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Abstract

Developing autonomous agents with multi-task capabilities in open-world environments has
been a longstanding goal of AI research. Without human demonstrations, learning to ac-
complish long-horizon tasks in a large open-world environment with reinforcement learning
(RL) is extremely inefficient. To tackle this challenge, we convert the multi-task learning
problem into learning basic skills and planning over the skills. We employ RL with intrinsic
rewards, enabling the agent to acquire a set of basic skills. These skills can be reused and
chained together to solve diverse long-horizon tasks. Given the challenge of exploring large
open-world environments using RL, we propose a novel Finding-skill that aims at finding
target items of subsequent skills and providing effective state initialization for these skills.
In skill planning, we utilize the prior knowledge in Large Language Models (LLMs) to con-
struct a skill graph that depicts the relationships between skills. When solving a task, at
each stage, the agent searches for a path on the skill graph and executes the first skill. In
the popular open-world game Minecraft, our method accomplishes 40 diverse tasks, where
many tasks require sequentially executing more than 10 skills. Our method outperforms
baselines by a large margin and is the most sample-efficient demonstration-free RL method
to solve Minecraft Tech Tree tasks.

1 Introduction

Learning diverse tasks in open-ended worlds is a significant milestone toward building generally capable
agents. Recent studies in multi-task reinforcement learning (RL) have achieved great success in many
narrow domains like games (Schrittwieser et al., 2020) and robotics (Yu et al., 2020). However, transferring
prior methods to open-world domains (Team et al., 2021; Fan et al., 2022) remains unexplored. Minecraft, a
popular open-world game with an infinitely large world size and a huge variety of tasks, has been regarded
as a challenging benchmark (Guss et al., 2019; Fan et al., 2022).

Previous works usually build policies in Minecraft upon imitation learning, which requires expert demon-
strations (Guss et al., 2019; Cai et al., 2023; Wang et al., 2023c) or large-scale video datasets (Baker et al.,
2022; Lifshitz et al., 2023; Yuan et al., 2024). Without demonstrations, RL in Minecraft is extremely sample-
inefficient. A state-of-the-art model-based method (Hafner et al., 2023) takes over 10M environmental steps
to harvest cobblestones , even if the block breaking speed of the game simulator is set to very fast addi-
tionally. This difficulty comes from at least two aspects. First, the world size is too large and the requisite
resources are distributed far away from the agent. With partially observed visual input, the agent cannot
identify its state or do effective exploration easily. Second, an open-world task usually has a long horizon,
with many sub-goals. For example, mining a cobblestone involves more than 10 sub-goals (from harvesting
logs to crafting wooden pickaxes ) and requires thousands of environmental steps.

To mitigate the issue of learning long-horizon tasks, we propose to solve diverse tasks in a hierarchical
fashion. We propose to learn a set of basic skills, each representing a simpler task with a short horizon.
Then, solving a task can be decomposed into planning for a proper sequence of basic skills and executing
the skills interactively. We train RL agents to acquire skills and build a high-level planner upon the skills.
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Figure 1: Overview of Plan4MC. We categorize the basic skills in Minecraft into three types: Finding-skill,
Manipulation-skill, and Crafting-skill. We train policies to acquire skills with reinforcement learning. With
the help of LLM, we extract relationships between skills and construct a skill graph, as shown in the dashed
box. During online planning, the skill search algorithm walks on the pre-generated graph, decomposes the
task into an executable skill sequence, and interactively selects policies to solve complex tasks.

We find that acquiring skills with RL still remains challenging due to the difficulty in finding the required
resources in the vast world. As an example, if we use RL to train the skill of harvesting logs in Minecraft,
the agent can always receive 0 reward through random exploration since it cannot find a tree nearby. On the
contrary, if a tree is always initialized close to the agent, the skill can be learned efficiently (Table 1). Thus,
we propose to learn a Finding-skill that performs exploration to find items in the world and provides better
initialization for all other skills, improving the sample efficiency of learning skills with RL. The Finding-skill
is implemented with a hierarchical policy, maximizing the area traversed by the agent.

In Minecraft, after integrating the Finding-skill, we classify all basic skills into three types: the Finding-skill,
Manipulation-skills, and Crafting-skills. Each basic skill solves an atomic task that may not be further
divided. Such tasks have a shorter horizon and require exploration in smaller regions of the world. Thus,
using RL to learn these basic skills is more feasible. To improve the sample efficiency of RL, we introduce
intrinsic rewards to train policies for different types of skills.

For high-level skill planning, recent works (Brohan et al., 2023; Wang et al., 2023c;a) demonstrate promising
results via interacting with Large Language Models (LLMs). Though LLMs generalize to open-ended envi-
ronments well and produce reasonable skill sequences, fixing their uncontrollable mistakes requires careful
prompt engineering (Huang et al., 2022b; Wang et al., 2023c). To make more flawless skill plans, we propose
a complementary skill search approach. In the preprocessing stage, we use an LLM to generate the relation-
ships between skills and construct a skill dependency graph. Then, given any task and the agent’s condition
(e.g., available resources/tools), we propose a search algorithm to interactively plan for the skill sequence.
Figure 1 illustrates our proposed framework, Plan4MC.

In experiments, we use the MineDojo (Fan et al., 2022) simulator to set up 40 diverse tasks in Minecraft.
These tasks involve executing diverse skills, including collecting basic materials , crafting useful items

, and interacting with mobs . Each task requires planning and execution for 2~30 basic skills
and takes thousands of environmental steps. Results show that Plan4MC accomplishes all the tasks and
outperforms the baselines significantly. Also, Plan4MC can craft iron pickaxes in the Minecraft Tech
Tree and is much more sample-efficient than existing demonstration-free RL methods.

To summarize, our main contributions are:

• To enable RL methods to efficiently solve diverse open-world tasks, we propose to learn fine-grained
basic skills including a Finding-skill and train RL policies with intrinsic rewards. Thus, solving
long-horizon tasks is transformed into planning over basic skills.
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• Unlike previous LLM-based planning methods, we propose the skill graph and the skill search algo-
rithm for interactive planning. The LLM only assists in the generation of the skill graph before task
execution, avoiding uncontrollable failures caused by the LLM.

• Our hierarchical agent achieves promising performance in diverse and long-horizon Minecraft tasks,
demonstrating the great potential of using RL to build multi-task agents in open-ended worlds.

2 Preliminaries

2.1 Problem Formulation

In Minecraft, a task τ = (g, I) is defined with the combination of a goal g and the agent’s initial condition I,
where g represents the target entity to acquire in the task and I represents the initial tools and conditions
provided for the agent. For example, a task can be ‘harvest cooked_beef with sword in plains’.
We model the task as a partially observable Markov decision process (POMDP) (Kaelbling et al., 1998). I
determines the environment’s initial state distribution. At each timestep t, the agent obtains the partial
observation ot, takes an action at following its policy π(at|o0:t, τ), and receives a sparse reward rt indicating
task completion. The agent aims to maximize its expected return R = Eπ

∑
t γtrt.

To solve complex tasks, humans acquire and reuse skills in the world, rather than learn each task indepen-
dently from scratch. Similarly, to solve the aforementioned task, the agent can sequentially use the skills:
harvest log , ..., craft furnace , harvest beef , place furnace , and craft cooked_beef . Each
skill solves a simple sub-task in a shorter time horizon, with the necessary tools and conditions provided.
For example, the skill ‘craft cooked_beef ’ solves the task ‘harvest cooked_beef with beef , log

, and placed furnace ’. Once the agent acquires an abundant set of skills S, it can solve any complex
task by decomposing it into a sequence of sub-tasks and executing the skills in order. Meanwhile, by reusing
a skill to solve different tasks, the agent is much better in memory and learning efficiency.

To this end, we convert the goal of solving diverse and long-horizon tasks in Minecraft into building a
hierarchical agent. At the low level, we train policies πs to learn all the skills s ∈ S, where πs takes as input
the RGB image and some auxiliary information (compass, location, biome, etc.), then outputs an action. At
the high level, we study planning methods to convert a task τ into a skill sequence (sτ,1, sτ,2, · · · ).

2.2 Skills in Minecraft

Recent works mainly rely on imitation learning to learn Minecraft skills efficiently. In MineRL competi-
tion (Kanervisto et al., 2022), a human gameplay dataset is accessible along with the Minecraft environment.
All of the top methods in competition use imitation learning to some degree, to learn useful behaviors in
limited interactions. In VPT (Baker et al., 2022), a large policy model is pre-trained on a massive labeled
dataset using behavior cloning. By fine-tuning on smaller datasets, policies are acquired for diverse skills.

However, without demonstration datasets, learning Minecraft skills with reinforcement learning (RL) is
difficult. MineAgent (Fan et al., 2022) shows that PPO (Schulman et al., 2017) can only learn a small set of
skills. PPO with sparse reward fails in ‘milk a cow’ and ‘shear a sheep’, though the distance between target
mobs and the agent is set within 10 blocks. We argue that with the high dimensional state and action space,
open-ended large world, and partial observation, exploration in Minecraft tasks is extremely difficult.

We conduct a study for RL to learn skills with different difficulties in Table 1. We observe that RL has
comparable performance to imitation learning only when the task-relevant entities are initialized very close
to the agent. Otherwise, RL performance decreases significantly. This motivates us to further divide skills
into fine-grained skills. We propose a Finding-skill to provide a good initialization for other skills. For
example, the skill of ‘milk a cow’ is decomposed into ‘find a cow’ and ‘harvest milk_bucket’. After finding
a cow nearby, ‘harvest milk_bucket’ can be accomplished by RL with acceptable sample efficiency. Thus,
learning such fine-grained skills is easier for RL, and they together can still accomplish the original task.
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Table 1: Minecraft skill performance of imitation learning (behavior cloning with MineCLIP backbone,
reported in (Cai et al., 2023)) versus reinforcement learning. Better init. means target entities are closer to
the agent at initialization. The RL method for each task is trained with proper intrinsic rewards. All RL
results are averaged on the last 100 training epochs and 3 training seeds.

Skill

Behavior Cloning – – 0.25 0.27 0.16
RL 0.40±0.20 0.26±0.22 0.04±0.02 0.04±0.01 0.00±0.00
RL (better init.) 0.99±0.01 0.81±0.02 0.16±0.06 0.14±0.07 0.44±0.10

3 Learning Basic Skills with Reinforcement Learning

Based on the discussion above, we propose three types of fine-grained basic skills, which can compose all
Minecraft tasks.

• The Finding-skill: starts from any location, the agent explores to find a target and approaches the
target. The target can be any block or entity that exists in the world.

• Manipulation-skills: given proper tools and the target in sight, the agent interacts with the target to
obtain materials. These skills include diverse behaviors, like mining ores, killing mobs, and placing
blocks.

• Crafting-skills: with requisite materials in the inventory and crafting table or furnace placed nearby,
the agent crafts advanced materials or tools.

3.1 Learning to Find with a Hierarchical Policy

Finding items is a long-horizon difficult task for RL. To find an unseen tree on the plains, the agent should
take thousands of steps to explore the world map as much as possible. A random policy fails to do such
exploration, as shown in Appendix G. Also, it is too costly to train different policies for various target items.
To simplify this problem, considering to explore on the world’s surface only, we propose to train a target-free
hierarchical policy to acquire the Finding-skill.

Figure 2 demonstrates the hierarchical policy for the Finding-skill. The high-level policy πH ((x, y)g|(x, y)0:t)
observes historical locations (x, y)0:t of the agent, and outputs a goal location (x, y)g. It drives the low-level
policy πL (at|ot, (x, y)g) to reach the goal location. We assume that target items are uniformly distributed
on the world’s surface. To maximize the chance to find diverse targets, the objective for the high-level policy
is to maximize its reached area. We divide the world’s surface into discrete grids, where each grid represents
a 10× 10 area. We use state count in the grids as the reward for the high-level policy. The low-level policy
obtains the environmental observation ot and the goal location (x, y)g proposed by the high-level policy, and
outputs an action at. We reward the low-level policy with the distance change to the goal location.

To train the hierarchical policy with acceptable sample complexity, we pre-train the low-level policy with
randomly generated goal locations using DQN (Mnih et al., 2015), then train the high-level policy using
PPO (Schulman et al., 2017) with the fixed low-level policy. During test, to find a specific item, the agent
first explores the world with the hierarchical policy until a target item is detected in its lidar observations.
Then, the agent executes the low-level policy conditioned on the detected target’s location, to reach the
target item. Though we use additional lidar information here, we believe that without this information, we
can also implement the success detector for the Finding-skill with computer vision models (Du et al., 2023).

3.2 Manipulation and Crafting

By executing the pre-trained Finding-skill, we can instantiate the manipulation tasks with requisite target
items nearby, making the manipulation tasks much easier. To train the Manipulation-skills in Minecraft, we
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Figure 2: The proposed hierarchical policy for the Finding-skill. The high-level recurrent policy πH observes
historical positions (x, y)0:t from the environment and generates a goal position (x, y)g. The low-level policy
πL is a goal-based policy to reach the goal position. The right figure shows a top view of the agent’s
exploration trajectory, where the walking paths of the low-level policy are shown in blue dotted lines, and
the goal is changed by the high-level policy at each black spot. The high-level policy is optimized to maximize
the state count in the grid world, which is shown in the grey background.

can either make a training environment with the target item initialized nearby or run the Finding-skill to
reach a target item. For example, to train the skill ‘harvest milk_bucket ’, we can either spawn a cow

close to the agent using the Minecraft built-in commands, or execute the Finding-skill until a cow is
reached. The latter is similar in the idea to Go-Explore (Ecoffet et al., 2019), and is more suitable for other
environments that do not have commands to initialize the target items nearby.

We adopt MineCLIP (Fan et al., 2022) to guide the agent with intrinsic rewards. The pre-trained MineCLIP
model computes the CLIP reward based on the similarity between environmental observations (frames) and
the language descriptions of the skill. We train the agent using PPO with self-imitation learning, to maximize
a weighted sum of intrinsic rewards and extrinsic success (sparse) reward. Details for training basic skills
can be found in Appendix C.

For the Crafting-skills, they can be executed with only a single action in MineDojo (Fan et al., 2022).

4 Solving Minecraft Tasks via Skill Planning

In this section, we present our skill planning method for solving diverse hard tasks. A skill graph is generated
in advance with a Large Language Model (LLM), enabling searching for correct skill sequences on the fly.

4.1 Constructing Skill Graph with Large Language Models

A correct plan (sτ,1, sτ,2, · · · ) for a task τ = (g, I) should satisfy two conditions. (1) For each i, sτ,i is
executable after (sτ,1, · · · , sτ,i−1) are accomplished sequentially with initial condition I. (2) The target item
g is obtained after all the skills are accomplished sequentially, given initial condition I. To enable searching
for such plans, we should be able to verify whether a plan is correct. Thus, we should know what condition
is required and what is obtained for each skill. We define such information of skills in a structured format.
As an example, information for skill ‘crafting stone_pickaxe ’ is:

stone_pickaxe { consume : { cobblestone : 3, stick : 2},
require : { crafting_table_nearby : 1}, obtain : { stone_pickaxe : 1}}

Each item in this format is also a skill. Regarding them as graph nodes, this format shows a graph structure
between skill ‘stone_pickaxe’ and skills ‘cobblestone’, ‘stick’, ‘crafting_table_nearby’. The directed edge
from ‘cobblestone‘ to ‘stone_pickaxe’ is represented as (3, 1, consume), showing the quantity relationship
between parent and child, and that the parent item will be consumed during skill execution. In fact, in this
format, all the basic skills in Minecraft construct a large directed acyclic graph with hundreds of nodes. The
dashed box in Figure 1 shows a small part of this graph, where grey arrows denote ‘consume’ and red arrows
denote ‘require’.
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To construct the skill graph, we generate structured information for all the skills by interacting with GPT-
3.5 (Ouyang et al., 2022), a high-performance LLM. Since LLMs are trained on large-scale internet datasets,
they obtain rich knowledge in the popular game Minecraft. In the prompt, we give a few demonstrations
and explanations about the format, then ask the LLM to generate other skills information. Dialog with the
LLM can be found in Appendix D.

4.2 Skill Search Algorithm

Our skill planning method is a depth-first search (DFS) algorithm on the skill graph. Given a task τ = (g, I),
we start from the node g and do DFS toward its parents, opposite to the edge directions. In this process, we
maintain all the possessing items starting from I. Once conditions for the skill are satisfied or the skill node
has no parent, we append this skill into the planned skill list and modify the maintained items according to
the skill information. The resulting skill list is ensured to be executable and target-reaching.

To solve a long-horizon task, since the learned low-level skills are possible to fail, we alternate skill planning
and skill execution until the episode terminates. After each skill execution, we update the agent’s condition
I ′ based on its inventory and the last executed skill, and search for the next skill with τ ′ = (g, I ′).

We present the pseudocode for the skill search algorithm and the testing process in Appendix B.

5 Experiments

In this section, we evaluate and analyze our method with baselines and ablations in challenging Minecraft
tasks. Section 5.1 introduces the implementation of basic skills. In Section 5.2, we introduce the setup
for our evaluation task suite. In Section 5.3 and 5.4, we present the experimental results and analyze skill
learning and planning respectively.

5.1 Training Basic Skills

To pre-train basic skills with RL, we use the environments of programmatic tasks in MineDojo (Fan et al.,
2022). To train Manipulation-skills, for simplicity, we specify the environment that initializes target mobs
or resources close to the agent. For the Go-Explore-like training method without specified environments
discussed in Section 3.2, we present the results in Appendix H, which does not underperform the former.

For Manipulation-skills and the low-level policy of the Finding-skill, we adopt the policy architecture of
MineAgent (Fan et al., 2022), which uses a fixed pre-trained MineCLIP image encoder and processes features
using MLPs. To explore in a compact action space, we compress the original large action space into 12× 3
discrete actions. For the high-level policy of the Finding-skill, which observes the agent’s past locations,
we use an LSTM policy and train it with truncated BPTT (Pleines et al., 2023). We pick the model with
the highest success rate on the smoothed training curve for each skill, and fix these policies in all tasks.
Implementation details can be found in Appendix C.

Note that Plan4MC totally takes 7M environmental steps in training, and can unlock the iron pickaxe in
the Minecraft Tech Tree in test. The sample efficiency greatly outperforms all other existing demonstration-
free RL methods (Hafner et al., 2023; Baker et al., 2022).

5.2 Task Setup

Based on MineDojo (Fan et al., 2022) programmatic tasks, we set up an evaluation benchmark consisting
of four groups of diverse tasks: cutting trees to craft primary items, mining cobblestones to craft
intermediate items, mining iron ores to craft advanced items, and interacting with mobs to harvest
food and materials. Each task set has 10 tasks, adding up to a total of 40 tasks. With our settings of basic
skills, these tasks require 25 planning steps on average and maximally 121 planning steps. We estimate the
number of the required steps for each task with the sum of the steps of the initially planned skills and double
this number to be the maximum episode length for the task, allowing skill executions to fail. The easiest
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Table 2: Average success rates on four task sets of our method, all the baselines and ablation methods.
Success rates on all the single tasks are listed in Appendix F.

Task Set Cut-Trees Mine-Stones Mine-Ores Interact-Mobs
MineAgent 0.003 0.026 0.000 0.171
Plan4MC w/o Find-skill 0.187 0.097 0.243 0.170
LLM Planner 0.260 0.067 0.030 0.247
Plan4MC Zero-shot 0.183 0.000 0.000 0.133
Plan4MC 1/2-steps 0.337 0.163 0.143 0.277
Plan4MC 0.417 0.293 0.267 0.320

tasks have 3000 maximum steps, while the hardest tasks have 12000. More details about task setup are
listed in Appendix E. To evaluate the success rate on each task, we average the results over 30 test episodes.

5.3 Skill Learning

We first analyze learning basic skills. While we propose three types of fine-grained basic skills, others directly
learn more complicated and long-horizon skills. We introduce two baselines to study learning skills with RL.

MineAgent (Fan et al., 2022). Without decomposing tasks into basic skills, MineAgent solves tasks
using PPO and self-imitation learning with the CLIP reward. For fairness, we train MineAgent in the
test environment for each task. The training takes 7M environmental steps, which is equal to the sum of
environmental steps we take for training all the basic skills. We average the success rate of trajectories in
the last 100 training epochs (around 1M environment steps) to be its test success rate. Since MineAgent
has no actions for crafting items, we hardcode the crafting actions into the training code. During trajectory
collection, at each time step where the skill search algorithm returns a Crafting-skill, the corresponding
crafting action will be executed. Note that, if we expand the action space for MineAgent rather than
automatically execute crafting actions, the exploration will be much harder.

Plan4MC w/o Find-skill. None of the previous work decomposes a skill into executing the Finding-skill
and Manipulation-skills. Instead, finding items and manipulations are done with a single skill. Plan4MC w/o
Find-skill implements such a method. It skips the Finding-skill in the skill plans during test. Manipulation-
skills take over the whole process of finding items and manipulating them.

Table 2 shows the test results for these methods. Plan4MC outperforms two baselines on the four task sets.
MineAgent fails on the task sets of Cut-Trees, Mine-Stones and Mine-Ores, since taking many attacking
actions continually to mine blocks in Minecraft is an exploration difficulty for RL on long-horizon tasks. On
the contrary, MineAgent achieves performance comparable to Plan4MC’s on some easier tasks
in Interact-Mobs, which requires fewer environmental steps and planning steps. Plan4MC w/o Find-skill
consistently underperforms Plan4MC on all the tasks, showing that introducing the Finding-skill is beneficial
for solving hard tasks with basic skills trained by RL. Because there is no Finding-skill in harvesting iron
ores, their performance gap on Mine-Ores tasks is small.

To further study the Finding-skill, we present the success rate at each planning step in Figure 3 for three
tasks. The curves of Plan4MC and Plan4MC w/o Find-skill have large drops at the Finding-skill. Especially,
the success rates at finding cobblestones and logs decrease the most, because these items are harder to find
in the environment compared to mobs. In these tasks, we compute the average success rate of Manipulation-
Skills, conditioned on the skill before the last Finding-skill being accomplished. While Plan4MC has a
conditional success rate of 0.40, Plan4MC w/o Find-skill decreases to 0.25, showing that solving sub-tasks
with the additional Finding-skill is more effective.

As shown in Table 3, most Manipulation-skills have slightly lower success rates in test than in training,
due to the domain gap between test and training environments. However, this decrease does not occur in
skills that are trained with a large initial distance of mobs/items, as the pre-executed Finding-skill
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Figure 3: Success rates of Plan4MC with/without Finding-skill at each skill planning step, on three long-
horizon tasks. We arrange the initially planned skill sequence on the horizontal axis and remove the repeated
skills. The success rate of each skill represents the probability of successfully executing this skill at least
once in a test episode. Specifically, the success rate is always 1 at task initialization, and the success rate of
the last skill is equal to the task’s success rate.

Table 3: Success rates of Manipulation-skills in training and test. Training init. distance is the maximum
distance for mobs/items initialization in training skills. Note that in test, executing the Finding-skill will
reach the target items within a distance of 3. Training success rate is averaged over 100 training epochs
around the selected model’s epoch. Test success rate is computed from the test rollouts of all the tasks,
while w/o Find refers to Plan4MC w/o Find-skill.

Manipulation-skills Place
Training init. distance -- 10 10 2 2 -- --
Training success rate 0.98 0.50 0.27 0.21 0.30 0.56 0.47
Test success rate 0.77 0.71 0.26 0.27 0.16 0.33 0.26
Test success rate (w/o Find) 0.79 0.07 0.03 0.03 0.02 0.05 0.06

provide better initialization for Manipulation-skills during the test and thus the success rate may increase.
In contrast, the success rates in the test without Finding-skill are significantly lower.

5.4 Skill Planning

For skill planning in open-ended worlds, recent works (Huang et al., 2022a;b; Brohan et al., 2023; Liang
et al., 2022; Wang et al., 2023c) generate plans or sub-tasks with LLMs. We study these methods on our
task sets and implement a best-performing baseline to compare with Plan4MC.

LLM Planner. We implement an LLM-based planner with GPT-3.5 (Ouyang et al., 2022), which proposes
skill plans based on prompts including descriptions of tasks and observations. Similar to chain-of-thoughts
prompting (Wei et al., 2022), we provide few-shot demonstrations with explanations to the planner at the
initial planning step. In addition, we add several rules for planning into the prompt to fix common errors
that the model encountered during test. At each subsequent planning step, the planner will encounter one
of the following cases: the proposed skill name is invalid, the skill is already done, skill execution succeeds,
and skill execution fails. We carefully design language feedback for each case and ask the planner to re-plan
based on inventory changes. For low-level skills, we use the same pre-trained skills as Plan4MC.

Also, we conduct ablations on our skill planning designs.

Plan4MC Zero-shot. This is a zero-shot variant of our interactive planning method, proposing a skill
sequence at the beginning of each task only. The agent executes the planned skills sequentially until a skill
fails or the environment terminates. This planner has no fault tolerance for skills execution.
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Figure 4: Success rates of Plan4MC compared with ablated skill planning methods at each planning step,
on three long-horizon tasks. We arrange the initial planned skill sequence on the horizontal axis and remove
the repeated skills. The success rate of each skill represents the probability of successfully executing this
skill at least once in a test episode. Specifically, the success rate is always 1 at task initialization, and the
success rate of the last skill is equal to the task’s success rate.

Plan4MC 1/2-steps. In this ablation study, we half the test episode length and require the agent to solve
tasks more efficiently.

Success rates for each method are listed in Table 2. We find that LLM Planner has comparable performance
to Plan4MC on the task set of Interact-Mobs, where most tasks require less than 10 planning steps. In Mine-
Stones and Mine-Ores tasks with long-horizon planning, the LLM planner is more likely to make mistakes,
resulting in worse performance. The performance of Plan4MC Zero-shot is much worse than Plan4MC in all
the tasks, since a success test episode requires accomplishing each skill in one trial. The decrease is related
to the number of planning steps and skills success rates in Table 3.

As shown in Figure 4, Plan4MC 1/2-steps has close performance to Plan4MC at each planning step, while
the Plan4MC Zero-shot fails after executing skills with low success rates. Plan4MC 1/2-steps has the least
performance decrease to Plan4MC, showing that Plan4MC can solve tasks in a very limited episode length.

5.5 Pipeline Visualization

Here, we visually demonstrate the steps Plan4MC takes to solve a long-horizon task. Figure 5 shows the
interactive planning and execution process for crafting a bed . With the interactive planning mechanism,
Plan4MC allows execution failures of low-level policies and can revise the plan based on the agent state.

6 Related Work

Agents in Minecraft. In recent years, the popular open-world game Minecraft has become a challenging
benchmark for testing AI agents. Early works tackle the ObtainDiamond challenge (Milani et al., 2020; Guss
et al., 2021; Kanervisto et al., 2022) with hierarchical RL and imitation learning approaches (Milani et al.,
2020; Skrynnik et al., 2021; Mao et al., 2022; Lin et al., 2022; Amiranashvili et al., 2020), where datasets
of expert demonstrations are utilized to facilitate RL training. Recently, several works (Fan et al., 2022;
Lifshitz et al., 2023; Baker et al., 2022; Yuan et al., 2024) leverage internet-scale video datasets to facilitate
policy learning. However, they either can only solve simple short-term tasks or take a substantial number of
environment steps to learn long-horizon tasks. Other works explore multi-task learning (Tessler et al., 2017;
Kanitscheider et al., 2021; Cai et al., 2023; Nottingham et al., 2023), unsupervised skill discovery (Nieto et al.,
2021), LLM-based planning (Wang et al., 2023c;a; Zhu et al., 2023) for Minecraft Agents. Our Plan4MC
is the first demonstration-free, efficient RL agent in Minecraft to solve diverse long-horizon tasks including
many challenging Tech Tree tasks.
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Figure 5: Demonstration of a planning and execution episode for the task ‘craft a bed’. Following the
direction of the arrows, the planner iteratively proposes the skill sequence based on the agent’s state, and
the policy executes the first skill. Though an execution for ‘harvest wool’ fails in the middle, the planner
replans to ‘find a sheep’ again to fix this error, and finally completes the task. The lower right shows the skill
graph for this task, where the red circle indicates the target and the blue circles indicate the initial items.

Learning Skills in Minecraft. Acquiring skills is crucial for solving long-horizon tasks in Minecraft.
Hierarchical approaches (Mao et al., 2022; Lin et al., 2022) in MineRL competition learn low-level skills with
imitation learning. VPT (Baker et al., 2022) labels internet-scale datasets and pre-trains a behavior-cloning
agent to initialize for diverse tasks. Recent works (Cai et al., 2023; Wang et al., 2023c; Nottingham et al.,
2023; Lifshitz et al., 2023) learn skills based on VPT. Without expert demonstrations, MineAgent (Fan et al.,
2022) and CLIP4MC (Ding et al., 2023) learn skills with RL and vision-language rewards. But they can
only acquire a small set of skills. Unsupervised skill discovery (Nieto et al., 2021) learns skills that only
produce different navigation behaviors. In our work, to enable RL to acquire diverse skills, we introduce
the Finding-skill to provide state initialization and effectively learn fine-grained basic skills with intrinsic
rewards.

Planning with Large Language Models. With the rapid progress of LLMs (Ouyang et al., 2022; Chowd-
hery et al., 2022), many works study LLMs as planners in open-ended worlds. To ground language models,
SayCan (Brohan et al., 2023) combines LLMs with skill affordances to produce feasible plans, Translation
LMs (Huang et al., 2022a) selects demonstrations to prompt LLMs, and LID (Li et al., 2022) finetunes lan-
guage models with tokenized interaction data. Other works study interactive planning for error correction.
Inner Monologue (Huang et al., 2022b) proposes environment feedback to the planner. DEPS (Wang et al.,
2023c) introduces descriptor, explainer, and selector to generate plans by LLMs. Many works (Wang et al.,
2023a; Zhu et al., 2023; Wang et al., 2023b; Zhao et al., 2023) study LLM-based agents in Minecraft where
LLMs are high-level planners and the low-level controllers are manually designed (PrismarineJS, 2013). In
our work, we leverage the LLM to generate a skill graph and introduce a skill search algorithm to eliminate
planning mistakes.

7 Conclusion and Discussion

In this paper, we propose a framework to solve diverse long-horizon open-world tasks with reinforcement
learning and planning. To tackle the exploration and sample efficiency issues, we propose to learn fine-
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grained basic skills with RL and introduce a general Finding-skill to provide good environment initialization
for skill learning. In Minecraft, we design a graph-based planner, taking advantage of the prior knowledge
in LLMs and the planning accuracy of the skill search algorithm. Experiments on 40 challenging Minecraft
tasks verify the advantages of Plan4MC over various baselines.

Though we implement Plan4MC in Minecraft, our method is extendable to other similar open-world envi-
ronments and draws insights on building multi-task learning systems. We leave the detailed discussion in
Appendix I.

A limitation of this work is that the Finding-skill is not aware of its goal during exploration, making the
goal-reaching policy sub-optimal. Future work needs to improve its efficiency by training a goal-based policy.
Moreover, if the LLM lacks domain knowledge, how to correct the LLM’s outputs is a problem worth studying
in the future. Providing documents and environmental feedback to the LLM is a promising direction.
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A Video Demonstration

Figure 6 shows the key frames of Plan4MC solving the challenging Tech Tree task of crafting an iron pickaxe
with bare hands.

Begin Harvest logs Craft planks, sticks, table Craft wooden pickaxe Harvest cobblestones

Craft stone pickaxe Harvest iron ores Craft furnace Craft iron ingots Craft iron pickaxe

Figure 6: A playing episode of Plan4MC for crafting iron pickaxe with bare hands. This is a challenging
task in Minecraft Tech Tree, which requires 16 different basic skills and 117 steps in the initial plan.

B Algorithms

We present our algorithm sketches for skill planning and solving hard tasks here.

Algorithm 1: DFS.
Input: Pre-generated skill graph: G; Target item: g; Target item quantity: n;
Global variables: possessing items I and skill sequence S.
for g′ in parents(G, g) do

ng′ , ng, consume←< g′, g >;
ntodo

g′ ← ng′ ;
if (quantity of g′ in I) > ng′ then

Decrease g′ quantity with ng′ in I, if consume;
else

ntodo
g′ ← ntodo

g′ − (quantity of g′ in I);
while ntodo

g′ > 0 do
DFS(G, g′, ntodo

g′ , I, S);
if g′ is not Crafting-skill then

Remove all nearby items in I;
nobtain

g′ ← (quantity of g′ obtained after executing skill g′);
if nobtain

g′ > ntodo
g′ then

Increase g′ quantity with nobtain
g′ − ntodo

g′ in I;
Increase other obtained items after executing skill g′ in I;
ntodo

g′ ← ntodo
g′ − nobtain

g′ ;

Append skill g to S.
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Algorithm 2: Skill search algorithm.
Input: Pre-generated skill graph: G; Target item: g; Initial items: I.
Output: Skill sequence: (s1, s2, ...).
S′ ← ();
I ′ ← I;
DFS(G, g, 1, I ′, S′);
return S′.

Algorithm 3: Process for solving a task.
Input: Task: T = (g, I); Pre-trained skills: {πs}s∈S ; Pre-generated skill graph: G; Skill search

algorithm: Search.
Output: Task success.
I ′ ← I;
while task not done do

(s1, s2, ...)← Search(G, g, I ′);
Execute πs1 for several steps;
if task success then

return True;
I ′ ← inventory items ∪ nearby items;

return False.

C Details in Training Basic Skills

Table 4 shows the environment and algorithm configurations for training basic skills. Except for the skill of
mining whose breaking speed multiplier in the simulator is set to 10, all the skills are trained using
the unmodified MineDojo simulator.

Though the MineCLIP reward improves the learning of many skills, it is still not enough to encourage
some complicated behaviors. In combat , we introduce distance reward and attack reward to further
encourage the agent to chase and attack the mobs. In mining , we introduce distance reward to keep
the agent close to the target blocks. To mine underground ores , we add depth reward to encourage
the agent to mine deeper and then go back to the ground. These item-based intrinsic rewards are easy to
implement for all the items and are also applicable in many other open-world environments like robotics.
Intrinsic rewards are implemented as follows.

State count. The high-level recurrent policy for the Finding-skill optimizes the visited area in a 110× 110
square, where the agent’s spawn location is at the center. We divide the square into 11×11 grids and keep a
visitation flag for each grid. Once the agent walks into an unvisited grid, it receives +1 state count reward.

Goal navigation. The low-level policy for the Finding-skill is encouraged to reach the goal position. The
goal location is randomly sampled in 4 directions at a distance of 10 from the agent. To get closer to the
goal, we compute the distance change between the goal and the agent: rd = −(dt − dt−1), where dt is the
distance on the plane coordinates at time step t. Additionally, to encourage the agent to look in its walking
direction, we add rewards to regularize the agent’s yaw and pitch angles: ryaw = yaw · g, rpitch = cos(pitch),
where g is the goal direction. The total reward is:

r = ryaw + rpitch + 10 ∗ rd. (1)

CLIP reward. This reward encourages the agent to produce behaviors that match the task prompt.
We sample 31 task prompts among all the MineDojo programmatic tasks as negative samples. The pre-
trained MineCLIP (Fan et al., 2022) model computes the similarities between features of the past 16 frames
and prompts. We compute the probability that the frames are most similar to the task prompt: p =

15



Under review as submission to TMLR

[softmax (S (fv, fl) , {S (fv, fl−)}l−)]0, where fv, fl are video features and prompt features, l is the task
prompt, and l− are negative prompts. The CLIP reward is:

rCLIP = max
{

p− 1
32 , 0

}
. (2)

Distance. The distance reward provides dense reward signals to reach the target items. For combat tasks,
the agent gets a distance reward when the distance is closer than the minimal distance in history:

rdistance = max
{

min
t′<t

dt′ − dt, 0
}

. (3)

For mining tasks, since the agent should stay close to the block for many time steps, we modify the
distance reward to encourage keeping a small distance:

rdistance =


dt−1 − dt, 1.5 ≤ dt ≤ +∞
2, dt < 1.5
−2, dt = +∞,

(4)

where dt is the distance between the agent and the target item at time step t, which is detected by lidar
rays in the simulator.

Attack. For combat tasks, we reward the agent for attacking the target mobs. We use the tool’s durability
information to detect valid attacks and use lidar rays to detect the target mob. The attack reward is:

rattack =


90, if valid attack and the target at center
1, if valid attack but the target not at center
0, otherwise.

(5)

Depth. For mining tasks, the agent should dig down first, then go back to the ground. We use the
y-axis to calculate the change of the agent’s depth, and use the depth reward to encourage such behaviors.
To train the dig-down policy, the depth reward is:

rdown = max
{

min
t′<t

yt′ − yt, 0
}

. (6)

To train the go-back policy, the depth reward is:

rup = max
{

yt −max
t′<t

yt′ , 0
}

. (7)

For each Manipulation-skill, we use a linear combination of intrinsic reward and extrinsic success reward to
train the policy.

It takes one day on a single TITAN Xp GPU to train each skill for 1M environmental steps. Table 5 shows
our selected basic skill policies for downstream tasks. Since the Finding-skill and the Mining skill
has no success rate during training, we pick the models with the highest returns on the smoothed training
curves. For other skills, we pick the models with the highest success rates on the smoothed training curves.
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Table 4: Training configurations for all the basic skills. Max Steps is the maximal episode length. Training
Steps shows the environment steps cost for training each skill. Init. shows the maximal distance to spawn
mobs at environment reset. The high-level policy and low-level policy for the Finding-skill are listed in two
lines.

Skill Max Steps Method Intrinsic Reward Training Steps Biome Init.

Find high: 40
low: 50

PPO
DQN

state count
goal navigation

1M
0.5M plains --

Place 200 PPO CLIP reward 0.3M -- --
Harvest 200 PPO CLIP reward 1M plains 10
Harvest 200 PPO CLIP reward 1M plains 10
Combat 400 PPO CLIP, distance, attack 1M plains 2
Combat 400 PPO CLIP, distance, attack 1M plains 2
Harvest 500 PPO distance 0.5M forest --
Harvest 1000 PPO distance 0.3M hills --
Mine 50 PPO depth 0.4M forest --

Craft 1 -- -- 0 -- --

Table 5: Information for all the selected basic skill policies. Success Rate is the success rate of the selected
policy on the smoothed training curve.

Skill Parameters Execute Steps Success Rate
Find 0.9M 1000 --

Place 2.0M 200 0.98
Harvest 2.0M 200 0.50
Harvest 2.0M 200 0.27
Combat 2.0M 400 0.21
Combat 2.0M 400 0.30
Harvest 2.0M 500 0.56
Harvest 2.0M 200 0.47
Mine 4.0M 1000 –

Craft 0 1 1.00

D LLM Prompt Design

To construct the skill graph, we use GPT-3.5 to generate skill information showing relationships between
skills. For both Manipulation-skills and Crafting-skills, we demonstrate several skills, explain the format,
and then ask the LLM to generate all the skills in the same format.

Listing 1: Prompt for generating some Manipulation-skills and the LLM’s response. We only modify the
last querying sentence in the prompt to generate all the skills.
Prompt:
I am playing the game Minecraft . I define some basic skills , like attack something , collect

something and place something nearby . I list the skills in a special format .
As an example :
furnace_nearby :

consume :
’furnace ’: 1

require :
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equip : [’furnace ’]
obtain :

’furnace_nearby ’: 1
To understand this skill line by line: the skill is to get a furnace_nearby . ’consume ’ means

things will be consumed or killed . In this skill , furnace *1 will be consumed . ’require
’ means things are needed but will not be consumed . In this skill , nothing else is
required . We should equip furnace to the first slot. If you do not have to equip
anything , write ’equip : [] ’. Finally , we will obtain furnace_nearby *1.

Another example :
cobblestone :

consume :
’cobblestone_nearby ’: 1

require :
’wooden_pickaxe ’: 1

equip : [’ wooden_pickaxe ’]
obtain :

’cobblestone ’: 1
To understand : to mine a cobblestone , we will consume a nearby cobblestone . A wooden_pickaxe

is required and should be equipped , but will not be consumed .
Now you understand the rule of this format . Please help me generate the following skills :
crafting_table_nearby , wool , beef , diamond

LLM:
Here are the generated skills in the specified format :

crafting_table_nearby :
consume :
’crafting_table ’: 1
require :
equip : [’ crafting_table ’]
obtain :
’crafting_table_nearby ’: 1

wool:
consume :
’sheep_nearby ’: 1
require :
’shears ’: 1
equip : [’shears ’]
obtain :
’wool ’: 1

beef:
consume :
’cow_nearby ’: 1
require :
equip : []
obtain :
’beef ’: 1

diamond :
consume :
’diamond_ore_nearby ’: 1
require :
’iron_pickaxe ’: 1
equip : [’ iron_pickaxe ’]
obtain :
’diamond ’: 1

Listing 2: Prompt for generating some Crafting-skills and the LLM’s response. We only modify the last
querying sentence in the prompt to generate all the skills.
Prompt:
I am playing the game Minecraft . I list all the crafting skills in this game in a special

format .
As an example :
bed:

consume :
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’planks ’: 3
’wool ’: 3

require :
’crafting_table_nearby ’: 1

equip : []
obtain :

’bed ’: 1
To understand this skill line by line: the skill is to craft a bed. We will consume planks *3

and wool *3. To craft bed , a crafting_table_nearby is necessary and must be in the ’
require :’ line.

For crafting skills the equipment is always []. Finally , we will obtain bed *1.
Another example :
cooked_beef :

consume :
’planks ’: 1
’beef ’: 1

require :
’furnace_nearby ’: 1

equip : []
obtain :

’cooked_beef ’: 1
Because we require a furnace_nearby . The fuel , which is always ’planks ’*1 , should be added

to the ’consume ’ items .
For the ’require :’ line , you should know whether the skill needs crafting_table_nearby ,

furnace_nearby , or nothing . If require nothing , just don ’t write anything in this line.
Now you understand the rule of this format . Please help me generate the following skills :
stick , chest , furnace , item_frame

LLM:
Sure , here are the crafting skills for the items you requested :

stick :
consume :
’planks ’: 2
require :
equip : []
obtain :
’stick ’: 4

chest :
consume :
’planks ’: 8
require :
’crafting_table_nearby ’: 1
equip : []
obtain :
’chest ’: 1

furnace :
consume :
’cobblestone ’: 8
require :
’crafting_table_nearby ’: 1
equip : []
obtain :
’furnace ’: 1

item_frame :
consume :
’stick ’: 8
’leather ’: 1
require :
’crafting_table_nearby ’: 1
equip : []
obtain :
’item_frame ’: 1

All the Finding-skill have the same format:
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(item) _nearby :
consume :
require :
equip : []
obtain :

(item) _nearby : 1

In our experiments, after generating all the skills, we check and correct them according to the Minecraft
database. Among 55 skills, we find 6 mistakes in total.

E Task Setup

Table 6, 7 lists settings for 40 evaluation tasks. To make sure the agent is spawned in an unseen environment
in each test episode, we randomly transport the agent with a maximum distance of 500 at environment reset.
For tasks involving interacting with mobs, we spawn cows and sheep with a maximum distance of 30, which
is much larger than the spawning distance in training basic skills. For the Mine-Ores task set, we set the
breaking speed multiplier to 10. For the other three task sets, we use the default simulator.

Table 6: Settings for Cut-Trees and Mine-Stones tasks. Initial Tools are provided in the inventory at each
episode beginning. Involved Skills is the least number of basic skills the agent should master to accomplish
the task. Planning Steps is the number of basic skills to be executed sequentially in the initial plans.

Task Icon Target Name Initial Tools Biome Max Steps Involved
Skills

Planning
Steps

stick -- plains 3000 4 4
crafting_table_

nearby -- plains 3000 5 5

bowl -- forest 3000 6 9
chest -- forest 3000 6 12

trap_door -- forest 3000 6 12
sign -- forest 3000 7 13

wooden_shovel -- forest 3000 7 10
wooden_sword -- forest 3000 7 10
wooden_axe -- forest 3000 7 13

wooden_pickaxe -- forest 3000 7 13

furnace_nearby *10 hills 5000 9 28
stone_stairs *10 hills 5000 8 23
stone_slab *10 hills 3000 8 17

cobblestone_wall *10 hills 5000 8 23
lever forest_hills 5000 7 7
torch *10 hills 5000 11 30

stone_shovel forest_hills 10000 9 12
stone_sword forest_hills 10000 9 14
stone_axe forest_hills 10000 9 16

stone_pickaxe forest_hills 10000 9 16

F Experiment Results for All the Tasks

Table 8 shows the success rates of all the methods in all the tasks, grouped in 4 task sets.
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Table 7: Settings for Mine-Ores and Interact-Mobs tasks. Initial Tools are provided in the inventory at each
episode beginning. Involved Skills is the least number of basic skills the agent should master to accomplish
the task. Planning Steps is the number of basic skills to be executed sequentially in the initial plans.

Task Icon Target Name Initial Tools Biome Max Steps Involved
Skills

Planning
Steps

iron_ingot *5, *64 forest 8000 12 30
tripwire_hook *5, *64 forest 8000 14 35

heavy_weighted_
pressure_plate *5, *64 forest 10000 13 61

shears *5, *64 forest 10000 13 61
bucket *5, *64 forest 12000 13 91

iron_trapdoor *5, *64 forest 12000 13 121
iron_shovel *5, *64 forest 8000 14 35
iron_sword *5, *64 forest 10000 14 65
iron_axe *5, *64 forest 12000 14 95

iron_pickaxe *5, *64 forest 12000 14 95

milk_bucket , *3 plains 3000 4 4
wool , *2 plains 3000 3 3
beef plains 3000 2 2

mutton plains 3000 2 2
bed , plains 10000 7 11

painting , plains 10000 8 9
carpet plains 3000 3 5

item_frame , plains 10000 8 9
cooked_beef , plains 10000 7 7

cooked_mutton , plains 10000 7 7
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Table 8: Success rates in all the tasks. Each task is tested for 30 episodes, set with the same random seeds
across different methods.

Task MineAgent Plan4MC w/o
Find-skill

Interactive
LLM

Plan4MC
Zero-shot

Plan4MC
1/2-steps Plan4MC

0.00 0.03 0.30 0.27 0.30 0.30
0.03 0.07 0.17 0.27 0.20 0.30
0.00 0.40 0.07 0.27 0.57 0.47
0.00 0.23 0.00 0.07 0.10 0.23
0.00 0.07 0.03 0.20 0.27 0.37
0.00 0.07 0.00 0.10 0.30 0.43
0.00 0.37 0.73 0.23 0.50 0.70
0.00 0.33 0.63 0.30 0.60 0.47
0.00 0.23 0.47 0.13 0.27 0.37
0.00 0.07 0.20 0.00 0.27 0.53

0.00 0.17 0.00 0.00 0.13 0.37
0.00 0.30 0.20 0.00 0.33 0.47
0.00 0.20 0.03 0.00 0.37 0.53
0.21 0.13 0.13 0.00 0.33 0.57
0.00 0.00 0.00 0.00 0.10 0.10
0.05 0.10 0.00 0.00 0.17 0.37
0.00 0.00 0.10 0.00 0.03 0.20
0.00 0.07 0.13 0.00 0.07 0.10
0.00 0.00 0.07 0.00 0.10 0.07
0.00 0.00 0.00 0.00 0.00 0.17

0.00 0.53 0.20 0.00 0.30 0.47
0.00 0.27 0.00 0.00 0.27 0.33
0.00 0.37 0.00 0.00 0.13 0.30
0.00 0.30 0.03 0.00 0.20 0.43
0.00 0.27 0.00 0.00 0.03 0.20
0.00 0.10 0.00 0.00 0.03 0.13
0.00 0.27 0.03 0.00 0.27 0.37
0.00 0.13 0.00 0.00 0.07 0.20
0.00 0.07 0.03 0.00 0.07 0.07
0.00 0.13 0.00 0.00 0.07 0.17

0.46 0.57 0.57 0.60 0.63 0.83
0.50 0.40 0.76 0.30 0.60 0.53
0.33 0.23 0.43 0.10 0.27 0.43
0.35 0.17 0.30 0.07 0.13 0.33
0.00 0.00 0.00 0.00 0.07 0.17
0.00 0.03 0.00 0.10 0.23 0.13
0.06 0.27 0.37 0.10 0.50 0.37
0.00 0.00 0.00 0.03 0.10 0.07
0.00 0.03 0.03 0.03 0.20 0.20
0.00 0.00 0.00 0.00 0.03 0.13
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G The Necessity of Learning the Finding-skill

We demonstrate the exploration difficulty of learning skills in Minecraft. Figure 7 shows that a random
policy can only travel to a distance of 5 blocks on plains within 500 steps. Since trees are rare on the plains
and usually have > 20 distances to the player, an RL agent starting from a random policy can fail to collect
logs on plains.
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Figure 7: Maximal travel distance to the spawning point a random policy could reach in Minecraft, under
different episode lengths. We test for 100 episodes, with different randomly generated worlds and agent
parameters. Note that all Manipulation-skills we trained have episode lengths less than 1000 to ensure
sample efficiency.

In Table 9, we compare the travel distances of a random policy, a hand-coded walking policy, and our
Finding-skill pre-trained with RL. We find that the Finding-skill has a stronger exploration ability than the
other two policies.

Table 9: Maximal travel distance on plains of a random policy, a hand-coded policy which always takes
forward+jump and randomly turns left or right, and our Finding-skill.

Episode length 200 500 1000
Random Policy 3.0± 2.1 5.0± 3.6 7.1± 4.9

Hand-coded Policy 7.1± 2.7 11.7± 4.4 18.0± 6.6
Finding-skill 12.6± 5.6 18.5± 9.3 25.7± 12.1
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H Training Manipulation-skills without Nearby Items

For all the Manipulation-skills that are trained with specified environments in the paper, we use the Go-
Explore-like approach to re-train them in the environments without target items initialized nearby. In a
training episode, the pre-trained Finding-skill explores the environment and finds the target item, then the
policy collects data for RL training. In the following, we denote the previous method as Plan4MC and the
new method as Plan4MC-go-explore.

Table 10 shows the maximal success rates of these skills over 100 training epochs. We find that all the skills
trained with Go-Explore do not fail and the success rates are comparable to the previous skills. This is
because the Finding-skill provides good environmental initialization for the training policies. In Milk and
Wool, Plan4MC-go-explore even outperforms Plan4MC, because the agent can be closer to the target mobs
in Plan4MC-go-explore.

Table 11 shows the test performance of Plan4MC on the four task sets. We find that Plan4MC-go-explore
even outperforms Plan4MC on three task sets. This demonstrates that the skills trained with Go-Explore
can generalize well to unseen environments.

Table 10: Training success rates of the Manipulation-skills under the two environment settings. Results are
the maximal success rates averaged on 100 training epochs.

Skill

Plan4MC 0.50 0.27 0.21 0.30 0.56 0.47
Plan4MC-go-explore 0.82 0.34 0.22 0.19 0.25 0.71

Table 11: Average success rates on the four task sets of Plan4MC, with the Manipulation-skills trained in
the two settings.

Task Set Cut-Trees Mine-Stones Mine-Ores Interact-Mobs
Plan4MC 0.417 0.293 0.267 0.320

Plan4MC-go-explore 0.543 0.349 0.197 0.383

We further study the generalization capabilities of learned skills. Table 12 shows the test success rates
of these skills in the 40 tasks and the generalization gap. We observe that Plan4MC-go-explore has a
small generalization gap in the first four mob-related skills. This is because Plan4MC-go-explore uses the
same policy for approaching the target mob in training and test, yielding closer initial distributions for
Manipulation-skills. We find that in Harvest Log, Plan4MC-go-explore often finds trees that have been cut
before. Thus, it is more difficult to harvest logs in training, and the test success rate exceeds the training
success rate.

Table 12: The test success rates of the skills in solving the 40 tasks, and the generalization gap (test success
rate - training success rate).

Skill

Plan4MC 0.71(+0.21) 0.26(-0.01) 0.27(+0.06) 0.16(-0.14) 0.33(-0.23) 0.26(-0.21)
Plan4MC-
go-explore 0.86(-0.04) 0.47(+0.13) 0.16(-0.06) 0.16(-0.03) 0.45(+0.20) 0.47(-0.24)

24



Under review as submission to TMLR

I Discussion on the Generalization of Plan4MC

Plan4MC contributes a pipeline combining LLM-assisted planning and RL for skill acquisition. It is widely
applicable in many open-world domains (Brohan et al., 2023; Li et al., 2023), where the agent can combine
basic skills to solve diverse long-horizon tasks.

Our key insight is that we can divide a skill into fine-grained basic skills, thus enabling acquiring skills
sample-efficiently with demonstration-free RL. The Finding-skill in Plan4MC can be replaced with any
learning-to-explore RL policy, or a navigation policy in robotics. As an example, for indoor robotic tasks,
a skill is defined with action (pick/drop/open) + object. We can break such a skill into navigation, arm
positioning, and object manipulation, which can be better acquired with demonstration-free RL since the
exploration difficulty is substantially reduced.

Our experiments on learning skills in Minecraft demonstrate that object-based intrinsic rewards improve
sample efficiency. Figure 8 shows that both MineCLIP reward and distance reward have a positive impact
on skill reinforcement learning. This gives motivation to use vision-language models, object detectors, or
distance estimation for reward design in skill learning.

For planning, our approach is a novel extension of LLM-based planners, which incorporates LLM knowledge
into a graph-based planner, improving planning accuracy. It can be extended to settings where the agent’s
state can be abstracted by text or entities.
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Figure 8: Using different intrinsic rewards for training Harvest Milk with PPO. Results are averaged on 3
random seeds.
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