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Abstract

The task of transfer learning is to improve estimation/inference of a target model by mi-
grating data from closely related source populations. In this article, we propose transfer
learning algorithms for high-dimensional Quantile Regression (QR) models with the tech-
nique of convolution-type smoothing. Given the transferable source populations, we derive
41 /€s-estimation error bounds for the estimators of the target regression coeflicients under
mild conditions. Theoretical analysis shows that the upper bounds are improved over those
of the classical penalized QR estimator with only the target data, as long as the target and
the sources are sufficiently similar to each other. When the set of informative sources is un-
known, a transferable source detection algorithm is proposed to detect informative sources
from all available sources. Thorough simulation studies justify our theoretical analysis.

1 Introduction

Transfer learning (Torrey & Shavlik, 2010) has been growing popular and drawing increasing attention in
machine learning, which achieves great success in a wide range of real applications with limited available
training data. Transfer learning aims to transfer knowledge from related source tasks/domains to enhance
the learning or performance of the target task/domain, which typically involves two main subproblems.
First, some criteria should be come up with to quantify the relatedness/similarity among target and source
tasks. Intuitively, a high similarity would enhance the performance, while a low similarity would be harmful
for the target task, which is known as "negative transfer' in the literature. Second, a transfer procedure
should be carefully designed to transfer the "critical" knowledge from source domains, just like the human
intelligence of leveraging prior experiences to tackle novel problems. A well designed transfer algorithm
should not only identify the positive transfer sources thereby enlarging their impact, but also avoid the
negative transfer in any case. All in all, transfer learning has become an active and promising research area,
and substantial contributions has also been made recently to the theoretical guarantee for transfer learning in
both supervised, semi-supervised, and unsupervised settings, see for example the context of classification by
Cai & Wei| (2021)); Reeve et al|(2021), high-dimensional (generalized) linear regression by |Li et al.| (2022b);
Tian & Feng| (2022); Lin & Li (2022)), graphical model by |Li et al.| (2022a); He et al.| (2022). As far as we
know, there exist no work on transfer learning for quantile regression and we aim to fill this gap in this

paper.

Comparison with the existing work and our contribution

A few works explore transfer learning under the high-dimensional setting. |Bastani (2021) studied the trans-
fer learning problem under a high-dimensional generalized linear models (GLM) with one single known
transferable source data and the dimensionality p is assume to be larger than the sample size of the target
dataset ntarger While smaller than that of the source dataset ngource. A two-step transfer learning algorithm
was developed and the ¢i-estimation error bound was derived when the contrast 6* between target and
source coefficients is fg-sparse. More specifically, their estimator requires niarge; = O(s> logQ(p/ﬁ) /€2) as
long as Neource > O(s2p? log?(p/€)/€2), where £ > ||6%||; and s = [|6*||o. |Li et al.| (2022b) studied the high-

dimensional linear regression problem under some weaker assumptions, where both target and source samples
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are high-dimensional. Multiple source datasets are available and the transferable set may even be unknown
in their paper. With ¢,-sparse contrasts for ¢ € [0,1) and {p-sparse target parameter, the f2-estimation
error bound was derived and proved to be minimax optimal under some conditions. In the setting where the
transferable set is unknown, a source detection algorithm was proposed to consistently select the informative
sources. (Tian & Fengl (2022)) further investigated multi-source transfer learning on high-dimensional gen-
eralized linear models (GLM). They assumed both target and source data to be high-dimensional and the
contrast to be ¢1-sparse. Given the informative sources to transfer, the ¢;/¢s-estimation error was derived
and proved to be minimax optimal under mild conditions. [Tian & Feng| (2022) also established a trans-
ferable source detection algorithm to identify the informative sources. In addition, they constructed the
corresponding confidence interval for individual regression parameter. |Li et al.| (2021)) proposed a federated
transfer learning approach to consolidate data from different populations and from multiple medical associ-
ations. The target and source data are both high-dimensional in their discussion and they characterized the
contrasts to be fg-sparse. Compared with [Tian & Feng| (2022)), their approach achieves a faster convergence
rate under some conditions and has weaker requirements on the level of heterogeneity for data from diverse
populations.

Inspired by the two-step algorithm in Bastani| (2021)), |Li et al.| (2022b) and |Tian & Feng] (2022)), we propose
a multi-source transfer learning method under high-dimensional quantile regression. To overcome the non-
smoothness and non-convexity of the quantile loss, motivated by He et al.| (2021)) and [Tan et al| (2022),
we employ the convolution-type smoothed quantile regression. Assuming the contrasts between the target
and each source coefficients to be ¢1-sparse, we establish the ¢; /¢s-estimation error bounds that are proved
to be sharper than the bounds of the classical ¢1-penalized quantile regression (Belloni & Chernozhukov,
2011) under some conditions. Notably, our results need the sample size of the target data to be O(s%logp).
However, the results in |Li et al.| (2022b]) and |Tian & Feng| (2022)) only require the size of target sample to be
O(s%logp). The difference is caused by the bandwidth involved in the smoothing method. The estimation
error bounds clearly relies on the smoothing bandwidth, which leads to a more restricted sample size.

In this paper, we propose transfer learning algorithms for quantile regression with high-dimensional data and
we assume the contrast between target and source coefficients to be fy-sparse or £1-sparse. In the setting
where the sources are sufficiently close to the target, our theoretical analysis and simulation results show
that the estimation error bound of the target coefficients is improved compared to the classical ¢;-penalized
quantile regression model (Belloni & Chernozhukov, 2011 using only the target data under mild conditions.
To overcome the lack of smoothness and convexity of the check loss, we employed the convolution-type
smoothed quantile regression and analyzed the (local) restricted strong convexity of the empirical smoothed
quantile loss functions in the transferring and debiasing steps. We also extended the source detection
algorithm in|Tian & Feng (2022) to the quantile regression setting. Simulation results show that the algorithm
works well in discovering useful sources. In contrast to the case with ¢;-sparse contrasts, the algorithm with
lo-sparse contrasts learns the source coefficients independently, which greatly reduces the communications
cost across different sources. Furthermore, the algorithm with £y-sparse contrasts has fewer assumptions on
the level of heterogeneity for data from different sources.

The most related work is a concurrent paper by |Zhang & Zhu (2022), which also considered the smoothed
quantile regression models under transfer learning framework. They proposed a smoothed two-step transfer
learning algorithm as well as a new source detection method based on the K-means clustering algorithm,
which does not need the input of a threshold in contrast to the source detection algorithm in [Tian & Feng
(2022). In addition, they further extended their work to the distributed quantile regression and model
averaging setup. However, compared with [Zhang & Zhu (2022)), our work doesn’t require the restrictive
conditions on the kernels that sup,<; K (u/h)/h < My almost everywhere in u. In addition, given that
the contrasts are characterized in £yp-norm instead of ¢;-norm, we introduce an algorithm which is motivated
from |Li et al.[(2022b)) and |Li et al.[(2021)). The ¢; /¢2-estimation error bounds are also established and proved
to be sharper than the bounds of the classical ¢;-penalized quantile regression (Belloni & Chernozhukov,
2011) under some conditions.

Before ending this section, we introduce the notations used throughout the paper. For any symmetric,
positive semidefinite matrix A € RF** if its vector of eigenvalues is denoted by 7(A) and ordered as
m(A) >,...,> 7p(A) > 0, the operator norm of A is ||A||2 = y1(A). Moreover, the vector norm induced
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by A is ||u||4 = ||AY?ul|y for any u € R*. For any real numbers s and ¢, s V t denotes max(s,t) and s At
denotes min(s, t). For two sequences {ay, }n>1 and {b, },>1, which consist of non-negative numbers, a, 5 by,
means that there exists a constant C' > 0 such that a,, < Cb,,. a, < b, is equivalent to a,, < b, and b, < a,.
For r,1 > 0, define the ¢5-ball and ¢{-cone as

Bs(r) = {6 € R” : |||z < r} and Cs(l) = {6 € R” - {|8][s < I[[6][x}

2 Methodology

2.1 Problem Setup

Given the predictors & € RP and a scalar response variable y € R, the 7-th conditional quantile functions of

y given x is written as

F;li(T) =inf{y : Fy.(y) > 7},

where F,(+) is the conditional distribution function of y given x. Consider the following linear quantile
regression model at a given 7 € (0,1):

Fol(r) = (@, B (7)) = 2" 7(),
where 8*(7) = (81 (7),-..,B,(7))" € RP is the true quantile regression coefficient.

Let {(y:,x;)}?, be a random sample from (y,x). The preceding model assumption is equivalent to the
following model
y; = x; B* + ¢ and P(e; < Olx;) = 7.

The ¢;-penalized quantile regression estimator (Belloni & Chernozhukov} [2011)) is generally defined as one
of the solution to the optimization problem

minimize . 27 B) £ .
B=(B1,....6p) T ERP { ZP i B) |ﬂ||1} (1)

=:Q(B)

where p;(u) is defined as p,(u) = u{r — 1(u < 0)}, also referred to as the T-quantile check loss function.
Let F( B) be the empirical cumulative distribution function of the residuals {r;(8) = y; — "B}, i.e.,
F(u;8) = (1/n) S 1{ri(B) < u} for any u € R. Then the empirical quantile loss Q(B) in (1) can be
written as -
B = [ prw)df(ui) 2)
— 0o
As the empirical cumulative distribution function 13’(, B) is discontinuous, the empirical quantile loss is non-
differentiable, which brings great challenges to both computation and statistical theory establishment. The
kernel smoothing method (Horowitz, [1998]) is commonly utilized to tackle this issue. However, the smoothed
loss is still non-convex, thereby we further consider the convolution-type smoothed quantile loss function,
which is not only convex but also differentiable and brings great convenience in terms of both computation
and theoretical analysis. In the following, we briefly introduce the convolution-type smoothed quantile loss
function, which was firstly introduced by Tan et al.| (2022).

Let K(-) be a non-negative kernel function that is symmetric around 0 and integrates to 1, and h > 0 be a
bandwidth. That is

Kn(u) = (1/h) K (u/h), K(u) = /j K(v)dv and Kj,(u) = K(u/h), u € R.

The empirical smoothed loss function can be defined as

o0
A

Qn(B) = szh y; — ' B) with I (u) = (pT*Kh)(u):/ pr (V) Kp (v — u)dv,

— 00
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where * denotes the convolution operator. Therefore, the ¢;-penalized convolution smoothed estimator is
given by
8 € argmin {Qn(B) + NIBII1 |
BERP
where the smoothing bandwidth h adapts to the sample size n and the dimension p while ,é depends on the
quantile index 7, bandwidth h, and penalty level .

In the following, we consider the multi-source transfer learning scenario, where we have a target data set

(X©,4©) and K source data sets with the k-th source denoted as (X, y(*)), where X*) ¢ R™*P
y®) e R™ for k=0,..., K. The i-th row of X*) and the i-th element of y*) are denoted as mgk) and ygk),
respectively. The goal is to transfer useful information from the source datasets to improve the estimation
accuracy of the target parameters. Denote the true target parameter as 8* = w(®). We assume the responses

in the target and source data all follow the linear quantile regression model, that is,

yfk) = (wgk),w(k)> + egk) and P(e; < 0|w1(-k)) =7, k=0,...,K.

We build our quantile regression transfer learning procedure in the high-dimensional regime with a sparsity
assumption. In other words, we assume the dimension p is much larger than the sample size n; for all k
while the target model is s-sparse, which satisfies ||3*||o = s. Define the k-th contrast as §%) = g* — w®*)
and |[6(F)||, is referred to as the transferring level of source k in the literature, where ¢ € {0,1}. Define the
level-m transferring set A, = {k : ||0(*)]|, < m} as the set of sources which has transferring level lower than
m. Denote na,, =3 jca nk, o =ng/(na, +no) for k € {0} UA, and Ka,, = [Anl.

As stated in the introduction, we will consider two types of transferring level, corresponding to ¢ € {0,1}
respectively. In the case of ¢ = 0, the transferring set corresponds to the source data whose contrast vectors
have at most m nonzero elements. In the case of ¢ = 1, all the coefficients of the contrast vectors can be
nonzero, but their absolute magnitude decays at a relatively rapid rate. It will be seen later that as long as
m is relatively small, the source data in A, can be useful in improving the estimation accuracy of 8*. In
addition, the logistic of the algorithm with ¢;-normed A,,, and the algorithm with ¢5-normed A,,, are quite
different and we will elaborate on these two different algorithms in the following sections.

2.2 Algorithm with /;-norm constrained transferring set

In this section, we propose the transfer learning algorithm with ¢;-norm constrained transferring set, which
is motivated by Tian & Feng| (2022). This algorithm involves two steps. The first step of our algorithm is
to transfer the information from useful sources by pooling all the data in transferable set A, and target set
Ag to obtain a primal estimator. We also call it the transferring step. To be more precise, we define a total
smoothed loss function for the target and source datasets in the transferable set A,,, i.e.,

On(w) = ——— 3 S " - @P,w),

A, + 10 kEA,, i=1

where -
() = (pr * Kn)(u) = / pr (0) Kin(0 — u)d.

—00

Then for the transferring step, we aim to find the minimizer to the following optimization problem with
respect to w € RP:
minimize {Q(w) + Ay ||w]]1 }.
w

We denote the minimizer as @Am

, i.e., @Am = argmin,, {Qh(w) + )\wHle}. By selecting an appropriate
bandwidth h, the iteratively reweighted ¢;-penalized SQR estimator proposed by |Tan et al.| (2022) shares
the same upper bounds for both ¢; and ¢ errors as the ¢1-QR estimator, as indicated by |Belloni & Cher-
nozhukov| (2011). Furthermore, they introduced coordinate descent and ADMM-based algorithms for solving

{1-penalized quantile regression, which are computationally efficient especially for large-scale problems.
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Am

Denote the true parameter in the first step as w*m, and w*™ has the following explicit form:

wA7YL — /8 + 6Am7

where §4m = D ke, ar0®) and oy, = ny/(na,, + no). For the second step (the debiasing step), we correct
the bias, 8™, based on the estimator @™ acquired in the transferring step. The smoothed loss function
for the target data with respect to 6 is defined as

R 1 & N
QP (@ +8) = -3 1y — (@7, & + ).
i=1

The error of the debiasing step is under control for a relatively small m, since 8 is a ¢;-sparse high-
dimensional vector.

We call this algorithm Oracle ¢1-Trans-SQR. as we first assume that all useful sources are known as a priori.
Algorithm [I| formally presents the Oracle ¢1-Trans-SQR algorithm.

Algorithm 1: Oracle ¢;-Trans-SQR

Input: Target data (X, y(®), source data {(X*) y*))}E penalty parameters A, and \s,
transferring set A,,.

Output: The estimator ,3

Transferring step:

‘:J.Am — argmin {Qh(W) + )\wHle}a
w
Debiasing step:
§4  mrgmin { QW (@4 +6)+ Mslla]s .
5

return 8 = @Am + 64n.

If A,, is unknown, then we need a detection algorithm to find useful transferable sets in practice. We propose
a transferrable source detection algorithm which is inspired from the Algorithm 2 in [Tian & Feng| (2022).
Firstly, partition the target data into ¢ subsets. Secondly, fit the penalized smoothed quantile regression
on each combination of (¢ — 1) target subsets and calculate the loss on the remaining target subset. In the

following, consider the average cross-validation loss ﬁéo). Run the transferring step on each combination of
(¢ — 1) target subsets and each source data, and evaluate the loss function on the remaining target subset.
Similarly compute the average cross-validation loss f/ék) for each source. Thirdly, calculate the difference
between ﬁéo) and ﬁék) for each k and compare it with a predefined threshold. Finally select the sources

whose difference is less than the threshold and include them in the set A. The detailed transferable source
detection procedure is summarized in Algorithm

With the transferrable source detection algorithm, we propose a feasible Algorithm [3] in practice, in
which we first detect useful source datasets A by Algorithm [2| and then run Algorithm (1| using datasets

{(X®, ")} oyuar
2.3 The proposed algorithm with /y-norm constrained transferring set

In this section we consider a more strict transferable set A/, = {k : [|6(")]|q < m}, where the ¢;-norm
discussed in Section [2.2]is replaced by fg-norm. Compared with the ¢1-norm, the theoretical analysis of the
transfer learning procedure under {y-norm is free of the restrictive Assumption below, which requires
"sufficient"” similarity between the target covariance matrix and transferable source covariance matrices.
However, as £y-norm is not additive, it is not easy to combine target and source data to estimate a primary
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Algorithm 2: Transferable Source Detection
Input: Target data (X9, y(©) all source data {(X®),y*))}E_ a threshold Cp, penalty parameters
{{AWIFIE 29 where g is the number of folds chosen.
Output: The set of transferable sources A.
1 Randomly divide (X(©,y(©) into ¢ equal-sized sets {(X (Ol y(o)[i])}?zl.
2 forr=1to ¢q do
B « fit the penalized quantile regression on {(X O y@F)}9_ A\ (X OF] 4Oy with penalty
“parameter A0,
B« run the transferring step in Algorithm |1 with
{(X(O)m,y(o)[i])};]:1 \ (X O] 4 OF) U (X *) 4F)) and penalty parameter A®)] for all k # 0.
Calculate the loss function ﬁgr](ﬁ(k)[r]) on (XOU 4O for k= 1,..., K.

Do S LAWY g, LY« Y0 L (BOM) Jg, 6 = @LI@[J] (BWI) — L2/ (q - 1).
Ae{k#0: L8 - £ < o6 v0.01)}.
return /l

Algorithm 3: Trans-SQR

Input: Target data (X9, y(®); all source data {(X* y*))}E " a threshold Cy and penalty
parameters {{\(F)[1} K a4

Output: The estimator 3. .

Run Algorithm [2| (Transferable Source Detection Algorithm) and output .A.

Run Algorithm [1 (Oracle Trans-SQR) using data {(X ), y(k))}ke{O}UA'

return 3.

estimator for the true target parameter. Instead, we correct each source data independently and incorporate
the corrected source and target data to make predictions. Certain adjustments need to be made on the
proposed transfer learning procedure in Algorithm

This fp-norm constrained transfer algorithm is inspired by the idea in|Li et al.| (2021)). Unlike the transferring
step in Algorithm [T} the first step of the algorithm in this section is to train each source separately to get

primal estimators of w®)| k € {1,..., K}, where the smoothed loss function for each source k is
S () = =S () )
Qn(w) = nszlh(yi —(x;, w)).
i=1

In the second step, as the debiasing step in Algorithm |1} we adjust for the differences 6®) for all k using the
target data, which is obtained via

5 = argmin { QP @+ 8) + xl il .
é

where the smoothed loss function with respect to d is defined as

PN

QW (@™ +4) = Zz 2 o™ 4 §)).

Then a threshold for each ) is computed by only keeping the largest \/ng/logp elements of 6®) and
letting all the other elements be zero. In the third step, with the estimated "bias" from the second step, the
corrected source data has the following form:

{(Xac) g 4 XRI50) )}K

k=1
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Algorithm 4: Oracle Trans-SQR with £y-norm constrained transferring set

Input: Target data (X (©,y(©)), source data {(X*),y*))}K penalty parameters \,, A\s and g,
transferring set A;,. Let n =ng +na .
Output: The estimator B.
1 For each k € A},

w

o argmin { Qu(w) + A0 ]}

2 For each k € A’

m?

309 argin {00 @ +8) + ol )
)

Threshold %) via §*) = H\/no/Tgp(S(k))’ where H(b) is formed by setting all but the largest &

elements of b to zero.
3 Joint estimation using source and target data:

,8<—argm1n{ Zl (0) 0) .B8))

L S - k),ﬁ—g(k)>)+/\ﬁ|,3||1}.

kE.A’ i=1

4 return B
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Then, we combine all the corrected sources and target data to estimate the parameter 8 which is of our
interest. The above algorithm estimate the source parameters and the contrast vectors individually, while in
the Oracle ¢1-Trans-SQR proposed in Section [2.2] a pooled analysis is conducted with data from target and
sources, which relies on the homogeneous designs of the covariance matrices among target and source data.

3 Statistical theory

In this section, we establish theoretical guarantees on the algorithms in the above section.

Assumption 3.1. The conditional density of € given  satisfies fo(u) < f, almost surely for some f, >
Ji > 0. Moreover, there exists [y > 0 such that |fz(u) — fez(v)| < lo|u — v| for all u,v € R almost surely,
and

E[fe|w(t<zvv>)<za 'U>2] > fl-

inf
tel0,1],vesp—1

Assumption 3.2. The kernel function K : R — [0,00) is symmetric around zero, and satisfies
[ K(uydu = 1 and [7_w?K(u)du < co. For | = 1,2,..., let r; = [ |u|'K(u)du be the I-th abso-
lute moment of K (-). Assume sup, g K(u) < &, for some &, € (0,1].

Assumption 3.3. The covariate vector  is compactly supported with

—-1/2

Cp = sup || %x|]s < 0

T ERP

and ||z]|cc < B almost surely for some B > 1, where ¥ = E(xza™) is positive definite. Without loss of
generality, assume B = 1. In addition to (p, sup,cgr—1 E(Ju™S ™1/ 2z[*) < (2.

Under Assumption for every ¢ € (0,1], define
ns =inf {n > 0: E[(2"v)*1(|z"v| > n)] < 6 for all v € SP71}, (3)
where z = ©~1/2z. Since E(zTv)? = 1 for any v € SP~1, 55 is well-defined for each §, and depends implicitly

on the underlying distribution of z.

Assumption 3.4. Denote

K 1
S=) ak/ V2QW (1 —t)B* + tw*)dt
k=0 0
1
S0 = / V2QW((1 = )8 + tw®)dt,
0

where V2ZQW ((1 — t)8* + tw) = E{ feu(tw — tB*) - ¥ (x®))7}. Define

Ci= sup [|[Z7'2®)|),.
0<k<K

Let Cy be bounded, that is 7 < co.

Assumption imposes the Lipschitz continuity on the conditional density f(-). Assumption holds
for most commonly used kernel functions, for instance, uniform kernel, Gaussian kernel, etc.

Compared with [Tian & Feng| (2022)) and [Li et al.| (2022bf), Assumption is different. Note that quantile
regression has Hessian matrix V2Q(8) = (1/n) Y1, Kn(xF B8 — y;)xiz}, where Qp(8) is the smoothed
empirical quantile loss and Kp(u) = (1/h)K(u/h). Unlike the generalized linear regression, there is a
smoothing bandwidth & in the denominator. We import Assumption [3.3]to provide convenience for bounding

the difference VQh(ﬂ) — VQh(ﬁ*) in the debiasing step.

Assumption [3.4] restricts the difference between the target covariance matrix and transferable source co-
variance matrix in some sense, which guarantees the estimator at the transferring step is close to the true
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parameter 8*. This assumption is commonly used in other transfer learning works, Tian & Feng| (2022); |Li
et al.| (2022b)); |Zhang & Zhu| (2022)); Huang et al.| (2022]).

Formally, we consider the parameter space

O(s,m) = {3*7 {w® Y eea, 1Bl < 5, Sup lw® — B*||; < m}-
€

3.1 Estimation with /;-norm constrained transferring set

Proposition 3.1. (Local Restricted Strong Convexity) Assume Assumptlonsm -hold Let A = w—w*
n =ng4,, +noand k; = minj,<; K(u) > 0. If

mac{r/(4/a), 16mGy} < h < fufly and nh 2, fufi logpmaxii®/(r22), n4/C2),
then for any w € w* + Bx(r) N Cx(l),

A A A 1 1
Qn(w) = Qulw”) = (VQu(w")w — w") = Bul|AlIE — ooy “EL B2 ||A |||, @)

with probability at least 1 — (pn)~!, where ¢; = K{gl, do = C'Ky.

Proposition 3.2. Assume Assumptions|3.1|- .hold Let v = 61 —Ba,a1 = K fi/10 and ay = 2,%[2/(2041).
If 4rny/y < g < fu/lo with 1/, defined in 1.' and nog 2 fuf] 2 max{s,?logp}, then for any v € By (r) N

Cs(D),
A A A 1 1
QL (B1) = Q) (B) ~ (VQY(82). B1 — Ba) > aul vl — Oy [ 2L B o o],

with probability at least 1 — (png)~*.

By the arithmetic mean-geometric mean inequality

log p + logng a 5  C?k? 1ogp—|—1ogn0
Cryy | =200 <=t
g B BB ol ol < el + o ol

we have ) n
A A A o ogp r logn
QY (B1) = Q) (B2) = (VR (B2), B1 = B2) = T llolff — a0 == = =2 ol
with probability at least 1 — (png)~*.
In the debiasing step, we need another restricted strong convexity condition with both || - ||; and || - ||g in

the lower bound. Proposition provides that kind condition.

Finally, with the above establishments of restricted strong convexity, we are able to obtain the main result
for the two-step transfer learning algorithm on quantile regression.

Theorem 3.1. Assume Assumptions — hold. Suppose ng > Cs?logp and ny, = ng , where C' > 0
is a constant. Also let

log(p)/(na,, +no) S h <min{f;/(2lpk1), (31/2)\w)1/2}
slog(p)/no < g < (log(p)/no)"".

We take A, = Cuy/log(p)/(na,, +mno), As = Cs+/log(p)/no, where C,, and Cs are sufficiently large con-

stants, then
A g% logp\ '/ logp\/*( logp \'*
18- 8l 5 vin(“E2) ok vs , )

no nA4,, +no

1
A lo lo 1
1871 % oy [+ () e, (6)
NA,, T Mo NA,, + 1o

with probability at least 1 — p~!
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Remark 3.1. In the trivial case where A,, is an empty set, the upper bound in is Op(y/slog(p)/no).
When A, is non-empty, the upper bound in is sharper than 1/slog(p)/no and the upper bound in

is sharper than s+/log(p)/no, if na,, = no and m < s(log(p)/ng)*/2.

The above theorem gives the convergence rate of the Trans-SQR estimator under ¢; /¢s-errors. As the above
remarks stated, if the total sample size of the transferable sources is significantly larger than the target sample
size, the Trans-SQR estimator could even achieve a sharper convergence rate with some proper choices of
the transferable level of the contrasts and the smoothing bandwidth in the debiasing step. As some previous
works show, our theorem shares similar estimation error bounds as the results in [Tian & Feng| (2022)) and
Li et al.| (2022b).

3.2 Estimation with {y-norm constrained transferring set

Proposition 3.3. (RSC in Step 2) Assume Assumptions — hold. Let v = 81 — Ba. If drny/y < g <
fu/lo with 1y /4 defined in and ngg 2 fuf; > max{s,(?logp}, then for any v € By (r) N Cx(l),
QY (B1) = QY (B2) = (VQP (B2), B1 — B2) = 0-2fir][v] 3,
with probability at least 1 — (png)~*.
Theorem 3.2. Assume Assumptions [3.1] - hold. Let
log(p)/no S b < min{fi/(2lok1), (s'/*A0) "%}
1/4
(s +m)og(p) /no S g < ((s+m)log(p)/mo) "/
1/4
mlog(p)/n S 1 < (mlog(p)/n)'"",

where n = ng + na, . Meanwhile, suppose m < s, ny > ng and ng > Cs?log p, where C' > 0 is a constant.

We take A" = Cun/log(p)/nk, As = Cs+/log(p)/no and Ag = Cgy/log(p)/n, where Cy,, Cs and Cg are

sufficiently large constants, then

N . slogp smlogp
18- 81l 5 B2 4 [, @
A N logp mlogp
|B—ﬂ|1SS\/§ oy [TEE (8)

with probability at least 1 — p~!.

The above theorem gives the convergence rate of the Trans-SQR estimator under ¢; /¢s-errors, where the
contrast vectors are characterized in terms of the £yp-norm. If the sample size of the target data is large enough
and the total sample size of the transferable sources is significantly larger than the target sample size, the
Trans-SQR estimator could achieve a sharp convergence rate with some proper choices of the transferable
level of the contrasts.

Remark 3.2. As mentioned above, Assumption is to make sure that the estimation error in the trans-
ferring step is small enough. However, Theorem [3.2] does not require Assumption [3.4] because Algorithm 4
learns the parameter w®) independently in Step 1 and reduces the bias in Step 2. For Step 1, the upper
bound of the difference between the estimator w*) and true parameter w®*) can be controlled by the sample
size of the each source data and the ¢y transferable level m. For Step 2, the estimated b could also be closed
enough to the true difference between the target and source parameter by having an appropriate target
sample size. Therefore, if both the target and source sample sizes are large enough, the error of Algorithm
4 would be well controlled without Assumption [3.4]

4 Numerical Studies
In this section, we evaluate the performance of our proposed algorithms via numerical experiments. The

methods in the following section include Smoothed Quantile Regression (SQR) on target data, the Oracle-
Trans-SQR, A,,-Trans-SQR and the Naive-Trans-SQR, which naively assumes A,, = 1,..., K in the Oracle

10
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Trans-SQR. The purpose of including the Naive-Trans-Lasso is to understand the overall informative level
of the auxiliary samples.

4.1 Transfer learning on /;-normed A,,

We consider p = 500, ng = 200, and nq,...,ng = 150 for K = 10. The covariates from target a:z(.o) are
(0)
are i.i.d. Gaussian with mean zero and variance one for all i. For k € A,,, wgk) ~ N(0,,% + €€”), where
€ ~ N(0,,0.32I,). For the target, the true parameter 8*, we set s = 5, 3; = 0.5 for j € {1,...,s}, and

B; = 0 otherwise. Denote ’R}(,k) as p independent Rademacher variables. ’Rék) is independent with ’Rz()k/)

.. . . . . . > -/ .
ii.d. Gaussian with mean zero and covariance matrix ¥ with X,;; = 0.59=9 for all i = 1,...,ng and €

for any k # k’. For any source data k in A,,, we let the true parameter w®) = g* 4 (m/p)’Rék), where

m € {5,10}. For any source data k' not in A,,, the true parameter w*") = g* + (2m/p)’R§,k'). We train the
four methods with 100 reproductions and record their average ¢s-estimation errors under different settings
of 7. Figure[I] shows the changes of the estimation errors along with the amount of the transferable sources.

We observe from Figure [1| that the Oracle-Trans-SQR has the best performance among all the methods and
An-Trans-SQR has almost the same performance as the Oracle-Trans-SQR, which indicates that the trans-
ferable source detection algorithm still works under the smoothed quantile regression models. Meanwhile,
compared with SQR on target, the estimation errors of the Oracle-Trans-SQR and A,,,-Trans-SQR are always
smaller, which means that the source data which share some similarities in ¢;-norm with the target data
could improve the estimation. Another observation is that the performance of A,,-Trans-SQR consistently
improves as more and more source data are transferable. This matches the theoretical /s-estimation error
bounds which become sharper as n4,, grows.

4.2 Transfer learning on /y-normed A,,

We consider p = 500, ng = 200, and assume that there are 2,4, 6,8, 10 transferable sources with the sample
(0)

i

are 1.i.d. Gaussian with mean zero and covariance matrix X
(k)

sizes 400. The covariates from target x

with ¥, = 0.517=3'l, The covariates from source x;"’ are also i.i.d. Gaussian with mean zero, but with
covariance matrix X + e€”, where € ~ N (0,, 0.32Ip). For the target, the true parameter 8*, we set s = 5,
Bj =1for j € {1,...,s}, and B; = 0 otherwise. For the source, their true parameter w® is generated from

w](-k) = f; + Al(j € M) where M is a random subset of [p] with [M|=m. We take m € {2,4}, and A = 2.
Figure [3[ and [4] show the f5-estimation errors in different settings of m.

From the results, Trans-SQR with £y-norm constrained transferring set has better performances than SQR
only on target and SQR on all sources and target. Meanwhile, when the target data sample size ny becomes
larger, the performance of Trans-SQR increases quickly, which accords with our results that the estimation
error is depend on the target sample size. There are considerable decreases in estimation errors of Trans-
SQR when the transferable level increases or A increases, which corresponds to the difference on components
between target and source populations.

5 Conclusion

This paper studies transfer learning for high-dimensional quantile regression models, employing convolution-
type smoothing techniques. The proposed algorithms focus on leveraging ¢; /¢p-normed transferable source
populations to improve estimation accuracy of the target regression coefficients. We derive error bounds
for the estimators in terms of ¢; /¢o-norms for the algorithms. Theoretical analysis reveals that these error
bounds surpass those of the classical penalized quantile regression estimator, which only utilizes the target
data, provided that the target and source populations exhibit sufficient similarity. Furthermore, we propose
a transferable source detection algorithm to identify informative sources from the available sources when the
set of informative sources is unknown. Numerical experiments validate our theoretical results.

11
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Figure 1: ¢ estimation errors of several methods under quantile levels 7 = 0.25, 0.5, 0.75, over 100 repetitions,
where Oracle-Trans-SQR is Algorithm []
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Figure 2: {5 estimation errors of several methods for Gaussian and t; 5 errors, over 100 repetitions.
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Figure 3: /5 estimation errors of several methods with £y constraints for ¢; 5 errors, over 100 repetitions.
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Figure 4: {5 estimation errors of several methods with £, constraints for Gaussian errors, over 100 repetitions.
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A Appendix: Proofs of the main results

A.1 Technical Lemmas

For w € RP, suppose A = w — w™*. Define

A A

Ri(A) = Qn(w) — Qu(w") = (VQi(w"),w — w"),

Di(A) = Qn(w) — Qn(w™),

and their population counterparts Rp,(A) = E{R,(A)} and Dy (A) = E{D,(A)}, where w* is the true
parameter of the transferring step in the algorithm.

Lemma A.1. Let B8* be the true target parameter, then [[w* — 8*[|; < Cym, where C; = sup;, [|[E1E®)),
and X1, ©(*) are given in Assumption

Note that w* has the explicit form, w* = 8*+6*. Lemmal[A.T|gives an upper bound of the distance between
the true 8* and the true estimate in transferring step. In other words, the ¢1-norm of §* is controlled by m.

Lemma A.2. Define 7} = 7, (8*) € R?, where m,(8) = VQn(B) — VQnr(B). Assumptions 4.1 - 4.3 ensure
that for any ¢ > 0,

2t
na,, +no na,, +no’

m

707 [|ow < a\/{m At — (1 =) —

with probability at least 1 — 2pe~*, where C = (7 + 1)lpk2 and 0 = maxi<;<p 0j;-

In both transferring and debiased steps, we need to restrict the regularization parameters A, (or As) to be
no smaller than 2|7} || (or 2|[7} || ). This Lemma helps to specify the choice of the parameters.

Lemma A.3. Define b} = ||7Y/2VQy,(w*)||2, which quantifies the smoothing bias, then for some g > 0

2
by < 10H2?7

where o is the Lipschitz constant of the density f¢z ().
Lemma A.4. For r,l > 0, define

1 — _ _ .
Y- B8 - ) — KalalB — )

n -
7

P(r,1) = sup
BEB*+Bs (NC1 ()

-1 oo

For any t > 0, with probability at least 1 — e™¢,

w(r7l)<£ Hng—i—fl/QT /t—l—logp_’_t—&-logp.
~hV n “ nh n

A.2 Proof of Proposition [3.]]

Define the Taylor error

If

N Y
[|Alls ~ ¢é2\ logp+logn’

then the lower bound in is negative. Since Qh() is convex, we have T (w,w*) > 0. Thus li holds
trivially in that case. In the following proofs, w € w* + By (r) N Cx (1), where | = ¢11/nh/(logp + logn)/ps.
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It follows from a second-order Taylor expansion that

T (w,w™)

1 N
= 5(w —w)"V2Qp (tw + (1 — t)w*) (w — w*)

1 (k) ()),y*) 1 (oK) 2

= Ky yl t wt+ (1= )w") iz, w—w

2<n,4m+no>k€§u{o}; o (=67 ) )
_ 1 (k) () . *) y*  ®
= 2 T ) Z ZKh{e —t; Jw—w*) = (m; w —wM)}

k€A, U{0} i=1

(ztP

i W —UJ*>2,

for some tl(k) € [0,1]. For each i and k, define the event F; j,
Fire = {leil <h/a} 0 {[{x™ w0 — w)| < Jlw — w5 - h/2r)} N {[{2, w" — w®)| < h/a},

for all w — w* € By (r). Thus

g

Tww)> ot S S @ w—wls,, 9)

~ 2(na,, +no)h i =

where x; = minj,|<; K(u). For a truncation level R > 0, define functions

u? ul < 5,
pr(u)={ (R—ul)* §<[u <R,
0 lu| > R

By this construction, pr(u) < u? - 1{|u| < R}, pcr(cu) = c2pr(u) and ¢g is R-Lipschitz.
In addition, we define the trapezoidal function

1 |U| < 4,
Yr(u) =< 2 — f|u| 5 < |u] <R,
0 lu| > R,

and note that ¢g is (2/R)-Lipschitz and ¢ g(u) < 1{|u| < R}.
With these two new-defined function and the notation A = w — w*, n =n 4, + no, we have established the
lower bound of @
T(w,w")
K

Nng
> o188 Y Do Mlal < /Aol (@, )@ o - )

ke A, U{0} i=1

H 1% hzﬂ{lez\ < h/4Yenon (@, ) /[|A]5) tnsa((@", 0" = w®)) (10)

I \/

Do (w,w*)

In the following proofs, we bound EDg(w,w*) and Dy(w,w*) — EDy(w,w*), respectively. First, we show
that
EDo(w,w") > 0.218;. (11)
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Note that

2 ()] = [E[1 el < b/} ]| < [E[1 {6l < b/4}2] — 2 £ (0)

h/4
S/_ /4|fe|m(t)_fe\m(0)|dt

Hence we obtain
[ElL{lei] < n/2}|2)| >
Provided h < fi/lg < fu/lo, we have
[Eln{lei] < /ayia) > T
Meanwhile
*) h/4
Bl < A/ |5 1e0)] < [ 1elt) = Lol
implies
[Eln{lei] < p/a}ia)| < 220
Then
EDp(w,w™)
(k) %
hZE[ [1{lei] < B/4} @)oo (@, A) /1Al ) s (2P w0 = w0 ))]

> SR 0y (i, AV A ) (2 0° = )]

% (1 - E[<337A/HAHE)ZH{KGE,A/||A||E)| > h/(47«)}}

Y

- B[, /18151 e.w” - o) > 1/ ).

By the definition of 75, as long as 0 < r < h/(4n1/4),

»Jk\)—‘

sup E|[ (@, A/||Al2)?1{ (@, A/||Al|2)| > h/(4r)}] <

A€EBy (T)

Moreover, w* € w®) + B, (m).

E[(@, A/1Alls)*1{|(@, w0 — w®)] > 1/8}]

Z)QE[@A/IIAIIz)Q@»w* —w®y?]

(E(m, A/|IAHZ>4>1/2 (E(m,w* B w(k)>4>l/2

2

1/2
G+ |miB (e, (" = W)l — ¥

¢y m(, = (Sm) <2

2

Sl oo |

IA
TN TN TN N
~— —
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The inequality comes from E(z,u/||u||s)* < Cg.

Provided 16m¢, < h,

EDy(B1, B2) > 0.218f;.

Next we find a lower bound of Dy(w,w*) — EDg(w,w*) over subset A(r,1) := {(w,w*) : w* € w® +
By(m), w € w* + Bx(r) NCx(l)}. Define

Q(r,l) = sup  {—Dp(w,w”) + EDy(w,w™)}.
(w,w*)eA(r,l)

Write Do(w,w*) =171 300 4 roy 2oim Wik(w,w*), where
wip(w,w*) = h™ 1{lei] < h/AYensen (@l A)/[18lls)n (2 0" —w®)
satisfies 0 < w; k(w,w*) < h/(4r)?, since pr(u) < (R/2)? and ¥g(u) € [0,1]. Moreover,

Eu?y(w,w”) = E[A71{Jei] < h/4}eh o (@, A)/11 8l )0R a(@), w0 — )]

gfu 0
< o Betson@”. 8)/11A]lx)
gfu (0) 4 9fu€3
< LR, AY/]|Alg)! = :

Using Bousquet’s version of Talagrand’s inequality yields that, for any z > 0,

(1) < BQ(r, 1) + (B, D} 52 4 V2 /% L bz

n 4 (4r)2 3n
1 1 hz  3v2¢ [fuz h =z
<EQ(r, 1) + -EQ(r, 1) + — — LY R s —
< EQ(r ) + 4 (r ) + 4r2 n Ty nh + (47)2 3n

3\/§Cp fuz 13 hz

4 nh 3 (4r)%n

< Z]EQ(T,Z) + (12)

holds with probability at least 1 —e*. To bound the expectation EQ(r, ), using Rademacher symmetrization
and the connection between Gaussian and Rademacher complexities, Lemma 5.5 in |Ledoux & Talagrand
(1991), we have

: (13)

EQ(r, 1) < 2\/?151 sup G w=
2 | (ww)eAnD)

where

= Y Yo ed{lal < h/AYonsen (@ A/|AlI) (@ w” - w®)),

ke A,,U{0} i=1

and e; are independent standard normal variables. Note that G, .« is a Gaussian process conditioned on
{(ygk),wgk))}?:kl for k € A, U{0}. For (w,w*) and (w',w™), write A = w — w*, A’ = W — w™ and
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xi = 1{|e;| < h/4}, then

Gw,w* - Gw’,w’*
= Gw,w* - Gw’,w’+A + Gw/,w/—i-A - Gw’,w’*

1 *
=k Zeixi%/(w)(@ﬁk)a A/|IA=) {n (@R w* — w®))
ki

)

—nja((@?, W — w®))}
1 . .
+ =3 enxitna((@, W = w®) {onsen (@) 0/]|AlIx)
k.1

— nyen (@) A /||IA||5) -

Note that ¢ and 9 are Lipschitz continuous, and pg(u) < (R/2)%. Let E* be the conditional expectation

(k) (k)
7

given {(y;"’,x;"’)}*,. Consequently,

N 2 1 8 e 4 ok (k) N
E (Gw,w* — Gw’,w’+A) S (nh)2 <h) (47‘) Z le<wz , W — W >

k€A, U{0} i=1

1 ok &
=i 2. e e—w) (14)
k€A, U{0} i=1

and
E* (Gor 42 — Gt or)” (15)

< (h) S S (™ a/alls) — @, A)|A5))?

(nh)2 \ 2r ,
keA,,u{0} i=1
1 i~ !
=1mm 2 2l AlAlls - A/IA ) (16)

k€A, U{0} i=1
Motivated by the last two inequalities, we have

2
B (Guwr —Gorwr) S35 O Dol w—w)?

— 2rin?
ke A, U{0} i=1

1 ok k
s O il A/IAls - AY/][A]5)?
k€A, U{0} i=1

Define another Gaussian process Z, - as

1 NG

- - ) * (k)

Zw’w*721/2r2n E E e;xi(z; ,w' —w'™)
keA,,U{0} i=1

1 Ik &
o o > ehala, A) /1Al

k€ AmU{0} i=1

such that E*(Gq, w+ — Guw w+)? < E*(Ze v — Zy o+ )%, where {el} and {e} are two dependent copies of
{e;}. Applying Theorem 7.2.11 in |Vershynin| (2018)), we obtain

IE*( sup G%w*) < IE*( sup Zwyw*) (17)

w,w* w,w*
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To bound the supremum of Z,, .,«, using the cone constraint and w* € w®) 4 B (m), we have

FPIPICEL

keA,,U{0} i=1

S DD St

ke A, U{0} i=1

2
IE*( sup Zu_,,w*) < mE

W 212

fl
or

Thus, by and , we have
m 1 Ik / (k)
EQ(r,1) < ﬁ{ﬂEHn Z ZeiXi%

ke A, U{0} i=1

}. (19)

It remains to find the bound of the two [,.-norm terms on the right-hand side of . Note that the variable

+ZEH > Y el

k€A, U{0} i=1

|n— ZkeAmu{o} ok elx f)| is zero-mean for j =1,...,p.
n el (k)
#lew (o S )] < Tl (557
n
koi=1

k =1

Nk )\2 ((k))
< AXiTy )
<o =55

22 ok k
—

Thus, [0 30 4, U0} 2oic €T ” M| is sub-Gaussian with parameter n- \/Z S X2 (! T, M)2. Applying
Lemma 15 in |Loh & Wainwright| (2015), we have

|3 3 et [+ el Vi
k =1
implying that
I k logp | | Xk it Xi
Ell= GQXNZ() <c Lk £Lai=1 X
< o108 \/ [Zkzz 1xl]
n n
logp 9fuh
< o 2
- n 16 (20)

Similarly,

<oy fler . [9uh (21)
- n 16

Finally, if we take © = h/(411/4), m = h/(16¢,) and z = t +log p, combining (19| . with Bousquet’s
version inequality ., we conclude that

1 ok
E szegxﬂgk) N

k i=1

Q(r,1) < 0.018f, + ¢'l\/ (t + logp) /(nh)
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with probability at least 1 — p~te~* for any ¢ > 0, as long as
nh 2 fuf* logpmax{I®/(ni;4), mi 4/ G }-

This, together with @, and , we have

P+
T(w,w) > A2 | 0.218F, — (0.018f; + 11/ 08P
2 nh
Kl 9 ,, [t+1logp
> M 2f — iy /=L
> Diiagp 02 - 1y EL) (22)

with probability at least 1 — p~te~t.

It remains to extend this bound to one that is uniform in the ratio ||A||1/||Al|s, which we do via a peeling
argument. Consider the inequality

1 wsifi Al [t +logp
—— T (w,w*) > —— — vk , 23
T Tl NS @3)
IEAVIE! fi nh
A= .23 hold: d <
‘.' olds an [|Alls — 10y \/ t+1logp [’

where v > 1 need to be determined. Over A, we have

R R Y
~ |Alls T 10¢y | t+logp
t+logp .
g(0) = iy | ——2F, and i(A) = [|A[]1/||A]]5.

Or = {A e R”: 771 < g(i(A)) < +*ul,
for each k = 1,..., N := [log(1/(nh)/(t 4+ logp))/log(v)], where u = ¢'k;+/(t + logp)/(nh). By the union

bound, we then have

as well as the event

Define the function

as well as the set

N

1
P(A%) <) P3N € O st i T (w,w*) > 7
= 10 A5
K1 1 &
<> P sup - = T(w,w") >+ p
f {||A||1/||A||z<gl<w> 10 JlAfl

M= T[¥]=

IA

p—le—t S N _p—le—t.

=
Il

1

Taking v = €'/¢ and t = log{elog(l/r;)} + u yields that with probability at least 1 — p~te™%,

10 JIA[%

/!
il Ly < 2118l flogp Flogleloglr) +
E nh

Multiplying by ||A||% on both sides yields

Tlw,wt) > AR = el o)y B2 loglelon/r)} +
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A.3 Proof of Proposition [3.2]

The Taylor error around B2 in the direction 81 — 85 is given by
T(B1,B2) = QP (B1) — Q) (B2) — (VQ(B2), B — Ba).

For a given kernel function K (-) and bandwidth g > 0, the smoothed quantile loss Qéo) can be written as
(nog) ™ 3014 S5 pr (WK {(u+ (@, B) — 4”)/g}du. Thercfore

T(B1,B2) = ZK {ei — (1-t)B1 + 1Bz — ﬁ*>}<$§0),ﬁ1 — B2)?
27’7/0 ZK {Qit E)’ﬁ27ﬂ > <331(»0),,3176*>}<$§0),ﬂ17ﬂ2>2,

for some t € [0, 1], For each 7, define the event &;,

& = {la| < g/43n{|(@?, B — Ba)| < 9|81 — Balls/(2r)} N {1, By — B*)| < g/4},
for all B; — B2 € By (r). Thus

T(B1,B2) > 2Zlg Z<w§°),6>21&., (24)

where x; = minj,|<; K(u) and § = 81 — B2. For a truncation level R > 0, define functions

u? lu| < %
¢r(u) = ¢ (R—|u))®> & <|ul <R,
0 lul > R.

By this construction, ¢g(u) < u? - 1{|u| < R}, ¢cr(cu) = 2pr(u) and @g is R-Lipschitz.
In addition, we define the trapezoidal function

1 lul < &,
Yr(u) = 92— 4ul & <|u <R,
0 lu| > R,

and note that g is (2/R)-Lipschitz and ¢ g(u) < 1{|u| < R}.
From these two new-defined function, implies

no

T(B1,82) 2 5 2Zn{m<g/4}sogu5uz/(2r><< )yl By~ B7))
z%nanéniwzﬂw<g/4}sog/(2, (. 8)/11812)/al(”. 81— 87)  (25)

Do(B1,B2)

In the following proofs, we bound EDgy(81, B2) and Dy(B1,B2) — EDy(B1, B2), respectively. Write v =
$1/28/||||x € SP~L. Note that

12 00| - [El1{Jeil < 9/4}12”)| < [EI1{Jei] < 9/4H() — £ f0(0)

g/4
< / galt) = Lo )l

—g/

24
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Then,

g log?
|2 0 (0)] - [EDL{lei < 9/} < 2%
[E{lel < /4312l > £ - 2L
Provided g < fi/lo < fu/lo, we have

B {Je] < g/4}[2”)] > 12

> 1,
Meanwhile /
g/4
Bl1{la] < o/4}e”)] - 57000 < [ 1falt) = Fio(0)lt
—g/4
implies
91,
[El1{]e] < g/4}]2{")| < %
Then
EDO(BI?/BQ)
1 &
= o SB[l < /4" oy on (@l 8)/18]15)0y (" 81~ 7))
=1

> g (.8 18110ty B~ B))]

— 16
> 20 (1 [, 0/1811)°1() .8/ 1811)] > o/ 4r)]

— 16

- [, 8/811° 12 81 - 87)] > 9/8}) ).

By the definition of 75, as long as 0 < r < g/(411/4),

N

sup B (z,8/116115)°14](z,8/|18]|)] > g/(4r)}] <

6€Bx(r)

Moreover, 8, € * + By (r/2).
E|(2,6/115]ls)*1{|(@. 81 — B°)] > 9/8}]
< (8) e[e. o101z - 57
< (3) (s s16107) " (Ete. 1 -7
< (Yo [(3) Bt mrien s
el (2

The inequality comes from E(x, u/||u|/s)* < (2.

Provided 8r¢, < g,

1/2

]ED()(ﬂl, ,32) > 0.218f;.
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Next we find a lower bound of Dy(B1, B2) — EDy(B1, B2) over A(r,1) :== {(B1,82) : B1 € B* +Bx(r/2),B2 €
B1 + B (r) N Cx(l),supp(B1) € S} Define

Qr,1) = sup  {—Do(B1,B2) + EDo(B1,82)}.
(B1,B2)eA(n,1)

Write Do(B1, B2) = (1/n0) Doy wi(B1, B2), where

wi(B1, B2) = g 1{|eil < 9/430,m) (2", 8)/116][9)0g 42", B1 = B7))
satisfies 0 < w;(B1, B2) < g/(4r)?, since pr(u) < (R/2)? and ¢R(U) € [0,1]. Moreover,

Ew; (81, B2) = E[ 1{ei] < 9/4}¢g/(2r)(< ,0)/1161[2)¢3 4 (2 2", B — B*M

9fu
< 1£g ]ESD.‘I/(ZT)(< 0)/llells)
of. o . 9fuC2
< 16g.]E(<a:,» ,0)/118]]=)" = 16‘gp'

Using Bousquet’s version of Talagrand’s inequality yields that, for any z > 0,

1 ﬁ z 3f< [fuz |
< 1/2 p
Q(r, 1) <EQ(r, 1) + {EQ(r, 1)} 0g E 3n0
1 1 gz  3V2 |[fuz g =z
< EQ(r, 1) + -EQ —_— L —_—
= (rnh)+ 4 (1) + 472 nyg + 4 nog + (41)2 3ng

3V2¢, [fuz 13 gz
EQ(r, ) + = ”1/@+§(4r)72no (27)

holds with probability at least 1 —e~%. To bound the expectation EQ(r, ), using Rademacher symmetrization
and the connection between Gaussian and Rademacher complexities, Lemma 5.5 in |Ledoux & Talagrand
Sup Gp,.8.

(1991)), we have
EQ(r, 1) < 2\/?15
2 | (BrB)er()

where Gg, g, = (nog) "' Y12, ei1{l&s] < 9/4}0g/2m (2, 8/1[8||s))t0ga (2", B1 — B*)) and ¢; are inde-
pendent standard normal variables. Note that Gg, g, is a Gaussian process conditioned on {( (0)) o,
and Gg« g- = 0. For (81, B2) and (B1, B5), write § = 81 — B2, 6’ = B — B4 and x; = 1{|¢]| < g/4} then

Gg,.8. — Gg;

= Gg,, ﬁz —Gpi pi+5 +Gp, g6 — Gpr g,

—Z eiXipg)an (@, 8/118]1s)) {1y /a (@, B1 — B*)) — v a((2”, B — )}

= ot

; (28)

1 &
+n—wzeixiwg/4<<m§0>,ﬁl BN 0y 2n (@7 8/118]]5) — g/ (2”78 /16"|I) }-
=1

Note that ¢ and 1/)R are Lipschitz continuous, and ¢ (u) < (R/2)%. Let E* be the conditional expectation

given {(y; (0) EO) )}, Consequently,

1
E*(Gﬂl,ﬂz—Gﬂg,ﬂHa)zSW(g)( )sz O B - 1)

1 0
- Arin? Z;XZ@E ) B - B1)? (29)
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and

2 ng
* 2 1 g 2
E*(Cappi+s — Gopo) < (o2 (2) in(<x§0>,6/\|a||z> — (@, 8/118"s))
= zzxz ) 8/118]]s — o' /116| 1) (30)

Motivated by the last two inequalities, we have

E* (Gﬁl,m ~Gpyp;)°

1 &
zxz 2" B = )+ 5o 3 xilel” . 8/1[8]]= — 87/118||5)”.
0 =1

- 27’4

Define another Gaussian process Zg, g, as

no

1 0
Zm,m—wﬂ Zexz 2", 81~ B") + zl/zm()Zeé’xx:cE%ﬂz—ﬂn/nauz
i=1

— 1y, 7(0) _ " (0) _
—m;eixz<xi,s,<ﬁl B 21/2 Zexz 2", B2~ B1) /16|

such that E*(Gg, g, — Gﬁiﬁé)Q < E*(Zp, g, — Zﬁi,ﬁé)Q, where {e,} and {e/} are two dependent copies
of {e;}. The second equlity holds since supp(B;), supp(8*) C S. Applying Theorem 7.2.11 in [Vershynin
(2018)), we obtain

& sup Gpusn) <8 307 Zoum) -
B1,B2 B1,B2

To bound the supremum of Zg, g,, using the cone constraint and 81 € B* + Bx(r/2), we have

\/i 1 o (0) \fl (0)
E*( Z ) IR =Y S % Vg § !
ﬁsgpz prpe) S BT 2 €; X T;s 2+ 2| ng 2= €; XiZ; N
\/i 9fug S O)
< -= — i , 32
S5V 06 ng €ixi® N (32)

where S = Y55 = E(zsz%). Thus, by and (32)), we have

N s Mtk 3

It remains to ﬁnd the bound of the second term on the right-hand side of . Note that the variable
Ingt SO0, ey | is zero-mean for j =1,...,p.

o e’ 11‘(0)
)] < Lo (|55
no

i=1

e (2 S

no >\2X ( (0))
7 1]
< e {[ =57}
=1
& 0
= exp {22 ZX?(I;))Q}
Ly
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Thus, |ng' S50, €/ Xi$§?)| is sub-Gaussian with parameter ng'y/>1°, Xf(zﬁ?))? Applying Lemma 15 in
Loh & Wainwright/ (2015, we have

g

iie’-’x-w@
Mo 35 o

wgﬂ

oo

implying that

= Co
no No
1 9f.
< ogy [ 18P fug
) 16
Therefore,
no
3co [ fuglogp
Ell— " ; (0) < 2% 34
nO ; el X w’L o —_— 4 nO ( )

Plug this bound to , we obtain

EQ(r,l)gﬁ{;ﬁ\/fzzs+?’:7‘fl,/f“g;§gp}. (35)

Finally, if we take r = g/(48¢o) and z = t 4 logp, combining with Bousquet’s version inequality (27),
we conclude that

15 fugs 15COZ fug Ing 3\/§Cp fuz 13 gz
< =/ ./ Juz 72
r1) < ﬁ{ 32r\V ng + 167 no + 4 nog + 3 (4r)2ng

Q(r,1) <0.018f; + I/ (t + logp)/ (nog)

with probability at least 1 — p~te™* as long as ngg > fufl72 max{s,[%logp}. This, together with ,
and , we have

/ il t+1
(B1, B2) = Zl [181[3; [0'218fl - <0.018fl +cl ng>‘|
nog
Kijisp2 ;. [t+logp
> of _ t+logp
=5 |6||2<0 2f1 clﬁ) (36)

with probability at least 1 —p~te~".
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It remains to extend this bound to one that is uniform in the ratio ||8]|1/||d||s, which we do via a peeling

argument. Consider the inequality
t + logp
76,62 = ‘ol (0:25 - ¢y
nog

1 kifi  dlr; [t+logp
Br.By) > LT [T OED
Mol T P2 2 5 = 5\ g
"flfl 1 ¢! tJrlng
B, B Wf—
10 iR PR = Ty

For some v > 1 to be determined and positive integers k = 1,..., N := [log({/r;)/log()], define the set
Or = {6 € R? : v*~ Ly <|[8]1/]|6]]s < ¥*7i}, so that {§ € RP : 7, < [|8]]1/]|6]|s < 1} CUY_, 0. Then

]P’{H(S € {5 €RP -1y < [|8])1/1|8]]x < 1} s.t.

Kifi 1 c"v||6][y [t +logp
-~ T(B1,B2) >
10 0] |16]]s nog
1 t+1
35 €Oy s tl—fl— T(B1,B2) > "+*r t+logp
[|0]]3, noyg
KLfi 1 .k t+logp
ETE T(B1,B2) > "y
{I|5II1/|I5||2<W ke 100 [16]]3 nog

p~te™ < [log(l/r)/log()]p e ™.

MZ HMZ HMZ

IA
i

Taking v = e'/¢ and t = log{elog(l/r;)} + u yields that with probability at least 1 — p~le™ "

ah 1 11611y [log p+ log{e log(i/m)} + u
ML T(B1, Ba) < .
10 Jarg” PP < gy nog

Multiplying by ||8]|% on both sides yields

log p + log{elog(i/r))} +u
nog '

T(B1,B2) > mmam—dMMnam¢

A.4 Proof of Theorem [3.1]

Transferring step: Let w* be the true parameter of the transferring step and S be the active set of 3*
with cardinality s. The symmetric Bregman divergence between @*m and w* is defined as

(VQn (™) — VQp(w*), @Am — w*) > 0. (37)
Let A = @An — w* . By optimality, there exists a subgradient § € 9 .-, gx, (Jws|), such that
VQn (@) + A = 0.

Then is equivalent to
—(VQn(w"), A) = A (g, A) > 0. (38)
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Note that
(@, w" — @) < lw* |l = [[&* |l = [JwE]l1 + llwEells — [|A + w*[]1
= [lwslli + [[wsell1 — [|As + wsll1 — [|Ase + wse|1
<|Aslli = [[Ase|r + 2[|wse|]1-
Then,

(VQn(@*m) = VQp(w*), A)
= Ao(§,w" — @A) + (VQp(w*) = VQp(w*), w* — &) + (VQp(w*), w* — &™)
< Ao (I1Aslh = 1Asell + 2llwse Il ) + VO (@) = YQu(w")lls |1l
75 oo
+ 272V Qn (w2 [|A] 5. (39)
by

Conditioned on the event {A, > 2|7} ||}, becomes

A (A A *\ A A A * )‘w A (A
(VQr(@™) = VQp(w*),A) < A, <||As\|1 —[Ase|[1 + 2[|wse 1) + 7|\A||1 +bpl[Alls

Lemma implies [|wk.||1 < Cim, so we have
A (o A 0w A 3 A 1 A A
(V@) = VQn(w"), A) < SAallAslh = SAwl|Ase |l +2X0Crm + b |A]]s:

Since (VQp (@A) — VO (w*),A) >0, A satisfies the constraint |1Ase|l: < 3||As]h +4Clm+2)\;1b;||AHg,
from which it follows that

Al < 4sM2|A|l2 + 4C1m + 2250 ]| Al (40)
Now we claim that when A, > 2||7}||oo, With probability at least 1 — p~!, it holds that
N 1 1 ~1/2 1/2 | opx
HAHZ S 8¢2C].m ng+ Og(n.Am + no) + 3AWVP S + bh + 2 Cl)\wm. (41)
®1 nA,, +no ¢1 ¢1

If the claim does not hold , consider C = {A : 1.5X,||As||1 — 0.5Xs||Ase||1 + 2ACim + b5 ||Alls > 0}. For
any t € (0,1),

1 ~ 1 -~ 3 N 1A
5)\w||tA5c 1=1t- 5)\w||ASCH1 <t- (2)\w||A3|1 +2X,C1m + bh|A||E)
3 N ~
< SAwl[tAs]l1 + 200 Crm + B [[EA]s,

which implies that tA € C. We could find some ¢ satisfying that HtﬁHz <1 and

A 8p2C1m  [logp +log(na,, + no) 3)\“,7,;1/251/2 + 205 Cidom
[tAlls > + +2 .
b1 na,, +no b1 b1

Denote A = tA and F(A) = Qn(w* +A) — Qn(w*) + Ao ([|w* + All1 — [[w*||1). Since F(0) = 0 and F(A) <0,
by convexity,

F(A) = F(tA + (1 —)0) < tF(A) <0.

However,
F(A) = Dip(A) = Ao ljw* |1 + Ao|lw* + Ay
= Ru(A) + (VQnr(w"), A) = Ay|lw*[l1 + Aullw” + Allx
= Ru(A) = (Mollw*[l1 = Aollw® + AllL = (VQi(w*) = VQnu(w"), A)
— (VQn(w"),A))
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Then by Proposition and ,

~ ~ logp +logn  « ~ 3 ~ 1 ~
F(A) > ¢1||Al[% = 924/ THAHlHAHZ - §Aw||As||1 + §>\w||AScH1

—20,Cym — b ||Alls

lo +10 n
> ¢1[|A|[% - goy/ LT8R A, |\A\|E~A 1As]l — 22,Cam — b || Al

Note that [[As||: < s"2||A[|; < 7 /s1/2[|A[|;; and (40). Therefore, when

(na,, +mno)h > 16¢7 ¢2(logp + logn) max{lGSfyp L ar, (bZ)Q},

we have ¢24/(log p + log n)/(nh)(4\/§7§1/2 +22;105) < ¢1/2. Then it follows that,

lo —|—10 n _ " X
F(A) > qbl A2 - ( oy LT O8N oy )\vam 1/2+bh)|A|g—2)\wClm

>0,

which contradicts with F (A) < 0. Therefore the claim holds.

It remains to control the probability of the event {\, > ||7}||oc} and the probability of the local RSC
condition. By Lemma [A22] we pick

41 2log(2
Ao =20 [{7(1 = 7) + Ch?}————+ 08(2p) +maX(1*T,T)M ,
nAa,, +no nA,, + 1o

so that {\, > 2||7}||s}. From Lemma we have b; < Ch?. Now with probability at least 1 — (pn)~?,

. 1 1 1 1 i
||A||2§m\/ oept Og(”Am+”°>+¢ R () v

na,, +no nA4,, +no na,, +no

We then let h2 < sl/zAw, so that

1
R I
Al < m\/longrlog(nAm +ng) +\/ slogp n ( log p > S, (42)

na4,, +no na,, +no nA,, +no

m m

with probability at least 1 — (pn)~!.

Note that
AL < 4|As|l + 4Cim + 222105 1A s
< 4/5||A[s + 4Cim + 225105 || A
< (457,12 + ok A TR [|A |5 + 4Cym,

which encloses

1
. 1 1 E
A1 Sm\/Sbg(p)"‘SlOg(nAm"‘nO) +S\/ ogp +< ogp > o+ m,

NA,, T No nA,, T Mo NA,, T No

with probability at least 1 — (pn)~!.

Debiasing step: Denote 8* = 8* — w*, §4m = B8 — @A» and 64» = §4An — §*.
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Similar to , we have

(VW (@A + §4) —vQ© (8%), B — B*)

=Xs(f, 8" = B) + (VR (B*) - Q‘O( *),B" = B) +(VQ(B*),B" — B)

<X (lIB7 =@l = (1B =@ h) + ||V (87) = vV (89 . 18 - B,
[l oo

+ |22V (8Y)

b*

S%)‘éHﬂ —AAm||1—*)\5||ﬂ Al + b))
gg)\guﬁ* w |y + AaIIAlllfanllﬂ ml+b*||ﬂ Bls
< g)\gcm—k g)\(SHAHl - %/\SHB — ||y + by |lé - B*Hz' (43)
On the other hand,
(VOO (@A + 64m) — V0 (%), 8 — B7)
<X (187 =@ |l =118 — @) +0
< Msl1B5 — @F™ [lr + Asl1B5. — g h—Aallﬁs— ”lll—AéHﬁ& @5l

+ b,
< 21185 — @271l — 1Bs — @211 ) = As (1185 — g |lx + [1Bse — @)
+ 24185 w:;‘:”|\1+—||ﬁ Bl + ;)18 - 875
<)‘5||B§_BSH1—)\6”5&—ﬂ50||1+2)\5||ﬂ3c—w§0\|1+2A5||Asc|\1
+ 208 B+ 5318 - 87

< §>\6H,Bj§ — Bslli — §>\5||Bf§c — Bsell1 + 2XsCrm + 2X;|[Age |1 + b

/\

A

3 * ) 1 * A *
< 521185 = Bsll = 5AsllBse — Bsell +2A:Cam + b

1
+2>\5<m\/slog(p)+slog(n,4m+no)+8\/ log p +< log p ) ?m—i—m). (44)

na,, +no nA4,, +no nA,, + 1o

Thus
18% = Bl|1 < 47, /2V/5]1B* — Blls + 20;05118* — Blls

1 1 ! ! '
+4<m\/8 og(p) + slog(n.a,, + no) +s\/ o8P ( o8P ) \/%—Fm) (45)

nA,, +No nAa,, +no na,, +no

Set r = g/(48¢p) and R = (4 _1/2\f + 207 A 5 )r +4C/s, if m < C\/s for some positive constant C and
n4, + ng > slogp. Denote O(r, R) = Bx(r )ﬂ Cs(R) and B = (1 —n)B* + nB, where n = sup{u € [0,1] :
B*+u(lB—pB*) e p*+0(r,R)}. If B¢ O(r,R), then n € (0,1) and B falls onto the boundary of O(r, R);
otherwise 3 = .

Combining and Proposition 3.2, we have

logp + logng | » « 3 3 A p
ag-wnﬂ_ﬁ ||§§§)\50m+§)\6||AH1+b9

SHIB =811 - (46)
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Besides, implies
] S
18 = &l < 30m -+ 3|AlL + T2(18 - 67|,

As a result,
1B =Bl <118 =&l +[|@* - B*|h
R 205 ~ .
< ACm +4||Af| + )T;H'B -8 Hz

Let o = ap — 4b*2)\; 2, then (46)) becomes
g 7'

. logp—l—logno(

160m?2 + 16]|A||2 + 46227
g m= + 16| A[[7 + 475

2
)
+30Cm + 3| Al + 20718 — B,

logp(

a1]|B = B3 < 202

al|B — B7[[% — 20,8 +IAIR) + Asm + Asl|Ax

N

«

*

= 10 " «
a(lﬁ—ﬂ*lz ) 8P (112 4 IAIR) + Asm + Asl|Al 1.

[0

Thus,

1B =Bl 5 422 A1)+ /Al Al +5;

Let A\s = C'y/log(p)/no and g =< (log(p)/ng)*/*, then

3_ g+ < (logp 0 logp\'*  (logp\"/* logp\ /?
1B =B"s s IA[lL +vm + 1AL +
no no no no

1 3/8 1 3/8 1
< m( ogp) +5< ogp> og p
L) 1o nA,, +no

logp 3/8 logp 1/4 log p 1/4
+ \/sm<n ) <> + m<)
0

nA,, +No no

1 1/4 1 1/4 1 1/4 | 1/8
() (ate) () ()
no nA4,, +no 1o nA,, +no

m m

If ng > s2log p, B falls in the interior of O(r, R), so we must have B e O(r, R). Consequently, B = B satisfies
the claimed bound,

5 o logp\ /* logp\ /" logp \'*
||ﬂ—ﬂ||zsm(no) +f(n) ( ) | (47)

0 nA,, + 1o

In addition, if m < sy/log(p)/ng, the above upper bound is sharper than \/slog(p)/ng. Then by , we

have
1 1 T
A * ogp ogp
1B =B <5 + Vsm+m.
nA,, + "o na,, +no

A.5 Proof of Proposition [3.3]

The method is similar to the proof of Proposition [3.2} At first, the divergence is given by

D(B1,B2) = (VQW) (B1) — VQI (B2), B1 — Bo).
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For a given kernel function K (-) and bandwidth g > 0, the smoothed quantile loss Qéo) can be written as
(nog) ™ 301 S5 pr (WK {(u+ (@, B) — 4”)/g}du. Thercfore

no

D(B1,B2) = %Z( 81— B2)%1

=1

where the event &; is defined by,

& ={lal < g/43 N {|@”, 81 — Ba)| < gl|B1 — Balls/(2r)} N {[(@?), By — B*)| < g/4}.

for all B — B2 € Bx(r) and x; = minj,<; K(u). For a truncation level R > 0, define functions ¢pr(u)
and 9 (u) as previous proof. By this construction, pr(u) < u? - L{|ju| < R}, gcr(cu) = 2pr(u), pr is
R-Lipschitz, ¥ g is (2/R)-Lipschitz and ¥ g(u) < 1{|u] < R}.

From these two new-defined function, we have

)

D(B1, B2) > niolg||5\|% > 1{jel < /830415115 2r) (@, 8)) g /a (", B1 — B*))
=1
> k] |0]3; - %ﬂ S 1] < 9/430gpn (2, 8)/1181|2) g 4 (2, B1 — B)), (48)

i=1

Do (B1,B2)

where 6 = 1 — B2. Finally, with a similar proof as Proposition if r = g/(48¢o) and nog >
fuf; ? max{s,?logp}, then
DO(ﬂ].HBQ) > O'2fl7

with probability at least 1 — (png)~t. Therefore,
D(B, B2) = 0.2fir]|Br — B3

A.6 Proof of Theorem

For step 1, the parameter w(®) is at most s 4+ m sparse. Therefore, similarly as Theorem 1 in [Tan et al.
(2022)), we have

!
1o — 2z < BHEMIBD oy ) < (51 m) CkeA
nk) (k)

with probability at least 1 — p~!, provided that the bandwidth h satisfies

2
ma (22 [ B 108P Tufu (S MVIOBRY <y < ing gy 215), (51200,
fz ) 2 () ©

= maxi>;>p 0jj, 0j; are the diagonal elements of X.

where o2

For step 2, denote ) = g* — w®) §*) = 3 — &®) and 6*) = §*) — §(*)_ For each k € A’

m?

(VOO (@® 4+ §8)) — vQO (&®) 4 §®)), 5

=N\ (f, 6 — 5y 4 (VQ(O (@) 4 §k)) — VQA(O)(B*),(;(%) — 6
+(VQP (B*) = VQ (87), 8% — 68)) +(vQ{V (87), 8" — §™))

< Xs(187[1 = [[6%]11) + (VP (@™ + 6%) — v (8), 8™ — 6™)
+ ][V (8%) = v (8| oW, + =72 VR (87)

7w [loo b5
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Then by Lemma with ¢ = 2logp and some choice of (ry,l;). For each k € A/,
V(s +m)log(p)/n®) and I = (s + m)\/log(p)/n®). When As > 2[|7} |,

(v Q(O)(A(k)_i_g(k))_ Q(O)(A(k)_i_é(k)) A(k)>
s+m [logp [logp logp ng
< s (185 ]y = [16™]]y +CO< F\/» +Vs+m 6%,

A5 11~ el
+ 2261, + 1316 .

Since

I8 1, = 1981, < [1(8® — &)

and HJ‘(S?

(64— 5),,

SkH1 1

when C,, < \s/2, we obtain

<m?(3xs+,)

By Proposition the RSC of <VQ§O)(<I)(’“) +6()) — VQ(O)(w(k) + 605, 5™ we have

(VOO (@® + §0) - VOO (@) + 609), 50 <( A”C)H (64 =6®) 5,1, + 0510

Wl

o], + ;]

o |-

o, +;

|

02f 0]y < mi” (2 + €, )

with probability at least 1 — (png)~!. Therefore, if we let g2 < m!/2)\;,

2 mlogp.
EN

no

By Lemma 17 in [Yuan et al,| (2018)) and the condition m < /ng/log p, we have

5% — 6®)2 < mlogp 4 6% — 6®| <m logp.
no o

For step 3, let §(9 = §(© =0, then the loss function in step 3 could be written as:

1 ~L -
— > 3001 V-8 = 37 Qe -
0 A ke{0}UA/ i=1 ke{o}uA;n

The symmetric Bregman divergence is defined as

< ST (VOB - §1) - vOW (8" — 50)), 4 - ﬂ*>-

ke{0}uA/,
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To simplify the notations, define VR,.(8) = D ke{0}uAl VQS-k)(B — (). Similarly as above, we have an

oracle inequality for B,

(VR.(B) - VR.(8").8—8")
<18 =181+ DS (VAP (™ 4 6% — §0) — QM (w ™), B - B)
ke{0}uA!,
+ > (VWP (wW) - vW (w®), B = B)+ > (VP (w ), B - B)
ke{0}UA!, ke{0}UA7,
< (] Bl)+ Y. (VP (w® 460 — %) - vQP (w ™), g* - B)
ke{0}UA’,
+ > [VOP (™) = v (W ™) _|18* -8,
ke{0}uA’
7| oo
+ > [Eevei(
ke{0}UA’,

b*

r

For the second term above, by Lemma [A4]

<VQ<k w® 4§k — VW (w®), B* — B)

/1ogp log p log p m logp 16*
no +nar, no—i—nA/

If we set A\g > 2|7} || and C), < Ag/2, then

(VR,.(B) — VR.(8"),8 - B%)
3 (8" — 3 i8-8
R [ R
3 A A
<oy cr) I -, + e - Bl

A

Under the RSC of (VR.(8) — VR,.(8*),8 — B*), we have

(VR.(B) -~ VR.(8),B - B") > c1||B" - B2

27

with probability as least 1 — (pn)~!, where n = ng + n4,, and ¢; is a positive constant. The proof of the
RSC in step 3 is similar to Proposition [3.3] Thus,

A E§51/2< )\ﬂ+Cl> _1/2+b:.

Through a similar proof as Lemma we obtain A\g < +/log(p)/n. If slog(p)/n < r? < 31/2)\[3, we have

Hﬁ* - BHE S \/Slogp + \/Smlng and
n o

with probability at least 1 — p~!

9

\/10gp mlogp
s\ —— + sy ———
n no
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B Proof of Lemmas

B.1 Proof of Lemma

Define w® for all 0 < k < K as the true parameters of each local source model, then note that VQ(’“) (w(k)) =
0 and VQ(w*) = ZkK:o VM (w*) = 0. So we have

VQ(w*) = VQ(B*) + VQ(B Z VW (w™) =
VQ(w*) - VQ(B Zakv@’“) (w®) = vQ(s")
Note that VQ© (w®) = Q) (8*) =0, so

K
> (VW (w*) —v™ (8 Zak VW (w™) - vQM(87))
k=0

k=1

By the second-order Taylor expansions and Assumption [3.4]
K 1 K 1
Zak/ V2QW) (1 — £)B* + tw*)dt(w” — B*) = Zak/ V2QM) (1 — )8 + tw™)dt(w® — %)
k=0 0 k=1 0

K
llw* =Bl < D awl SOy - [Jw® — 671

k=1

By the definition of the parameter space
O(s,m) = {B" {w®} 1 |B"llo < s, sup [lw® = B7s <m},
keA;,
We have [[w®) — 8*||; < m. Let Cy = supy, [|£'S®)]|;. Then LemmalA.1]is proved.

B.2 Proof of Lemma

For the transferring steps,

K @®, ) — 5
VQn(w) = +HOZZ{ ( i7> L >_T}wz('k)

n‘Am k=0 i=1
> o D) =N
V) = S S (R e
k=0 i=1

Let ¢ = K{((z®,w) —y™)/h} — 7, then VQh(w) = (na,, +n0) "t Tr_ X, M2 and

bR e ]

k=0 i=1

17hlloo =

The upper bound of ||7}||o involves two quantities that are related to

KQ((w(k),ww(k)>e> ((m(k),ww(k)>e>
h h

E

m(k)] and E

w] |
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For the first term, by a change of variable and integration by parts, we obtain

7 < (x®) w — wk)) - e)

E
h

xm} _ [ T R (ufh) fom(w)du

_h [ T R (0) o (—vh)d
= 2/_00 K (0)K (v)Fjz(—vh)dv. (50)

By the fact that F,;(0) = 7, we have

—vh
Fujo(—vh) = Fug(0) + / foe(B)dt

—vh
== 0fyal0)+ [ {falt) = faal0))at. (51)
Moreover, it can be shown that
ag = /OO vK () K (v)dv = b K){l - K(v)}dv >0 and ax < Ky, (52)
00 0

where k1 = [ |u|K (u)du.
Substituting into , and by , we obtain

K2<(w(k),w —wk)y — e)
h

(oo}

e xw] =2 [ KK~ 205000) [~ oK@

— 00

e —vh )
+2/_00/0 {feje(t) — fejx(0)} K (v) K (v)dtdv

< 71— 2axhfz(0) + loh? / v? K (v)K (v)dv

—0o0

S T + l0H2h2,

where the first inequality holds using the Lipschitz condition on f|5 in Assumption 4.1 and the last inequality
holds by Assumption 4.2. Through a similar calculation, the Lipschitz condition on f, ensures that

'El((x(k)M _hw(k)> _ 6) w(k)] .

Hence

<7+lor2h? ZT—%]HQ}LZ
<7(1—7)4 Ch?,
where C' = (7 + 1)lgke. Then, by Assumption 4.3, we have

E(fgk)ng)y < 7(1—7)oj;+ Cojh®.
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Also by Assumption 4.3 and \Ei(k)\ <max(l—7,7), for s =3,4,...,

E(|€M2M 1) < max(l - 7,7)° 2Eo {2 - E[(€)? 2]}
<max(l—7,7)* *{r(1 - 1)+ Ch*}
|
< %{’7’(1 — 1)+ Ch?} max(1 —7,7)" 2.

Thus it follows from Bernstein’s inequality and union bound that for every ¢ > 0,

2t t
Tilloo <oy /{t(1—7)+Ch?}——— + max(1 — 7,7) ————
Imille < o [tr(1 = 1) 4 O} a1 = 7)o

with probability at least 1 — 2pe~t.

For the debiasing step, through the similar proof we could get same results with different sample size and
smoothing bandwidth.

B.3 Proof of Lemma
Note that
by, = |17V Qn (w2
K (k)| *) — ¢ (F)
271/2 ]E IE K <CC ) ) _

L _ (k) o*) — (k)
K(<w 7w> y >_7_

)]

<271/2w(k)7u>

2

IA

sup Z]E N

uesP—1 T,

l
< 50/62]12.

B.4 Proof of Lemma

For k =1,...,p, define that

n

1 _ _
Yr(r )= sup =3 (1 =E) {Kn(x]v - ;) — Kn(—€) b |,
vEBs (r)NB1 (1) | T i—1

=9v,k (Yi, i)

where v = 8 — B*. Note that ¥(r,l) < maxi<p<p{¥r(r,!) + |Egy 1 (v, x;)|}. In the following, we bound
Yr(r,1) and Egy 1 (yi, ), respectively.

Let o be any positive constant such that o2 > SUDy By, (r) "B (1) Egg’k(yi,xi). By the bounded design, we
note that sup,, |gv.ix(¥i; €i)| < x| < 1. Applying Theorem 7.3 in [Bousquet| (2003), Bousquet’s version of
Talagrand’s inequality, we obtain that for any z > 0,

z

™ (53)

P (r, 1) < By (r,1) + \/{02 + 2Ea)y (r, l)}%z +
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holds with probability at least 1 — e™?. For the second moment Egg7k(yi, x;), by a change of variable and
Minkowski’s integral inequality we derive that

Egy (i, i) =E

:z:fk /jc {f(h(a:f'v —t) — f(h,(*t)}Qfmwi (t)dt]

Lk/ {Kn(u) = Kp(u— x}v } Jeilz: (] ’v—u)du]

_hE[Zk/ {K(v) - K(v- =] v/h}felmscv—vh)d]

22 (2T)? /Z { /01 K(v— wxgv/h)dw}de]
< fuh_1E<:E?k(wiTv)2 [/01 { /_O:O K2(v— wwfv/h)dv}lﬂdwl 2)
)

< Ko fuh (g - 2T 2 < kyfuh 2.

< fuh™'E

It remains to bound Euy(r,1). Note that |gy x(Yi, i) — Gor kWi, )| < (Ku/h)|x]v — x|, for any v,v’.
Hence using Rademacher symmetrization and Talagrand’s contraction principle, we have

E¢p(r,l) < 2E sup Z €igv,k(Yi, i)
vEBx (r)NB1 (1)
<4k, E sup ex;v|| < 4nu 54
weBs (rBa (1) | P Z ' ] ; . i

where ey, ..., e, are independent Rademacher variables. Applying Hoeffding’s moment inequality,

n 1/2
2log(2p)
2
i ; _—, 55
Z €;X; 112}?5}) (Zl 96%) n ( )
where E. denotes the expectation over {ei ™ .. By (p4) and (55)), we obtain

Be(r, 1) < 4ruy M

Taking z =t 4 logp in , we have that

I [logp 1 t+logp t+logp
N < 4/ =L /2
() S | 2L 4 iy [ OEE T (56)

holds with probability at least 1 — e™?

Next we find an union upper bound of [Egy x(yi, ;)|. Similarly as the method to bound the second moment,
we derive that

Egv,k(yia mz) = hE

Tik /_00 {I_((v) — I_((v — wfv/h)}fem(:cfv — vh)dv}

< fE [mnwzv / Z { / K- ww}v/h)dw}dv]
< fu]E<|xlk||ﬂ3zTU| l/ol { /Z K(v— wa:fv/h)dv}dw])

S Huqu|xikxiTv| S /fufur-
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Finally taking the union bound, we obtain that with probability at least 1 — e~ ¢,

7/1(7”7l)<£ HngJrfl/Qr t—i—longrt—Hogp.
~h n v nh n
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