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Abstract

We present a comprehensive explainability001
dashboard designed for in-game chat toxicity.002
This dashboard integrates various existing ex-003
plainable AI (XAI) techniques, including token004
importance analysis, model output visualiza-005
tion, and attribution to the training dataset. It006
also provides insights through the closest posi-007
tive and negative examples, facilitating a deeper008
understanding and potential correction of the009
training data. Additionally, the dashboard in-010
cludes word sense analysis—particularly use-011
ful for new moderators—and offers free-text012
explanations for both positive and negative pre-013
dictions. This multi-faceted approach enhances014
the interpretability and transparency of toxicity015
detection models.016

1 Introduction017

Toxic and harmful speech in online platforms is an018

escalating concern, impacting the safety and inclu-019

sivity of digital spaces. Detecting and mitigating020

toxic speech is a critical task, where it has evolved021

significantly over the years. From early approaches022

that relied on traditional machine learning mod-023

els with manually engineered features (Watanabe024

et al., 2018), the field has progressed to the applica-025

tion of deep neural networks (Gambäck and Sikdar,026

2017; Zhong et al., 2016; Gao and Huang, 2017;027

Fehn Unsvåg and Gambäck, 2018) and, more re-028

cently, the utilization of pre-trained language mod-029

els (PLMs) (Yang et al., 2023). These advance-030

ments have led to improved performance across a031

variety of NLP tasks, including toxicity detection.032

In parallel with these advances in detection,033

the importance of explainability in NLP models034

has grown. As models become more complex,035

the need to understand and interpret their deci-036

sions—especially in sensitive applications like tox-037

icity detection—has led to the development of var-038

ious explainability techniques. These techniques039

range from feature importance analysis (Ribeiro040

et al., 2016) and surrogate modeling (Ribeiro 041

et al., 2016) to example-driven explanations and 042

provenance-based methods (Pezeshkpour et al., 043

2019). Visualizing these explanations (Bahdanau 044

et al., 2014; Mullenbach et al., 2018) effectively is 045

crucial for both refining models and making them 046

accessible to moderators, particularly new modera- 047

tors who need to understand the reasoning behind 048

model predictions. 049

In this context, we introduce ToxiSight, a multi- 050

faceted explainability dashboard designed to en- 051

hance the transparency and interpretability of toxic- 052

ity detection models. ToxiSight integrates existing 053

explainability approaches, including token impor- 054

tance, model output analysis, and attribution to the 055

training dataset with closest positive and negative 056

examples. Additionally, it offers word sense distri- 057

bution insights and generates free-text explanations 058

for both positive and negative predictions. This 059

comprehensive approach not only aids in the detec- 060

tion and correction of toxic content but also serves 061

as a valuable tool for new moderators, helping them 062

to better understand the nuances of toxicity in on- 063

line communications. 064

2 Methodology 065

The development of the ToxiSight dashboard fol- 066

lows a structured approach that integrates various 067

explainability techniques to create a comprehen- 068

sive tool for understanding and analyzing the in- 069

ferences made by toxicity detection models. This 070

section outlines the steps involved in implementing 071

the ToxiSight dashboard, detailing each module’s 072

function and purpose. 073

2.1 Chat Body 074

The Chat Body module visualizes both the input to 075

the detection model and its corresponding output. 076

The specific chat message under analysis is promi- 077

nently displayed, with any toxic spans highlighted 078
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Figure 1: Dashboard for insights towards detected chat
toxicity

through bolding and underlining to draw attention.079

Beneath the chat message, the dashboard shows080

the predicted label, indicating whether the content081

is classified as toxic or non-toxic. If the label is082

toxic, the module also identifies the target of the083

toxicity, if applicable. To the right of the chat mes-084

sage, a detailed distribution of the model’s output085

probabilities across different toxicity classes is pro-086

vided. This offers a granular view of the model’s087

decision-making process.088

2.2 Word Sense089

The Word Sense module enhances interpretabil-090

ity by analyzing specific words or phrases iden-091

tified as potentially toxic. For the highlighted span,092

ToxiSight determines the most likely meaning of093

ambiguous or context-dependent words, which is094

crucial for understanding why certain words were095

flagged as toxic. The module leverages authori-096

tative sources like Webster, Oxford, and crowd-097

sourced sources such as Urban Dictionary to pro-098

vide definitions, displaying multiple senses for each099

word ranked by relevance to the context, with ac-100

companying confidence scores. This analysis helps 101

to clarify the specific usage and intent behind the 102

language in the chat, contributing to a more nu- 103

anced understanding of the model’s output. 104

2.3 Training Data Attribution 105

The Training Data Attribution module employs 106

example-driven explainability by tracing the 107

model’s prediction back to its training data. This is 108

achieved by identifying a positive example, a sim- 109

ilar sample from the training dataset that closely 110

matches the input and supports the same classifica- 111

tion. Additionally, the module provides a counter- 112

example, which is a contrasting sample that would 113

have led to a different classification, such as non- 114

toxic. If no suitable counter-example exists, this 115

section may be empty, due to the absence of a 116

sufficiently similar instance. These examples are 117

identified through similarity measures, ensuring 118

that the samples provided are the most relevant and 119

informative for understanding the model’s behav- 120

ior. 121

2.4 Explanation Generation 122

The Explanation Generation module leverages 123

large language models (LLMs) such as LLaMA- 124

3 and GPT-4o to generate free-text explanations 125

that clarify the model’s decision. The model is 126

prompted to generate two types of explanations: 127

one that justifies why the input was classified un- 128

der the given label and another that explores why 129

the input was not classified under an alternative 130

label. These explanations are designed to help re- 131

searchers and moderators understand the model’s 132

reasoning, providing both the justification for its 133

decision and the plausible deniability of alterna- 134

tive classifications. This dual approach offers a 135

balanced perspective, aiding in both the validation 136

and critique of the model’s outputs. 137

3 Results 138

The implementation of the ToxiSight dashboard 139

has significantly enhanced our understanding of 140

toxicity detection models by providing detailed in- 141

sights into their decision-making processes. Prelim- 142

inary testing shows that the dashboard effectively 143

highlights ambiguous cases, allowing for more in- 144

formed moderation decisions. Furthermore, the in- 145

tegration of training data attribution and word sense 146

analysis has improved the model’s interpretability, 147

enabling users to trace predictions back to specific 148
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examples and understand the contextual nuances149

that influence toxicity classification.150

Limitations151

While the ToxiSight dashboard offers a comprehen-152

sive tool for understanding toxicity detection mod-153

els, there are some limitations to consider. First,154

the reliance on large language models (LLMs) for155

generating explanations may introduce biases in-156

herent in the models themselves, potentially skew-157

ing the interpretations provided. Additionally, the158

example-driven approach for training data attribu-159

tion depends heavily on the quality and diversity160

of the training dataset. If the dataset lacks repre-161

sentation of certain contexts or language variations,162

the attributions may be less reliable or informa-163

tive. The dashboard also assumes that the most164

relevant word senses and training examples can be165

accurately identified, which may not always be the166

case, particularly in complex or highly nuanced167

conversations. Lastly, while the dashboard aids168

in interpreting model outputs, it does not guaran-169

tee improved performance or fairness in toxicity170

detection, and there may still be challenges in gen-171

eralizing its insights across different domains or172

user groups.173

Ethics Statement174

There is a risk that over-reliance on model expla-175

nations could lead to unjust outcomes, especially176

if the explanations are taken as definitive without177

sufficient human oversight.178
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