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ABSTRACT

The Physics-Constrained DeepONet (PC-DeepONet), an architecture that incor-
porates fundamental physics knowledge into the data-driven DeepONet model,
is presented in this study. This methodology is exemplified through surrogate
modeling of fluid dynamics over a curved backward-facing step, a benchmark
problem in computational fluid dynamics. The model was trained on computa-
tional fluid dynamics data generated for a range of parameterized geometries. The
PC-DeepONet was able to learn the mapping from the parameters describing the
geometry to the velocity and pressure fields. While the DeepONet is solely data-
driven, the PC-DeepONet imposes the divergence constraint from the continuity
equation onto the network. The PC-DeepONet demonstrates higher accuracy than
the data-driven baseline, especially when trained on sparse data. Both models
attain convergence with a small dataset of 50 samples and require only 50 itera-
tions for convergence, highlighting the efficiency of neural operators in learning
the dynamics governed by partial differential equations.

1 INTRODUCTION

Computational fluid dynamics (CFD) is commonly used for engineering design, in sectors ranging
from automotive to aeronautics, biomedical engineering and energy production. CFD offers a more
affordable option than experimental testing and allows for the evaluation of a wider range of designs
from a fluid dynamic perspective. However, running high-accuracy simulations can be prohibitively
expensive. Recently, various researchers have studied the use of data-driven and physics-informed
machine learning to solve fluid dynamics problems.

Data-driven methods to create CFD surrogates include fourier neural operators (1), deep operator
networks (2) and UNets (3). Lu et al. introduced the DeepONet, a deep neural operator frame-
work, to learn linear and non-linear operators (function to function mapping) between small datasets
(2). This framework is based on the universal approximation theorem for operators. Shukla et al.
used DeepONets to create a surrogate for flow around airfoils which was significantly faster than
traditional CFD methods . (4).

Physics-informed neural networks (PINNs), first introduced by Raissi et al. (5), aim to solve super-
vised learning tasks while respecting any given law of physics described by general nonlinear partial
differential equations. They can be applied to fluid dynamics problems, as flows are modeled by the
incompressible Navier-Stokes equations:

∇ · u = 0 (1)

*Equal contribution.

1



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p+ µ · ∇2u + fb (2)

where u is the continuum velocity, p is the pressure, µ is the dynamic viscosity and fb the resultant
of the body forces (such as gravity and centrifugal forces) per unit volume acting on the continuum.
PINNs have been used as surrogate models for CFD as they are able to predict flows for cases
where little/no data is available (5; 6; 7). Moreover, solving the Navier-Stokes equations implies
solving three sets of equations simultaneously: continuity (Eq 1), conservation of momentum (Eq
2) and boundary conditions. Several works have investigated embedding the boundary conditions
or the divergence constraint imposed by the continuity equation directly by suitably modifying the
network architecture, (8; 9; 10).

In this paper, the use of deep operator networks (DeepONet), proposed by Lu et al. (2), is explored
to create a surrogate for predicting flow over curved backward-facing steps (BFS) with different
parameterised curves.

Embedding fundamental principles, like the continuity equation, directly into the structure of neu-
ral networks can enhance the efficacy of cutting-edge neural operator models by narrowing down
the potential solution space for our models (8). We propose a Physics-Constrained DeepONet
(PC-DeepONet), an architecture that exactly satisfies the continuity equation (Eq 1). We show,
through numerical experiments, that the proposed architecture increases the accuracy for the surro-
gate model, converging in only a few iterations with sparse training data.

We investigate the use of PC-DeepOnets through the lens of the backward-facing step (BFS). The
BFS is a benchmark model that demonstrates important features such as flow separation, vortex
evolution and re-attachment (11). The BFS has been studied by multiple researchers, especially in
the fields of aerospace (12; 13; 14) and biomechanics (15; 16; 17). The curved BFS has been chosen
for this study as in addition to displaying the same flow characteristics as the BFS, its separation
region is sensitive to the boundary layer near the curved wall (18), making it suitable for learning
the operator mapping between the shape of the curve and the resulting flow. Furthermore, curved
surfaces are common in engineering applications, for example in aerodynamic bodies, blades, curved
ducts and pipes, cylinders, and diffusers (18).

2 METHOD

In this study, a DeepONet is applied to learn the operator mapping between functions that parameter-
ize the geometry of the BFS slopes and the flow field evaluated on the output grid. The DeepONet
was chosen as it works well for learning functions between parameterised inputs and their corre-
sponding outputs. An illustration of the geometry of choice can be found in Appendix A.1(Figure
2). The walls illustrated as solid lines were fixed while the curvature of the slope (dotted blue line)
was varied.

The slope was parameterised using non-uniform rational B-spline (NURBS) which are used as math-
ematical representations of curves and surfaces. Using this method, curves can be parameterised
using control points, weights, knot vector and degree of polynomial. Background information on
NURBS can be found in (19). For the current study, the backward-facing curve is defined by a third
degree (cubic) NURBS function with four control points, equal weights and a constant knot vector.
The two control points at each end of the slope, marked as orange dots in Figure 1, are fixed. The
other two control points, marked as green dots in Figure 1, are fixed along their respective y-axes and
their x-coordinates are varied evenly between -0.25 and 1.25 to generate 50 different slope shapes.
The x-coordinate of each control point is fed as one of the inputs to the network. As the y-coordinate
is unchanged, there is no need to have this as an input.

2.1 DATA GENERATION

FreeFEM++ (20) was used to generate training data for flow over the curved BFS. FreeFEM++ uses
the finite element method to solve the incompressible Navier-Stokes equations (Eq 1, 2) over the
domain, by discretizing it into finite elements. For solution control, the incompressible flow solver
combined a number of numerical techniques, such as an implicit scheme for time-stepping, finite
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Figure 1: Control points for parameterisation of the BFS slope.

element spatial discretization, and iterative solvers for managing the resulting linear systems. To
ensure accurate representation of physical phenomena, stabilization techniques such as the SUPG
(Streamline Upwind/Petrov-Galerkin) method (21), which is particularly beneficial for handling
convection-dominated flows, was employed. The simulations were run for 2D unstructured meshes,
each comprising approximately 50000 elements, across 50 distinct geometries. Uniform boundary
conditions were applied to all simulations. The flow was modeled as incompressible, with a fixed
Reynolds number of 1000.

2.2 NETWORK ARCHITECTURE

The baseline DeepONet, as proposed by Lu et al. (2) consists of two sub-networks: a branch
network and a trunk network as illustrated in Figure 3 in Appendix A.1. The input to the branch
network consists of the x-coordinates of the control point pair for each geometry configuration.
Hence, the size of the input to the branch net is the number of geometries x 2. The trunk net takes
as input the output sensors: the spatial coordinates of the output mesh. The size of the input to
the trunk net is therefore the number of sensors x dimensions. Three separate DeepONet networks
with the same architecture were trained to predict the horizontal velocity (U), vertical velocity (V)
and pressure(P) fields. For the PC-DeepONet, this architecture was extended by incorporating the
approach proposed by Richter et al. (8) to make the velocity field divergence free .

The output of an individual DeepONet can be expressed as follows:

Gξq (x, y) =

Nα∑
i=1

αi(ξg; θα)ϕi(x, y; θϕ) ∀q ∈ {p, u, v}. (3)

Where ϕ a collection of basis functions that map functions from spatial coordinates to output func-
tions, and α are a collection of coefficients that learn mappings from the parametrized slope control
points to the output functions. Considering the two individual DeepONet output b(x, y) as a vector
field with components bu(x, y) and bv(x, y) corresponding to the velocities u and v, we have:

b(x, y) =

[
bu(x, y)
bv(x, y)

]
=

[
Gξu(x, y)
Gξv (x, y)

]
=

[∑Nα

i=1 α
u
i (ξg; θα)ϕ

u
i (x, y; θϕ)∑Nα

i=1 α
v
i (ξg; θα)ϕ

v
i (x, y; θϕ)

]
. (4)

With this vector field, a skew-symmetric matrix A is constructed from the Jacobian of b and its
transpose:

A = Jb − J⊤
b =

[
0 ∂bu

∂y − ∂bv
∂x

∂bv
∂x − ∂bu

∂y 0

]
, (5)

where Jb is the Jacobian matrix of b with regards to the trunk input. The final divergence-free
velocity field v is represented by this divergence:

v = div(A). (6)
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By construction, the divergence of A is zero due to the properties of the skew-symmetric matrix,
ensuring that the predicted velocity field is divergence-free, which aligns with the continuity condi-
tion.

2.3 TRAINING AND TESTING

Our model’s implementation and optimization were conducted using the PyTorch framework. Train-
ing was executed on a dataset comprising 50 distinct geometries. For each geometry, we performed
a mesh mapping to a target geometry to obtain a unique mesh using bi-cubic interpolation. 1000
output sensors were then randomly positioned across the mesh in points away from the slope to train
the model. Since the mapping is done from function to function rather than from vector to vector,
the model does not have to be trained on all the points in the domain and can learn the representation
more efficiently with fewer sampled points. The DeepONet was then able to extrapolate for individ-
ual geometries, even in unseen domains. We illustrate this resolution-free capability of DeepONets
by infering on a mesh with 50000 points, as shown in Figures 4 and 5in Appendix A.1.

The optimization of the network parameters was performed using the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. This particular optimizer was chosen to address
vanishing gradient issues that arise when training DeepONets with hyperbolic tangents (tanh). Only
50 iterations were needed to achieve convergence for both architectures. The hyperparameters used
for both DeepONet models are displayed in Table 1.

Parameter Value
Branch network architecture: [2,40,40,40,100]
Trunk network architecture: [2,40,40,40,100]
Activation functions: tanh
Nα: 50
Optimizer: L-BFGS

Table 1: Hyperparameters of the Optimized DeepONet

To evaluate the model’s performance, we used the Mean Squared Error (MSE) loss function and
assessed the relative L2 error between the predicted and actual sensor data.

3 RESULTS AND DISCUSSION

We report the performance of the vanilla DeepONet and the PC-DeepONet models in Table 2. The
PC-DeepONet, shows superior performance in both training and validation phases.

Both models were tested on unseen domains and geometries. The outputs from the trained models
on a case from the validation set are displayed in Figure 4 and 5 in Appendix A.1.

Table 2: Performance comparison of DeepONet and PC-DeepONet.
Model Epoch Training Loss Validation Loss Relative L2 Error

PC-DeepONet 50 1.77× 10−6 1.82× 10−6 4.45× 10−3

DeepONet 50 1.24× 10−5 1.23× 10−5 1.16× 10−2

Both architectures achieved convergence within a limited number of iterations. The PC-DeepONet,
with its enforced continuity condition, demonstrates superior accuracy with sparse data. We note
that these results were obtained under conditions of smooth, laminar flow. We anticipate that for
turbulent flows, the advantage of the PC-DeepONet will become more pronounced. Despite the
resolution free-nature of neural operators, analysis of the Figures 4 and 5 reveals that errors cluster
near boundary layers, likely due to under-sampling in the regions close to the slope, where points
cannot be sampled in a common mesh. Future investigations will explore masking approaches to
incorporate this information in the training and incorporating hard boundary conditions in the archi-
tecture.
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4 CONCLUSION AND FUTURE WORK

In this study, we introduce PC-DeepONets, an architecture that incorporates knowledge of the
physics of fluid flow into the DeepONet to improve on data-driven learning. By enforcing the
divergence constraint imposed by the continuity equation in the DeepONet framework, we observe
significant improvements in accuracy for surrogate modeling with sparse data. Using PC-DeepONet,
we successfully learned operational mappings between parameterized geometric configurations and
flow field variables (U, V, and P).

Moving forward, integrating additional impositions by constraining boundaries and integrating ad-
ditional information from the physics could potentially improve the performance of PC-DeepONets
in capturing complex flow phenomena like turbulence for higher Reynolds numbers.
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A APPENDIX

A.1 ADDITIONAL MATERIAL

Figure 2: Illustration of the curved BFS used for training the DeepONet.
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Figure 3: Architecture of the DeepONet used to learn the operator between slope shape and flow
field (adapted from (22)).

Figure 4: Comparison between the output of the DeepONet on an unseen test case with the ground
truth for U, V and P.

Figure 5: Comparison between the output of the Physics-Constrained DeepONet with the ground
truth for U, V and P.
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