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ABSTRACT

Large Language Models (LLMs) have transformed natural language processing, but face signif-
icant challenges in widespread deployment due to their high runtime cost. In this paper, we in-
troduce SeedLM, a novel post-training compression method that uses seeds of a pseudo-random
generator to encode and compress model weights. Specifically, for each block of weights, we
find a seed that is fed into a Linear Feedback Shift Register (LFSR) during inference to ef-
ficiently generate a random matrix. This matrix is then linearly combined with compressed
coefficients to reconstruct the weight block. SeedLM reduces memory access and leverages
idle compute cycles during inference, effectively speeding up memory-bound tasks by trading
compute for fewer memory accesses. Unlike state-of-the-art methods that rely on calibration
data, our approach is data-free and generalizes well across diverse tasks. Our experiments with
Llama3 70B, which is particularly challenging, show zero-shot accuracy retention at 4- and 3-bit
compression to be on par with or better than state-of-the-art methods, while maintaining perfor-
mance comparable to FP16 baselines. Additionally, FPGA-based tests demonstrate that 4-bit
SeedLM, as model size increases to 70B, approaches a 4x speed-up over an FP16 Llama 2/3
baseline.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across numerous benchmarks
(Achiam et al., 2023; Touvron et al., 2023). However, the practical deployment of these models often encoun-
ters limitations due to substantial memory transfer requirements. This issue is especially pronounced during
autoregressive generation, which is primarily memory-bound and takes the majority of the inference time (Lee
et al., 2024). In contrast, operations like 8-bit integer multiplication performed at 45nm 0.9V are demonstrated to
be over 200x more energy-efficient than reading the same 8 bits from DRAM (Horowitz, 2014). In this paper, we
explore the following question: Can we trade increased compute for a reasonable reduction in memory accesses?
A positive answer here not only transforms energy-intensive memory access operations into more energy-efficient
compute operations but also alleviates the memory bandwidth limitations that pose a significant bottleneck during
LLM inference.

Post-training weight compression is an effective method to reduce the size of pretrained LLMs, making them
suitable for on-device execution or reducing power consumption through fewer memory reads. Current state-of-
the-art techniques for compressing weights typically require calibration data and involve meticulously adjusting
the weights to ensure that the learned knowledge is retained.

We introduce SeedLM, a simple yet effective compression technique which can compress weights to 3-4 bits with
minimal accuracy loss. SeedLM is an innovative method for compressing the weights of LLMs by projecting
weight blocks into pseudo-random projection basis sets. By finding the optimal seeds to generate these pseudo-
random projections per weight block, SeedLM ensures a low compression error and consequently maintains the
accuracy of the original model. Our approach only requires storing the seed and few projection coefficients instead
of all the weight values to reconstruct high dimensional weight blocks. As a result, SeedLM significantly reduces
the memory footprint required for operating large-scale models during inference. To generate pseudo-random
matrix blocks given a seed, we leverage Linear Feedback Shift Register (LFSR) hardware blocks that are widely
used in applications such as cryptography, communication, error detection, etc (Gaitonde & Ramabadran, 1988;
Zeng et al., 2013; Xiang et al., 2016). LFSRs can be efficiently implemented in the silicon with minimal energy
and area footprint.

Figure 1 shows the Retained Accuracy (%), which is the ratio of the compressed model’s accuracy to the full-
precision FP16 model’s accuracy, on the Llama 3 70B model. As shown, SeedLM retains approximately 97.9%
of zero-shot accuracy across various tasks in a data-free setting, using 4 bits per weight element (see Section 4.1
for more details). It also consistently outperforms state-of-the-art 3-bit and 4-bit compression techniques that rely
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Figure 1: Retained zero-shot accuracy across a variety of tasks and compression methods, compared to the stan-
dard Llama 3 70B model. The top row shows data for 4-bit compression, while the bottom row shows data for
3-bit compression. We compare the performance of SeedLM, AWQ, and OmniQuant across the ARC-Easy, ARC-
Challenge, HellaSwag, WinoGrande, and BoolQ tasks. While being completely data-free, SeedLM outperforms
state-of-the-art weight quantization methods that rely on a calibration dataset.

on calibration data. To the best of our knowledge, this is the first time nearly identical accuracy has been achieved
with 4-bit compression on LLMs without data, using a deterministic offline algorithm.

The summary of our contributions is as follows:

• For the first time, we demonstrate how to leverage LFSR hardware blocks to trade increased compute
with lower memory accesses.

• We show the first instance of achieving nearly identical accuracy with 4-bit quantization without data,
using a deterministic offline algorithm.

• We demonstrate an effective solution to find the optimized seed for the LFSR modules while maximizing
compression ratio.

• We prototype SeedLM on an FPGA (Field-Programmable Gate Array) and demonstrate its efficacy in
reducing the inference latency with custom hardware.

2 RELATED WORK

Significant research has been conducted in model compression for LLMs, a critical approach for reducing both
the memory footprint and computational demands of these models. In this section, we highlight some of the most
relevant techniques from prior work.

Compression With Random Basis: Recent works have demonstrated that neural networks can be decomposed
into random number generator seeds and weight coefficients. In PRANC (Nooralinejad et al., 2022), full networks
are compressed by orders of magnitude to improve storage and transmission efficiency. LoRA (Hu et al., 2021)
compresses the weights by injecting trainable rank decomposition matrices into each layer of the network. NOLA
(Koohpayegani et al., 2023) builds upon LoRA by compressing the low-rank matrices through a linear combination
of random basis vectors, further reducing memory and computational overhead.

Our work (SeedLM) is conceptually similar in that we compress networks using random basis. These other models
rely on much larger basis ranks applied globally rather than per-block. As a result, these methods need far more
operations per parameter to preserve accuracy and are not computationally feasible at inference for LLMs.

Data-Free Post-Training Compression: A few previous works have explored data-free post-training compres-
sion (Nagel et al., 2019; Horton et al., 2020; Nunez et al., 2023). Such works are capable of producing a com-
pressed model after training without the need for calibration data. They usually apply quantization or pruning
techniques to obtain a smaller model. Similarly, SeedLM does not require any data for model compression. This
is in contrast to most recent works on LLM compression, which require calibration data.
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There are more computationally expensive methods for data-free compression that involve generating data from a
teacher model and performing distillation (Lopes et al., 2017; Gou et al., 2020). These techniques are applied to
LLMs as demonstrated in Liu et al. (2023).

Post-Training Compression with Calibration Data: An early example of post-training quantization with cal-
ibration data is found in Nagel et al. (2020), where activation statistics are used to decide whether to round
quantized values up or down. The cost of post-training quantization is a small fraction of the total training cost.

Recently, calibration data has been leveraged for post-training compression in LLMs. AWQ (Lin et al., 2024)
rescales salient weights before compression using activation statistics. In QuIP# (Tseng et al., 2024) and GPTQ
(Frantar et al., 2022), Hessian analysis of calibration data helps make rounding decisions during quantization.
SpQR (Dettmers et al., 2023) retains outliers during quantization to preserve accuracy. OmniQuant (Shao et al.,
2023) employs weight clipping and other transformations to maintain accuracy. Additive Quantization (Egiazarian
et al., 2024) learns a codebook for performing additive quantization. In our study, we used AWQ, QuIP#, and
OmniQuant as our main baselines because they avoid costly training while delivering strong results.

Training-Aware Compression: Compressing the model during the training process has the disadvantage of fix-
ing the compression method and parameters beforehand, but usually offers better accuracy. An overview of
quantization-aware training is provided in Jacob et al. (2017); Nagel et al. (2022); Xi et al. (2023), while pruning
techniques are discussed in Alizadeh-Vahid et al. (2023); Sun et al. (2023); Kusupati et al. (2020); LeCun et al.
(1989). In this work, we do not compare SeedLM with training-aware methods, as our focus is on post-training
compression methods.

3 METHODOLOGY

In this section, we introduce SeedLM, our method for compressing the weights of LLMs by using seeds from
a pseudo-random generator. Initially, each weight matrix is segmented into blocks of C contiguous elements.
Representing each block as a vector w ∈ RC , we approximate it as a linear combination of columns from a matrix
U ∈ RC×P . This matrix U is constructed using a pseudo-random generator given a seed specifically selected to
generate a subspace that most effectively reconstructs w linearly.

Figure 2 illustrates this setup. Our primary goal is to find the optimal seed, s, and coefficient vector, t ∈ RP , that
minimize the reconstruction error between the original and the approximated weights. For this reconstruction, only
the seed and the coefficients are stored. In the following subsection, we first outline a mechanism to efficiently
generate U using a K-bit seed in our Linear Feedback Shift Register (LFSR) framework. We will then discuss
the methodologies employed to determine s and t.

U(s)

t× ≈

w

Random Matrix

Coefficients

Weight Block

Seed s

Figure 2: Compression of weights using pseudo-random generated matrices.

3.1 LINEAR FEEDBACK SHIFT REGISTER (LFSR)

A Linear Feedback Shift Register (LFSR) is a simple yet effective type of shift register, ideal for generating
pseudo-random binary sequences. The primary advantages of LFSRs in hardware include cost-effectiveness and
minimal resource consumption due to their straightforward implementation with basic flip-flops and XOR gates.
This simplicity facilitates rapid and efficient sequence generation, which is integral to our compression technique.

An LFSR operation can be characterized by its length K (which determines the number of bits in its shift register)
and its feedback polynomial. To generate next pseudo-random number in the sequence, each bit in the register is
first shifted to the next position. Then, the new bit entering the register is calculated as a linear combination of
certain bits of the current state as specified by the feedback polynomial, typically implemented by XOR operations.
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Mathematically, the new bit xn+1 generated by the LFSR can be expressed as:

xn+1 =

K−1∑
i=0

αi · xn+i−K+1 mod 2,

where K ≥ 2 and α0, . . . , αK are the binary coefficients that define the feedback polynomial, with each αj

determining whether the bit xj is selected or not.

The state transition in the LFSR can be described as follows: if the current state is represented by the bits
xn, xn−1, . . . , xn−K+1, then after the shift, the new state will be xn+1, xn, . . . , xn−K+2. This transition re-
flects the shift of every bit to the right by one position, with the new bit xn+1 entering at the leftmost position.
Given its finite state nature, an LFSR will eventually enter a repeating cycle, suggesting an asymptotic uniform
distribution over this cycle. An LFSR can cycle through at most 2K−1 states, excluding the all-zero state.

A key goal when designing an LFSR is to guarantee a maximal-length sequence. This ensures that the LFSR will
produce the longest possible sequence of non-repeating states before repeating. Intuitively, this means the LFSR
will cycle through every possible state (except the all-zero state), maximizing the number of distinct pseudo-
random values generated. To achieve this maximal-length property, the feedback polynomial must be primitive
over the Galois field GF(2). In simple terms, a primitive polynomial ensures that the LFSR explores all 2K−1
states without prematurely entering a repeating cycle.

For our experiments, this means a fixed set of coefficients {αj : 0 ≤ j ≤ K−1} that is hard-wired, ensuring
maximal length if and only if it avoids the all-zero state, in which it stays in zero. A summary of the algorithmic
implementation can be found in Appendix A.2. Refer to Section A.1 for the indexed j coefficients used for each
K where αj equals one; all other coefficients are zero. For a comprehensive understanding of LFSRs and their
properties, see (Bhattacharjee & Das, 2022).

To optimize the efficiency of generating random matrices through an LFSR, for a fixed length K and a set of
coefficients {αj}, we cache all the 2K−1 states that sequentially follow each other – each state uniquely determined
by its preceding state along with K and {αj}. This cache allows us to extract an arbitrarily sized random matrix
from the sequence given a random seed s. We can cycle through these states to generate matrices of any desired
size. For an illustration, refer to Figure 3. With K = 16 and a maximal length LFSR, all states will occupy
approximately (216−1)× 2 Bytes ≈ 130KB of memory, which is negligible. This setup ensures a highly efficient
and scalable mechanism for generating the necessary random matrices for our compression technique. K is a
hyper-parameter of our method which we will elaborate on in Section 3.4.
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Figure 3: Illustration of the state sequence for a K=3 LFSR with all possible states with the feedback polynomial
defined in Table A.1. The matrix V(4) is generated from these states. The seed state s = 4 is highlighted with a
thick circle.

3.2 WEIGHT COMPRESSION USING PSEUDO-RANDOM GENERATORS

Building on the foundations laid by the LFSR mechanisms, our methodology seeks to represent a block of data
w ∈ RC using the decomposition U(s)t. Here, U(s) ∈ RC×P is a random matrix derived from a K-bit LFSR.
During inference, s and t, which require fewer bits when considering all the bits in a block compared to the
original weights, are retrieved from memory. This reduces the memory footprint and accelerates memory-bound
generation tasks. The weights are reconstructed on-the-fly using s and t, and these reconstructed weights are then
used to compute intermediate activations and, ultimately, the outputs. As the output of the LFSR is in the range
of [1, 2K−1], which are unsigned integers, we normalize them to ensure they fall within the range of [−1, 1],
enhancing their expressiveness. More specifically, to construct U(s), we first generate a matrix V(s) using an
LFSR seeded by s as illustrated in Figure 3. This matrix initially contains integers and undergoes the following
normalization to ensure that its components lie between [−1, 1]:

U(s) =
1

2K−1 − 1

(
V(s)− 2K−11

)
,
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where 1 ∈ RC×P represents a matrix of all ones, and K is the LFSR bit length. To determine the optimal seed
and coefficients, we solve the following optimization problem:

minimize
s,t

∥w −U(s)t∥22, subject to: s ∈ {1, . . . , 2K − 1}, and t ∈ Q, (1)

where ∥·∥ denotes the Euclidean norm, and Q represents the set of valid quantized values. The objective is to
identify an optimal seed s∗ and coefficients t∗ that most effectively approximate w. This problem is NP-hard due
to the discrete nature of the seed selection and the quantization of coefficients since it involves searching through
a combinatorially large set of possibilities. Next, we describe the design choices and heuristics used to solve the
problem.

The quantization scheme for the vector t plays a critical role in balancing reconstruction accuracy with bit effi-
ciency, adhering to our bit budget constraints. We represent each element of t as a 4-bit 2’s complement integer,
paired with a shared 4-bit exponent. This configuration allows us to capture a broad dynamic range of values
within the interval [−8 × 2−8, 7 × 27]. The shared 4-bit exponent further extends the dynamic range, enabling
representation across several orders of magnitude. We have specifically chosen for the exponent to be a power of
two, which is hardware-friendly and can be efficiently implemented using simple shift operations in digital cir-
cuits; see (Darvish Rouhani et al., 2020). By combining the 4-bit integer with the shared exponent, each quantized
element is expressed as ti = qi × 2e, where qi is the 4-bit 2’s complement integer and e is the shared exponent.
The shared exponent e is selected as:

e = max
i
⌊log2 (|ti|)⌋ ,

where |ti| is the absolute value of each element of t. After determining e, each ti is scaled by dividing it by 2e,
and then quantized to a 4-bit 2’s complement integer to derive qi.

3.3 APPROXIMATION APPROACH

Looking back at the optimization problem in Eq. 1, while the unconstrained case admits a closed-form solution
given by U(s)†w, where U(s)† denotes the Moore-Penrose pseudo-inverse of U(s), our discrete constraints
convert it to an NP-hard optimization problem. Hence, to solve Eq. 1, we employ an approximate heuristic
approach that involves the following steps:

1. Generate N = 2K−1 random matrices {U(s1),U(s2), . . . ,U(sN )}, each of size C ×P , with an LFSR
of length K.

2. For each matrix U(sj), project the vector w onto the subspace spanned by U(sj):

tj = U(sj)
†w.

3. Quantize tj to obtain the vector t̂j using 4-bit integers and a 4-bit shared exponent ej .

4. Compute the reconstruction error for each pair (U(sj), t̂j) as follows:

ϵj = ∥w −U(sj)t̂j∥22.

5. Select the pair (s∗, t∗) that minimizes the reconstruction error:

(s∗, t∗) = arg min
sj ,t̂j

ϵj . (2)

Our heuristic algorithm leverages randomness to explore multiple subspaces and selects the one that best approxi-
mates w under the given constraints. In summary, we apply the above heuristics across all weight blocks in parallel
to find the seeds and coefficients that minimize the reconstruction error. To enhance computational efficiency, we
precompute and cache the pseudo-inverse matrices for all seeds and perform steps 2–5 in parallel across all blocks.
The complete algorithm is provided in Appendix A.4.

3.4 DESIGN SPACE EXPLORATION

The minimum reconstruction error obtained from Eq. 2 depends on the block size C, the latent dimension P , and
the LFSR length K. Here, we explore how we select the optimal configuration for an M -bit compression. First,
let’s examine the total number of bits required to store a SeedLM block of C elements, which consists of the
following:

• K bits to index the selected random seed s∗ to generate matrix U(s∗) among the N= 2k−1 candidates.
• 4 bits to store the shared exponent e.

• 4P bits to store the quantized vector t̂∗ (P elements each requiring 4 bits).
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So, the effective bit per element is a function of hyper-parameters K, C, and P . In particular, for an M -bit
compression, we have the bit budget per element as

M =
K + 4 + 4P

C
. (3)

To determine the optimal configuration for a given bit budget per element, M , we evaluate the reconstruction
accuracy of our method in the search space. Specifically, we explore how a standard normal Gaussian vector w
can be approximated using any combination of valid hyperparameters given the bit budget M . While assuming
a Gaussian distribution may have its limitations, it has proven effective within our design space and aligns well
with real-world benchmarks. Our objective is to find appropriate values for block size C, latent dimension P ,
and LFSR length K, such that the reconstruction error is minimized when the optimal seed is selected. More
specifically, let s∗C,P,K and t∗C,P,K denote the solutions obtained from Eq. 2. For an M -bit compression, we solve
the following optimization problem:

E[ϵmin] := min
C,P,K

E
[
∥w −U(s∗C,P,K)t∗C,P,K∥22

]
,

subject to: MC = K + 4 + 4P and C,K,P ∈ Z+,
(4)

where Z+ represents the set of all positive integers. Since the optimization problem in equation 4 is not analyt-
ically tractable, we numerically solved it by conducting a grid search over C, P , and K constrained to positive
integers. Understanding the trade-offs among C, P , and K is important for optimizing the approximation within
a given bit budget. Each of these parameters influences the overall performance and contributes to minimizing the
reconstruction error.

One critical trade-off is between the LFSR length K and the latent dimension P . Increasing K reduces the
expected minimum error E[ϵmin] by providing more opportunities to find a better projection. However, this comes
at a cost: as K increases, the number of required bits grows, reducing the available bit budget for P . The objective
is to find an optimal K that effectively lowers E[ϵmin] without overly constraining P , as that could lead to a
significant increase in the overall error E[ϵmin]. Similarly, increasing P helps capture more of the energy of the
vector w, thus reducing E[ϵmin]. However, this also requires more bits, which may limit the value of K. The
key is to strike a balance where enough energy is captured without overly sacrificing the exploration of better
projections through K. Finally, increasing C expands the total bit budget, allowing for larger values of both P
and K. However, this also increases the potential for higher error, as expanding the space may dilute the precision
of projections.

Overall, C, P , and K are interdependent, and optimizing these parameters requires a careful numerical exploration
of different combinations. Based on this analysis, we selected the configurations shown in Table 1 for M=3 and
M=4, which are used in the experiments reported next.

Table 1: Selected configurations of C, P , and K for M = 3 and M = 4.

bits per element M Block size C Latent Dimension P LFSR Seed Bits K

3 12 4 16

4 8 3 16

4 EXPERIMENTS

In this section, we apply the heuristics across all weight blocks of pretrained LLMs in parallel to find the seeds and
coefficients, as described in Eq. 2, that minimize the reconstruction error. Using the configurations from Table 1,
we evaluate our compression methods in terms of accuracy and performance. Our experiments focus on Llama
2 and Llama 3 models (Touvron et al., 2023), and unlike other methods, SeedLM does not require fine-tuning or
calibration data while still achieving competitive results. We assess model quality using perplexity and accuracy,
followed by performance analysis through FPGA-based matrix multiplication with low-level LFSR generation.
This highlights the cost and performance benefits of SeedLM, especially in hardware-constrained environments.

4.1 ACCURACY RESULTS

To evaluate the quality of SeedLM, we measure perplexity on the WikiText-2 dataset (Merity et al., 2016) and
assess accuracy across various zero-shot tasks using LM Evaluation Harness (Gao et al., 2021)1. We compare

1For all compression methods, we use LM Evaluation Harness v0.4.3 and the following task versions: arc-challenge=1.0,
arc-easy=1.0, hellaswag=1.0, winogrande=1.0, boolq=2.0.
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our method against established compression techniques such as AWQ (Lin et al., 2024), OmniQuant (Shao et al.,
2023), and QuIP# (Tseng et al., 2024), using the official GitHub repositories for each baseline as of Septem-
ber 2024. A key strength of SeedLM is that it can operate entirely data-free, in contrast to other methods that
require calibration data to achieve comparable results. For the baseline methods, we use the default calibration
sets from their official repositories. Our experiments involve Llama 2 models (7B, 13B, 70B) and Llama 3 models
(8B, 70B), tested with 3-bit and 4-bit representations. In the case of AWQ and OmniQuant, we use 4-bit integers
with channel-wise scaling to avoid significantly increasing the bits per element beyond the allocated 3 or 4 bits
(since a group size of 128 in these methods adds roughly 0.25 extra bits per parameter). For QuIP# and Om-
niQuant, we ensure a fair comparison with SeedLM and AWQ by not performing fine-tuning on the quantized
models. However, unlike SeedLM, all of them still require per-layer calibration, which relies on calibration data
and activations, whereas SeedLM achieves its results without any data dependency.

To evaluate general language
model performance, we measure
perplexity on the WikiText-2
language modeling dataset, us-
ing 166 windows, each with a
length of 2048 tokens, from the
test data split. The results, as
shown in Table 2, illustrate a clear
trade-off between compression
level and model quality. In some
cases, larger models subjected
to aggressive compression even
underperform smaller models with
milder compression. SeedLM
consistently outperforms state-of-
the-art compression techniques,
particularly at higher compression
levels. Notably, SeedLM achieves
these results without the need for
any calibration data.

Table 2: WikiText-2 perplexity results for 3- and 4-bit representations of
Llama 2 and Llama 3 models with a sequence length of 2048. The notation
x-yB refers to the Llama x model with yB parameters (e.g., 2-7B means
Llama 2 with 7 billion parameters). Perplexity values above 100 are shown
as inf. The best perplexity values are highlighted, and results that ran out
of memory on our setup (8 A100 40GB GPUs) are marked as OOM.

Method Bits 2-7B 2-13B 2-70B 3-8B 3-70B
Baseline 16 5.5 4.9 3.3 6.1 2.9

SeedLM 4 5.7 5.1 3.5 7.0 3.8
OmniQuant 4 6.1 5.2 3.7 inf inf
AWQ 4 5.8 5.1 3.5 7.1 4.7
QuIP# 4 6.5 5.3 OOM 7.6 OOM

SeedLM 3 6.6 5.8 4.0 10.1 5.7
OmniQuant 3 inf 10.7 7.5 inf inf
AWQ 3 15.6 6.5 4.4 11.8 11.6
QuIP# 3 10.8 5.7 OOM 10.1 OOM

Next, we show zero-shot accuracy across various tasks. As seen in Table 3, SeedLM performs on par with or better
than state-of-the-art methods at the same bit rates. This underscores SeedLM’s ability to maintain competitive
accuracy without relying on calibration data. Note that Llama 3 is much more sensitive to compression than Llama
2, likely due to its more advanced architecture and significantly larger training dataset. Llama 3 was trained on
15 trillion tokens, around seven times more than Llama 2’s 2 trillion tokens, enabling it to capture more detailed
language patterns and nuances. This increased complexity and sensitivity to nuance make it less compressible
without a noticeable drop in performance. However, as shown in Figure 1, SeedLM still significantly outperforms
other state-of-the-art methods on Llama 3 in terms of Retained Accuracy (%), i.e. ratio of the compressed model’s
accuracy to the full-precision FP16 model’s accuracy. This demonstrates that SeedLM is not only effective for
such a complex model but is also robust across various tasks by maintaining high accuracy.

4.2 PERFORMANCE ANALYSIS

In this section, we shift our focus from accuracy to performance analysis on hardware. Specifically, we explore
how SeedLM can be efficiently implemented on an FPGA. FPGAs are ideal for this task because they allow for
highly parallelized computations and can be reconfigured to handle specific workloads, making them well-suited
for running compressed models with lower bit rates that are not well supported by conventional GPUs. With an
FPGA, the LFSR generation can be supported at a low-level in hardware rather than relying on relatively expensive
software implementations.

To evaluate SeedLM on an FPGA, we benchmark matrix-vector multiplication – a core operation in most large
language models – both with and without SeedLM’s 4-bit parametrization. Figure 4 shows the RTL design block
diagram, with the target device being an AMD Virtex7 FPGA XC7V585T-3 (2021).

The implementation utilizes 128 DSP48 slice multipliers in parallel, calculating 128 elements of the activation
vector simultaneously. The DDR response interface has a maximum bandwidth of 64 bytes per 200 MHz clock
cycle, and the data path is designed to compute at the maximum DDR response throughput. When SeedLM
compression is bypassed, the LFSR weight decompression is also skipped.

In the reference design, FP16 weights are read directly from DRAM, bypassing decompression. Due to the DDR
interface’s 64-byte bus width, a maximum of 32 weight values can be read per cycle, limiting the utilization to
only 32 of the 128 MACs. With SeedLM’s 4-bit compression, however, 128 weight values can be read per cycle,
resulting in a theoretical 4x performance improvement in memory access.
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Table 3: Performance comparison across different models and zero-shot tasks for 4-bit and 3-bit configurations.
Results that ran out of memory in our setup (8 A100 40GB GPUs) are marked with OOM.

Model Method Bits ARC-Easy ARC-Challenge HellaSwag WinoGrande BoolQ Mean

Llama 2
7B

Baseline 16 74.58 46.33 75.98 69.06 77.74 68.74
SeedLM 4 73.23 44.54 74.45 68.43 77.19 67.57
AWQ 4 70.58 43.94 74.96 68.75 78.29 67.30
QuIP# 4 68.35 39.85 72.40 65.59 75.14 64.27
OmniQuant 4 70.71 43.52 74.20 68.27 73.64 66.07
SeedLM 3 69.87 41.21 70.72 66.30 74.28 64.48
AWQ 3 53.37 33.62 56.66 61.09 57.58 52.46
QuIP# 3 59.51 34.22 59.23 61.09 65.20 55.85
OmniQuant 3 35.69 25.77 35.48 52.88 42.48 38.46

Llama 2
13B

Baseline 16 77.44 48.98 79.38 72.22 80.55 71.71
SeedLM 4 76.98 49.83 78.54 72.77 79.20 71.46
AWQ 4 77.44 49.32 78.57 71.90 78.47 71.14
QuIP# 4 74.24 45.48 77.17 71.27 79.51 69.53
OmniQuant 4 76.18 47.95 78.10 72.14 81.77 71.23
SeedLM 3 72.85 45.39 74.50 71.35 78.81 68.58
AWQ 3 70.58 45.14 72.72 64.96 72.45 65.17
QuIP# 3 73.48 45.14 74.92 69.06 79.60 68.44
OmniQuant 3 55.85 34.47 59.54 53.04 63.39 53.26

Llama 2
70B

Baseline 16 80.98 57.25 83.81 77.98 83.70 76.74
SeedLM 4 81.14 56.40 82.97 76.72 82.26 75.90
AWQ 4 80.98 56.66 83.24 77.19 83.27 76.27
QuIP# 4 OOM OOM OOM OOM OOM OOM
OmniQuant 4 79.59 55.97 82.67 76.80 83.43 75.69
SeedLM 3 79.00 53.84 80.51 76.80 79.02 73.83
AWQ 3 80.26 55.80 80.50 73.01 80.00 73.91
QuIP# 3 OOM OOM OOM OOM OOM OOM
OmniQuant 3 63.59 39.51 68.24 62.04 65.23 59.72

Llama 3
8B

Baseline 16 76.81 52.73 76.97 72.93 81.87 72.26
SeedLM 4 76.52 49.74 76.61 72.93 80.76 71.31
AWQ 4 74.49 51.54 78.03 73.09 80.40 71.51
QuIP# 4 72.39 46.93 75.93 71.82 79.24 69.26
OmniQuant 4 73.95 47.78 73.42 69.69 71.99 67.37
SeedLM 3 67.21 41.55 68.34 69.22 67.61 62.79
AWQ 3 64.90 40.19 68.40 65.04 74.62 62.63
QuIP# 3 65.07 40.36 67.79 68.82 72.14 62.84
OmniQuant 3 30.26 22.53 28.96 49.33 48.47 35.91

Llama 3
70B

Baseline 16 85.23 64.33 84.07 77.66 86.27 79.51
SeedLM 4 83.80 59.30 83.84 77.74 85.60 78.06
AWQ 4 80.98 57.94 82.84 60.54 79.39 72.34
QuIP# 4 OOM OOM OOM OOM OOM OOM
OmniQuant 4 25.13 26.54 26.36 51.38 37.83 33.45
SeedLM 3 78.45 52.22 80.77 77.35 84.59 74.68
AWQ 3 65.87 45.14 70.76 55.88 69.08 61.35
QuIP# 3 OOM OOM OOM OOM OOM OOM
OmniQuant 3 25.21 25.94 26.15 49.64 37.83 32.95

We use the reference implementation without compression (FP16 for all data) as a baseline to assess both perfor-
mance and resource utilization on the FPGA. Table 4 provides a detailed comparison of the FPGA resource usage,
including LUTs, FFs, BlockRAM, and DSP counts.

• LUT – FPGA Fabric Lookup Table, used to create combinational logic.

• FF – FPGA Fabric Register (Flip-Flop).

• BRAM – FPGA Block RAM (SRAM), each BlockRAM is 36Kb.

• DSPs – FPGA DSP48 resources, which include an 18-bit by 18-bit multiplier and accumulator.

In the reference design, only 32 MACs are used due to the input bandwidth limitation of 64 bytes per cycle. The
SeedLM design, utilizing 128 MACs per cycle, results in approximately a 4x increase in MAC Block resources,
aligning with the expected performance improvement.
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Figure 4: Block diagram of the RTL design.

Table 4: FPGA resource utilization comparison

Total MAC Block LSFR Decompress PreMAC Fix2Float

Reference SeedLM Reference SeedLM Reference SeedLM Reference SeedLM

LUTs 20800 120105 9902 42174 0 67034 0 12292

FFs 10164 73666 3118 12594 0 45407 0 13448

BRAMs 10.5 154.5 0 0 0 144 0 0

DSPs 32 128 32 128 0 0 0 0

Table 4 reveals that SeedLM increases the total LUT count to 67K and register count to 45.4K, with the fixed-
point to FP16 conversion accounting for 12.3K LUTs and 13.4K registers. The design includes 128 fully pipelined
fixed-to-FP16 converters to sustain the DDR response data rate. We can note that performing all the compute in
fixed-point math could eliminate the need for fixed-point to FP16 conversion, but this optimization is outside the
scope of this paper. Table 5 shows the number of cycles required to complete matrix operations of various sizes,
measured from the first DDR read to the final write to the activation SRAM. The SeedLM design achieves a 4x
throughput compared to the reference design. As matrix size increases, the startup costs become less significant,
leading the speedup to approach the theoretical 4x gain. In summary, SeedLM achieves near iso-accuracy at 4-bit
compared to FP16, while offering close to a 4x speedup for memory-bound tasks such as generation in LLMs with
billions of parameters and beyond.

Table 5: Performance comparison for different matrix sizes

512 × 512 1024 × 1024 2048 × 2048

Reference 8593 34201 136559

SeedLM 2341 8723 34331

Speed Up 3.67 3.92 3.98

5 CONCLUDING REMARKS

In this paper, we presented SeedLM, a post-training compression method that uses pseudo-random generators to
efficiently encode and compress model weights. SeedLM offers a data-free approach, avoiding the need for cali-
bration data while retaining competitive accuracy, achieving up to around 98% zero-shot accuracy at 3- and 4-bit
quantization levels. We demonstrated the method’s performance on both Llama 2 and Llama 3 models, show-
ing that it performs comparably to existing state-of-the-art techniques. Furthermore, our FPGA implementation
highlights SeedLM’s potential for improved computational efficiency in hardware-constrained environments.

SeedLM primarily focused on 3-bit and 4-bit quantization, applying the same design choices across all blocks for
these levels. However, we believe that pushing below the 3-bit level might require different configurations tailored
to each block to manage compression noise effectively or leveraging data for additional fine-tuning to enhance
results. We leave these directions for future work. Furthermore, as hardware continues to evolve, SeedLM’s
applicability could expand, with its LFSR-based design offering low-area, low-energy, high-throughput benefits.
This work highlights the practicality of such techniques, aiming to inspire hardware innovations that support
broader device compatibility, including GPUs.
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A APPENDIX

A.1 COEFFICIENTS USED IN LFSRS

The following table lists the indexed j coefficients used for each K, where αj equals one, with all other coeffi-
cients being zero. These specific coefficients correspond to the Linear Feedback Shift Registers (LFSRs) for each
register length K, with the coefficients indexed starting from 0, representing the tap positions in the shift register.
These coefficients are hard-wired into the hardware configuration of the LFSRs used in our experiments. These
coefficients define the feedback polynomial for each LFSR, ensuring maximal-length cycles.

Table 6: Indexed j coefficients used in LFSRs for each register length K, where αj = 1 and all other coefficients
are zero.

Length of LFSR (k) Indices (j)
2 (0, 1)
3 (0, 1)
4 (0, 1)
5 (0, 2)
6 (0, 1)
7 (0, 1)
8 (0, 2, 3, 4)
9 (0, 4)

10 (0, 3)
11 (0, 2)
12 (0, 1, 2, 8)
13 (0, 1, 2, 5)
14 (0, 1, 2, 12)
15 (0, 1)
16 (0, 1, 3, 12)
17 (0, 3)
18 (0, 7)
19 (0, 1, 2, 5)
20 (0, 3)
21 (0, 2)
22 (0, 1)
23 (0, 5)
24 (0, 1, 2, 7)

A.2 LFSR SEQUENCE GENERATION

This section explains how pseudo-random sequences are generated for our weight compression method using
LFSRs which efficiently produce pseudo-random binary sequences, enabling on-the-fly generation. A key function
generates a sequence of states by taking inputs such as a seed, the number of bits (K) in the LFSR, the sequence
length, and the positions of the taps. These taps, which determine which bits are XORed to produce the feedback
bit, are chosen to ensure maximal length and are summarized in Table 6.

Process Overview. Starting with an initial state (seed), the LFSR computes the next state iteratively by:

Shifting all bits in the current state to the right by one position. XORing the bits at the specified tap positions
to calculate the feedback bit, which is shifted into the leftmost position. This process is repeated for the desired
sequence length, with the generated states stored in an array for downstream use.

The pseudocode for this process is provided in Algorithm 1.

A.3 RECONSTRUCTION PROCESS IN SEEDLM

The reconstruction process of a weight matrix in SeedLM transforms compressed data back into its approximate
original form using a combination of pseudo-random sequence generation and compressed coefficients. Given a
set of seeds {si}num blocks

i=1 and coefficients {ti}num blocks
i=1 , where ti ∈ RP , Algorithm 2 is performed:
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Algorithm 1 Generate LFSR Sequence

Require: K: Number of bits in the LFSR
seed: Initial state of the LFSR
length: Length of the sequence to generate
taps: List of tap positions affecting feedback {Extracted from Table 6 for SeedLM}

1: Set current state← seed.
2: for i = 0 to length− 1 do
3: Initialize bk ← 0. {bk is the new feedback bit}
4: for each tap in taps do
5: Update bk ← bk ⊕ ((current state≫ tap)&1).
6: end for
7: Update current state← (current state≫ 1) | (bk ≪ (k − 1)).
8: Assign results[i]← current state.
9: end for

10: return results

Algorithm 2 Reconstruction Process in SeedLM

Require: K: Number of bits in the LFSR
{si}num blocks

i=1 : Set of seeds
{ti}num blocks

i=1 : Set of coefficients, where ti ∈ RP

C: Block size
P : Latent dimension

1: Initialize length← 2K − 1.
2: Generate all LFSR states from 1 to length, store as states.
3: Initialize blocks← [].
4: for i = 1 to num blocks do
5: Compute start← si%length. {% denotes the remainder operation}
6: Extract a slice of states starting at start and containing C.P elements. If the slice exceeds length, cycle

through states.
7: Rearrange the slice into a matrix U(si) ∈ RC×P , following a row-wise order.
8: Compute block ← U(si)× ti (matrix-vector multiplication).
9: Append block to blocks.

10: end for
11: Rearrange blocks to reconstruct the final weight matrix output.
12: return output

A.4 SEEDLM ALGORITHM

Algorithm 3 summarizes SeedLM’s
method, which operates in parallel
across all weight blocks to identify
the seeds and coefficients used to re-
construct weights. To enhance com-
putational efficiency, we precompute
and cache the pseudo-inverse matri-
ces for all seeds and execute steps 2–5
concurrently across all blocks. Addi-
tionally, the inner loop can be paral-
lelized. For the selected values of C,
P , and K used in Table 1, the pseudo-
inverses require at most 6.3MB of
memory, which is negligible.

Algorithm 3 Seed and Coefficient Selection for a Weight Block

Require: w ∈ RC , {U(j)†}2
K−1

j=1

1: ŝ∗ ← null, t̂∗ ← null
2: min norm←∞
3: for j = 1 to 2K − 1 do
4: t← q(U(j)†w), where q(·) quantizes its arguments to the set Q
5: norm← ∥w −U(j) · t∥
6: if norm < min norm then
7: min norm← norm
8: ŝ∗ ← s
9: t̂∗ ← t

10: end if
11: end for
12: return ŝ∗, and t̂∗
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