)
plt.title(f’{feature} Distribution’)
plt.xlabel(feature)
plt.ylabel(’Frequency’)
plt.savefig(f’deep_eda/images/{feature.lower()}_histogram.png’)
plt.close()
plt.figure(figsize=(10, 6))
cleaned_train[feature].plot(kind=’box’)
plt.title(f’Boxplot of {feature}’)
plt.xlabel(feature)
plt.savefig(f’deep_eda/images/{feature.lower()}_boxplot.png’)
plt.close()

print("Univariate analysis on Age and Fare features completed.")

Task 2: Univariate analysis on categorical features
Countplot for Pclass, Sex, Embarked
for feature in [’Pclass’, ’Sex’, ’Embarked’]:

cleaned_train[feature].value_counts().plot(kind=’bar’, figsize=(10, 6), title=f’{
feature} Distribution’)
plt.xlabel(feature)
plt.ylabel(’Frequency’)
plt.savefig(f’deep_eda/images/{feature.lower()}_countplot.png’)
plt.close()

Task 3: Bivariate analysis of Survived vs. Age, Fare, categorical features
Violin plot for Age and Fare by Survived
for feature in [’Age’, ’Fare’]:

plt.figure(figsize=(10, 6))
cleaned_train.boxplot(column=feature, by=’Survived’)
plt.title(f’Survival by {feature}’)
plt.xlabel(’Survived’)
plt.ylabel(feature)
plt.savefig(f’deep_eda/images/survived_vs_{feature.lower()}.png’)
plt.close()

Countplot for categorical features by Survived
for feature in [’Pclass’, ’Sex’, ’Embarked’]:

pd.crosstab(cleaned_train[feature], cleaned_train[’Survived’]).plot(kind=’bar’,
stacked=True, figsize=(10, 6))
plt.title(f’Survival by {feature}’)
plt.xlabel(feature)
plt.ylabel(’Count’)
plt.savefig(f’deep_eda/images/survived_vs_{feature.lower()}.png’)
plt.close()

Task 4: Multivariate analysis using a correlation heatmap
Correlation heatmap
numeric_df = cleaned_train.select_dtypes(include=[np.number])
plt.figure(figsize=(10, 8))
plt.matshow(numeric_df.corr(), cmap=’coolwarm’, fignum=1)
plt.title(’Correlation Heatmap’)
plt.savefig(’deep_eda/images/correlation_heatmap.png’)
plt.close()

Task 5: Summarize key insights from the EDA
summary = """
......
"""
Save the summary to a text file
with open(’deep_eda/eda_summary.txt’, ’w’) as file:

file.write(summary)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

In-deep EDA

Summary statistics for Age:
count 891.000000
mean 29.039282
std 12.072074
min 2.500000
25% 22.000000
50% 28.000000
75% 35.000000
max 54.500000
Name: Age, dtype: float64

......

Survival rate by Pclass:
Pclass
1 0.629630
2 0.472826
3 0.242363
Name: Survived, dtype: float64
Survival rate by Sex:
Sex
female 0.742038
male 0.188908
Name: Survived, dtype: float64
Survival rate by Embarked:
Embarked
C 0.553571
Q 0.389610
S 0.339009
Name: Survived, dtype: float64
Correlation matrix:

Age SibSp Parch Fare Survived
Age 1.000000 -0.239601 -0.178959 0.144544 -0.060622
SibSp -0.239601 1.000000 0.414838 0.332021 -0.035322
Parch -0.178959 0.414838 1.000000 0.292616 0.081629
Fare 0.144544 0.332021 0.292616 1.000000 0.317430
Survived -0.060622 -0.035322 0.081629 0.317430 1.000000

E.5 FEATURE ENGINEERING

In this phase, the AutoKaggle add several new features to enhance the predictive power of the
dataset. 1) A FamilySize feature is created by combining the SibSp and Parch columns, representing
the total number of family members aboard, including the passenger. This feature captures the
familial context, which could influence survival likelihood. 2) An AgeGroup feature is derived by
categorizing passengers into age groups, simplifying the continuous age variable into meaningful
categories such as ”Child” and ”Senior.” This transformation helps identify potential age-related
survival patterns. 3) Categorical features like Sex, Embarked, and Pclass are then encoded into
numerical form to ensure they can be used in the model. One-hot encoding is applied to Sex and
Embarked, while label encoding is used for Pclass, respecting its ordinal nature. 4) The cabin data
is processed by extracting the first letter of the Cabin feature to create a new Deck variable. This
feature provides information about the passenger’s location on the ship, which may correlate with
survival outcomes. Missing cabin data is handled by assigning an ’Unknown’ category, ensuring
completeness of the feature.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Feature Engineering Plan

Great! Let’s design a detailed plan for the Feature Engineering phase, focusing on the
current features and the available tools. We’ll ensure that each task is clear,
specific, and includes the necessary steps to achieve the desired outcome.

Feature Engineering Plan

Task 1: Create New Features

Objective: Enhance the dataset by creating new features that could capture
additional information relevant to predicting survival.

1. **Family Size:**
- **Action:** Create a new feature ‘FamilySize‘ by combining ‘SibSp‘ and ‘Parch‘.
- **Method:** ‘FamilySize = SibSp + Parch + 1‘ (including the passenger themselves)
.

- **Impact:** Captures the total number of family members traveling together, which
can influence survival chances.

2. **IsAlone:**
......

3. **Age Bins:**
......

4. **Fare per Person:**
......

Task 2: Encode Categorical Features

Objective: Convert categorical features into numerical format suitable for machine
learning models.

1. **Sex:**
......

2. **Embarked:**
......

Task 3: Handle Ticket and Cabin Features

Objective: Extract useful information from ‘Ticket‘ and ‘Cabin‘ features, which
are currently in text format.

1. **Ticket:**
......

2. **Cabin:**
......

Task 4: Scale Numerical Features

Objective: Standardize numerical features to ensure they are on a comparable scale
, improving model performance.

1. **Numerical Features:**
......

Summary of Expected Output
- **New Features Added:** ‘FamilySize‘, ‘IsAlone‘, ‘AgeBins‘, ‘FarePerPerson‘
- **Encoded Features:** ‘Sex‘ (label encoded), ‘Embarked‘ (one-hot encoded)
- **Processed Features:** ‘TicketPrefix‘, ‘CabinDeck‘
- **Scaled Features:** ‘Age‘, ‘Fare‘, ‘FarePerPerson‘

Constraints and Considerations
- **Runtime Efficiency:** Ensure feature creation and encoding steps are optimized for

performance.
- **Handling Missing Values:** Address any missing values in the newly created

features appropriately.
- **Avoid Data Leakage:** Perform encoding and scaling separately on train and test

sets to prevent data leakage.

By following these tasks, you will transform the cleaned data into a more informative
and model-ready format (‘processed_train.csv‘ and ‘processed_test.csv‘). This plan
ensures that the most critical steps of feature engineering are covered,
enhancing the predictive power of your model for the Titanic competition.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Feature Engineering Code

import pandas as pd

Load the cleaned datasets
train_df = pd.read_csv(’cleaned_train.csv’)
test_df = pd.read_csv(’cleaned_test.csv’)

Create copies of the dataframes
train_df_copy = train_df.copy()
test_df_copy = test_df.copy()

STEP 1: Create New Features
train_df_copy[’FamilySize’] = train_df_copy[’SibSp’] + train_df_copy[’Parch’] + 1
test_df_copy[’FamilySize’] = test_df_copy[’SibSp’] + test_df_copy[’Parch’] + 1

train_df_copy[’IsAlone’] = (train_df_copy[’FamilySize’] == 1).astype(int)
test_df_copy[’IsAlone’] = (test_df_copy[’FamilySize’] == 1).astype(int)

age_bins = [0, 12, 18, 35, 60, 120]
age_labels = [’Child’, ’Teen’, ’Adult’, ’Senior’, ’Elder’]
train_df_copy[’AgeBins’] = pd.cut(train_df_copy[’Age’], bins=age_bins, labels=

age_labels, right=False)
test_df_copy[’AgeBins’] = pd.cut(test_df_copy[’Age’], bins=age_bins, labels=age_labels

, right=False)

train_df_copy[’FarePerPerson’] = train_df_copy[’Fare’] / train_df_copy[’FamilySize’]
test_df_copy[’FarePerPerson’] = test_df_copy[’Fare’] / test_df_copy[’FamilySize’]

Save the datasets with new features
train_df_copy.to_csv(’processed_train.csv’, index=False)
test_df_copy.to_csv(’processed_test.csv’, index=False)

Load the processed datasets
train_df = pd.read_csv(’processed_train.csv’)
test_df = pd.read_csv(’processed_test.csv’)

Define functions to extract ticket prefix and cabin deck
def extract_ticket_prefix(ticket):

parts = ticket.split()
return parts[0] if not parts[0].isdigit() else ’None’

def extract_cabin_deck(cabin):
return cabin[0] if pd.notna(cabin) else ’Unknown’

Extract TicketPrefix and CabinDeck
train_df[’TicketPrefix’] = train_df[’Ticket’].apply(extract_ticket_prefix)
test_df[’TicketPrefix’] = test_df[’Ticket’].apply(extract_ticket_prefix)

train_df[’CabinDeck’] = train_df[’Cabin’].apply(extract_cabin_deck) if ’Cabin’ in
train_df.columns else ’Unknown’

test_df[’CabinDeck’] = test_df[’Cabin’].apply(extract_cabin_deck) if ’Cabin’ in
test_df.columns else ’Unknown’

Save the datasets with extracted features
train_df.to_csv(’processed_train.csv’, index=False)
test_df.to_csv(’processed_test.csv’, index=False)

E.6 MODEL BUILDING, VALIDATION, AND PREDICTION

In this phase, we conduct a comprehensive analysis of the Titanic passenger dataset with the aim of
predicting passengers’ survival probabilities. Initially, the data undergo preprocessing that included
filling missing values, deleting columns with high missingness, and handling outliers. Subsequent
feature engineering efforts introduce new attributes such as family size, solitary travel, age group-
ings, and fare per person, and involved encoding for gender and embarkation points. Furthermore, a
random forest model is employed, optimized via grid search, and evaluated using cross-validation.
Predictions are then made on the test set, and a submission file is prepared.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Model Building, Validation, and Prediction Plan

Detailed Plan

Task 1: Prepare Training Data

Objective: Separate the target variable and remove non-numeric columns.

1. **Separate Target Column**
- **Action:** Extract the ‘Survived‘ column from ‘processed_train.csv‘ as ‘y‘.
- **Tool:** pandas
- **Expected Output:** ‘y‘ as a separate pandas Series containing the target
variable.

- **Code Example:**
‘‘‘python
import pandas as pd
train_data = pd.read_csv(’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/
competition/titanic/processed_train.csv’)
y = train_data[’Survived’]
‘‘‘

2. **Remove Non-Numeric Columns**
- **Action:** Identify and drop non-numeric columns from the training set.
- **Features Involved:** ‘Name‘, ‘Ticket‘, ‘TicketPrefix‘, ‘CabinDeck‘
- **Tool:** pandas
- **Expected Output:** ‘X_train‘ as a DataFrame containing only numeric columns.
- **Code Example:**

‘‘‘python
X_train = train_data.drop(columns=[’Survived’, ’Name’, ’Ticket’, ’TicketPrefix’,
’CabinDeck’])
‘‘‘

Task 2: Prepare Test Data

Objective: Ensure the test data has the same structure as the training data.

1. **Remove Non-Numeric Columns**
......

Task 3: Train and Validate the Model

Objective: Train and validate a machine learning model using the prepared datasets
.

1. **Model Selection and Training**
......

2. **Hyperparameter Tuning**
......

Task 4: Make Predictions

Objective: Use the trained model to make predictions on the test dataset.

1. **Prediction**
......

Task 5: Prepare Submission File

Objective: Prepare the submission file in the required format.

1. **Submission File Preparation**
......

Final Notes
- Ensure that all steps are executed in sequence to maintain data integrity.
- Validate each step with print statements or logs to confirm successful execution.
- Use cross-validation to ensure model robustness and avoid overfitting.

Feel free to execute the tasks based on this detailed plan. If you have any questions
or need further adjustments, don’t hesitate to ask.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Model Building, Validation, and Prediction Code

import pandas as pd
Load the processed training data
processed_train_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/

competition/titanic/processed_train.csv’
train_df = pd.read_csv(processed_train_path)

Separate the target variable
y = train_df[’Survived’]

Identify non-numeric columns to be dropped
columns_to_drop = [’Survived’, ’Name’, ’Ticket’, ’TicketPrefix’, ’CabinDeck’, ’AgeBins

’]

Drop the target variable and non-numeric columns
X_train = train_df.drop(columns=columns_to_drop)

Load the processed test data
processed_test_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition

/titanic/processed_test.csv’
test_df = pd.read_csv(processed_test_path)

Drop non-numeric columns to match X_train
X_test = test_df.drop(columns=[’Name’, ’Ticket’, ’TicketPrefix’, ’CabinDeck’, ’AgeBins

’])

Ensure the column order matches X_train
X_test = X_test[X_train.columns]

print(f"Test data processed. X_test shape: {X_test.shape}")

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV, cross_val_score

Define the model and parameter grid
model = RandomForestClassifier(random_state=42)
param_grid = {

’n_estimators’: [100, 200, 300],
’max_depth’: [None, 10, 20, 30]

}

Use GridSearchCV for hyperparameter tuning
grid_search = GridSearchCV(model, param_grid, cv=5, scoring=’accuracy’)
grid_search.fit(X_train, y)

Get the best model
best_model = grid_search.best_estimator_

Validate the model using cross-validation
cv_scores = cross_val_score(best_model, X_train, y, cv=5, scoring=’accuracy’)

Make predictions on the test data
predictions = best_model.predict(X_test)

Convert predictions to a DataFrame
predictions_df = pd.DataFrame({

’PassengerId’: test_df[’PassengerId’],
’Survived’: predictions

})

print(f"Predictions made. Sample predictions:\n{predictions_df.head()}")

Prepare the submission file
submission_path = ’/mnt/d/PythonProjects/AutoKaggleMaster/multi_agents/competition/

titanic/submission.csv’
predictions_df.to_csv(submission_path, index=False)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

E.7 RESEARCH REPORT

After completing the entire data science pipeline, AutoKaggle reviews the interim reports from each
phase and finally compiles a Research Report to document its key findings, major decisions, and their
rationale at every phase. This helps users better understand the solutions provided by AutoKaggle.

Research Report

COMPETITION RESEARCH REPORT

1. PRELIMINARY EDA

The preliminary exploratory data analysis (EDA) involved examining the dataset’s
structure and identifying key features. The analysis revealed critical insights
such as:

- **Missing Values**: Notably, the ‘Age‘ and ‘Cabin‘ features had significant missing
values.

- **Outliers**: Outliers were identified in the ‘Fare‘ and ‘Age‘ features, with fares
exceeding 200 and ages above 60.

- **Statistical Summary**: The median age was around 30, while the median fare was
approximately 14.45.

...

2. DATA CLEANING

The data cleaning phase focused on addressing missing values and outliers. Key actions
included:

- **Imputation**:
- ‘Age‘: Missing values were filled with the mean.
- ‘Cabin‘: Filled with ’Missing’ to indicate absence.
- ‘Embarked‘: Missing values filled with the mode.

- **Outlier Treatment**:
- ‘Fare‘ and ‘Age‘ were clipped using the IQR method to reduce the influence of

outliers.
...

3. DEEP EDA

In-depth EDA revealed valuable insights about the relationships between features and
survival rates:

- **Pclass**: Higher classes showed higher survival rates; average Pclass was 2.31.
- **Sex**: Females had a significantly higher survival rate compared to males.
- **Fare**: Higher fares correlated positively with survival, indicating a potential

link to better accommodation and safety.
...

4. FEATURE ENGINEERING

Feature engineering involved creating and transforming features to enhance model
performance:

- **New Features Created**:
- **Title**: Extracted from ‘Name‘.
- **FamilySize**: Summation of ‘SibSp‘ and ‘Parch‘.
- **IsAlone**: Binary feature indicating if a passenger traveled alone.
- **FarePerPerson**: Calculated fare per individual in a family.

...

5. MODEL BUILDING, VALIDATION, AND PREDICTION

Multiple models were trained during this phase, including:
- **Models**: XGBoost, SVM, Random Forest, Decision Tree, and Logistic Regression.
- **Best Model**: Random Forest achieved the highest validation score of 0.8379.
...

6. CONCLUSION

The competition’s approach involved a structured process of EDA, data cleaning,
feature engineering, and model evaluation. Key insights included the strong
influence of ‘Sex‘, ‘Pclass‘, and ‘Fare‘ on survival rates. The most impactful
decisions involved addressing missing values and outliers, which collectively
improved data quality and model accuracy. Future recommendations include further
feature engineering, hyperparameter tuning, and validation of feature importance
to enhance model performance.

44

	Introduction
	AutoKaggle
	Overall Framework
	Development Based on Iterative Debugging and Testing
	Machine Learning Tools Library

	Experiments
	Experimental Setup
	Main results
	Ablation study

	Related Work
	Conclusion
	Algorithm
	Error Analysis
	Detailed Dataset Description
	Implementation Details
	Agent Details
	Agent Base
	Reader
	Planner
	Developer
	Reviewer
	Summarizer

	Unit Tests
	Machine Learning Tools Details
	Tool Utilization
	User Interaction

	Case Study: Titanic
	Background Understanding
	Preliminary Exploratory Data Analysis
	Data Cleaning
	In-depth Exploratory Data Analysis
	Feature Engineering
	Model Building, Validation, and Prediction
	Research Report

