
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

Under review as a conference paper at ICLR 2025

SEEDLM: COMPRESSING LLM WEIGHTS INTO SEEDS OF
PSEUDO-RANDOM GENERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have transformed natural language processing, but face signif-
icant challenges in widespread deployment due to their high runtime cost. In this paper, we in-
troduce SeedLM, a novel post-training compression method that uses seeds of a pseudo-random
generator to encode and compress model weights. Specifically, for each block of weights, we
find a seed that is fed into a Linear Feedback Shift Register (LFSR) during inference to ef-
ficiently generate a random matrix. This matrix is then linearly combined with compressed
coefficients to reconstruct the weight block. SeedLM reduces memory access and leverages
idle compute cycles during inference, effectively speeding up memory-bound tasks by trading
compute for fewer memory accesses. Unlike state-of-the-art methods that rely on calibration
data, our approach is data-free and generalizes well across diverse tasks. Our experiments with
Llama3 70B, which is particularly challenging, show zero-shot accuracy retention at 4- and 3-bit
compression to be on par with or better than state-of-the-art methods, while maintaining perfor-
mance comparable to FP16 baselines. Additionally, FPGA-based tests demonstrate that 4-bit
SeedLM, as model size increases to 70B, approaches a 4x speed-up over an FP16 Llama 2/3
baseline.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across numerous benchmarks
(Achiam et al., 2023; Touvron et al., 2023). However, the practical deployment of these models often encoun-
ters limitations due to substantial memory transfer requirements. This issue is especially pronounced during
autoregressive generation, which is primarily memory-bound and takes the majority of the inference time (Lee
et al., 2024). In contrast, operations like 8-bit integer multiplication performed at 45nm 0.9V are demonstrated to
be over 200x more energy-efficient than reading the same 8 bits from DRAM (Horowitz, 2014). In this paper, we
explore the following question: Can we trade increased compute for a reasonable reduction in memory accesses?
A positive answer here not only transforms energy-intensive memory access operations into more energy-efficient
compute operations but also alleviates the memory bandwidth limitations that pose a significant bottleneck during
LLM inference.

Post-training weight compression is an effective method to reduce the size of pretrained LLMs, making them
suitable for on-device execution or reducing power consumption through fewer memory reads. Current state-of-
the-art techniques for compressing weights typically require calibration data and involve meticulously adjusting
the weights to ensure that the learned knowledge is retained.

We introduce SeedLM, a simple yet effective compression technique which can compress weights to 3-4 bits with
minimal accuracy loss. SeedLM is an innovative method for compressing the weights of LLMs by projecting
weight blocks into pseudo-random projection basis sets. By finding the optimal seeds to generate these pseudo-
random projections per weight block, SeedLM ensures a low compression error and consequently maintains the
accuracy of the original model. Our approach only requires storing the seed and few projection coefficients instead
of all the weight values to reconstruct high dimensional weight blocks. As a result, SeedLM significantly reduces
the memory footprint required for operating large-scale models during inference. To generate pseudo-random
matrix blocks given a seed, we leverage Linear Feedback Shift Register (LFSR) hardware blocks that are widely
used in applications such as cryptography, communication, error detection, etc (Gaitonde & Ramabadran, 1988;
Zeng et al., 2013; Xiang et al., 2016). LFSRs can be efficiently implemented in the silicon with minimal energy
and area footprint.

Figure 1 shows the Retained Accuracy (%), which is the ratio of the compressed model’s accuracy to the full-
precision FP16 model’s accuracy, on the Llama 3 70B model. As shown, SeedLM retains approximately 97.9%
of zero-shot accuracy across various tasks in a data-free setting, using 4 bits per weight element (see Section 4.1
for more details). It also consistently outperforms state-of-the-art 3-bit and 4-bit compression techniques that rely

1

058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Under review as a conference paper at ICLR 2025

Figure 1: Retained zero-shot accuracy across a variety of tasks and compression methods, compared to the stan-
dard Llama 3 70B model. The top row shows data for 4-bit compression, while the bottom row shows data for
3-bit compression. We compare the performance of SeedLM, AWQ, and OmniQuant across the ARC-Easy, ARC-
Challenge, HellaSwag, WinoGrande, and BoolQ tasks. While being completely data-free, SeedLM outperforms
state-of-the-art weight quantization methods that rely on a calibration dataset.

on calibration data. To the best of our knowledge, this is the first time nearly identical accuracy has been achieved
with 4-bit compression on LLMs without data, using a deterministic offline algorithm.

The summary of our contributions is as follows:

• For the first time, we demonstrate how to leverage LFSR hardware blocks to trade increased compute
with lower memory accesses.

• We show the first instance of achieving nearly identical accuracy with 4-bit quantization without data,
using a deterministic offline algorithm.

• We demonstrate an effective solution to find the optimized seed for the LFSR modules while maximizing
compression ratio.

• We prototype SeedLM on an FPGA (Field-Programmable Gate Array) and demonstrate its efficacy in
reducing the inference latency with custom hardware.

2 RELATED WORK

Significant research has been conducted in model compression for LLMs, a critical approach for reducing both
the memory footprint and computational demands of these models. In this section, we highlight some of the most
relevant techniques from prior work.

Compression With Random Basis: Recent works have demonstrated that neural networks can be decomposed
into random number generator seeds and weight coefficients. In PRANC (Nooralinejad et al., 2022), full networks
are compressed by orders of magnitude to improve storage and transmission efficiency. LoRA (Hu et al., 2021)
compresses the weights by injecting trainable rank decomposition matrices into each layer of the network. NOLA
(Koohpayegani et al., 2023) builds upon LoRA by compressing the low-rank matrices through a linear combination
of random basis vectors, further reducing memory and computational overhead.

Our work (SeedLM) is conceptually similar in that we compress networks using random basis. These other models
rely on much larger basis ranks applied globally rather than per-block. As a result, these methods need far more
operations per parameter to preserve accuracy and are not computationally feasible at inference for LLMs.

Data-Free Post-Training Compression: A few previous works have explored data-free post-training compres-
sion (Nagel et al., 2019; Horton et al., 2020; Nunez et al., 2023). Such works are capable of producing a com-
pressed model after training without the need for calibration data. They usually apply quantization or pruning
techniques to obtain a smaller model. Similarly, SeedLM does not require any data for model compression. This
is in contrast to most recent works on LLM compression, which require calibration data.

2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Under review as a conference paper at ICLR 2025

There are more computationally expensive methods for data-free compression that involve generating data from a
teacher model and performing distillation (Lopes et al., 2017; Gou et al., 2020). These techniques are applied to
LLMs as demonstrated in Liu et al. (2023).

Post-Training Compression with Calibration Data: An early example of post-training quantization with cal-
ibration data is found in Nagel et al. (2020), where activation statistics are used to decide whether to round
quantized values up or down. The cost of post-training quantization is a small fraction of the total training cost.

Recently, calibration data has been leveraged for post-training compression in LLMs. AWQ (Lin et al., 2024)
rescales salient weights before compression using activation statistics. In QuIP# (Tseng et al., 2024) and GPTQ
(Frantar et al., 2022), Hessian analysis of calibration data helps make rounding decisions during quantization.
SpQR (Dettmers et al., 2023) retains outliers during quantization to preserve accuracy. OmniQuant (Shao et al.,
2023) employs weight clipping and other transformations to maintain accuracy. Additive Quantization (Egiazarian
et al., 2024) learns a codebook for performing additive quantization. In our study, we used AWQ, QuIP#, and
OmniQuant as our main baselines because they avoid costly training while delivering strong results.

Training-Aware Compression: Compressing the model during the training process has the disadvantage of fix-
ing the compression method and parameters beforehand, but usually offers better accuracy. An overview of
quantization-aware training is provided in Jacob et al. (2017); Nagel et al. (2022); Xi et al. (2023), while pruning
techniques are discussed in Alizadeh-Vahid et al. (2023); Sun et al. (2023); Kusupati et al. (2020); LeCun et al.
(1989). In this work, we do not compare SeedLM with training-aware methods, as our focus is on post-training
compression methods.

3 METHODOLOGY

In this section, we introduce SeedLM, our method for compressing the weights of LLMs by using seeds from
a pseudo-random generator. Initially, each weight matrix is segmented into blocks of C contiguous elements.
Representing each block as a vector w ∈ RC , we approximate it as a linear combination of columns from a matrix
U ∈ RC×P . This matrix U is constructed using a pseudo-random generator given a seed specifically selected to
generate a subspace that most effectively reconstructs w linearly.

Figure 2 illustrates this setup. Our primary goal is to find the optimal seed, s, and coefficient vector, t ∈ RP , that
minimize the reconstruction error between the original and the approximated weights. For this reconstruction, only
the seed and the coefficients are stored. In the following subsection, we first outline a mechanism to efficiently
generate U using a K-bit seed in our Linear Feedback Shift Register (LFSR) framework. We will then discuss
the methodologies employed to determine s and t.

U(s)

t× ≈

w

Random Matrix

Coefficients

Weight Block

Seed s

Figure 2: Compression of weights using pseudo-random generated matrices.

3.1 LINEAR FEEDBACK SHIFT REGISTER (LFSR)

A Linear Feedback Shift Register (LFSR) is a simple yet effective type of shift register, ideal for generating
pseudo-random binary sequences. The primary advantages of LFSRs in hardware include cost-effectiveness and
minimal resource consumption due to their straightforward implementation with basic flip-flops and XOR gates.
This simplicity facilitates rapid and efficient sequence generation, which is integral to our compression technique.

An LFSR operation can be characterized by its length K (which determines the number of bits in its shift register)
and its feedback polynomial. To generate next pseudo-random number in the sequence, each bit in the register is
first shifted to the next position. Then, the new bit entering the register is calculated as a linear combination of
certain bits of the current state as specified by the feedback polynomial, typically implemented by XOR operations.

3

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Under review as a conference paper at ICLR 2025

Mathematically, the new bit xn+1 generated by the LFSR can be expressed as:

xn+1 =

K−1∑
i=0

αi · xn+i−K+1 mod 2,

where K ≥ 2 and α0, . . . , αK are the binary coefficients that define the feedback polynomial, with each αj

determining whether the bit xj is selected or not.

The state transition in the LFSR can be described as follows: if the current state is represented by the bits
xn, xn−1, . . . , xn−K+1, then after the shift, the new state will be xn+1, xn, . . . , xn−K+2. This transition re-
flects the shift of every bit to the right by one position, with the new bit xn+1 entering at the leftmost position.
Given its finite state nature, an LFSR will eventually enter a repeating cycle, suggesting an asymptotic uniform
distribution over this cycle. An LFSR can cycle through at most 2K−1 states, excluding the all-zero state.

A key goal when designing an LFSR is to guarantee a maximal-length sequence. This ensures that the LFSR will
produce the longest possible sequence of non-repeating states before repeating. Intuitively, this means the LFSR
will cycle through every possible state (except the all-zero state), maximizing the number of distinct pseudo-
random values generated. To achieve this maximal-length property, the feedback polynomial must be primitive
over the Galois field GF(2). In simple terms, a primitive polynomial ensures that the LFSR explores all 2K−1
states without prematurely entering a repeating cycle.

For our experiments, this means a fixed set of coefficients {αj : 0 ≤ j ≤ K−1} that is hard-wired, ensuring
maximal length if and only if it avoids the all-zero state, in which it stays in zero. A summary of the algorithmic
implementation can be found in Appendix A.2. Refer to Section A.1 for the indexed j coefficients used for each
K where αj equals one; all other coefficients are zero. For a comprehensive understanding of LFSRs and their
properties, see (Bhattacharjee & Das, 2022).

To optimize the efficiency of generating random matrices through an LFSR, for a fixed length K and a set of
coefficients {αj}, we cache all the 2K−1 states that sequentially follow each other – each state uniquely determined
by its preceding state along with K and {αj}. This cache allows us to extract an arbitrarily sized random matrix
from the sequence given a random seed s. We can cycle through these states to generate matrices of any desired
size. For an illustration, refer to Figure 3. With K = 16 and a maximal length LFSR, all states will occupy
approximately (216−1)× 2 Bytes ≈ 130KB of memory, which is negligible. This setup ensures a highly efficient
and scalable mechanism for generating the necessary random matrices for our compression technique. K is a
hyper-parameter of our method which we will elaborate on in Section 3.4.

6

7

3

1

4

2

5

V(4) =

2 5

6 7

3 1

4 2




Figure 3: Illustration of the state sequence for a K=3 LFSR with all possible states with the feedback polynomial
defined in Table A.1. The matrix V(4) is generated from these states. The seed state s = 4 is highlighted with a
thick circle.

3.2 WEIGHT COMPRESSION USING PSEUDO-RANDOM GENERATORS

Building on the foundations laid by the LFSR mechanisms, our methodology seeks to represent a block of data
w ∈ RC using the decomposition U(s)t. Here, U(s) ∈ RC×P is a random matrix derived from a K-bit LFSR.
During inference, s and t, which require fewer bits when considering all the bits in a block compared to the
original weights, are retrieved from memory. This reduces the memory footprint and accelerates memory-bound
generation tasks. The weights are reconstructed on-the-fly using s and t, and these reconstructed weights are then
used to compute intermediate activations and, ultimately, the outputs. As the output of the LFSR is in the range
of [1, 2K−1], which are unsigned integers, we normalize them to ensure they fall within the range of [−1, 1],
enhancing their expressiveness. More specifically, to construct U(s), we first generate a matrix V(s) using an
LFSR seeded by s as illustrated in Figure 3. This matrix initially contains integers and undergoes the following
normalization to ensure that its components lie between [−1, 1]:

U(s) =
1

2K−1 − 1

(
V(s)− 2K−11

)
,

4

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

Under review as a conference paper at ICLR 2025

where 1 ∈ RC×P represents a matrix of all ones, and K is the LFSR bit length. To determine the optimal seed
and coefficients, we solve the following optimization problem:

minimize
s,t

∥w −U(s)t∥22, subject to: s ∈ {1, . . . , 2K − 1}, and t ∈ Q, (1)

where ∥·∥ denotes the Euclidean norm, and Q represents the set of valid quantized values. The objective is to
identify an optimal seed s∗ and coefficients t∗ that most effectively approximate w. This problem is NP-hard due
to the discrete nature of the seed selection and the quantization of coefficients since it involves searching through
a combinatorially large set of possibilities. Next, we describe the design choices and heuristics used to solve the
problem.

The quantization scheme for the vector t plays a critical role in balancing reconstruction accuracy with bit effi-
ciency, adhering to our bit budget constraints. We represent each element of t as a 4-bit 2’s complement integer,
paired with a shared 4-bit exponent. This configuration allows us to capture a broad dynamic range of values
within the interval [−8 × 2−8, 7 × 27]. The shared 4-bit exponent further extends the dynamic range, enabling
representation across several orders of magnitude. We have specifically chosen for the exponent to be a power of
two, which is hardware-friendly and can be efficiently implemented using simple shift operations in digital cir-
cuits; see (Darvish Rouhani et al., 2020). By combining the 4-bit integer with the shared exponent, each quantized
element is expressed as ti = qi × 2e, where qi is the 4-bit 2’s complement integer and e is the shared exponent.
The shared exponent e is selected as:

e = max
i
⌊log2 (|ti|)⌋ ,

where |ti| is the absolute value of each element of t. After determining e, each ti is scaled by dividing it by 2e,
and then quantized to a 4-bit 2’s complement integer to derive qi.

3.3 APPROXIMATION APPROACH

Looking back at the optimization problem in Eq. 1, while the unconstrained case admits a closed-form solution
given by U(s)†w, where U(s)† denotes the Moore-Penrose pseudo-inverse of U(s), our discrete constraints
convert it to an NP-hard optimization problem. Hence, to solve Eq. 1, we employ an approximate heuristic
approach that involves the following steps:

1. Generate N = 2K−1 random matrices {U(s1),U(s2), . . . ,U(sN)}, each of size C ×P , with an LFSR
of length K.

2. For each matrix U(sj), project the vector w onto the subspace spanned by U(sj):

tj = U(sj)
†w.

3. Quantize tj to obtain the vector t̂j using 4-bit integers and a 4-bit shared exponent ej .

4. Compute the reconstruction error for each pair (U(sj), t̂j) as follows:

ϵj = ∥w −U(sj)t̂j∥22.

5. Select the pair (s∗, t∗) that minimizes the reconstruction error:

(s∗, t∗) = arg min
sj ,t̂j

ϵj . (2)

Our heuristic algorithm leverages randomness to explore multiple subspaces and selects the one that best approxi-
mates w under the given constraints. In summary, we apply the above heuristics across all weight blocks in parallel
to find the seeds and coefficients that minimize the reconstruction error. To enhance computational efficiency, we
precompute and cache the pseudo-inverse matrices for all seeds and perform steps 2–5 in parallel across all blocks.
The complete algorithm is provided in Appendix A.4.

3.4 DESIGN SPACE EXPLORATION

The minimum reconstruction error obtained from Eq. 2 depends on the block size C, the latent dimension P , and
the LFSR length K. Here, we explore how we select the optimal configuration for an M -bit compression. First,
let’s examine the total number of bits required to store a SeedLM block of C elements, which consists of the
following:

• K bits to index the selected random seed s∗ to generate matrix U(s∗) among the N= 2k−1 candidates.
• 4 bits to store the shared exponent e.

• 4P bits to store the quantized vector t̂∗ (P elements each requiring 4 bits).

5

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

Under review as a conference paper at ICLR 2025

So, the effective bit per element is a function of hyper-parameters K, C, and P . In particular, for an M -bit
compression, we have the bit budget per element as

M =
K + 4 + 4P

C
. (3)

To determine the optimal configuration for a given bit budget per element, M , we evaluate the reconstruction
accuracy of our method in the search space. Specifically, we explore how a standard normal Gaussian vector w
can be approximated using any combination of valid hyperparameters given the bit budget M . While assuming
a Gaussian distribution may have its limitations, it has proven effective within our design space and aligns well
with real-world benchmarks. Our objective is to find appropriate values for block size C, latent dimension P ,
and LFSR length K, such that the reconstruction error is minimized when the optimal seed is selected. More
specifically, let s∗C,P,K and t∗C,P,K denote the solutions obtained from Eq. 2. For an M -bit compression, we solve
the following optimization problem:

E[ϵmin] := min
C,P,K

E
[
∥w −U(s∗C,P,K)t∗C,P,K∥22

]
,

subject to: MC = K + 4 + 4P and C,K,P ∈ Z+,
(4)

where Z+ represents the set of all positive integers. Since the optimization problem in equation 4 is not analyt-
ically tractable, we numerically solved it by conducting a grid search over C, P , and K constrained to positive
integers. Understanding the trade-offs among C, P , and K is important for optimizing the approximation within
a given bit budget. Each of these parameters influences the overall performance and contributes to minimizing the
reconstruction error.

One critical trade-off is between the LFSR length K and the latent dimension P . Increasing K reduces the
expected minimum error E[ϵmin] by providing more opportunities to find a better projection. However, this comes
at a cost: as K increases, the number of required bits grows, reducing the available bit budget for P . The objective
is to find an optimal K that effectively lowers E[ϵmin] without overly constraining P , as that could lead to a
significant increase in the overall error E[ϵmin]. Similarly, increasing P helps capture more of the energy of the
vector w, thus reducing E[ϵmin]. However, this also requires more bits, which may limit the value of K. The
key is to strike a balance where enough energy is captured without overly sacrificing the exploration of better
projections through K. Finally, increasing C expands the total bit budget, allowing for larger values of both P
and K. However, this also increases the potential for higher error, as expanding the space may dilute the precision
of projections.

Overall, C, P , and K are interdependent, and optimizing these parameters requires a careful numerical exploration
of different combinations. Based on this analysis, we selected the configurations shown in Table 1 for M=3 and
M=4, which are used in the experiments reported next.

Table 1: Selected configurations of C, P , and K for M = 3 and M = 4.

bits per element M Block size C Latent Dimension P LFSR Seed Bits K

3 12 4 16

4 8 3 16

4 EXPERIMENTS

In this section, we apply the heuristics across all weight blocks of pretrained LLMs in parallel to find the seeds and
coefficients, as described in Eq. 2, that minimize the reconstruction error. Using the configurations from Table 1,
we evaluate our compression methods in terms of accuracy and performance. Our experiments focus on Llama
2 and Llama 3 models (Touvron et al., 2023), and unlike other methods, SeedLM does not require fine-tuning or
calibration data while still achieving competitive results. We assess model quality using perplexity and accuracy,
followed by performance analysis through FPGA-based matrix multiplication with low-level LFSR generation.
This highlights the cost and performance benefits of SeedLM, especially in hardware-constrained environments.

4.1 ACCURACY RESULTS

To evaluate the quality of SeedLM, we measure perplexity on the WikiText-2 dataset (Merity et al., 2016) and
assess accuracy across various zero-shot tasks using LM Evaluation Harness (Gao et al., 2021)1. We compare

1For all compression methods, we use LM Evaluation Harness v0.4.3 and the following task versions: arc-challenge=1.0,
arc-easy=1.0, hellaswag=1.0, winogrande=1.0, boolq=2.0.

6

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

Under review as a conference paper at ICLR 2025

our method against established compression techniques such as AWQ (Lin et al., 2024), OmniQuant (Shao et al.,
2023), and QuIP# (Tseng et al., 2024), using the official GitHub repositories for each baseline as of Septem-
ber 2024. A key strength of SeedLM is that it can operate entirely data-free, in contrast to other methods that
require calibration data to achieve comparable results. For the baseline methods, we use the default calibration
sets from their official repositories. Our experiments involve Llama 2 models (7B, 13B, 70B) and Llama 3 models
(8B, 70B), tested with 3-bit and 4-bit representations. In the case of AWQ and OmniQuant, we use 4-bit integers
with channel-wise scaling to avoid significantly increasing the bits per element beyond the allocated 3 or 4 bits
(since a group size of 128 in these methods adds roughly 0.25 extra bits per parameter). For QuIP# and Om-
niQuant, we ensure a fair comparison with SeedLM and AWQ by not performing fine-tuning on the quantized
models. However, unlike SeedLM, all of them still require per-layer calibration, which relies on calibration data
and activations, whereas SeedLM achieves its results without any data dependency.

To evaluate general language
model performance, we measure
perplexity on the WikiText-2
language modeling dataset, us-
ing 166 windows, each with a
length of 2048 tokens, from the
test data split. The results, as
shown in Table 2, illustrate a clear
trade-off between compression
level and model quality. In some
cases, larger models subjected
to aggressive compression even
underperform smaller models with
milder compression. SeedLM
consistently outperforms state-of-
the-art compression techniques,
particularly at higher compression
levels. Notably, SeedLM achieves
these results without the need for
any calibration data.

Table 2: WikiText-2 perplexity results for 3- and 4-bit representations of
Llama 2 and Llama 3 models with a sequence length of 2048. The notation
x-yB refers to the Llama x model with yB parameters (e.g., 2-7B means
Llama 2 with 7 billion parameters). Perplexity values above 100 are shown
as inf. The best perplexity values are highlighted, and results that ran out
of memory on our setup (8 A100 40GB GPUs) are marked as OOM.

Method Bits 2-7B 2-13B 2-70B 3-8B 3-70B
Baseline 16 5.5 4.9 3.3 6.1 2.9

SeedLM 4 5.7 5.1 3.5 7.0 3.8
OmniQuant 4 6.1 5.2 3.7 inf inf
AWQ 4 5.8 5.1 3.5 7.1 4.7
QuIP# 4 6.5 5.3 OOM 7.6 OOM

SeedLM 3 6.6 5.8 4.0 10.1 5.7
OmniQuant 3 inf 10.7 7.5 inf inf
AWQ 3 15.6 6.5 4.4 11.8 11.6
QuIP# 3 10.8 5.7 OOM 10.1 OOM

Next, we show zero-shot accuracy across various tasks. As seen in Table 3, SeedLM performs on par with or better
than state-of-the-art methods at the same bit rates. This underscores SeedLM’s ability to maintain competitive
accuracy without relying on calibration data. Note that Llama 3 is much more sensitive to compression than Llama
2, likely due to its more advanced architecture and significantly larger training dataset. Llama 3 was trained on
15 trillion tokens, around seven times more than Llama 2’s 2 trillion tokens, enabling it to capture more detailed
language patterns and nuances. This increased complexity and sensitivity to nuance make it less compressible
without a noticeable drop in performance. However, as shown in Figure 1, SeedLM still significantly outperforms
other state-of-the-art methods on Llama 3 in terms of Retained Accuracy (%), i.e. ratio of the compressed model’s
accuracy to the full-precision FP16 model’s accuracy. This demonstrates that SeedLM is not only effective for
such a complex model but is also robust across various tasks by maintaining high accuracy.

4.2 PERFORMANCE ANALYSIS

In this section, we shift our focus from accuracy to performance analysis on hardware. Specifically, we explore
how SeedLM can be efficiently implemented on an FPGA. FPGAs are ideal for this task because they allow for
highly parallelized computations and can be reconfigured to handle specific workloads, making them well-suited
for running compressed models with lower bit rates that are not well supported by conventional GPUs. With an
FPGA, the LFSR generation can be supported at a low-level in hardware rather than relying on relatively expensive
software implementations.

To evaluate SeedLM on an FPGA, we benchmark matrix-vector multiplication – a core operation in most large
language models – both with and without SeedLM’s 4-bit parametrization. Figure 4 shows the RTL design block
diagram, with the target device being an AMD Virtex7 FPGA XC7V585T-3 (2021).

The implementation utilizes 128 DSP48 slice multipliers in parallel, calculating 128 elements of the activation
vector simultaneously. The DDR response interface has a maximum bandwidth of 64 bytes per 200 MHz clock
cycle, and the data path is designed to compute at the maximum DDR response throughput. When SeedLM
compression is bypassed, the LFSR weight decompression is also skipped.

In the reference design, FP16 weights are read directly from DRAM, bypassing decompression. Due to the DDR
interface’s 64-byte bus width, a maximum of 32 weight values can be read per cycle, limiting the utilization to
only 32 of the 128 MACs. With SeedLM’s 4-bit compression, however, 128 weight values can be read per cycle,
resulting in a theoretical 4x performance improvement in memory access.

7

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison across different models and zero-shot tasks for 4-bit and 3-bit configurations.
Results that ran out of memory in our setup (8 A100 40GB GPUs) are marked with OOM.

Model Method Bits ARC-Easy ARC-Challenge HellaSwag WinoGrande BoolQ Mean

Llama 2
7B

Baseline 16 74.58 46.33 75.98 69.06 77.74 68.74
SeedLM 4 73.23 44.54 74.45 68.43 77.19 67.57
AWQ 4 70.58 43.94 74.96 68.75 78.29 67.30
QuIP# 4 68.35 39.85 72.40 65.59 75.14 64.27
OmniQuant 4 70.71 43.52 74.20 68.27 73.64 66.07
SeedLM 3 69.87 41.21 70.72 66.30 74.28 64.48
AWQ 3 53.37 33.62 56.66 61.09 57.58 52.46
QuIP# 3 59.51 34.22 59.23 61.09 65.20 55.85
OmniQuant 3 35.69 25.77 35.48 52.88 42.48 38.46

Llama 2
13B

Baseline 16 77.44 48.98 79.38 72.22 80.55 71.71
SeedLM 4 76.98 49.83 78.54 72.77 79.20 71.46
AWQ 4 77.44 49.32 78.57 71.90 78.47 71.14
QuIP# 4 74.24 45.48 77.17 71.27 79.51 69.53
OmniQuant 4 76.18 47.95 78.10 72.14 81.77 71.23
SeedLM 3 72.85 45.39 74.50 71.35 78.81 68.58
AWQ 3 70.58 45.14 72.72 64.96 72.45 65.17
QuIP# 3 73.48 45.14 74.92 69.06 79.60 68.44
OmniQuant 3 55.85 34.47 59.54 53.04 63.39 53.26

Llama 2
70B

Baseline 16 80.98 57.25 83.81 77.98 83.70 76.74
SeedLM 4 81.14 56.40 82.97 76.72 82.26 75.90
AWQ 4 80.98 56.66 83.24 77.19 83.27 76.27
QuIP# 4 OOM OOM OOM OOM OOM OOM
OmniQuant 4 79.59 55.97 82.67 76.80 83.43 75.69
SeedLM 3 79.00 53.84 80.51 76.80 79.02 73.83
AWQ 3 80.26 55.80 80.50 73.01 80.00 73.91
QuIP# 3 OOM OOM OOM OOM OOM OOM
OmniQuant 3 63.59 39.51 68.24 62.04 65.23 59.72

Llama 3
8B

Baseline 16 76.81 52.73 76.97 72.93 81.87 72.26
SeedLM 4 76.52 49.74 76.61 72.93 80.76 71.31
AWQ 4 74.49 51.54 78.03 73.09 80.40 71.51
QuIP# 4 72.39 46.93 75.93 71.82 79.24 69.26
OmniQuant 4 73.95 47.78 73.42 69.69 71.99 67.37
SeedLM 3 67.21 41.55 68.34 69.22 67.61 62.79
AWQ 3 64.90 40.19 68.40 65.04 74.62 62.63
QuIP# 3 65.07 40.36 67.79 68.82 72.14 62.84
OmniQuant 3 30.26 22.53 28.96 49.33 48.47 35.91

Llama 3
70B

Baseline 16 85.23 64.33 84.07 77.66 86.27 79.51
SeedLM 4 83.80 59.30 83.84 77.74 85.60 78.06
AWQ 4 80.98 57.94 82.84 60.54 79.39 72.34
QuIP# 4 OOM OOM OOM OOM OOM OOM
OmniQuant 4 25.13 26.54 26.36 51.38 37.83 33.45
SeedLM 3 78.45 52.22 80.77 77.35 84.59 74.68
AWQ 3 65.87 45.14 70.76 55.88 69.08 61.35
QuIP# 3 OOM OOM OOM OOM OOM OOM
OmniQuant 3 25.21 25.94 26.15 49.64 37.83 32.95

We use the reference implementation without compression (FP16 for all data) as a baseline to assess both perfor-
mance and resource utilization on the FPGA. Table 4 provides a detailed comparison of the FPGA resource usage,
including LUTs, FFs, BlockRAM, and DSP counts.

• LUT – FPGA Fabric Lookup Table, used to create combinational logic.

• FF – FPGA Fabric Register (Flip-Flop).

• BRAM – FPGA Block RAM (SRAM), each BlockRAM is 36Kb.

• DSPs – FPGA DSP48 resources, which include an 18-bit by 18-bit multiplier and accumulator.

In the reference design, only 32 MACs are used due to the input bandwidth limitation of 64 bytes per cycle. The
SeedLM design, utilizing 128 MACs per cycle, results in approximately a 4x increase in MAC Block resources,
aligning with the expected performance improvement.

8

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

Under review as a conference paper at ICLR 2025

Figure 4: Block diagram of the RTL design.

Table 4: FPGA resource utilization comparison

Total MAC Block LSFR Decompress PreMAC Fix2Float

Reference SeedLM Reference SeedLM Reference SeedLM Reference SeedLM

LUTs 20800 120105 9902 42174 0 67034 0 12292

FFs 10164 73666 3118 12594 0 45407 0 13448

BRAMs 10.5 154.5 0 0 0 144 0 0

DSPs 32 128 32 128 0 0 0 0

Table 4 reveals that SeedLM increases the total LUT count to 67K and register count to 45.4K, with the fixed-
point to FP16 conversion accounting for 12.3K LUTs and 13.4K registers. The design includes 128 fully pipelined
fixed-to-FP16 converters to sustain the DDR response data rate. We can note that performing all the compute in
fixed-point math could eliminate the need for fixed-point to FP16 conversion, but this optimization is outside the
scope of this paper. Table 5 shows the number of cycles required to complete matrix operations of various sizes,
measured from the first DDR read to the final write to the activation SRAM. The SeedLM design achieves a 4x
throughput compared to the reference design. As matrix size increases, the startup costs become less significant,
leading the speedup to approach the theoretical 4x gain. In summary, SeedLM achieves near iso-accuracy at 4-bit
compared to FP16, while offering close to a 4x speedup for memory-bound tasks such as generation in LLMs with
billions of parameters and beyond.

Table 5: Performance comparison for different matrix sizes

512 × 512 1024 × 1024 2048 × 2048

Reference 8593 34201 136559

SeedLM 2341 8723 34331

Speed Up 3.67 3.92 3.98

5 CONCLUDING REMARKS

In this paper, we presented SeedLM, a post-training compression method that uses pseudo-random generators to
efficiently encode and compress model weights. SeedLM offers a data-free approach, avoiding the need for cali-
bration data while retaining competitive accuracy, achieving up to around 98% zero-shot accuracy at 3- and 4-bit
quantization levels. We demonstrated the method’s performance on both Llama 2 and Llama 3 models, show-
ing that it performs comparably to existing state-of-the-art techniques. Furthermore, our FPGA implementation
highlights SeedLM’s potential for improved computational efficiency in hardware-constrained environments.

SeedLM primarily focused on 3-bit and 4-bit quantization, applying the same design choices across all blocks for
these levels. However, we believe that pushing below the 3-bit level might require different configurations tailored
to each block to manage compression noise effectively or leveraging data for additional fine-tuning to enhance
results. We leave these directions for future work. Furthermore, as hardware continues to evolve, SeedLM’s
applicability could expand, with its LFSR-based design offering low-area, low-energy, high-throughput benefits.
This work highlights the practicality of such techniques, aiming to inspire hardware innovations that support
broader device compatibility, including GPUs.

9

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Keivan Alizadeh-Vahid, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C. Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large language model inference
with limited memory. ArXiv, abs/2312.11514, 2023. URL https://api.semanticscholar.org/
CorpusID:266362016.

Kamalika Bhattacharjee and Sukanta Das. A search for good pseudo-random number generators: Survey and
empirical studies. Computer Science Review, 45:100471, 2022.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vinogradsky,
Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow precision inferencing at cloud scale
with microsoft floating point. Advances in neural information processing systems, 33:10271–10281, 2020.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexan-
der Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for near-lossless llm
weight compression. arXiv preprint arXiv:2306.03078, 2023.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Alistarh. Extreme
compression of large language models via additive quantization. arXiv preprint arXiv:2401.06118, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Sunil S Gaitonde and Tenkasi V Ramabadran. A tutorial on crc computations. IEEE Micro, 8(4):62–75, 1988.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey
Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot language model evaluation. Version
v0. 0.1. Sept, 10:8–9, 2021.

Jianping Gou, B. Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A survey. International
Journal of Computer Vision, 129:1789 – 1819, 2020. URL https://api.semanticscholar.org/
CorpusID:219559263.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE international
solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE, 2014.

Maxwell Horton, Yanzi Jin, Ali Farhadi, and Mohammad Rastegari. Layer-wise data-free cnn compression.
2022 26th International Conference on Pattern Recognition (ICPR), pp. 2019–2026, 2020. URL https:
//api.semanticscholar.org/CorpusID:227011888.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021. URL https://api.
semanticscholar.org/CorpusID:235458009.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2704–2713, 2017.
URL https://api.semanticscholar.org/CorpusID:39867659.

Soroush Abbasi Koohpayegani, K. L. Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash. Nola:
Compressing lora using linear combination of random basis. In International Conference on Learning Repre-
sentations, 2023. URL https://api.semanticscholar.org/CorpusID:263620510.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham M. Kakade, and
Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International Conference on
Machine Learning, 2020. URL https://api.semanticscholar.org/CorpusID:211069143.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Neural Information Processing
Systems, 1989. URL https://api.semanticscholar.org/CorpusID:7785881.

Hyungdeok Lee, Guhyun Kim, Dayeon Yun, Ilkon Kim, Yongkee Kwon, and Euicheol Lim. Cost-effective llm
accelerator using processing in memory technology. In 2024 IEEE Symposium on VLSI Technology and Circuits
(VLSI Technology and Circuits), pp. 1–2. IEEE, 2024.

10

https://api.semanticscholar.org/CorpusID:266362016
https://api.semanticscholar.org/CorpusID:266362016
https://api.semanticscholar.org/CorpusID:219559263
https://api.semanticscholar.org/CorpusID:219559263
https://api.semanticscholar.org/CorpusID:227011888
https://api.semanticscholar.org/CorpusID:227011888
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:39867659
https://api.semanticscholar.org/CorpusID:263620510
https://api.semanticscholar.org/CorpusID:211069143
https://api.semanticscholar.org/CorpusID:7785881

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu
Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm compression
and acceleration. Proceedings of Machine Learning and Systems, 6:87–100, 2024.

Zechun Liu, Barlas Oğuz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghu-
raman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for large language
models. ArXiv, abs/2305.17888, 2023. URL https://api.semanticscholar.org/CorpusID:
258959117.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep neural
networks. ArXiv, abs/1710.07535, 2017. URL https://api.semanticscholar.org/CorpusID:
1844680.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through weight
equalization and bias correction. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1325–1334, 2019. URL https://api.semanticscholar.org/CorpusID:184487878.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
adaptive rounding for post-training quantization. ArXiv, abs/2004.10568, 2020. URL https://api.
semanticscholar.org/CorpusID:216056295.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In International Conference on Machine Learning, pp. 16318–16330. PMLR,
2022.

Parsa Nooralinejad, Ali Abbasi, Soheil Kolouri, and Hamed Pirsiavash. Pranc: Pseudo random networks for
compacting deep models. ArXiv, abs/2206.08464, 2022. URL https://api.semanticscholar.org/
CorpusID:249848073.

Elvis Nunez, Maxwell Horton, Anurag Ranjan, Ali, and Mohammad Rastegari. Lcs: Learning compress-
ible subspaces for efficient, adaptive, real-time network compression at inference time. 2023 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 3807–3816, 2023. URL https:
//api.semanticscholar.org/CorpusID:256658204.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models.
arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. ArXiv, abs/2306.11695, 2023. URL https://api.semanticscholar.org/
CorpusID:259203115.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even better llm
quantization with hadamard incoherence and lattice codebooks. arXiv preprint arXiv:2402.04396, 2024.

XC7V585T-3. Virtex-7 T and XT FPGAs Data Sheet. https://docs.amd.com/v/u/en-US/ds183_
Virtex_7_Data_Sheet, 2021.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers. Advances in
Neural Information Processing Systems, 36:49146–49168, 2023.

Dong Xiang, Xiaoqing Wen, and Laung-Terng Wang. Low-power scan-based built-in self-test based on weighted
pseudorandom test pattern generation and reseeding. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(3):942–953, 2016.

Guang Zeng, Xiaodai Dong, and Jens Bornemann. Reconfigurable feedback shift register based stream cipher for
wireless sensor networks. IEEE Wireless Communications Letters, 2(5):559–562, 2013.

11

https://api.semanticscholar.org/CorpusID:258959117
https://api.semanticscholar.org/CorpusID:258959117
https://api.semanticscholar.org/CorpusID:1844680
https://api.semanticscholar.org/CorpusID:1844680
https://api.semanticscholar.org/CorpusID:184487878
https://api.semanticscholar.org/CorpusID:216056295
https://api.semanticscholar.org/CorpusID:216056295
https://api.semanticscholar.org/CorpusID:249848073
https://api.semanticscholar.org/CorpusID:249848073
https://api.semanticscholar.org/CorpusID:256658204
https://api.semanticscholar.org/CorpusID:256658204
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:259203115
https://docs.amd.com/v/u/en-US/ds183_Virtex_7_Data_Sheet
https://docs.amd.com/v/u/en-US/ds183_Virtex_7_Data_Sheet

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COEFFICIENTS USED IN LFSRS

The following table lists the indexed j coefficients used for each K, where αj equals one, with all other coeffi-
cients being zero. These specific coefficients correspond to the Linear Feedback Shift Registers (LFSRs) for each
register length K, with the coefficients indexed starting from 0, representing the tap positions in the shift register.
These coefficients are hard-wired into the hardware configuration of the LFSRs used in our experiments. These
coefficients define the feedback polynomial for each LFSR, ensuring maximal-length cycles.

Table 6: Indexed j coefficients used in LFSRs for each register length K, where αj = 1 and all other coefficients
are zero.

Length of LFSR (k) Indices (j)
2 (0, 1)
3 (0, 1)
4 (0, 1)
5 (0, 2)
6 (0, 1)
7 (0, 1)
8 (0, 2, 3, 4)
9 (0, 4)

10 (0, 3)
11 (0, 2)
12 (0, 1, 2, 8)
13 (0, 1, 2, 5)
14 (0, 1, 2, 12)
15 (0, 1)
16 (0, 1, 3, 12)
17 (0, 3)
18 (0, 7)
19 (0, 1, 2, 5)
20 (0, 3)
21 (0, 2)
22 (0, 1)
23 (0, 5)
24 (0, 1, 2, 7)

A.2 LFSR SEQUENCE GENERATION

This section explains how pseudo-random sequences are generated for our weight compression method using
LFSRs which efficiently produce pseudo-random binary sequences, enabling on-the-fly generation. A key function
generates a sequence of states by taking inputs such as a seed, the number of bits (K) in the LFSR, the sequence
length, and the positions of the taps. These taps, which determine which bits are XORed to produce the feedback
bit, are chosen to ensure maximal length and are summarized in Table 6.

Process Overview. Starting with an initial state (seed), the LFSR computes the next state iteratively by:

Shifting all bits in the current state to the right by one position. XORing the bits at the specified tap positions
to calculate the feedback bit, which is shifted into the leftmost position. This process is repeated for the desired
sequence length, with the generated states stored in an array for downstream use.

The pseudocode for this process is provided in Algorithm 1.

A.3 RECONSTRUCTION PROCESS IN SEEDLM

The reconstruction process of a weight matrix in SeedLM transforms compressed data back into its approximate
original form using a combination of pseudo-random sequence generation and compressed coefficients. Given a
set of seeds {si}num blocks

i=1 and coefficients {ti}num blocks
i=1 , where ti ∈ RP , Algorithm 2 is performed:

12

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

Under review as a conference paper at ICLR 2025

Algorithm 1 Generate LFSR Sequence

Require: K: Number of bits in the LFSR
seed: Initial state of the LFSR
length: Length of the sequence to generate
taps: List of tap positions affecting feedback {Extracted from Table 6 for SeedLM}

1: Set current state← seed.
2: for i = 0 to length− 1 do
3: Initialize bk ← 0. {bk is the new feedback bit}
4: for each tap in taps do
5: Update bk ← bk ⊕ ((current state≫ tap)&1).
6: end for
7: Update current state← (current state≫ 1) | (bk ≪ (k − 1)).
8: Assign results[i]← current state.
9: end for

10: return results

Algorithm 2 Reconstruction Process in SeedLM

Require: K: Number of bits in the LFSR
{si}num blocks

i=1 : Set of seeds
{ti}num blocks

i=1 : Set of coefficients, where ti ∈ RP

C: Block size
P : Latent dimension

1: Initialize length← 2K − 1.
2: Generate all LFSR states from 1 to length, store as states.
3: Initialize blocks← [].
4: for i = 1 to num blocks do
5: Compute start← si%length. {% denotes the remainder operation}
6: Extract a slice of states starting at start and containing C.P elements. If the slice exceeds length, cycle

through states.
7: Rearrange the slice into a matrix U(si) ∈ RC×P , following a row-wise order.
8: Compute block ← U(si)× ti (matrix-vector multiplication).
9: Append block to blocks.

10: end for
11: Rearrange blocks to reconstruct the final weight matrix output.
12: return output

A.4 SEEDLM ALGORITHM

Algorithm 3 summarizes SeedLM’s
method, which operates in parallel
across all weight blocks to identify
the seeds and coefficients used to re-
construct weights. To enhance com-
putational efficiency, we precompute
and cache the pseudo-inverse matri-
ces for all seeds and execute steps 2–5
concurrently across all blocks. Addi-
tionally, the inner loop can be paral-
lelized. For the selected values of C,
P , and K used in Table 1, the pseudo-
inverses require at most 6.3MB of
memory, which is negligible.

Algorithm 3 Seed and Coefficient Selection for a Weight Block

Require: w ∈ RC , {U(j)†}2
K−1

j=1

1: ŝ∗ ← null, t̂∗ ← null
2: min norm←∞
3: for j = 1 to 2K − 1 do
4: t← q(U(j)†w), where q(·) quantizes its arguments to the set Q
5: norm← ∥w −U(j) · t∥
6: if norm < min norm then
7: min norm← norm
8: ŝ∗ ← s
9: t̂∗ ← t

10: end if
11: end for
12: return ŝ∗, and t̂∗

13

	Introduction
	Related Work
	Methodology
	Linear Feedback Shift Register (LFSR)
	Weight Compression Using Pseudo-Random Generators
	Approximation Approach
	Design Space Exploration

	Experiments
	Accuracy Results
	Performance Analysis

	Concluding Remarks
	Appendix
	Coefficients Used in LFSRs
	LFSR Sequence Generation
	Reconstruction Process in SeedLM
	SeedLM Algorithm

