
Emergent planning in a recurrent neural network that plays Sokoban

Adrià Garriga-Alonso 1 Mohammad Taufeeque 1 Adam Gleave 1

Abstract

To predict how advanced neural networks gen-
eralize to novel situations, it is essential to un-
derstand how they reason. Guez et al. (2019,
“An investigation of model-free planning”) pre-
sented a recurrent neural network (RNN) trained
with model-free reinforcement learning. The net-
work’s ability to solve Sokoban puzzles improved
when given extra computation steps at episode
starts. We replicate and open-source their setup,
and further investigate its planning behavior. Our
findings reveal that the RNN benefits from addi-
tional thinking early in training, and that adding
thinking time often reduces redundant actions.
The results suggest that the RNN learns to take
time to think by ‘pacing’ during training, despite
the per-step penalties, indicating that training in-
centivizes planning capabilities. The small size
(1.29M parameters) and interesting behavior of
this model will greatly interest the mechanistic
interpretability community.

1. Introduction
Humans benefit from taking time to think for many tasks,
and large language models improve from thinking step by
step (Kojima et al., 2022). Thus, we should expect advanced
AIs to reason, and to perform better at tasks with more
thinking. Understanding reasoning in such neural networks
(NNs) is key to predicting their behavior in novel situations.

Of particular relevance to AI alignment is internal reasoning
which furthers a goal. Hubinger et al. (2019) term “mesa-
optimizers” neural networks that have learned to explicitly
pursue goals through internal reasoning, warning that these
goals may not be the same as the training objective (Di Lan-
gosco et al., 2022; Shah et al., 2022).

This paper presents a 1.29M parameter recurrent neural net-
work (RNN) that clearly benefits from extra pondering time

1FAR AI, San Diego, California, USA. Correspondence to:
Adrià Garriga-Alonso <adria@far.ai>.

Preprint. Copyright 2024 by the author(s).

0.0

0.2

0.4

0.6

0.8

Va
l-m

ed
iu

m
 so

lv
ed

0
2
4

8
12

16
ResNet

0.07 0.50 1.00 1.50 2.00
Environment steps, training 1e9

0.00

0.05
Pl

an
. E

ffe
ct

valid_medium hard

Figure 1. Top: Proportion of medium-difficulty validation levels
solved vs. environment transitions used in training. Each curve
displays the RNN model with a specific number of forced thinking
steps at episode start, along with a ResNet baseline. Bottom:
Estimate of the planning effect, the 8-steps curve minus the 0-steps
curve. We can see that thinking develops in the first 70M steps
and keeps increasing for the hard levels, but decreases for medium
levels.

toward a concrete goal. Following Guez et al. (2019), we
train a convolutional LSTM to play Sokoban, a challeng-
ing puzzle game that remains a benchmark for planning
algorithms (Peters et al., 2023) and reinforcement learning
(Chung et al., 2024).

We believe this NN is small, and its behavior straightforward
enough for mechanistic interpretability techniques to reverse
engineer it. Simultaneously, it performs reasoning in a
complex environment, benefitting from extra thinking time.
Thus, it is a useful first step towards understanding reasoning
in sophisticated neural networks.

Our contributions are:

• We replicate and open-source an RNN that improves
performance with thinking time (Guez et al., 2019).

• We present evidence that the thinking-time behavior
emerges early in training and is incentivized by the

1



Planning in a RNN that plays Sokoban

setup (Figure 1, Sections 3 and 4.1).

• We investigate the behavior changes by which ponder-
ing time improves performance (Section 3), showing
that it reduces myopic behavior (Figure 4).

• We present case studies of planning behavior, suggest-
ing the RNN naturally takes time to think (Section 4).
This may explain the reduction of planning effect on
medium levels (Figure 1).

2. Training the test subject
We closely follow the setup from Guez et al. (2019), which
introduced the Deep Repeating ConvLSTM (DRC) recur-
rent architecture and trained it with reinforcement learning
(RL) to play Sokoban. We make the trained networks1 and
training code2 available.

Environment. Sokoban is a grid puzzle game with walls,
floors, movable boxes, and target tiles. The player’s goal
is to push all boxes onto target tiles while navigating walls.
We use the Boxoban dataset (Guez et al., 2018), consisting
of 10 × 10 procedurally generated Sokoban levels, each
with 4 boxes and targets. The edge tiles are always walls,
so the playable area is 8× 8. Boxoban separates levels into
train, validation and test sets, with three difficulty levels:
unfiltered, medium and hard. In this paper, we use unfiltered-
train (900k levels), unfiltered-test (1k levels), and medium-
difficulty validation (50k levels) sets.

The observations are 10 × 10 RGB images, normalized
by dividing each component by 255. Each type of tile is
represented by a pixel of a different color (Schrader, 2018).
See Figure 5 for examples. The player can take actions
(Up, Down, Left, Right). The reward is -0.1 per step, 1 for
putting a box on a target, -1 for removing a box, and 10 for
finishing the level. To avoid strong time correlations during
learning, each episode resets at a uniformly random length
between 91 and 120 time steps.

DRC(D,N) architecture. Guez et al. (2019) introduced
the Deep Repeating ConvLSTM (DRC), whose core consists
of D convolutional LSTM layers with 32 channels and
3 × 3 filters, each applied N times per time step. Our
DRC(3, 3) has 1.29M parameters. Before the LSTM core,
two convolutional layers (without nonlinearity) encode the
observation with 4× 4 filters.

The LSTM core uses 3 × 3 convolutional filters, and a
nonstandard tanh on the output gate (Jozefowicz et al.,
2015). Unlike the original ConvLSTM (Shi et al., 2015), the
input to each layer of a DRC consists of several concatenated

1https://github.com/AlignmentResearch/learned-planner
2https://github.com/AlignmentResearch/train-learned-planner

components:

• The encoded observation is fed into each layer.

• To allow spatial information to travel fast in the Con-
vLSTM layers, we apply pool-and-inject by max- and
mean-pooling the previous step’s hidden state. We lin-
early combine these values channel-wise before feed-
ing them as an input to the next step.

• To avoid convolution edge effects from disrupting the
LSTM dynamics, we feed in a 12×12 channel with ze-
ros on the inside and ones on the boundary. Unlike the
other inputs, this one is not zero-padded, maintaining
the output size.

ResNet architecture. This is a convolutional residual neu-
ral network, also from Guez et al. (2019). It serves as a
non-recurrent baseline that cannot think for a variable num-
ber of steps but is nevertheless good at the game. The
ResNet consists of 9 blocks, each with 4× 4 convolutional
filters. The first two blocks have 32 channels, and the others
have 64. Each block consists of a convolution, then two
(relu, conv) sub-blocks, which each split off and are added
back to the trunk. The ResNet has 3.07M parameters.

Value and policy heads. After the image processing, an
affine layer projects the flattened spatial output into 256
channels. We then apply a ReLU and two different affine
layers: one for the actor (policy) and one for the critic (value
function).

RL training. We train each network for 2.003 billion envi-
ronment steps using IMPALA (Espeholt et al., 2018; Huang
et al., 2023). For each training iteration, we collect 20 tran-
sitions on 256 actors using the network parameters from the
previous iteration, and simultaneously take a gradient step.
We use a discount rate of γ = 0.97 and V-trace λ = 0.5.
The value and entropy loss coefficients are 0.25 and 0.01.
We use the Adam optimizer with a learning rate of 4 · 10−4,
which linearly anneals to 4 · 10−6 at the end of training. We
clip the gradient norm to 2.5 · 10−4. Our hyperparameters
are mostly the same as Guez et al. (2019); see Appendix A.

A* solver. To obtain optimal solutions to each Sokoban
puzzle, we used the A* search algorithm. The heuristic was
the sum of the Manhattan distances of each box to its nearest
target. Solving a single level on one CPU takes anywhere
from a few seconds to 15 minutes.3

2

https://github.com/AlignmentResearch/learned-planner
https://github.com/AlignmentResearch/train-learned-planner


Planning in a RNN that plays Sokoban

0 1 2 4 6 8 10 12 16
Number of extra thinking steps at episode start

0.60

0.65

0.70

0.75

0.80

Su
cc

es
s R

at
e

DRC(3, 3) ResNet

Figure 2. Proportion of solved medium-difficulty validation levels
solved by DRC with x time steps to think. The dotted line shows
the ResNet’s solve proportion at 2×109 training steps for the same
levels. The proportion of solved levels increases with thinking time,
but only up to 6 steps.

3. Quantitative behavior analysis
From here onward, we may refer to the DRC(3, 3) as DRC.

3.1. Are planning networks better at Sokoban?

After 2B steps from the environment, the DRC(3, 3) is able
to solve 99.3% of unfiltered test levels, and the ResNet
97.9%, a score consistent with Guez et al. (2019), see Ap-
pendix B. Of the hard levels, the DRC(3, 3) solves 42.8%
and the ResNet 26.2%. This gap appears larger, thus the
question: are networks that plan comparatively better at
harder levels? Figure 9 compares, for each checkpoint and
architecture, how successful it is at various difficulties. All
architectures follow the same curve. The DRC(3, 3) is better,
but not comparatively better at harder levels.

3.2. Does thinking time improve performance?

Does our trained DRC(3, 3) subject replicate the thinking
time effect from Guez et al. (2019)? We evaluate the DRC
on the whole of medium-difficulty validation levels. To
give the DRC n steps to think, we repeat the initial environ-
ment observation n times while advancing the DRC hidden
state, then let the DRC policy act normally. Figure 2 shows
the DRC’s performance for n ∈ {0, 1, 2, 4, 6, 8, 10, 12, 16}
steps, as well as the ResNet baseline. The DRC’s solving
rate improves from 76.6% to 81.3% with more thinking
steps, with peak performance at 6 steps. The effect (4.7%

3The A* solutions may be of independent interest, so we make
them available at https://huggingface.co/datasets
/AlignmentResearch/boxoban-astar-solutions/.

0 2 4 6 8 12 unsolved
Solved at steps to think

50

55

60

Av
g 

O
pt

im
al

 L
en

gt
h

Figure 3. Average optimal solution length of levels grouped by the
number of thinking steps at which the level is first solved. Each
of the 50,000 medium-difficulty validation levels is assigned to a
group.

difference) is about as strong as that observed by Guez et al.
(2019) (4.5%).

3.3. Planning emerges early on in training

When does the DRC learn to benefit from thinking steps?
Figure 1 shows the performance of the DRC on the medium-
difficulty validation levels. The DRC rapidly acquires a
strong planning effect by 70M environment steps, which
strengthens as training progresses on the hard levels; but
slowly weakens for the medium levels. This suggests that
the training setup and loss reinforce planning behavior, at
least for harder levels.

3.4. Do difficult levels benefit more from thinking?

Intuitively, taking extra thinking time should help more with
harder levels. The A* solver gives us two proxies for the
difficulty of a level: the number of nodes it had to expand
to find a solution and the length of the optimal solution.

We can measure the average difficulty for levels that the
DRC needs n steps of thinking to solve. Figure 3 shows
the average solution length proxy, and it clearly trends up.
Figure 8 (Appendix C) shows the expanded nodes proxy,
and trends up but is noisy for lower n. We speculate that
this is because the DRC has different heuristics than the one
we use for A*, whereas the optimal solution length does not
depend on heuristics.

3.5. What happens when we make the DRC think?

Figure 2 shows that, when explicitly made to think, the DRC
can solve many more levels. How does that happen? Does
it have any effects other than solving more levels?

3

https://huggingface.co/datasets/AlignmentResearch/boxoban-astar-solutions/
https://huggingface.co/datasets/AlignmentResearch/boxoban-astar-solutions/


Planning in a RNN that plays Sokoban

Table 1. Levels at 6 thinking steps.

LEVEL CATEGORIZATION PERCENTAGE

Solved, previously unsolved 6.87
Unsolved, previously solved 2.23

Solved, with better returns 18.98
Solved, with the same returns 50.16
Solved, with worse returns 5.26

Unsolved, with same or better returns 15.14
Unsolved, with worse returns 1.36

Thinking makes the DRC “patient.” One hypothesis is
that, without the extra thinking steps, the DRC puts some
boxes into targets without realizing that makes the puzzle
unsolvable. This makes sense based on the training signal,
which penalizes every step it takes to solve the puzzle – it
need not be “irrational” for the training process to push
the DRC to be “impatient” and solve part of the puzzle
on-the-go if that lets it solve puzzles fast enough.

For n thinking steps, Figure 4 plots the average number of
steps (time-to-box) until each of 4 boxes gets on a target,
in the order in which they do so. The results support the
hypothesis: levels solved at 6 thinking steps but not at 0
thinking steps show increased time-to-box for boxes 1–3
but decreased time for box 4. In contrast, on average over
all levels, times go down for all boxes.

Thinking often improves solutions for already-solved
levels but is sometimes harmful. Is an increased solution
rate the only benefit of artificial thinking, or does it increase
returns in other ways? Table 1 breaks down the medium-
difficulty levels into types according to the behavioral effect
of adding 6 steps of thinking. The breakdown shows two
major benefits of thinking time: the DRC solves some levels
that it did not previously solve, but also many levels that
were already solved previously increase in return. The only
way to improve undiscounted returns on solved levels is to
take fewer steps, which matches Figure 4.

Of the levels that the DRC solved both when thinking and
not thinking (81.3%), about 31.8% had a higher return, and
the remaining had the same or worse return. Overall, extra
thinking steps are not always good, but on balance they let
the DRC solve more levels or improve return on already
solved levels.

4. Case studies: how does extra thinking
change DRC behavior?

Let us examine an example from each of three categories
from Table 1: a solved, previously unsolved level; an un-
solved, previously solved level; and a level on which the

0 2 4 6 8 12
(a) On all levels

10

20

30

40

50

Av
g 

tim
es

te
ps

 to
 p

la
ce

 th
e 

bo
x

0 2 4 6 8 12
(b) On solved levels

Steps to think

B1 B2 B3 B4

Figure 4. Average time step to place each box Bi on target for
different thinking steps. (a) Averages across all levels where the
box Bi is placed on target by DRC with n thinking steps. If box
Bi is not placed (on unsolved levels) we ignore the box, but we
keep the other boxes in the level. (b) Averages for all levels solved
by 6 thinking steps but not solved by 0 thinking steps.

DRC improved its return with extra thinking. We picked
one out of ten examples to illustrate each category.

Thinking lets the DRC solve, Figure 5(a). In the no-
thinking condition, the DRC first pushes box C one square
to the right. It then goes back to push A to a, but it is
too late: it is now impossible to push box B onto b. The
network pushes C onto c and D onto d and then remains
mostly still. In contrast, after thinking, the DRC pushes A
to a first, which lets it solve the level.

d

a

A BD
C c

b

(a) file 0, level 18
unsolved think→ solved

d a A
BD C
z
y

x

c

b

(b) file 0, level 53
think→ solved faster

d
a A BDC

c y
b

(c) file 0, level 153
think→ solved slower

Figure 5. Case studies of three levels demonstrating different be-
haviors after 6 thinking steps. Legend: green is the player, brown
(upper case) are boxes, pink (lower case) are box targets, and black
are walls. Box and target letters are in the other the correct solu-
tion places them together. Videos available at this https URL; see
Section 4 for behavior descriptions. Levels solved faster obtain
higher return, the agent incurs the per-step penalty fewer times.

4

https://drive.google.com/drive/folders/1qtxG5B_WGLHE2BusqkCBnpdSZCoQmYM6


Planning in a RNN that plays Sokoban

Thinking speeds up solving, Figure 5(b). In the no-
thinking condition, the DRC spends many steps going back
and forth before pushing any boxes. First it goes down to y,
then up to c, then down onto z, back up to y and to z again.
It then proceeds to solve the rest of the puzzle correctly:
push box A onto a, prepare box B on x and box C where
B originally was, push in boxes B,C and finally D. In the
thinking condition, the DRC makes a beeline for A and then
plays the exact same solution.

Thinking slows down solving, Figure 5(c). In the no-
thinking condition, the DRC starts by pushing box C into
position y, then pushes boxes A,B. On the way back down,
ther DRC pushes C onto c and finally D onto d. In contrast,
after thinking for a bit, the DRC goes the other way and
starts by pushing B onto b. The solution is the same after
that: A, C, then D; but the NN has wasted time trekking
back from B to A.

4.1. Hypothesis: the DRC ‘paces’ to get thinking time

One hypothesis for why the planning effect exists is that
the DRC occasionally deliberately moves around in cycles
(without touching any box) until it comes up with a plan to
solve the episode. To test this, we can check whether cycles
in the game state occur more frequently near the start of the
episode, and whether deliberately giving the DRC thinking
time makes it stop going in cycles.

Figure 6 shows these results: the majority of cycles start
within the first 5 steps of the episode, and forcing it to think
for six steps makes about 75% of these cycles disappear.
The second case study from Section 4 also displays this
qualitative ‘pacing’ behavior.

Episode start is not the only time at which the DRC goes
in cycles. Figure 10 shows that replacing an n-length cycle
with n thinking steps leads the NN to have the exact same
behavior for at least 65% of levels, for at least 30 steps
after the cycle. For context, the median solution length for
train-unfiltered is exactly 30 steps. Additionally, in 82.39%
of cases, doing this prevents cycles from starting in the n
steps after the thinking-steps conclude (Table 4).

Why does this behavior emerge during training? Thinking
is useful for achieving higher return, so it should be rein-
forced. But it also has a cost, -0.1 per step, so it should be
discouraged in easy levels that do not need the computation.
We speculate that, as training advances and heuristics get
tuned, the DRC needs to think in for fewer levels, and it is
better at knowing when it needs to pace. This would doubly
explain the decline in planning behavior for medium levels
in Figure 1: the DRC finds levels easier, and also knows
to pace when needed. Zero steps of planning only includes
induced planning, and does not include planning by pacing.

0 20 40
Cycle start timestep

0.0

0.1

0.2

D
en

si
ty

Median: 4
Mean: 8.3

0 2 4 6 8 12
Steps to think

0

2k

4k

6k

8k

N
um

be
r o

f c
yc

le
s

Figure 6. Left: Histogram of cycle start times on the medium-
difficulty validation levels. Right: Total number of cycles the
agent takes in the first 5 steps across all episodes in medium-
difficulty validation levels with n initial thinking steps.

5. Related work
Interpretability of agents and world models. Several
works have attempted to find the mechanism by which a
simple neural network does planning in mazes (Ivanitskiy
et al., 2023; Mini et al., 2023), gridworlds (Bloom & Colog-
nese, 2023), and graph search (Ivanitskiy et al., 2023). We
believe the DRC we present is a clearer example of an agent
than what these works focus on, and should be similarly
possible to interpret.

Other works have found emergent world models in
sequence-prediction (Li et al., 2023) and navigation (Wij-
mans et al., 2023) neural networks.

Goal misgeneralization and mesa-optimizers for align-
ment. From the alignment perspective, AIs optimizing
monomaniacally for a goal have been a concern for a long
time (e.g. Russell, 2019). In a machine learning paradigm
(Hubinger et al., 2019), the goal of the training system is
not necessarily optimized; instead, the NN may optimize for
a related or different goal (Di Langosco et al., 2022; Shah
et al., 2022). Or, of course, for no goal at all.

Chain-of-thought faithfulness. Large language models
(LLMs) use chain of thought, but are they faithful to it or do
they think about their future actions in other ways (Lanham
et al., 2023; Pfau et al., 2024)? One could hope that LLMs
perform all long-term reasoning in plain English, allowing
unintended humans consequences to be easily monitored,
as in Scheurer et al. (2023).

Reasoning neural network architectures. Many papers
try to enhance NN thinking by altering the training setup
(Bansal et al., 2022; Graves, 2016; Chung et al., 2024).

Ethical treatment of AIs. Do AIs deserve moral con-
sideration? Schwitzgebel & Garza (2015) argue that very
human-like AIs are conceivable and clearly deserve rights.

5



Planning in a RNN that plays Sokoban

Tomasik (2015) suggests that most AIs deserve at least a
little consideration, like biological organisms of any species
(Singer, 2004). Daswani & Leike (2015) argue that the way
to measure pleasure and pain in a reinforcement learner
is not by its absolute amount of return, but rather by the
temporal difference (TD) error: the difference between its
expectations and the actual return it obtained. If the internals
of the NN have a potentially different objective (Hubinger
et al., 2019; Di Langosco et al., 2022), then the TD error
would have to come from a place other than the critic. This
paper is an early step toward finding the learned-reward
internal TD error, if it exists.

6. Conclusion
We have replicated and open-sourced a recurrent network
that plays Sokoban, which benefits from additional thinking
steps at test time (Guez et al., 2019).

We have shown that thinking for longer helps solve harder
levels, and makes the DRC better at levels that require
longer-sighted behavior. Without intervention, thinking
sometimes takes the form of the DRC ‘pacing’ at the be-
ginning or middle of the episode, in a way which can be
substituted by repeating the same input; suggesting it is
deliberately using more computation.

We have shown that the training setup incentivizes the plan-
ning effect at the start, and that it is disincentivized later, but
only for easier levels. Finally, we offer a hypothesis about
why the training process disincentivizes the planning effect:
the NN finds levels easier (needs less thinking), and also
learns when to do the thinking it needs (via pacing).

We believe this work will be useful to the interpretability,
alignment and ethical treatment of AI communities.

7. Acknowledgements
We would like to thank ChengCheng Tan for help with
editing this paper, Philip Quirke for help getting it done,
and the rest of the FAR team for general support. We thank
Alex F. Spies, Maximilian Li, and anonymous reviewers for
improving the paper with their comments. We are also very
grateful for the many questions about their RL setup that
Arthur Guez and Timothy Lillicrap answered, as well as
inspiration from Stephen Chung.

References
Bansal, A., Schwarzschild, A., Borgnia, E., Emam, Z.,

Huang, F., Goldblum, M., and Goldstein, T. End-to-end
algorithm synthesis with recurrent networks: Extrapola-
tion without overthinking. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural

Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=PPjSKy40XUB.

Bloom, J. and Colognese, P. Decision transformer inter-
pretability. , 2023.

Chung, S., Anokhin, I., and Krueger, D. Thinker: Learn-
ing to plan and act. Advances in Neural Information
Processing Systems, 36, 2024.

Daswani, M. and Leike, J. A definition of happiness for
reinforcement learning agents. CoRR, 2015. URL http:
//arxiv.org/abs/1505.04497v1.

Di Langosco, L. L., Koch, J., Sharkey, L. D., Pfau, J., and
Krueger, D. Goal misgeneralization in deep reinforce-
ment learning. In International Conference on Machine
Learning, pp. 12004–12019. PMLR, 2022.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. IMPALA:
Scalable distributed deep-RL with importance weighted
actor-learner architectures. CoRR, 2018. URL http:
//arxiv.org/abs/1802.01561v3.

Graves, A. Adaptive computation time for recurrent neural
networks. CoRR, 2016. URL http://arxiv.org/
abs/1603.08983v6.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racaniere, S.,
Weber, T., Raposo, D., Santoro, A., Orseau, L., Eccles,
T., Wayne, G., Silver, D., Lillicrap, T., and Valdes, V.
An investigation of model-free planning: boxoban levels.
https://github.com/deepmind/boxoban-levels/, 2018.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racanière, S.,
Weber, T., Raposo, D., Santoro, A., Orseau, L., Eccles, T.,
Wayne, G., Silver, D., and Lillicrap, T. An investigation
of model-free planning. CoRR, 2019. URL http://
arxiv.org/abs/1901.03559v2.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL http://
github.com/google/flax.

Huang, S., Weng, J., Charakorn, R., Lin, M., Xu, Z., and
Ontañón, S. Cleanba: A reproducible and efficient dis-
tributed reinforcement learning platform, 2023.

Hubinger, E., van Merwijk, C., Mikulik, V., Skalse,
J., and Garrabrant, S. Risks from learned op-
timization in advanced machine learning systems.
2019. URL https://intelligence.org/
learned-optimization/.

6

https://openreview.net/forum?id=PPjSKy40XUB
https://openreview.net/forum?id=PPjSKy40XUB
https://www.lesswrong.com/posts/bBuBDJBYHt39Q5zZy/decision-transformer-interpretability
http://arxiv.org/abs/1505.04497v1
http://arxiv.org/abs/1505.04497v1
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1603.08983v6
http://arxiv.org/abs/1603.08983v6
http://arxiv.org/abs/1901.03559v2
http://arxiv.org/abs/1901.03559v2
http://github.com/google/flax
http://github.com/google/flax
https://intelligence.org/learned-optimization/
https://intelligence.org/learned-optimization/


Planning in a RNN that plays Sokoban

Ivanitskiy, M., Spies, A. F., Räuker, T., Corlouer, G., Math-
win, C., Quirke, L., Rager, C., Shah, R., Valentine, D.,
Behn, C. D., Inoue, K., and Fung, S. W. Linearly struc-
tured world representations in maze-solving transform-
ers. In UniReps: the First Workshop on Unifying Rep-
resentations in Neural Models, 2023. URL https:
//openreview.net/forum?id=pZakRK1QHU.

Jozefowicz, R., Zaremba, W., and Sutskever, I. An empir-
ical exploration of recurrent network architectures. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 2342–2350, Lille, France, 07–09 Jul 2015. PMLR.
URL https://proceedings.mlr.press/v37/
jozefowicz15.html.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Lanham, T., Chen, A., Radhakrishnan, A., Steiner, B., Deni-
son, C., Hernandez, D., Li, D., Durmus, E., Hubinger,
E., Kernion, J., et al. Measuring faithfulness in chain-
of-thought reasoning. arXiv preprint arXiv:2307.13702,
2023.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=DeG07_TcZvT.

Mini, U., Grietzer, P., Sharma, M., Meek, A., MacDiarmid,
M., and Turner, A. M. Understanding and controlling a
maze-solving policy network. CoRR, 2023. URL http:
//arxiv.org/abs/2310.08043v1.

Peters, N. S., Alexa, M., and Neurotechnology, S. F. Solving
sokoban efficiently: Search tree pruning techniques and
other enhancements. 2023.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot
by dot: Hidden computation in transformer language
models. CoRR, 2024. URL http://arxiv.org/
abs/2404.15758v1.

Russell, S. Human compatible: artificial intelligence and
the problem of control. Penguin, 2019.

Scheurer, J., Balesni, M., and Hobbhahn, M. Large language
models can strategically deceive their users when put
under pressure. CoRR, 2023. URL http://arxiv.
org/abs/2311.07590v3.

Schrader, M.-P. B. gym-sokoban. https://github.
com/mpSchrader/gym-sokoban, 2018.

Schwitzgebel, E. and Garza, M. A defense of the rights of
artificial intelligences. Midwest Studies In Philosophy,
39(1):98–119, 2015. doi: 10.1111/misp.12032. URL
http://www.faculty.ucr.edu/˜eschwitz/
SchwitzPapers/AIRights-150915.htm.

Shah, R., Varma, V., Kumar, R., Phuong, M., Krakovna,
V., Uesato, J., and Kenton, Z. Goal misgeneralization:
why correct specifications aren’t enough for correct goals.
arXiv preprint arXiv:2210.01790, 2022.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-
K., and Woo, W.-c. Convolutional LSTM network: A
machine learning approach for precipitation nowcasting.
Advances in neural information processing systems, 28,
2015.

Singer, P. Animal liberation. In Ethics: Contemporary
Readings, pp. 284–292. Routledge, 2004.

Tomasik, B. A dialogue on suffering subroutines. , 2015.

Weng, J., Lin, M., Huang, S., Liu, B., Makoviichuk, D.,
Makoviychuk, V., Liu, Z., Song, Y., Luo, T., Jiang, Y.,
Xu, Z., and Yan, S. EnvPool: A highly parallel reinforce-
ment learning environment execution engine. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 22409–22421. Curran
Associates, Inc., 2022.

Wijmans, E., Savva, M., Essa, I., Lee, S., Morcos, A. S., and
Batra, D. Emergence of maps in the memories of blind
navigation agents. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=lTt4KjHSsyl.

7

https://openreview.net/forum?id=pZakRK1QHU
https://openreview.net/forum?id=pZakRK1QHU
https://proceedings.mlr.press/v37/jozefowicz15.html
https://proceedings.mlr.press/v37/jozefowicz15.html
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
http://arxiv.org/abs/2310.08043v1
http://arxiv.org/abs/2310.08043v1
http://arxiv.org/abs/2404.15758v1
http://arxiv.org/abs/2404.15758v1
http://arxiv.org/abs/2311.07590v3
http://arxiv.org/abs/2311.07590v3
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
http://www.faculty.ucr.edu/~eschwitz/SchwitzPapers/AIRights-150915.htm
http://www.faculty.ucr.edu/~eschwitz/SchwitzPapers/AIRights-150915.htm
https://longtermrisk.org/a-dialogue-on-suffering-subroutines/
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl


Planning in a RNN that plays Sokoban

A. Training hyperparameters
All networks were trained with the same hyperparameters, which were tuned on a combination of the ResNet and the
DRC(3, 3). These are almost exactly the same as Guez et al. (2019), allowing for taking the mean of the per-step loss instead
of the sum.

Loss. The value and entropy coefficients are 0.25 and 0.01 respectively. It is very important to not normalize the advantages
for the policy gradient step.

Gradient clipping and epsilon The original IMPALA implementation, as well as Huang et al. (2023), sum the per-step
losses. We instead average them for more predictability across batch sizes, so we had to scale down some parameters by a
factor of 1/640: Adam ϵ, gradient norm for clipping, and L2 regularization).

Weight initialization. We initialize the network with the Flax (Heek et al., 2023) default: normal weights truncated at 2
standard deviations and scaled to have standard deviation

√
1/fan in. Biases are initialized to 0. The forget gate of LSTMs

has 1 added to it (Jozefowicz et al., 2015). We initialize the value and policy head weights with orthogonal vectors of norm
1. Surprisingly, this makes the variance of these unnormalized residual networks decently close to 1.

Adam optimizer. As our batch size is medium-sized, we pick β1 = 0.9, β2 = 0.99. The denominator epsilon is
ϵ = 1.5625 · 10−7. Learning rate anneals from 4 · 10−4 at the beginning to 4 · 10−6 at 2,002,944,000 steps.

L2 regularization. In the training loss, we regularize the policy logits with L2 regularization with coefficient 1.5625×10−6.
We regularize the actor and critic heads’ weights with L2 at coefficient 1.5625× 10−8. We believe this has essentially no
effect, but we left it in to more closely match Guez et al. (2019).

Number of training steps. In the body of the paper we state the networks train for 2.003B steps. The exact number
is 2,002,944,000 steps. This is a holdover from earlier on in development, when we tested with 20M ≈ 20 029 440 =
5120 · 3912 steps, which is divisible by 256 environments × 20 steps collected. This number of steps is slightly larger than
it could have been: 2B is also divisible by 5120.

Software. We base our IMPALA implementation on Cleanba (Huang et al., 2023). We implemented Sokoban in C++
using Envpool (Weng et al., 2022) for faster training, based on gym-sokoban (Schrader, 2018).

B. Learning curve comparison
It is difficult to fully replicate the results by Guez et al. (2019). (Chung et al., 2024) propose an improved method for RL in
planning-heavy domains. They employ the IMPALA DRC(3, 3) as a baseline, but in Figure 5 one can see separate curves
for what was reported by Guez et al. (2019) and what a decently-tuned DRC baseline looks like.

We did not innovate in RL, so were able to spend more time on the replication. We compare our replication to (Guez et al.,
2019) in Figure 7, which shows that the learning curves for DRC(3, 3) and ResNet are compatible, but not the one for
DRC(1, 1). Our implementation also appears much less stable, with large error bars and large oscillations over time. We
leave addressing that to future work.

The success rate in Figure 7 is computed over 1024 random levels, unlike the main body of the paper. Table 3 reports test
and validation performance for the DRC and ResNet seeds which we picked for the paper body.

The parameter counts (Table 2) are very different from what Guez et al. (2019) report.

C. Additional figures

8



Planning in a RNN that plays Sokoban

Table 2. Parameter counts for each architecture.

Architecture Parameter count

DRC(3, 3) 1,285,125 (1.29M)
DRC(1, 1) 987,525 (0.99M)
ResNet: 3,068,421 (3.07M)

0.0 0.5 1.0 1.5 2.0
Environment steps, training 1e9

0.80

0.85

0.90

0.95

1.00

Te
st

-u
nf

ilt
er

ed
 so

lv
ed

drc_33
resnet
drc_11
deepmind

0.0 0.5 1.0 1.5 2.0
Environment steps, training 1e9

0.0

0.2

0.4

0.6

0.8

Va
l-m

ed
iu

m
 so

lv
ed

Figure 7. Success rate for Test-unfiltered and Validation-medium levels vs. environment steps of training. Each architecture has 5 random
seeds, the solid line is the pointwise median and the shaded area spans from the minimum to the maximum. The dotted lines are data for
the performance of architectures extracted from the (Guez et al., 2019) PDF file. The values are slightly different from what Figure 1
and Section 3 report because they are calculated on a random sample of 1024 levels (24 levels are repeated for test-unfiltered).

Table 3. Success rate and return of DRC and ResNet on the unfiltered test set at various training environment steps.
TRAINING ENV TEST UNFILTERED VALID MEDIUM

STEPS RESNET DRC(3, 3) RESNET DRC(3, 3)
SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN

100M 87.8 8.13 95.4 9.58 18.6 -6.59 47.9 -0.98
500M 93.1 9.24 97.9 10.21 39.7 -2.64 66.6 2.62

1B 95.4 9.75 99.2 10.47 50.0 -0.64 70.4 3.40
2B 97.9 10.29 99.3 10.52 59.4 1.16 76.6 4.52

Table 4. The percentage of cycles that disappear when the network is given N artificial thinking steps before it is about to begin an
N -length cycle.

Total cycles 13702

No cycles at the end of thinking steps 86.74%
No cycles in the next N timesteps 82.39%

9



Planning in a RNN that plays Sokoban

0 2 4 6 8 12 unsolved
Solved at steps to think

80k

90k

100k

110k

Av
g 

se
ar

ch
 st

ep
s A

*

Figure 8. Number of thinking steps required to solve the level vs. number of nodes A* needs to expand to solve it. The trend is somewhat
increasing but much less clear, indicating different heuristics used by the NN and A*.

0.0 0.5 1.0
Success (test unfiltered)

0.00

0.25

0.50

0.75

Su
cc

es
s (

va
l. 

m
ed

iu
m

)

drc33
resnet
drc11

0.0 0.5 1.0
Success (hard)

Figure 9. Success rate on datasets of various difficulty, for various checkpoints of each architecture. This deviates very little from a curve,
which shows that ResNets and DRCs which are equally good at the easier sets are also equally good at the harder sets. Perhaps DRC(1, 1)
is a slight exception, but it also performs much worse than the others overall (see Figure 7).

0 25 50 75 100
Cycle length

10 4

10 3

10 2

10 1

D
en

si
ty

Median: 2
Mean: 6.2

(a) Cycle length distribution

0 10 20 30
Steps after cycle

0.70

0.75

0.80 Same state
Same state & action

(b) with cycles from all levels

0 10 20 30
Steps after cycle

0.76

0.78

0.80

0.82

0.84 Same state
Same state & action

(c) with cycles from those levels that were
solved by the agent

Figure 10. We replace N-length cycles with N thinking steps and checking for the same state after some timesteps. (a) A histogram of
cycle lengths in the medium-validation set. (b, c) After replacing an n-length cycle with n steps of thinking, are the current state and
action the same as the reference agent without extra thinking?

10


