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ABSTRACT

Topological deep learning (TDL) has emerged as a powerful tool for modeling
higher-order interactions in relational data. However, phenomena such as over-
squashing in topological message-passing remain understudied and lack theoreti-
cal analysis. We propose a unifying axiomatic framework that bridges graph and
topological message-passing by viewing simplicial and cellular complexes and
their message-passing schemes through the lens of relational structures. This ap-
proach extends graph-theoretic results and algorithms to higher-order structures,
facilitating the analysis and mitigation of oversquashing in topological message-
passing networks. Through theoretical analysis and empirical studies on simplicial
networks, we demonstrate the potential of this framework to advance TDL.

1 INTRODUCTION

Recent years have witnessed a growing recognition that traditional machine learning, rooted in Eu-
clidean spaces, often fails to capture the complex structure and relationships present in real-world
data. This shortcoming has driven the development of geometric deep learning (GDL) (Bronstein
et al., 2021) and, more recently, topological deep learning (TDL) (Hajij et al., 2023), for handling
non-Euclidean and relational data. TDL, in particular, has emerged as a promising frontier for rela-
tional learning, that extends beyond graph neural networks (GNNs). TDL offers tools to capture and
analyze higher-order interactions and topological features in complex data and higher-order struc-
tures, such as simplicial complexes, cell complexes, and sheaves (Hajij et al., 2023). However, the
TDL field is young, and the TDL community has yet many open theoretical and practical questions
relating to, e.g., oversquashing and rewiring (research directions 2 and 9 of Papamarkou et al., 2024).

Oversquashing is a challenging failure mode in GNNs, where information struggles to propagate
across long paths due to the compression of an exponentially growing number of messages into
fixed-size vectors (Alon & Yahav, 2021). This phenomenon has been examined through various
perspectives, including curvature (Topping et al., 2022), graph expansion (Banerjee et al., 2022),
effective resistance (Black et al., 2023), and spectral properties (Karhadkar et al., 2023). Despite
the potential of higher-order message passing architectures—such as simplicial neural networks
(Ebli et al., 2020), message passing simplicial networks (Bodnar et al., 2021b), and CW networks
(Bodnar et al., 2021a)—there remains a lack of unified frameworks for analyzing and mitigating
oversquashing in these settings.

In this paper, we take a first step toward studying oversquashing in TDL by showing that simplicial
complexes and their message passing schemes can be interpreted as relational structures, making it
possible to extend key GNN insights and tools to higher-order message passing architectures. The
conceptual framework and theoretical results developed in this paper address pressing questions in
the TDL community (e.g., research directions 2 and 9 of Papamarkou et al., 2024).

Contributions. Our contributions are threefold:

• Axiomatic: We provide a unifying view of simplicial complexes and their message passing
schemes through the lens of relational structures.

• Theoretical: We introduce influence graphs which enable novel extensions of prior graph
analyses to higher order structures, where existing methods for analysis do not apply. We
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extend graph-theoretic concepts and results on oversquashing to relational structures, ana-
lyzing network sensitivity (Lemma 3.2), local geometry (Proposition 3.4), and the impact
of network depth (Theorem 3.5) and hidden dimensions (Section 3.4).

• Practical: We propose a heuristic to extend oversquashing-mitigation techniques from
graph-based models to relational structures.

Related Work. Our work sits at the intersection of graph neural networks, topological deep learning,
relational learning, and the study of oversquashing and graph rewiring in graph neural networks. We
review related work in Appendix A.

The rest of this paper is organized as follows: Section 2 provides the axiomatic groundwork for
relating simplicial and relational message passing. Section 3 presents our theoretical analysis of
oversquashing in this context. Section 4 introduces a heuristic rewiring strategy to mitigate over-
squashing in relational message passing. Section 5 presents our experimental results, followed by a
discussion and conclusions in Section 6.

2 SIMPLICIAL COMPLEXES ARE RELATIONAL STRUCTURES

In this section, we reinterpret simplicial complexes and message passing through the lens of rela-
tional structures. We begin by recalling simplicial complexes and a representative simplicial mes-
sage passing scheme, then reframe these notions within a relational framework. We illustrate the
definitions in this section with a small worked example in Appendx H.

2.1 SIMPLICIAL COMPLEXES AND MESSAGE PASSING

Simplicial complexes are mathematical structures that generalize graphs to higher dimensions, cap-
turing relationships among vertices, edges, triangles, and higher-dimensional objects.
Definition 2.1 (Simplicial Complex, Nanda, 2021). Let V be a non-empty set. A simplicial complex
K is a collection of non-empty subsets of V that contains all the singleton subsets of V and is closed
under the operation of taking non-empty subsets.

A member σ = {v0, v1, . . . , vd} ∈ K with cardinality |σ| = d+ 1 is called a d-simplex. Geometri-
cally, 0-simplices are vertices, 1-simplices are edges, 2-simplices are triangles, and so on.
Definition 2.2 (Boundary Incidence Relation). We say that τ covers σ, written σ ≺ τ , iff σ ⊊ τ and
there is no δ ∈ K such that σ ⊊ δ ⊊ τ .

The incidence relations from Definition 2.2 can be used to construct four types of (local) adjacencies.
Definition 2.3. Consider a simplex σ ∈ K. Four types of adjacent simplices can be defined:

1. Boundary adjacency: B(σ) = {τ : τ ≺ σ};
2. Co-boundary adjacency: C(σ) = {τ : σ ≺ τ};
3. Lower adjacency: N↓(σ) = {τ : ∃δ such that δ ≺ τ and δ ≺ σ};
4. Upper adjacency: N↑(σ) = {τ : ∃δ such that τ ≺ δ and σ ≺ δ}.

In Figure 1, we illustrate an example of a simplicial complex and its adjacency relations.

Message passing schemes on simplicial complexes iteratively update feature vectors assigned to
simplices by exchanging messages between adjacent simplices. We now review a typical simplicial
message passing scheme following Bodnar et al. (2021b): For a simplicial complex K, we denote
the feature vector of a simplex σ ∈ K as hσ ∈ Rp. At each iteration (layer) t, the feature vectors h(t)

σ

of simplices σ ∈ K are updated by aggregating messages from adjacent simplices. For a simplex
σ ∈ K, the messages passed from adjacent simplices are defined as follows:

mB
(t + 1)(σ) = AGGτ∈B(σ) (MB(hσ

(t),hτ
(t))) ,

mC
(t + 1)(σ) = AGGτ∈C(σ) (MC(hσ

(t),hτ
(t))) ,

m↓
(t + 1)(σ) = AGGτ∈N↓(σ) (M↓(hσ

(t),hτ
(t),hσ∩τ

(t))) ,

m↑
(t + 1)(σ) = AGGτ∈N↑(σ) (M↑(hσ

(t),hτ
(t),hσ∪τ

(t))) .

(1)

Here AGG is an aggregation function (e.g., sum or mean), and MB,MC ,M↓,M↑ are message func-
tions (e.g., linear or MLP). Then, an update operation UPDATE (e.g., MLP) incorporates these four
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(a) Simplicial Complex K

{2, 3, 4}

{0, 1} {1, 2} {2, 3} {2, 4} {3, 4}

{0} {1} {2} {3} {4}

→ Boundary → Co-boundary → Lower → Upper

(b) Adjacency Relations on K

Figure 1: The left panel shows a simplicial complex K consisting of five vertices, five edges, and
one triangle. The right panel shows the corresponding adjacency relations depicted as arrows to each
simplex σ ∈ K emanating from each of its adjacent simplices in B(σ), C(σ), N↓(σ), N↑(σ).

different types of incoming messages:

h(t+1)
σ = UPDATE

(
h(t)
σ ,m

(t+1)
B (σ),m

(t+1)
C (σ),m

(t+1)
↓ (σ),m

(t+1)
↑ (σ)

)
. (2)

Finally, after the last iteration a read-out function is applied to process the features to perform a
desired task, such as classification or regression.

2.2 RELATIONAL STRUCTURES AND MESSAGE PASSING

We model simplicial complexes and the above message passing scheme using relational structures.
Definition 2.4 (Relational Structure, Hodges, 1993). A relational structure R = (S, R1, . . . , Rk)
consists of a finite set S of entities, and relations Ri ⊆ Sni , where ni is the arity of Ri.

We note that modeling simplicial complexes as relational structures generalizes a powerful per-
spective in which simplicial complexes and similar constructs are treated as augmented Hasse
diagrams—a viewpoint that has shown both practical and theoretical advantages, as demonstrated,
for example, by Hajij et al. (2023), Eitan et al. (2024), and Papillon et al. (2024).

We now introduce a general scheme for message passing on relational structures which encom-
passes the simplicial message passing scheme from Section 2.1. This scheme is an extension of the
relational graph convolution model from Schlichtkrull et al. (2018) which allows for relations of
different arities, not just binary relations.
Definition 2.5 (Relational Message Passing Model). A relational message passing model on a rela-
tional structureR = (S, R1, . . . , Rk) consists of:

• Feature vectors: h
(t)
σ ∈ Rpt for each σ ∈ S at layer t ≥ 0, initialized as h

(0)
σ = xσ (input

features). Here, pt denotes the dimensionality of the feature vectors at layer t.
• Message functions ψ(t)

i : Rpt × · · · × Rpt → Rpi,t (with ni arguments) for each relation Ri,
where i = 1, . . . , k. Each message function takes ni input feature vectors (corresponding to the
target simplex and its ni − 1 related simplices) and outputs a message vector of dimension pi,t.
The parameter ni represents the arity of the relation Ri.

• Update function ϕ(t) : Rp1,t × · · · × Rpk,t → Rpt+1 . The output dimension pt+1 specifies the
dimensionality of the feature vectors at layer t+ 1.

• Shift operators ARi ∈ R|S|×|S|ni−1

≥0 associated with each relation Ri, for i = 1, . . . , k. For each
σ ∈ S and ξ = (ξ1, . . . , ξni−1) ∈ Sni−1 with (σ, ξ) ∈ Ri, the element ARi

σ,ξ represents the
strength of the signal passed from ξ to σ.

The update rule is given by:

h(t+1)
σ = ϕ(t)

(
m

(t)
σ,1, . . . ,m

(t)
σ,k

)
, (3)
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where for each i = 1, . . . , k, the message m
(t)
σ,i received by σ over Ri is computed as:

m
(t)
σ,i =

∑
ξ∈Sni−1

ARi

σ,ξ ψ
(t)
i

(
h(t)
σ ,h

(t)
ξ1
, . . . ,h

(t)
ξni−1

)
. (4)

In the context of message passing, a simplicial complex K can be viewed as a relational structure
R(K) = (S, R1, . . . , R5), where S = K are the entities, and Ri are relations defined as follows:
R1 = {(σ) : σ ∈ K} (identity), R2 = {(σ, τ) : σ ∈ K, τ ∈ B(σ)} (boundary), R3 = {(σ, τ) : σ ∈
Kτ ∈ C(σ)} (co-boundary), R4 = {(σ, τ, δ) : σ ∈ K, τ ∈ N↓(σ), δ = σ ∩ τ} (lower adjacency),
R5 = {(σ, τ, δ) : σ ∈ K, τ ∈ N↑(σ), δ = σ ∪ τ} (upper adjacency). The message functions ψ(t)

i

correspond to MB,MC ,M↓,M↑, the update function ϕ(t) to UPDATE, and aggregation uses shift
operators ARi . This establishes an equivalence between message passing on the simplicial complex
K and the relational structureR(K).
Remark 2.6. The relational message passing scheme in Definition 2.5 encompasses relational
graph neural networks (Schlichtkrull et al., 2018), simplicial neural networks (Bodnar et al.,
2021b), higher-order graph neural networks (Morris et al., 2019), and cellular complex neural net-
works (Bodnar et al., 2021a). We demonstrate how higher-order graphs fit the relational framework
in Appendix G. The relational structure point of view aligns with, and extends, a point of view where
simplicial structures are similar objects are studied via their augmented Hasse diagrams. Refer to,
for example, Hajij et al. (2023), Eitan et al. (2024), and Papillon et al. (2024).

Takeaway Message 1 (Axiomatic)

Simplicial complexes can be represented as relational structures, where the entities are sim-
plices, and the relations capture the adjacency among simplices of different dimensions. Sim-
plicial message passing is an instance of relational message passing on these structures.

3 OVERSQUASHING IN RELATIONAL MESSAGE-PASSING

The existing literature on oversquashing in GNNs does not directly address relational message pass-
ing. In this section, we address that gap by deriving new extensions of key results on oversquashing
in GNNs to relational message passing. We illustrate the definitions in this section with a small
worked example in Appendx H.

In our analysis of relational structures and message passing schemes, we naturally encounter matri-
ces and graphs that capture the aggregated influence of the underlying shift operators. For conve-
nience, we introduce notation for these matrices and graphs. For each relation Ri of arity ni with
shift operator ARi , we define the matrix ÃRi ∈ R|S|×|S|

≥0 as:

ÃRi
σ,τ =

ni−1∑
j=1

∑
ξ∈Sni−2

ARi

σ,ξ1,...,ξj−1,τ,ξj ,...,ξni−2
, σ, τ ∈ S. (5)

This matrix captures all possible ways an entity τ can influence entity σ via the relation Ri. Specif-
ically, it sums over all positions j where τ can appear among the arguments of the shift operator
ARi , and over all possible combinations of the other entities ξ.

We aggregate these matrices over all relations to form the aggregated influence matrix Ã ∈ R|S|×|S|
≥0 :

Ã =

k∑
i=1

ÃRi . (6)

Next, we define the augmented influence matrix B, which plays the role of an augmented adjacency
matrix in our analysis:

B = γI+ Ã, (7)
where γ = maxσ

∑
ξ∈Sni−1 Ãσ,ξ is the maximum row sum of Ã.

Lastly, we introduce graphs that capture the aggregated message passing dynamical structure implied
by the relational structure and the message passing scheme.
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Definition 3.1 (Influence Graph). Given a relational structure R = (S, R1, . . . , Rk) and a rela-
tional message passing scheme with update rule given by Equation 3, and given Q ∈ {Ã,B},
where Ã and B are defined by Equations 6 and 7 respectively, we define the influence graph
G(S,Q) = (S, E , w) as follows: The set of entities (i.e., nodes) is S. The set of edges E con-
sists of directed edges from entity τ to entity σ for each pair (σ, τ) ∈ S × S with Qσ,τ > 0. Each
edge from τ to σ is assigned a weight wτ→σ = Qσ,τ .

As we will see next, these graphs make it possible to leverage and extend graph-theoretic concepts,
results, and intuition to understand and analyze the behavior of relational message passing schemes.

3.1 SENSITIVITY ANALYSIS

We now analyze the sensitivity of relational message passing to changes in the input features. This
analysis is crucial for understanding how information propagates through the network and for iden-
tifying potential bottlenecks or oversquashing effects. We begin with a standard assumption about
the boundedness of the Jacobians of the message and update functions.

Assumption 1 (Bounded Jacobians). All message functions ψi
(ℓ) and update functions ϕ(ℓ)

are differentiable with bounded Jacobians: There exist constants βi
(ℓ) and α(ℓ) such that

∥∂ψi
(ℓ)/∂hσ∥1 ≤ βi

(ℓ) for any input feature vector hσ , and ∥∂ϕ(ℓ)/∂mj∥1 ≤ α(ℓ) for any mes-
sage input mj . We write β(ℓ) = maxi βi

(ℓ).

Our main result on sensitivity is the following, which is a novel extension of GNN sensitivity anal-
ysis results (e.g., Topping et al., 2022, Lemma 1 and Di Giovanni et al., 2023, Theorem 3.2) to
relational (and topological) message passing. We provide the proof in Appendix C.1.

Lemma 3.2 (Sensitivity Bound for Relational Message Passing). Consider a relational structure
R = (S, R1, . . . , Rk) with update rule given by Equation 3 and satisfying Assumption 1. Then, for
any σ, τ ∈ S and t > 0, the Jacobian at layer t with respect to the input features (t = 0) satisfies∥∥∥∥∥ ∂h(t)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
t−1∏
ℓ=0

α(ℓ)β(ℓ)

)(
Bt
)
σ,τ

. (8)

Thus, the bound on the Jacobian of the σ-feature with respect to the input τ -feature depends on
the (σ, τ)-entry of the t-th matrix power Bt, which reflects the number and strength of t-length
paths from τ to σ in the graph G(S,B). Structural properties of G(S,B) that lead to small val-
ues of (Bt)σ,τ , such as bottlenecks or long distances between nodes, therefore contribute to the
phenomenon of oversquashing, where the influence of distant entities is diminished.

As demonstrated throughout this work, our result offers a systematic framework for extending other
theoretical findings on oversquashing in graphs, which do not directly apply to simplicial com-
plexes and similar relational structures. This includes the influential works by Topping et al. (2022),
Di Giovanni et al. (2023), and Fesser & Weber (2023). By leveraging our axiomatic framework, we
derive principled extensions on the impact of local geometry (Section 3.2), depth (Section 3.3), and
hidden dimensions (Section 3.4) in higher-order message passing, addressing settings where prior
results are not applicable. Additionally, this result offers a clear approach for deriving analogs of
key quantities such as curvature (Definition 3.3), and can serve as a guide for future work.

3.2 THE IMPACT OF LOCAL GEOMETRY

Lemma 3.2 shows that the entries of the matrix Bt, which encode the number and strength of connec-
tions in a relational message passing scheme, control feature sensitivity. Prior works relate similar
bounds to notions of discrete curvature for unweighted undirected graphs, such as balanced Forman
curvature (Topping et al., 2022), Ollivier-Ricci curvature (Nguyen et al., 2023), and augmented For-
man curvature (Fesser & Weber, 2023), via counting local motifs, such as triangles and squares, in
the underlying graphs. Following this approach, we derive a result analogous to Fesser & Weber
(2023, Proposition 3.4), introducing a motif-counting quantity inspired by the augmented Forman
curvature, but adapted for the particular weighted directed graphs arising in our setting.

Definition 3.3. Let G = (S, E , w) be a weighted directed graph with entities (nodes) S , edges E ,
and edge weights w : E → R≥0. For each entity τ ∈ S , define the weighted out-degree wout

τ =

5
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∑
(τ→σ)∈E wτ→σ and the weighted in-degree win

τ =
∑

(σ→τ)∈E wσ→τ . For an edge (τ → σ) ∈ E ,
define the weighted triangle count wT =

∑
ξ∈S wτ→ξ · wξ→σ and the weighted quadrangle count

wF =
∑

ξ1,ξ2∈S wτ→ξ1 ·wξ1→ξ2 ·wξ2→σ . Then, the extended Forman curvature of the edge (τ → σ)
is defined as:

EFCG(τ, σ) = 4− wout
τ − win

σ + 3wT + 2wF . (9)

We immediately get the following result, inspired by Nguyen et al. (2023, Proposition 4.4) and
Fesser & Weber (2023, Proposition 3.4), and which is exemplary of results connecting sensitivity
analysis to notions of discrete curvature. We provide the proof in Appendix C.2.
Proposition 3.4. Consider a relational structure R = (S, R1, . . . , Rk) with update rule given by
Equation 3 and satisfying Assumption 1. Denote G = G(S,B). Then, for any σ, τ ∈ S with an edge
(τ → σ) ∈ G, the following holds:∥∥∥∥∥∂h(2)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ 1

3

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)[
EFCG(τ, σ) + wout

τ + win
σ − 4

]
. (10)

In principle, a similar result using balanced Forman curvature (as in Topping et al., 2022, Theo-
rem 4) is possible using our framework, and we leave that extension for future work. Connections
to Ollivier-Ricci curvature are discussed in Appendix B.1.

We present experimental analyses related to curvature on relational structures in Section D.3 (edge
curvature distribution) and Appendices D.1 (edge curvature visualization) and D.2 (weighted curva-
ture). We further propose a relational extension of curvature-based rewiring techniques in Section 4
and empirically analyze the impact of relational rewiring using real-world and synthetic benchmarks
in Sections 5.1 and 5.2, respectively.

3.3 THE IMPACT OF DEPTH

To facilitate our analysis of depth, we make the following non-restrictive assumptions:
Assumption 2 (Row-Normalized Shift Operators). Each shift operator ARi associated with relation
Ri is row-normalized, such that for all σ ∈ S,∑

ξ∈Sni−1

ARi

σ,ξ =

{
1, if

∑
ξ A

Ri

σ,ξ ̸= 0,

0, if
∑
ξ A

Ri

σ,ξ = 0.
(11)

Assumption 3 (Bounded α(ℓ) and β(ℓ)). There exist constants αmax > 0 and βmax > 0 such that for
all layers ℓ, α(ℓ) ≤ αmax and β(ℓ) ≤ βmax.

We now present our main result on the impact of depth in relational message passing, extending
a previous result by Di Giovanni et al. (2023, Theorem 4.1) to our setting. We provide the proof
in Appendix C.3. By the combinatorial distance from τ to σ in the graph G(S, Ã), we mean the
smallest number of edges in a directed path from τ to σ in the graph. Similarly, by combinatorial
length of a directed path, we mean the number of edges in the path.
Theorem 3.5 (Impact of Depth on Relational Message Passing). Consider a relational structure
R = (S, R1, . . . , Rk) with update rule given by Equation 3 and satisfying Assumptions 1, 2, and 3.
Let σ, τ ∈ S be entities such that the combinatorial distance from τ to σ in the graph G(S, Ã) is
r. Denote by ωℓ(σ, τ) the number of directed paths from τ to σ of combinatorial length at most ℓ in
G(S, Ã). Then, for any 0 ≤ m < r, there exists a constant C > 0, depending only on αmax, βmax,
k, and m, but not on r nor the specific relations inR, such that∥∥∥∥∥∂h(r+m)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ Cωr+m(σ, τ)(2αmaxβmaxM)r,

where M = maxσ,τ Ãσ,τ .

This result indicates that the sensitivity can decay exponentially with depth when M <
1/(2αmaxβmax), particularly when the number of walks ωt(σ, τ) is limited by the structure of
G(S, Ã). Such exponential decay is a characteristic of the oversquashing phenomenon, where infor-
mation from distant nodes becomes increasingly compressed, reducing its influence on the output.

We present experimental validation of this result in Section 5.2.
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3.4 THE IMPACT OF HIDDEN DIMENSIONS

In situations where the Lipschitz constants of the message and update functions from Assumption 1
are affected by hyperparameters, such as the widths of neural networks implementing said functions,
one can have β

(ℓ)
i = O(pi,ℓ) and α(ℓ) = O(pℓ+1). This is the case, for instance, when the message

and update functions are shallow neural networks (see Appendix B.2 and Appendix C.4).

Writing p′ℓ = maxi pi,ℓ and substituting β(ℓ) = O(p′ℓ) and α(ℓ) = O(pℓ+1) into the bound from
Lemma 3.2, one gets: ∥∥∥∥∥ ∂h(t)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ C ·

(
t−1∏
ℓ=0

pℓ+1 · p′ℓ

)(
Bt
)
σ,τ

, (12)

where C is a constant independent of the layer widths, p′ℓ is the maximum dimension of the message
vectors at layer ℓ, and pℓ+1 is the output dimension of the update function at layer ℓ.

This implies that low hidden dimensions in the message and update functions contribute to a low
sensitivity upper bound, which can exacerbate the oversquashing problem. Increasing the hidden
dimensions will raise the upper bound, which can help improve the model’s ability to propagate
information effectively and enhance performance on tasks. However, increasing the hidden dimen-
sions risks overfitting due to the increased model complexity (Bartlett et al., 2017).

We present experimental validation of this result in Section 5.2.

Takeaway Message 2 (Theoretical)

By reformulating higher order structures as relational structures, key results on oversquashing
in graph neural networks extend to relational message passing schemes through the aggregated
influence matrix and the influence graph. This conceptual framework enables analysis of the
impact of local geometry, depth, and hidden dimensions in relational message passing schemes,
just as in graph neural networks.

4 REWIRING HEURISTICS FOR RELATIONAL STRUCTURES

Inspired by First-Order Spectral Rewiring (FoSR) (Karhadkar et al., 2023), we propose a rewiring
heuristic that integrates additional connections into a relational structure without altering its original
connections. To capture the overall connectivity of a relational structure, we define the collapsed
adjacency matrix, which counts the number of direct connections between entities.
Definition 4.1 (Collapsed Adjacency Matrix). Given a relational structure R = (S, R1, . . . , Rk),
the collapsed adjacency matrix Acol for the structureR is defined by:

Acol
σ,τ =

k∑
i=1

∑
ξ∈Sni−1

1{(σ,ξ)∈Ri,τ=ξj for some j∈{1,...,ni}}, σ, τ ∈ S.

This matrix captures direct connections between entities through any relation, effectively collapsing
the relational structure into a graph. Our proposed relational rewiring algorithm is as follows.

Algorithm 1 Relational Rewiring Algorithm

Require: Relational structureR = (S, R1, . . . , Rk); graph rewiring algorithm REWIREALGO
1: Construct the collapsed adjacency matrix Acol (Definition 4.1)
2: Build the graph Gcol = (S,Acol)
3: Apply REWIREALGO to Gcol to obtain additional edges Enew
4: Define a new relation Rk+1 = Enew
5: Update the relational structure: R′ = (S, R1, . . . , Rk, Rk+1)

Adding new connections (Enew) without removing existing ones improves the model capacity to cap-
ture long-range dependencies while preserving the original relational structure. We experimentally
analyze the impact of relational rewiring using real-world and synthetic benchmarks in Sections 5.1
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and 5.2, respectively. Future work could explore rewiring algorithms that remove or reclassify
edges, such as spectral pruning (Jamadandi et al., 2024), either by re-labeling the edges as new
relations or by deletion.

Takeaway Message 3 (Practical)

Graph rewiring techniques for improving information flow and mitigating oversquashing can be
adapted to relational structures. This approach improves long-range connectivity and enhances
message propagation while maintaining the integrity of the original connections.

5 EXPERIMENTS AND RESULTS

5.1 REAL-WORLD BENCHMARK: GRAPH CLASSIFICATION

We run an empirical analysis with real-world datasets to compare the performance of different graph,
relational graph, and simplicial message passing models, and the impact of relational rewiring on
said models. We provide more details in Appendix E.

Task and Datasets. We use graph classification tasks ENZYMES, IMDB-B, MUTAG, NCI1, and
PROTEINS from the TUDataset (Morris et al., 2020) for evaluation.

Graph Lifting. For the simplicial message passing models, graphs are separately treated as sim-
plicial complexes with only graph nodes (0-dimensional simplices) and upper adjacencies, and also
lifted into clique complexes (see appendix).

Models. We evaluate three types of models: a) Graph message passing models: SGC (Wu et al.,
2019), GCN (Kipf & Welling, 2017), and GIN (Xu et al., 2019); b) Relational graph message
passing models: RGCN (Schlichtkrull et al., 2018) and RGIN; c) Topological message passing
models: SIN (Bodnar et al., 2021b), CIN (Bodnar et al., 2021a), and CIN++ (Giusti et al., 2024).

Relational Rewiring. We apply relational rewiring for 40 iterations (Section 4) using three choices
for REWIREALGO: SDRF (Topping et al., 2022), FoSR (Karhadkar et al., 2023), and AFRC (Fesser
& Weber, 2023). Due to computational constraints, we run the three choices on all datasets except
IMDB with Clique graph lifting, where we only run FoSR. We use fixed, dataset- and model-agnostic
hyperparameters, diverging from prior work where hyperparameter sweeps are carried out. It is
important to note that hyperparameter tuning can significantly impact performance on downstream
tasks, as highlighted by, e.g., Tori et al. (2024).

Training. Models are trained for up to 500 epochs, with early stopping and learning rate decay
based on a validation set. Additional details can be found in Appendix E. Results are reported as
mean ± standard error over 10 trials.

Results. Table 1 shows test accuracies for the TUDataset experiments. Rewiring generally boosts
performance for base graphs across models and datasets, particularly for RGCN, which improves
significantly on all datasets. GCN and GIN also see notable gains on MUTAG and ENZYMES,
respectively. For clique complex lifted graphs, results are similar. CIN++ performs exceptionally
well after rewiring on NCI1 and ENZYMES. However, models like GIN and RGIN show modest
improvements or slight decreases on certain datasets. Relational models on lifted graphs (RGCN,
RGIN) perform similarly to topological models (SIN, CIN) and sometimes outperform them, such
as RGCN on PROTEINS. Additionally, for ENZYMES, MUTAG, NCI1, and PROTEINS, in 75%
of cases, the best-performing rewiring algorithm for Lift=None and Lift=Clique are the same. (Cf.
Appendix E.3.) In conclusion, the impact of rewiring with our dataset- and model-agnostic choice
of hyperparameters varies across datasets, with relational and topological models performance re-
sponding to rewiring similarly to graph models.

5.2 SYNTHETIC BENCHMARK: RINGTRANSFER

We confirm the theoretical results from Section 3 using the RINGTRANSFER benchmark, a graph
feature transfer task designed to tease out the effect of long-range dependencies in message-passing
models using rings of growing size. We follow the experimental setup of Karhadkar et al. (2023)
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ENZYMES IMDB-B MUTAG NCI1 PROTEINS
Lift Model No Rew. Best Rew. No Rew. FoSR No Rew. Best Rew. No Rew. Best Rew. No Rew. Best Rew.

None

SGC 18.3± 1.2 21.5± 1.6 49.5± 1.5 50.0± 1.8 64.5± 5.8 70.0± 2.6 55.2± 1.0 54.4± 0.7 62.2± 1.4 65.0± 1.5
GCN 32.2± 2.0 30.7± 1.5 49.1± 1.4 47.9± 1.0 71.0± 3.8 83.0± 1.5 48.3± 0.6 49.1± 0.8 73.1± 1.2 75.8± 1.7
GIN 47.2± 1.9 50.0± 2.7 71.7± 1.5 67.1± 1.5 83.0± 3.1 88.0± 2.4 77.2± 0.5 77.9± 0.5 70.6± 1.4 72.2± 0.8
RGCN 33.8± 1.6 42.5± 1.3 47.6± 1.4 68.0± 1.3 72.5± 2.5 83.5± 1.8 53.2± 0.7 63.4± 1.1 71.9± 1.6 75.6± 1.2
RGIN 46.8± 1.8 49.8± 2.0 69.6± 1.6 48.9± 2.9 81.5± 1.7 85.5± 2.0 76.8± 1.1 77.0± 0.7 70.8± 1.2 72.4± 1.4
SIN 47.5± 2.3 46.8± 2.1 70.0± 1.4 63.0± 2.7 88.5± 3.0 85.5± 1.7 77.0± 0.6 76.4± 0.4 70.2± 1.3 73.2± 1.5
CIN 50.0± 1.9 49.0± 2.0 58.1± 4.0 58.4± 2.7 86.5± 1.8 87.0± 2.4 51.4± 2.5 66.2± 2.0 70.7± 1.0 71.0± 1.4
CIN++ 48.5± 1.9 51.0± 1.5 66.6± 3.7 56.0± 3.9 85.0± 3.4 91.0± 2.3 60.8± 3.8 64.8± 3.1 67.9± 1.9 71.4± 1.4

Clique

SGC 14.5± 1.4 16.8± 0.9 48.7± 2.2 47.8± 1.6 70.0± 3.3 69.5± 2.6 50.0± 1.3 56.8± 0.8 59.9± 1.8 59.1± 1.4
GCN 30.7± 1.2 30.2± 2.4 64.0± 3.1 65.5± 3.1 67.0± 3.5 81.5± 2.9 48.4± 0.4 49.6± 0.6 69.9± 0.6 75.0± 1.4
GIN 44.0± 1.7 48.5± 2.2 69.1± 1.2 70.8± 1.1 83.0± 2.8 82.5± 2.6 78.8± 0.7 78.2± 0.6 68.7± 1.4 72.8± 1.2
RGCN 48.8± 1.2 45.2± 1.5 71.0± 1.0 69.7± 1.5 79.5± 1.7 81.5± 3.8 72.9± 0.8 75.0± 0.9 72.4± 1.6 74.2± 1.2
RGIN 50.8± 1.5 55.8± 2.5 71.6± 0.9 69.0± 1.4 86.0± 2.3 85.0± 2.4 79.2± 0.6 79.5± 0.4 71.5± 1.5 71.8± 1.7
SIN 51.0± 2.4 46.5± 1.2 53.0± 1.9 64.0± 2.3 87.0± 3.2 83.5± 1.7 76.6± 1.3 75.4± 0.7 66.9± 1.3 70.4± 1.2
CIN 49.8± 1.9 46.7± 1.3 52.6± 2.4 68.1± 1.6 85.5± 2.8 86.5± 2.6 51.8± 2.3 72.5± 0.8 70.7± 1.2 70.3± 0.8
CIN++ 50.5± 2.1 52.7± 1.6 62.8± 3.8 64.7± 1.5 90.5± 2.2 84.5± 3.3 61.5± 4.6 76.8± 0.4 68.3± 1.3 71.9± 1.0

Table 1: Test accuracy for TUDataset experiments. Each value is presented as the mean ± standard
error across ten trials. The best-performing result for each dataset is highlighted in gold, while the
second-best is in silver. The results after rewiring are shown with green text if the mean increased
and red text if the mean decreased.

and Di Giovanni et al. (2023), and provide more details in Appendix E.2. We test the impact of neu-
ral network hidden dimensions (Section 3.4), relational structure depth (Section 3.3), and relational
structure local geometry (Sections 3.4 and 4) on task performance by varying the hidden dimen-
sions, ring sizes, and rewiring iterations. The results, consistent with the theory, demonstrate that
increasing network hidden dimensions improves performance up to a point, after which it declines,
potentially due to overfitting. Larger ring sizes lead to performance deterioration, as the effects of
long range dependencies and bottlenecks start to take over. At the same time, rewiring improves
performance by facilitating communication between distant nodes and mitigating oversquashing.
As illustrated in Figure 2, message passing on graphs and simplicial complexes demonstrate similar
trends, consistent with our theoretical predictions.

(a) Hidden Dimensions (b) Size (c) Rewiring

Figure 2: Performance on RINGTRANSFER obtained by varying model hidden dimensions (left),
ring size (middle), and number of rewiring iterations (right).

5.3 ADDITIONAL EXPERIMENTS AND ANALYSES

We report additional analyses in Appendix D.1 and Appendix D.2. There, we visualize the curvature
of relational structures for dumbbell graphs and their corresponding clique complexes. We also
reports a statistically significant linear relationship between the weighted curvature of graphs and
their lifted clique complexes. These interesting patterns merit further investigation.

6 DISCUSSION AND CONCLUSIONS

This work addresses pressing questions about oversquashing in topological networks and higher-
order generalizations of rewiring algorithms raised by the TDL community (Questions 2 and 9 of
Papamarkou et al., 2024). We introduce a theoretical framework for unifying graph and topological
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message passing via relational structures, extending key graph-theoretic results on oversquashing
and rewiring strategies to higher-order networks such as simplicial complexes via influence graphs
that capture the aggregated message passing dynamical structure on relational structures. Our ap-
proach applies broadly to other message-passing schemes, including relational GNNs, high-order
GNNs, and CW networks, providing a foundation for future theoretical and empirical research. Em-
pirical results on real-world datasets show that simplicial networks respond to rewiring similarly to
graph networks, and synthetic benchmarks further confirm our theoretical findings.

Certain aspects are worthy of further investigation. In particular, we compare message passing on
graphs and their clique complexes through proxies (e.g., performance on tasks), as the significant
differences in size and structure make direct empirical comparisons, e.g., of curvature, less the-
oretically rigorous. While we observe statistically significant patterns when comparing weighted
curvatures, further theoretical and empirical investigation is needed. Furthermore, the rewiring al-
gorithms we applied our relational rewiring heuristic to were not originally designed with weighted
directed influence graphs in mind. Potentially, further improvements could be obtained by imple-
menting algorithms specifically tailored for rewiring weighted directed graphs.

For future work, exploring global geometric properties of relational structures, studying oversmooth-
ing, and empirically analyzing more relational message-passing schemes are promising directions.
Developing theoretical tools and tailored rewiring heuristics for weighted directed graphs will be
crucial, as will be tools for direct comparisons of message-passing across different relational struc-
tures. By unifying topological message passing into message passing on relational structures and
generalizing graph-based analysis to this setting, we hope that the present work can aid in both
rigorous analysis and direct comparison between different higher order message passing schemes.

Lastly, for practitioners, we recommend topological message passing as yet another relational learn-
ing tool with relational rewiring as a preprocessing step.

Reproducibility Statement The implementation and scripts to replicate our
experiments are available at https://anonymous.4open.science/r/
Simplicial-Oversquashing-C4CD/. Experimental settings and implementation de-
tails are described in Section 5, and Appendices E and F.
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squashing in GNNs through the lens of information contraction and graph expansion. In 2022
58th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.
1–8, 2022. doi: 10.1109/Allerton49937.2022.9929363.
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las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
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A RELATED WORK

Topological Networks Topological deep learning (TDL) integrates algebraic topology with neu-
ral networks to create message-passing schemes that are more expressive than graph neural net-
works. An early contribution was the simplicial Weisfeiler-Lehman (SWL) test introduced by Bod-
nar et al. (2021a), which extends the Weisfeiler-Lehman (WL) test from graphs to simplicial com-
plexes. Simplicial neural networks (SNNs) built on SWL generalize graph isomorphism networks
(GIN) (Xu et al., 2019), offering provably stronger expressiveness. CW networks (CWNs) (Bodnar
et al., 2021b) extend message passing to cell complexes, achieving greater power than the tradi-
tional WL test and exceeding the 3-WL test. These hierarchical, geometrically-grounded represen-
tations enable effective handling of higher-order interactions. Hajij et al. (2020) proposed a general
message-passing scheme for cell complexes, though it lacks formal analysis of expressiveness and
complexity. In contrast, Bodnar et al. (2022) and Suk et al. (2022) introduced neural sheaf diffu-
sion models, which learn sheaf structures over graphs, particularly excelling in heterophilic graph
tasks. Attention mechanisms have been integrated into topological message passing in works such
as Goh et al. (2022) for simplicial complexes, Barbero et al. (2022) for sheaves, and Giusti et al.
(2023) for cellular complexes. Additionally, Hajij et al. (2022) extends message-passing to combi-
natorial complexes. Our work represents a first step toward extending the theory of oversquashing
and oversmoothing, widely studied in graph neural networks, to these topological networks.

We note that our relational structures approach generalizes a powerful perspective in which simpli-
cial complexes and similar constructs are treated as augmented Hasse diagrams—a viewpoint that
has shown both practical and theoretical advantages. Recent works have leveraged this perspective:
Hajij et al. (2023) provided a general description of topological message passing schemes, Eitan
et al. (2024) explored the expressivity limits of topological message passing, and Papillon et al.
(2024) introduced a framework for systematically transforming any graph neural network into a
topological analog. Our work aligns with and contributes to this growing body of research.

For detailed surveys of topological deep learning architectures, we refer to Papillon et al. (2023b)
and Giusti (2024). We also refer the reader to the recent position paper by Papamarkou et al. (2024)
on open problems in TDL.

Oversquashing, Oversmoothing, and Graph Rewiring Oversquashing refers to the phe-
nomenon where information from distant nodes is compressed into fixed-size vectors during mes-
sage passing, limiting the ability of a model to capture long-range dependencies. In GNNs, this
has been extensively studied, with works such as those of Alon & Yahav (2021), Topping et al.
(2022), and Di Giovanni et al. (2023) naming and relating the phenomenon to the geometric prop-
erties of graphs. To address this issue, numerous techniques have been proposed, including spatial
and curvature-based rewiring methods such as SDRF (Topping et al., 2022), BORF (Nguyen et al.,
2023), and AFRC (Fesser & Weber, 2023), which modify the graph structure to improve connectivity
and alleviate oversquashing. Spectral rewiring approaches, such as FOSR (Karhadkar et al., 2023),
optimize the graph spectral gap to enhance long-range message propagation, while implicit methods
such as Graph Beltrami Diffusion (Chamberlain et al., 2021) and Graph Transformers (Dwivedi &
Bresson, 2020) allow information flow across a fully connected graph without explicitly modifying
the topology.

Related to oversquashing, another significant challenge in GNNs is oversmoothing, where node
features become indistinguishable as they are excessively aggregated through layers of message
passing. Li et al. (2018), Oono & Suzuki (2020), and Nt & Maehara (2019) have identified and the-
oretically analyzed oversmoothing, showing that it limits the effectiveness of deep GNNs. Gener-
ally, there is a trade-off between mitigating oversquashing and avoiding oversmoothing, and various
rewiring techniques aim to balance these competing objectives.

However, the study of oversquashing and oversmoothing in topological message passing remains
largely unexplored. While works such as those of Bodnar et al. (2021b), Bodnar et al. (2021a), and
Giusti et al. (2024) have alluded to the potential of topological message passing to capture group
interactions and long-range dependencies, a theoretical analysis of oversquashing and oversmooth-
ing in higher-order structures like simplicial or cellular complexes is, to the best of our knowledge,
absent from the literature. Our work aims to fill this gap, providing a rigorous first step in studying
oversquashing in topological message passing.
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For more exhaustive expositions on oversquashing and oversmoothing, we refer the reader to the
excellent recent surveys of Shi et al. (2023) and Rusch et al. (2023).

Relational Learning Relational graph neural networks (R-GNNs) extend traditional GNNs to
handle multi-relational data, particularly in the context of knowledge graphs, where nodes represent
entities and edges capture diverse types of relationships between them. Knowledge graphs, such
as those used in knowledge representation and reasoning tasks (Nickel et al., 2015), are inherently
multi-relational and benefit significantly from RGNNs, which model the varying nature of relations
explicitly. The relational graph convolutional network (R-GCN) (Schlichtkrull et al., 2018) is a foun-
dational approach that assigns distinct transformations to each relation type, allowing for efficient
representation learning on multi-relational graphs. Extensions such as Relational Graph Attention
Networks (RGAT) (Veličković et al., 2018) incorporate attention mechanisms, enabling the model
to focus on the most important relations during message passing. Additionally, Composition-based
Graph Convolutional Networks (CompGCN) (Vashishth et al., 2019) apply compositional operators
to better capture interactions in knowledge graphs.

Recent works in relational learning have introduced various extensions for modeling multi-relational
and higher-order interactions. Hypergraph-based approaches, such as Fatemi et al. (2023) and Huang
et al. (2024), unify relational reasoning with hypergraph structures, enabling the modeling of higher-
order relationships. Message-passing frameworks like the one proposed by Yadati (2020) extend
traditional GNN paradigms to ordered and recursive hypergraphs. Additionally, tensor decomposi-
tion methods such as GETD (Liu et al., 2020) represent hypergraphs as high-dimensional tensors,
allowing efficient encoding of hyper-relational data. We refer the reader to the excellent survey by
Antelmi et al. (2023) for a comprehensive overview of relational hypergraphs and their representa-
tion learning techniques. Robinson et al. (2024) recently extended relational learning to relational
databases consisting of data laid out across multiple tables. Lastly, topological deep learning, which
is one focus of this work, is a new frontier in relational learning (Papamarkou et al., 2024).

Our work unifies relational graph neural networks and topological neural networks by viewing com-
plexes as relational structures, bridging the gap between the two fields.

Graph Lifting Graph lifting transforms a graph into a higher-dimensional structure to enable more
expressive message-passing schemes. For example, higher-order graph neural networks (k-GNNs)
(Morris et al., 2019) lift graphs by representing k-node subgraphs as entities, capturing more com-
plex relationships between nodes. Similarly, Chen et al. (2019) and Maron et al. (2019) proposed
lifting graphs to higher-order structures to improve graph isomorphism testing. In topological mes-
sage passing, graphs are lifted into structures like clique complexes to capture interactions beyond
pairwise relationships. Recently, this topic has gained increased attention, as highlighted by the
ICML Topological Deep Learning Challenge 2024 (Papillon et al., 2023a), which emphasized the
development of topological lifting techniques across various data structures, including graphs, hy-
pergraphs, and simplicial complexes. Among these, high-order graphs, simplicial complexes, and
cellular complexes fit naturally within the relational structure framework and can be analyzed uni-
formly through this lens.

B ADDITIONAL REMARKS

B.1 REMARKS FOR SECTION 3.2

Remark B.1 (Ollivier-Ricci Curvature for Weighted Directed Graphs). We recall the definition of
Ollivier-Ricci curvature (ORC) for weighted directed graphs from Eidi & Jost (2020). Consider a
weighted directed graph G = (S, E , w), where S is the set of entities (nodes), E is the set of directed
edges, and w : E → R≥0 assigns non-negative weights to edges. We abuse notation, and for any
two entities ξ, η ∈ S without an edge (ξ → η) ∈ E , we write wξ→η = 0. For each entity σ ∈ S,
denote the weighted out-degree and weighted in-degree, as in Definition 3.3, by:

wout
σ =

∑
(σ→η)∈E

wσ→η, win
σ =

∑
(ξ→σ)∈E

wξ→σ.
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For a directed edge (σ → τ) ∈ E with non-zero weight wσ→τ > 0, we define the probability
measures:

µout
τ (ξ) =

wτ→ξ

wout
τ

, µin
σ (ξ) =

wξ→σ

win
σ

, ξ ∈ S.

The Ollivier-Ricci curvature of an edge (σ → τ) with non-zero weight wσ→τ is then defined as:

k(σ, τ) = 1−
W
(
µin
σ , µout

τ

)
wσ→τ

,

where W
(
µin
σ , µout

τ

)
is the (directed) Wasserstein distance between the measures µin

σ and µout
τ ,

defined by:
W
(
µin
σ , µout

τ

)
= inf

π∈Π(µin
σ ,µout

τ )

∑
ξ,η∈S

π(ξ, η)d(ξ, η),

where Π(µin
σ , µout

τ ) is the set of all joint probability measures on S × S with marginals µin
σ and

µout
τ , and d(ξ, η) is the distance from ξ (incoming neighbor of σ) to η (outgoing neighbor of τ ) in

the graph G (the shortest directed path distance based on edge weights).
Remark B.2. Assume that the edge (σ → τ) ∈ E exists and has non-zero weight wσ→τ > 0 in
the influence graph G(S,B). Then, the sensitivity bound for information flow from τ to σ from
Lemma 3.2 can be related to the Ollivier-Ricci curvature k(σ, τ) of the edge (σ → τ) as follows:∥∥∥∥∥∂h(2)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
wout

τ win
σ

(
1− wσ→τ

w3
max

(1− k(σ, τ))

)
,

where w3
max is the maximum weighted 3-step path from incoming neighbors of σ to outgoing neigh-

bors of τ . This result indicates that lower Ollivier-Ricci curvature (smaller k(σ, τ)) leads to reduced
sensitivity, thereby contributing to oversquashing. The connection leverages the existence of the re-
versed edge (σ → τ) in addition to the edge (τ → σ) over which information flows, which is
not guaranteed to be the case in a generic relational message passing scheme, but is the case for
undirected graphs where k(σ, τ) = k(τ, σ). This result aligns with Theorem 4.5 from Nguyen et al.
(2023) but without requiring their assumption of linearity in the message and update functions. An-
alyzing oversquashing for connections beyond 2-steps requires stronger assumptions, such as the
influence graph G(S,B) being strongly connected. These assumptions present obstructions to ana-
lyzing oversquashing in general relational structures with Ollivier-Ricci curvature .

We provide the proof in Appendix C.2.

B.2 REMARKS FOR SECTION 3.4

Remark B.3 (Lipschitz Constants for MLP Message and Update Functions). Consider the following
message and update functions at layer t:

Message function:

ψ
(t)
i

(
h(t)
σ ,h

(t)
ξ1
, . . . ,h

(t)
ξni−1

)
= W

(t)
i


h
(t)
σ

h
(t)
ξ1
...

h
(t)
ξni−1

 ,

where W
(t)
i is a weight matrix of appropriate dimensions, and [·] denotes column-wise concatena-

tion.

Update function:

ϕ(t)
(
m

(t)
σ,1, . . . ,m

(t)
σ,k

)
= f

W(t)


g
(
m

(t)
σ,1

)
...

g
(
m

(t)
σ,k

)

 ,

where f and g are the component-wise applications of non-linear functions f and g with bounded
derivatives Cf and Cg , respectively. I.e., f, g : R→ R, and |f ′(x)| ≤ Cf and |g′(x)| ≤ Cg for all
x.
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Assume that the entries of all weight matrices W(t)
i and W(t) are bounded in absolute value by a

constant Cw > 0. Then, the Lipschitz constants β(t)
i and α(t) satisfy:

β
(t)
i ≤ Cwpi,t,

and
α(t) ≤ CwCfCgpt+1,

where pi,t is the dimension of the message vector m
(t)
σ,i, and pt+1 is the output dimension of the

update function ϕt.

We provide the proof in Appendix C.4.

C PROOFS

C.1 PROOFS FOR SECTION 3.1

Proof of Lemma 3.2. First, we compute the Jacobian of Equation 3:

∂h
(s+1)
σ

∂h
(0)
τ

=
k∑

i=1

∂ϕ(s)

∂m
(s)
i

∂m
(s)
σ,i

∂h
(0)
τ

=

k∑
i=1

(
∂ϕ(s)

∂m
(s)
i

) ∑
ξ∈Sni−1

ARi

σ,ξ

∂ψ(s)
i

∂h
(s)
σ

∂h
(s)
σ

∂h
(0)
τ

+

ni−1∑
j=1

∂ψ
(s)
i

∂h
(s)
ξj

∂h
(s)
ξj

∂h
(0)
τ

 .

By the submultiplicative and additive properties of the induced 1-norm (maximum absolute column
sum) and the boundedness of the Jacobians of the functions ϕ(s) and ψ(s)

i (Assumption 1), we get:∥∥∥∥∥∂h(s+1)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤
k∑

i=1

∥∥∥∥∥ ∂ϕ(s)

∂m
(s)
i

∥∥∥∥∥
1

∑
ξ∈Sni−1

ARi

σ,ξ

∥∥∥∥∥∂ψ(s)
i

∂h
(s)
σ

∥∥∥∥∥
1

∥∥∥∥∥∂h(s)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

ni−1∑
j=1

∥∥∥∥∥∥∂ψ
(s)
i

∂h
(s)
ξj

∥∥∥∥∥∥
1

∥∥∥∥∥∥∂h
(s)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1


≤ α(s)

k∑
i=1

β
(s)
i

∑
ξ∈Sni−1

ARi

σ,ξ

∥∥∥∥∥∂h(s)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

ni−1∑
j=1

∥∥∥∥∥∥∂h
(s)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1


≤ α(s)β(s)

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

∥∥∥∥∥∂h(s)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

ni−1∑
j=1

∥∥∥∥∥∥∂h
(s)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1


≤ α(s)β(s)

γ ∥∥∥∥∥∂h(s)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

∥∥∥∥∥∥∂h
(s)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1

 .

Here, we used that the entries of ARi are nonnegative, and
∑k

i=1

∑
ξ∈Sni−1 A

Ri

σ,ξ ≤ γ.

We now prove the lemma using induction on the layer t. For the base case t = 1, we get∥∥∥∥∥∂h(1)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ α(0)β(0)

γ ∥∥∥∥∥∂h(0)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

∥∥∥∥∥∥∂h
(0)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1


= α(0)β(0)

γIσ,τ +

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

Iξj ,τ


= α(0)β(0)

[
γIσ,τ +

k∑
i=1

ÃRi
σ,τ

]

= α(0)β(0)

(
γI+

k∑
i=1

ÃRi

)
σ,τ

= α(0)β(0)
(
B1
)
σ,τ

,
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where we used that ÃRi
σ,τ =

∑ni−1
j=1

∑
ξ∈Sni−2 A

Ri

σ,ξ1,...,ξj−1,τ,ξj ,...,ξni−2
. This proves the base case.

For the induction step, assume the bound holds for t. We now compute:∥∥∥∥∥∂h(t+1)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ α(t)β(t)

γ ∥∥∥∥∥ ∂h(t)
σ

∂h
(0)
τ

∥∥∥∥∥
1

+

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

∥∥∥∥∥∥ ∂h
(t)
ξj

∂h
(0)
τ

∥∥∥∥∥∥
1


≤

(
t∏

ℓ=0

α(ℓ)β(ℓ)

)γ (Bt
)
σ,τ

+

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

(
Bt
)
ξj ,τ


=

(
t∏

ℓ=0

α(ℓ)β(ℓ)

)(γIBt
)
σ,τ

+

((
k∑

i=1

ÃRi

)
Bt

)
σ,τ


=

(
t∏

ℓ=0

α(ℓ)β(ℓ)

)((
γI+

k∑
i=1

ÃRi

)
Bt

)
σ,τ

=

(
t∏

ℓ=0

α(ℓ)β(ℓ)

)(
Bt+1

)
σ,τ

.

To see this, note that:((
k∑

i=1

ÃRi

)
Bt

)
σ,τ

=

k∑
i=1

∑
ν∈S

ÃRi
σ,ν

(
Bt
)
ν,τ

=

k∑
i=1

ni−1∑
j=1

∑
ξ∈Sni−2

∑
ν∈S

ARi

σ,ξ1,...,ξj−1,ν,ξj ,...,ξni−2

(
Bt
)
ν,τ

=

k∑
i=1

∑
ξ∈Sni−1

ARi

σ,ξ

ni−1∑
j=1

(
Bt
)
ξj ,τ

.

This completes the proof.

C.2 PROOFS FOR SECTION 3.2 AND APPENDIX B.1

Proof of Proposition 3.4. In the influence graph G(S,B), the edge weights correspond to the entries
of B, that is, wτ→σ = Bσ,τ . Therefore, the (σ, τ) entry of B2 is

(B2)σ,τ =
∑
ξ∈S

Bσ,ξBξ,τ =
∑
ξ∈S

wξ→σ · wτ→ξ = wT .

From Lemma 3.2 with t = 2, we have∥∥∥∥∥∂h(2)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
(B2)σ,τ =

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
wT .

Rewriting the curvature formula to solve for wT , and since wF ≥ 0, we get

wT =
1

3

(
EFCG(τ, σ) + wout

τ + win
σ − 4− 2wF

)
≤ 1

3

(
EFCG(τ, σ) + wout

τ + win
σ − 4

)
.

Substituting back, we obtain the desired inequality. This completes the proof.

Proof of Remark B.2. Consider the influence graph G(S,B) = (S, E , w) derived from the matrix
B, where the edge weights correspond to the entries of B: wξ→η = Bη,ξ. Assume that the reversed
edge (σ → τ) ∈ E exists with weight wσ→τ > 0. From Lemma 3.2 with t = 2, we have:∥∥∥∥∥∂h(2)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
(B2)σ,τ =

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)∑
ξ∈S

wξ→σ ·wτ→ξ =

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
wT ,
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where wT =
∑

ξ wτ→ξ · wξ→σ .

We construct a transference plan to transport mass from µin
σ to µout

τ : We do not move wT

wout
τ win

σ
, but

move the rest of the mass with a cost at most w3
max from the incoming neighbors of σ to the outgoing

neighbors of τ , and we get:

W
(
µin
σ , µout

τ

)
≤
(
1− wT

win
σ wout

τ

)
w3

max.

The Ollivier-Ricci curvature of the edge (σ → τ) is:

k(σ, τ) = 1−
W
(
µin
σ , µout

τ

)
wσ→τ

.

Substituting and rearranging, we obtain:

wT ≤ win
σ wout

τ

(
1− wσ→τ

w3
max

(1− k(σ, τ))

)
.

We thus get:∥∥∥∥∥∂h(2)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
wT ≤

(
1∏

ℓ=0

α(ℓ)β(ℓ)

)
wout

τ win
σ

(
1− wσ→τ

w3
max

(1− k(σ, τ))

)
.

This completes the proof.

C.3 PROOFS FOR SECTION 3.3

Proof of Theorem 3.5. We start with the bound from Lemma 3.2 and expand the right hand side
using the binomial theorem:

∥∥∥∥∥∂h(r+m)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
(γI+ Ã)r+m

σ,τ

=

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
r+m∑
i=0

(
r +m

i

)
γr+m−i

(
Ãi
)
σ,τ

.

Since the combinatorial distance from τ to σ in the graph G(S, Ã) is r, the first r − 1 terms of the
sum vanish: ∥∥∥∥∥∂h(r+m)

σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
r+m∑
i=r

(
r +m

i

)
γr+m−i

(
Ãi
)
σ,τ

.

Using Ãi
σ,τ ≤ ωi(σ, τ)M

i ≤ ωr+m(σ, τ)M i and letting q = i− r:

∥∥∥∥∥∂h(r+m)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
Mrωr+m(σ, τ)

m∑
q=0

(
r +m

r + q

)
γm−qMq.

We can bound
(
r+m
r+q

)
as follows:

(
r +m

r + q

)
=

(r +m)(r − 1 +m) · · · (1 +m)

(r + q)(r − 1 + q) · · · (1 + q)

(
m

q

)
≤ (r +m)(r − 1 +m) · · · (1 +m)

r!

(
m

q

)
≤
(
1 +

m

r

)
· · ·
(
1 +

m

1

)(m
q

)
≤
(
1 +

m

m+ 1

)r−m

(1 +m)m
(
m

q

)
.
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Substituting this bound, we get:

∥∥∥∥∥∂h(r+m)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
Mrωr+m(σ, τ)

(
1 +

m

m+ 1

)r−m

(1 +m)m
m∑
q=0

(
m

q

)
γm−qMq

=

(
r+m−1∏
ℓ=0

α(ℓ)β(ℓ)

)
Mrωr+m(σ, τ)

(
1 +

m

m+ 1

)r−m

(1 +m)m(γ +M)m

=

(
r+m−1∏
ℓ=r

α(ℓ)β(ℓ)

)(
(1 +m)2

2m+ 1
(γ +M)

)m

ωr+m(σ, τ)

(
r−1∏
ℓ=0

α(ℓ)β(ℓ)

)((
1 +

m

m+ 1

)
M

)r

.

Using 1 + m
m+1 ≤ 2, M ≤ k, and γ ≤ k:

∥∥∥∥∥∂h(r+m)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤

(
r+m−1∏
ℓ=r

α(ℓ)β(ℓ)

)
(2k(1 +m))mωr+m(σ, τ)

(
r−1∏
ℓ=0

α(ℓ)β(ℓ)

)
(2M)

r
.

Define C = (αmaxβmax)
m(2k(1 +m))m. This depends only on αmax, βmax, k, and m.

Finally, we can write: ∥∥∥∥∥∂h(r+m)
σ

∂h
(0)
τ

∥∥∥∥∥
1

≤ Cωr+m(σ, τ)(αmaxβmax)
r(2M)r. (13)

This completes the proof.

C.4 PROOFS FOR SECTION 3.4 AND APPENDIX B.2

Proof of Remark B.3. We derive the bounds for β(t)
i and α(t) separately.

Derivation of β(t)
i :

The message function is linear:

ψ
(t)
i

(
h(t)
σ ,h

(t)
ξ1
, . . . ,h

(t)
ξni−1

)
= W

(t)
i H

(t)
σ,ξ,

where H
(t)
σ,ξ =


h
(t)
σ

h
(t)
ξ1
...

h
(t)
ξni−1

 is the concatenated feature vector.

We need to compute the Lipschitz constant β(t)
i of the message function ψ(t)

i with respect to each
neighbor’s feature vector h(t)

ξj
.

The Jacobian of ψ(t)
i with respect to h

(t)
ξj

is:

∂ψ
(t)
i

∂h
(t)
ξj

= W
(t)(:, Ij)
i ,

where W
(t)(:, Ij)
i denotes the columns of W(t)

i corresponding to h
(t)
ξj

.

Since the entries of W(t)
i are bounded by Cw, and h

(t)
ξj
∈ Rpt , the matrix ∂ψ

(t)
i

∂h
(t)
ξj

is of size pi,t × pt

with entries bounded by Cw.
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Using the induced matrix 1-norm:∥∥∥∥∥∥∂ψ
(t)
i

∂h
(t)
ξj

∥∥∥∥∥∥
1

= max
1≤l≤pt

pi,t∑
k=1

∣∣∣∣∣∣
∂ψ

(t)
i

∂h
(t)
ξj


k,l

∣∣∣∣∣∣ .

Since each entry

∣∣∣∣∣
(

∂ψ
(t)
i

∂h
(t)
ξj

)
k,l

∣∣∣∣∣ ≤ Cw, the sum over k is bounded by Cwpi,t. Therefore,

∥∥∥∥∥∥∂ψ
(t)
i

∂h
(t)
ξj

∥∥∥∥∥∥
1

≤ Cwpi,t.

Thus, the Lipschitz constant β(t)
i satisfies:

β
(t)
i ≤ Cwpi,t.

Derivation of α(t):

The update function is given by:

ϕ(t)
(
m

(t)
σ,1, . . . ,m

(t)
σ,k

)
= f

(
W(t)M(t)

σ

)
,

where M
(t)
σ =


g
(
m

(t)
σ,1

)
...

g
(
m

(t)
σ,k

)
.

We need to compute the Lipschitz constant α(t) of the update function ϕ(t) with respect to each
input message m

(t)
σ,i.

First, compute the Jacobian of ϕ(t) with respect to m
(t)
σ,i:

∂ϕ(t)

∂m
(t)
σ,i

=
∂ϕ(t)

∂M
(t)
σ

∂M
(t)
σ

∂m
(t)
σ,i

.

Compute ∂M(t)
σ

∂m
(t)
σ,i

:

∂M
(t)
σ

∂m
(t)
σ,i

=



0
...

diag
(
g′
(
m

(t)
σ,i

))
...
0

 ,

where the non-zero block diag
(
g′
(
m

(t)
σ,i

))
is at position i.

Compute ∂ϕ(t)

∂M
(t)
σ

:

∂ϕ(t)

∂M
(t)
σ

= diag
(
f ′
(
W(t)M(t)

σ

))
W(t).

Therefore,
∂ϕ(t)

∂m
(t)
σ,i

= diag
(
f ′
(
W(t)M(t)

σ

))
W(t)(:, Ii) diag

(
g′
(
m

(t)
σ,i

))
,
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where W(t)(:, Ii) denotes the columns of W(t) corresponding to m
(t)
σ,i.

The matrix ∂ϕ(t)

∂m
(t)
σ,i

is of size pt+1 × pi,t.

Since |f ′(x)| ≤ Cf , |g′(x)| ≤ Cg , and |(W(t))k,l| ≤ Cw, the entries of ∂ϕ(t)

∂m
(t)
σ,i

are bounded by

CwCfCg .

Using the induced matrix 1-norm:∥∥∥∥∥ ∂ϕ(t)

∂m
(t)
σ,i

∥∥∥∥∥
1

= max
1≤l≤pi,t

pt+1∑
k=1

∣∣∣∣∣∣
(

∂ϕ(t)

∂m
(t)
σ,i

)
k,l

∣∣∣∣∣∣ .
Each column l sums over k up to pt+1 entries, each bounded by CwCfCg . Therefore,∥∥∥∥∥ ∂ϕ(t)

∂m
(t)
σ,i

∥∥∥∥∥
1

≤ CwCfCgpt+1.

Thus, the Lipschitz constant α(t) satisfies:

α(t) ≤ CwCfCgpt+1.

D SUPPLEMENTARY ANALYSES

D.1 GRAPH LIFTING EXAMPLE AND CURVATURE

As shown in Section D.3, the edge curvature distribution is non-trivially impacted by the graph
lifting procedure. We explore this more in this section.

One possible explanation for the general positive distribution shift is the widenning of bottleneck
regions as well as the addition of many nodes and edges in densely connected regions. We observe
this qualitatively in Figure 3. We can see that the narrow path is now widened into two nodes
instead of one. We also see that the clique regions gain a lot more nodes and edges than the path.
The Ollivier-Ricci curvature becomes much more red, while the balanced Forman curvature and
augmented Forman curvature maintain a higher number of small, negatively curved edges. This
example is consistent with the observations from Figure 5.

In the augmented Forman curvature plot, we can see that the curvature for edge DI becomes more
negative. While this edge may not propagate information very well due to its negative curvature,
there are now many edges for information to flow around this edge. This provides some qualitative
evidence that incorporating global structure into analysis of graph lifting could present an important
future direction.

D.2 GRAPH LIFTING AND WEIGHTED CURVATURE

The addition of many nodes and edges, as well as the shift in the curvature distribution makes direct
comparisons between graphs and their corresponding lifts more challenging. While this widened
bottleneck may alleviate oversquashing, measures like algebraic connectivity may not measure this
effect since widened bottlenecks are counteracted by the addition of many nodes. Similarly, aver-
age curvature could be biased by the addition of many positively curved edges located in densely
connected regions. We instead propose the betweenness weighted curvature

wc =
∑

e∈E(G)

bc(e) curv(e), (14)

where bc denotes betwenness centrality and curv denotes the Ollivier-Ricci curvature. This measure,
originally in introduced by Münch (2022), places more weight on bottleneck edges which gives a
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Figure 3: Long dumbbell graph before and after lifting to its clique complex. Edges are colored
based on their curvature: Ollivier Ricci curvature (top), balanced Forman curvature (middle), and
augmented Forman curvature (bottom). Note that this uses Boundary, Co-boundary, Lower, and
Upper relations. These are presented as edges for visual clarity.
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weighted average of the curvature in the graph. This measure has the added benefit that it captures
both local information propagation through curvature as well as global information propagation
through betweenness centrality. To account for the influence of more positively weighted edges, we
also consider the negative betweenness weighted curvature

nwc =
∑

e∈E(G)

bc(e) curv(e)χcurv(e)<0, (15)

where χ is the indicator function.

In Figure 4, we create a scatter plot of the weighted curvature of a graph and its corresponding clique
complex: (wc(G),wc(C)). We can see that the weighted curvature generally becomes less negative
after complex construction for Ollivier-Ricci and balanced Forman curvature, which may suggest
that oversquashing is alleviated. However, the augmented Forman curvature makes the weighted
curvature more negative for all graphs in the MUTAG dataset. This is consistent with Figure 5 which
produced a small number of negatively curved edges for augmented Forman curvature. Interestingly,
there is a strong linear correlation in each of the scatter plots. Further study is required to understand
this trend.

D.3 GRAPH LIFTING AND EDGE CURVATURE DISTRIBUTION

Understanding the impact on information propagation of lifting a graph to a clique complex is cru-
cial. Graph lifting often adds numerous edges and nodes, complicating theoretical analysis, as the
structural differences between the relational structures corresponding to a graph and its clique com-
plex can be significant. As a first step, we analyze the edge curvature distribution to gain empirical
insight into the clique graph lift. Figure 5 shows the kernel density estimate (KDE) of edge cur-
vature on the MUTAG dataset. Ollivier-Ricci curvature (Nguyen et al., 2023) increases uniformly,
while balanced Forman curvature (Topping et al., 2022) generally increases with some edges becom-
ing slightly more negative. A more pronounced shift is observed with augmented Forman curvature
(Fesser & Weber, 2023), but the overall effect on information propagation remains unclear, as global
graph structure is not captured in this analysis.

D.4 SYNTHETIC BENCHMARK: NEIGHBORSMATCH

The neighbors match experiment is a graph transfer task introduced by Alon & Yahav (2021) to
test oversquashing in GNNs. We build on the implementation of Karhadkar et al. (2023) which
adapts this benchmark to test rewiring. Each graph in the dataset is a path of cliques as shown in
Figure 6. Each of the green nodes is assigned a distinct random label which is represented by a
one-hot encoding. The root node, colored red, is also assigned a random label which is encoded
using a one-hot encoding. The goal is for the neural network to learn which green node has the same
one-hot encoding as the root node based solely on the output of the neural network at the root node.

In this experiment, we choose the number of nodes in each clique to be 5 to avoid excessively
large clique complexes when performing graph lifting. Note that we see similar trends as in the
RingTransfer experiment. However, this creates a much larger clique complex which may present
a greater challenge for rewiring methods. We can see in Figure 7 that the Clique complex requires
more rewiring iterations to achieve the same performance as its graph counterpart. This is likely
related to the clique complex having many more nodes than the original graph. The original graph
has 15 nodes and 32 edges, whereas the clique complex has 77 nodes and 764 edges.

We also benchmark trees and trees with cycles attached to the leaves on the NeighborsMatch bench-
mark (see Figure 8). We note that a tree as an acyclic connected graph has Betti numbers b0 = 1
(number of connected components) and b1 = 0 (number of independent loops or cycles). On the
other hand, a tree with n attached cycles has Betti numbers b0 = 1 and b1 = n. As such, the two
structures are topologically very distinct when considered as 1-simplicial complexes: the tree is con-
tractible and has a trivial fundamental group, while the tree with attached cycles is not contractible
and has a non-trivial fundamental group corresponding to a free group with n generators. However,
their relational message passing structures are quite similar, and they demonstrate almost identical
prototypical oversquashing trends (see Figure 9).

D.5 REAL-WORLD BENCHMARK: GRAPH CLASSIFICATION (ZINC)
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Figure 4: Weighted curvature scatter plots for MUTAG: Ollivier Ricci curvature (top), balanced For-
man curvature (middle), and augmented Forman curvature (bottom); betweeness weighted curvature
(left) and negative betweenness weighted curvature (right).

(a) ORC (b) BFC (c) AFC

Figure 5: Edge curvature distribution across all graphs in the MUTAG dataset: Ollivier-Ricci curva-
ture (left), Balanced Forman curvature (middle), and Augmented Forman curvature (right).
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Figure 6: NeighborsMatch Graph with 3 cliques of 5 nodes.

Figure 7: Neighbors Match Rewiring experiment.

In this section we test our methods on the ZINC dataset. Due to increased computational demands,
we do not perform a hyperparameter sweep for this experiment and instead use the hyperparameters
from the TUDataset experiments. We also test this on the ring lifting procedure. The ring lift consists
of adding cycles in the graph as 2-cells in the complex as in Bodnar et al. (2021a). In this work,
we restrict the rings to have size at most 7. Structures like carbon rings are important in molecule
datasets and prediction tasks can benefit from encoding larger rings in the lifting procedure. The
results are presented in Table 2, where we see a clear improvement from the Ring lift across all
models and rewirings tested for the ZINC dataset.

D.6 REAL-WORLD BENCHMARK: NODE CLASSIFICATION

In this section, we test the lifting and rewiring methods on node classification tasks. The results
of this experiment are shown in Table 3. The rewirings considered included FoSR and the pruning
algorithm introduced in Appendix D.8. The best results for each dataset and model are highlighted
in gold. Notably, CIN++ benefited from lifting on all datasets tested.

D.7 ABLATION TESTS

We perform ablation studies to evaluate the effect of increasing the number of layers and rewiring
iterations, as well as the effect of increasing the hidden dimensions and rewiring iterations, on the
performance of CIN++ on the graph classification MUTAG dataset with FoSR rewiring. The results
are presented in Tables 4 and 5.
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(a) Tree with no attached cycles (b) Tree with attached cycles

Figure 8: Tree without and with attached cycles have very distinct topologies.

Figure 9: Neighbors Match Rewiring experiment on trees and trees with cycles, with increasing tree
depths. “None” and “Clique” indicate whether the underlying graph has been lifted to its clique
complex. “Line” and “Cycle” indicate whether lines or cycles are attached to the leaves.

D.8 SIMPLEX PRUNING

In this section we analyze the impact of pruning edges in the influence graph. For the pruning algo-
rithm, we consider removing the edge with the highest balanced Forman curvature. More precisely,
we first convert the simplex into the influence graph and collapse multi-edges. Then we compute
the balanced Forman curvature of each edge in the graph. Finally, we remove the edge with the
highest curvature. This process is repeated 40 times. When removing an edge with higher arity
e = (σ, τ, δ), the entire higher-order edge is removed from the simplex. When an edge (σ, τ) with
higher multiplicity is selected, all instances of that edge are removed from the graph.

The results of this experiment are shown in Table 6. In five out of eight experiments, the performance
improves with some amount of pruning. Notably, GIN and CIN++ attain their highest performance
with 40 pruning iterations. This suggests that rewiring algorithms that implement edge pruning and
edge addition could be the most promising candidates for simplicial rewiring algorithms. This is in
part due to the addition of many nodes and edges in the graph lifting procedure.

E ADDITIONAL EXPERIMENTAL DETAILS

For all experiments, we split the dataset randomly using 80% for training, 10% for validation, and
10% for testing. For classificiation, we use the cross entropy loss. Each experiment is run with early
stopping using the validation set. Also, if there is no improvement for 10 iterations, the learning rate
is decreased. For all rewiring methods, we only consider adding edges and no edge removal. Each
rewiring method is run for 40 iterations.
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GIN R-GIN SIN CIN++
Complex Rewiring

None FoSR 1.056± 0.010 1.485± 1.045 0.377± 0.005 0.374± 0.008
None 0.405± 0.001 0.368± 0.003 0.370± 0.003 0.339± 0.005

Clique FoSR 0.844± 0.011 0.420± 0.002 0.369± 0.003 0.379± 0.008
None 0.409± 0.006 0.326± 0.003 0.331± 0.004 0.320± 0.006

Ring FoSR 0.641± 0.011 0.232± 0.002 0.212± 0.003 0.211± 0.002
None 0.332± 0.006 0.215± 0.003 0.223± 0.004 0.214± 0.003

Table 2: ZINC (MAE). Lower values are better.

(a) GIN
CORNELL TEXAS WISCONSIN CITESEER CORA

Complex Rewiring

None
FoSR 41.6 ± 3.5 57.9 ± 2.7 49.6 ± 2.5 69.3 ± 0.8 82.4 ± 0.7
Prune 45.8 ± 4.0 55.3 ± 4.9 48.1 ± 3.9
None 33.7 ± 3.3 60.0 ± 5.2 49.2 ± 2.9 69.9 ± 0.8 82.7 ± 0.9

Clique
FoSR 40.5 ± 3.5 64.7 ± 5.3 56.5 ± 2.6 68.6 ± 0.8 84.4 ± 0.6
Prune 36.8 ± 2.6 61.6 ± 3.3 47.3 ± 3.7
None 44.7 ± 3.6 58.9 ± 2.3 55.8 ± 2.2 69.0 ± 0.8 83.2 ± 0.6

(b) RGIN
CORNELL TEXAS WISCONSIN CITESEER CORA

Complex Rewiring

None
FoSR 54.2 ± 3.3 51.1 ± 3.3 71.2 ± 2.4 73.2 ± 0.6 81.9 ± 0.8
Prune 52.6 ± 3.5 65.3 ± 3.2 68.5 ± 2.1
None 59.5 ± 5.0 67.9 ± 3.2 69.2 ± 2.8 72.2 ± 1.0 86.4 ± 0.7

Clique
FoSR 51.1 ± 3.8 62.1 ± 3.7 68.5 ± 3.3 73.4 ± 1.0 85.7 ± 0.6
Prune 47.9 ± 2.3 64.2 ± 3.6 60.4 ± 2.0
None 50.5 ± 3.5 67.4 ± 3.4 68.5 ± 3.8 72.1 ± 0.9 86.6 ± 0.6

(c) SIN
CORNELL TEXAS WISCONSIN CITESEER CORA

Complex Rewiring

None
FoSR 30.5 ± 3.5 34.7 ± 4.1 30.8 ± 3.2 54.3 ± 1.1 50.6 ± 2.1
Prune 44.7 ± 4.2 55.8 ± 4.9 53.1 ± 2.9
None 42.6 ± 2.9 52.6 ± 4.3 50.4 ± 2.8 66.9 ± 0.8 81.6 ± 0.8

Clique
FoSR 36.3 ± 2.7 49.5 ± 3.0 47.3 ± 3.0 60.2 ± 1.2 68.2 ± 0.9
Prune 40.5 ± 2.9 56.3 ± 3.0 51.5 ± 3.1
None 36.8 ± 2.9 55.8 ± 2.7 45.8 ± 3.8 63.2 ± 0.8 77.7 ± 0.7

(d) CIN++
CORNELL TEXAS WISCONSIN CITESEER CORA

Complex Rewiring

None
FoSR 41.6 ± 2.0 55.3 ± 2.7 51.9 ± 4.1 44.9 ± 1.1 64.0 ± 1.8
Prune 42.6 ± 3.5 49.5 ± 4.7 61.2 ± 2.3
None 43.2 ± 4.4 59.5 ± 2.6 54.2 ± 3.8 44.7 ± 1.7 63.6 ± 2.0

Clique
FoSR 47.9 ± 4.5 66.3 ± 3.7 64.6 ± 1.6 64.4 ± 1.0 78.6 ± 0.8
Prune 52.6 ± 3.5 57.9 ± 3.2 63.8 ± 3.5
None 50.5 ± 2.7 65.3 ± 2.6 66.2 ± 2.8 63.2 ± 0.9 79.4 ± 0.7

Table 3: Node classification experiments.

E.1 REAL-WORLD BENCHMARK: GRAPH CLASSIFICATION ON TUDATASET

To train and evaluate these method on real world data, we use the TUDataset (Morris et al., 2020).
These graph classification tasks are commonly used to benchmark message passing neural networks.
We have included summary statistics for MUTAG, NCI1, ENZYMES, PROTEINS, and IMDB-
BINARY in Table 7.
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Rewire Iterations 0 10 20 40
Lift Layers

none 2 86.0± 2.9 85.0± 2.4 75.5± 1.7 85.5± 3.1
4 87.5± 2.3 81.5± 2.6 81.0± 3.2 77.5± 2.9
6 89.0± 2.7 82.5± 2.8 78.5± 3.7 80.0± 2.8

clique 2 85.5± 2.2 84.0± 1.8 81.0± 2.2 83.5± 3.0
4 86.0± 1.9 78.5± 3.6 83.5± 2.9 79.0± 2.1
6 84.5± 2.7 80.5± 2.0 82.5± 3.1 80.5± 2.3

Table 4: Impact of increasing the number of layers and rewiring iterations for FoSR.

Rewire Iterations 0 10 20 40
Lift Hidden Dimension

none 16 81.5± 2.5 77.5± 3.0 78.5± 3.7 74.0± 1.8
32 83.0± 2.9 77.5± 2.8 84.5± 2.6 82.0± 4.2
64 85.0± 1.8 82.0± 2.1 83.0± 1.5 82.5± 2.4

clique 16 87.5± 3.0 79.5± 3.6 77.0± 2.6 79.0± 1.6
32 83.5± 2.2 81.0± 2.2 80.5± 4.1 78.5± 3.4
64 89.0± 2.6 81.0± 2.8 75.5± 3.8 83.5± 2.8

Table 5: Impact of increasing the hidden dimensions and rewiring iterations for FoSR.

E.2 SYNTHETIC BENCHMARK: RINGTRANSFER

The RingTransfer benchmark is a graph transfer task introduced by Bodnar et al. (2021a). Each
graph in the dataset is a cycle graph of size 2k for some k ≥ 1. A node i is randomly selected as
the root node and the node j = i+ k( mod)2k on the opposite side of the cycle is designated as the
feature node. All features are initialized to zero except for the feature node which contains a one-hot
label among the 5 classes. The task is to then predict the label by reading the feature stored in the
root node. This is shown for a cycle graph with 10 nodes in Figure 10, where the red node is the root
node and the green node is the opposite node. Note that the size of the ring determines the number
of layers necessary for a model to complete the task successfully. By increasing the size of the ring,
we can test how depth and the task distance impact training performance. When increasing the ring
size, the model depth is set to 2k + 1 so that task information remains within the model’s receptive
field.

Figure 10: Graph for the RingTransfer experiment.
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Prune Iterations 0 10 20 40
Complex Model

none gin 83.0± 3.1 87.5± 3.1 89.0± 3.1 86.0± 2.1
rgin 81.5± 1.7 84.0± 2.8 91.0± 2.2 86.0± 1.2
sin 88.5± 3.0 83.0± 2.5 86.0± 2.1 86.5± 2.5
cin++ 85.0± 3.4 91.5± 1.8 88.0± 2.0 84.5± 2.5

clique gin 83.0± 2.8 83.5± 1.7 82.5± 3.1 90.5± 1.4
rgin 86.0± 2.3 81.0± 2.4 82.5± 2.5 85.0± 1.7
sin 87.0± 3.2 79.5± 2.2 83.5± 2.2 84.5± 3.4
cin++ 90.5± 2.2 84.5± 3.7 78.5± 3.2 91.0± 1.8

Table 6: MUTAG pruning experiment. Removing edges with highest balanced Forman Curvature.

Dataset # Graphs Classes Avg. Nodes Avg. Edges Features
MUTAG 188 2 17.93 19.79 7
NCI1 4110 2 29.87 32.30 37
ENZYMES 600 6 32.63 62.14 3
PROTEINS 1113 2 39.06 72.82 3
IMDB-BINARY 1000 2 19.77 96.53 0

Table 7: Realworld Dataset Statistics.

E.3 RESULTS

In Tables 9 and 10, we provide all the results for Table 1 from Section 5. We note that in Table 1,
we only report the Lift=None results for FoSR, and not AFR4 or SDRF, for fair comparison with
Lift=Clique, where we only report the results for FoSR. We note that for 24/32 = 75% of the
results on ENZYME, MUTAG, NCI1, and PROTEINS, the best performing rewiring algorithms for
Lift=None and Lift=Clique agree. In Figure 11, we compare model performance on graphs and the
corresponding clique complexes, and note how graph, relational graph, and topological models all
respond similarly to relational rewiring.

F IMPLEMENTATION DETAILS

F.1 MODEL DETAILS

Each model consists of multiple graph-convolution layers. For more details about the convolutional
layers, refer to Appendix F.5. The hyperparameters are presented in Table 11. For the real world
experiments, each model has a neural network head consisting of a pooling operation followed
by a two layer neural network with ReLU and dropout. The only exception to this is the SGC
model which uses pooling and a single linear layer for the head. For the synthetic graph transfer
experiments, there is no neural network head. Instead, the neural network just returns the feature of
the root node at the final layer.

Parameter Value
Number of Graphs 1000
Trials 10
Default Neighbors Match Cliques 3
Default Neighbors Match Clique Size 5
Default Ring Transfer Nodes 10

Table 8: Synthetic Parameters
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(a) SGC
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 18.3 ± 1.2 49.5 ± 1.5 64.5 ± 5.8 55.2 ± 1.0 62.2 ± 1.4
AFR4 17.0 ± 1.7 48.6 ± 2.3 65.5 ± 3.5 54.4 ± 0.7 65.0 ± 1.5
FoSR 18.2 ± 1.7 50.0 ± 1.8 52.5 ± 6.6 49.3 ± 0.8 64.8 ± 1.1
SDRF 21.5 ± 1.6 49.7 ± 1.7 70.0 ± 2.6 52.4 ± 0.7 59.9 ± 1.4

Clique
None 14.5 ± 1.4 48.7 ± 2.2 70.0 ± 3.3 50.0 ± 1.3 59.9 ± 1.8
AFR4 16.3 ± 1.0 > 1 day 62.5 ± 3.0 56.8 ± 0.8 59.1 ± 1.4
FoSR 16.0 ± 1.4 47.8 ± 1.6 60.5 ± 5.8 50.0 ± 0.6 50.0 ± 4.3
SDRF 16.8 ± 0.9 > 12 hours 69.5 ± 2.6 50.8 ± 0.7 54.9 ± 3.2

(b) GCN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 32.2 ± 2.0 49.1 ± 1.4 71.0 ± 3.8 48.3 ± 0.6 73.1 ± 1.2
AFR4 30.5 ± 2.5 48.6 ± 1.0 69.0 ± 2.7 48.4 ± 0.6 72.6 ± 1.5
FoSR 27.2 ± 2.5 47.9 ± 1.0 83.0 ± 1.5 49.1 ± 0.8 75.8 ± 1.7
SDRF 30.7 ± 1.5 46.7 ± 1.2 72.5 ± 3.5 48.9 ± 0.5 74.5 ± 1.5

Clique
None 30.7 ± 1.2 64.0 ± 3.1 67.0 ± 3.5 48.4 ± 0.4 69.9 ± 0.6
AFR4 28.2 ± 2.2 > 1 day 66.5 ± 3.0 48.3 ± 0.6 72.5 ± 0.9
FoSR 26.0 ± 2.1 65.5 ± 3.1 81.5 ± 2.9 48.8 ± 1.1 75.0 ± 1.4
SDRF 30.2 ± 2.4 > 12 hours 72.0 ± 2.6 49.6 ± 0.6 72.1 ± 1.2

(c) GIN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 47.2 ± 1.9 71.7 ± 1.5 83.0 ± 3.1 77.2 ± 0.5 70.6 ± 1.4
AFR4 50.0 ± 2.7 69.7 ± 1.8 88.0 ± 2.4 77.9 ± 0.5 70.1 ± 0.9
FoSR 33.3 ± 1.7 67.1 ± 1.5 75.5 ± 1.7 64.8 ± 0.9 72.2 ± 0.8
SDRF 45.5 ± 2.1 65.8 ± 2.0 84.5 ± 2.8 76.3 ± 1.0 72.0 ± 1.5

Clique
None 44.0 ± 1.7 69.1 ± 1.2 83.0 ± 2.8 78.8 ± 0.7 68.7 ± 1.4
AFR4 48.5 ± 2.2 > 1 day 82.5 ± 2.6 78.2 ± 0.6 67.6 ± 0.8
FoSR 39.3 ± 1.4 70.8 ± 1.1 79.0 ± 2.6 63.5 ± 0.7 72.8 ± 1.2
SDRF 41.7 ± 2.2 > 12 hours 73.5 ± 3.4 76.9 ± 0.7 69.2 ± 0.8

(d) RGCN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 33.8 ± 1.6 47.6 ± 1.4 72.5 ± 2.5 53.2 ± 0.7 71.9 ± 1.6
AFR4 36.2 ± 2.3 48.1 ± 1.0 69.5 ± 3.4 54.3 ± 1.1 72.8 ± 1.2
FoSR 39.3 ± 1.6 68.0 ± 1.3 83.5 ± 1.8 62.4 ± 0.5 71.2 ± 1.8
SDRF 42.5 ± 1.3 59.1 ± 2.2 76.0 ± 1.9 63.4 ± 1.1 75.6 ± 1.2

Clique
None 48.8 ± 1.2 71.0 ± 1.0 79.5 ± 1.7 72.9 ± 0.8 72.4 ± 1.6
AFR4 42.3 ± 2.4 > 1 day 78.0 ± 2.1 75.0 ± 0.9 74.2 ± 1.2
FoSR 39.3 ± 2.5 69.7 ± 1.5 79.0 ± 3.2 64.5 ± 0.6 70.9 ± 1.4
SDRF 45.2 ± 1.5 > 12 hours 81.5 ± 3.8 68.5 ± 0.6 70.6 ± 1.6

(e) RGIN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 46.8 ± 1.8 69.6 ± 1.6 81.5 ± 1.7 76.8 ± 1.1 70.8 ± 1.2
AFR4 49.8 ± 2.0 73.2 ± 1.4 85.5 ± 2.0 77.0 ± 0.7 71.1 ± 1.3
FoSR 48.2 ± 1.4 48.9 ± 2.9 85.5 ± 2.8 55.1 ± 2.6 72.4 ± 1.4
SDRF 49.7 ± 2.1 50.4 ± 3.2 85.0 ± 1.7 52.8 ± 2.7 70.9 ± 1.2

Clique
None 50.8 ± 1.5 71.6 ± 0.9 86.0 ± 2.3 79.2 ± 0.6 71.5 ± 1.5
AFR4 55.8 ± 2.5 > 1 day 85.0 ± 2.4 79.5 ± 0.4 71.0 ± 1.1
FoSR 46.2 ± 1.4 69.0 ± 1.4 79.0 ± 2.4 72.7 ± 0.6 71.8 ± 1.7
SDRF 45.5 ± 1.6 > 12 hours 83.0 ± 3.2 76.4 ± 0.9 69.1 ± 2.4

Table 9: Baseline and rewiring results for SGC, GCN, GIN, RGCN, and RGIN. Numbers highlighted
in blue correspond to no rewiring and numbers highlighted in red are the best among the rewiring
methods.
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(a) SIN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 47.5 ± 2.3 70.0 ± 1.4 88.5 ± 3.0 77.0 ± 0.6 70.2 ± 1.3
AFR4 44.0 ± 2.5 71.0 ± 1.0 85.5 ± 1.7 76.4 ± 0.4 69.6 ± 1.3
FoSR 45.7 ± 2.6 63.0 ± 2.7 85.5 ± 2.8 61.3 ± 2.4 73.2 ± 1.5
SDRF 46.8 ± 2.1 62.8 ± 3.3 80.0 ± 2.1 54.7 ± 3.5 70.2 ± 1.8

Clique
None 51.0 ± 2.4 53.0 ± 1.9 87.0 ± 3.2 76.6 ± 1.3 66.9 ± 1.3
AFR4 46.5 ± 1.2 > 1 day 83.5 ± 1.7 75.4 ± 0.7 69.6 ± 1.0
FoSR 38.2 ± 2.2 64.0 ± 2.3 83.5 ± 2.7 65.2 ± 0.7 70.4 ± 1.2
SDRF 44.8 ± 1.9 > 12 hours 80.0 ± 3.5 73.9 ± 0.4 68.7 ± 1.2

(b) CIN
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 50.0 ± 1.9 58.1 ± 4.0 86.5 ± 1.8 51.4 ± 2.5 70.7 ± 1.0
AFR4 48.2 ± 1.9 58.8 ± 4.3 87.0 ± 2.4 53.3 ± 2.6 71.0 ± 1.4
FoSR 49.0 ± 2.0 58.4 ± 2.7 81.0 ± 1.8 66.2 ± 2.0 70.9 ± 1.3
SDRF 44.0 ± 1.8 55.3 ± 2.5 82.5 ± 3.0 59.0 ± 4.3 69.5 ± 1.5

Clique
None 49.8 ± 1.9 52.6 ± 2.4 85.5 ± 2.8 51.8 ± 2.3 70.7 ± 1.2
AFR4 46.7 ± 1.3 > 1 day 86.5 ± 2.6 49.0 ± 0.5 69.2 ± 1.3
FoSR 37.2 ± 1.8 68.1 ± 1.6 82.5 ± 3.0 66.9 ± 0.9 70.3 ± 0.8
SDRF 42.0 ± 2.3 > 12 hours 78.5 ± 4.1 72.5 ± 0.8 67.9 ± 1.8

(c) CIN++
ENZYMES IMDB-B MUTAG NCI1 PROTEINS

Lift Rewiring

None
None 48.5 ± 1.9 66.6 ± 3.7 85.0 ± 3.4 60.8 ± 3.8 67.9 ± 1.9
AFR4 51.0 ± 1.5 61.0 ± 4.1 91.0 ± 2.3 54.8 ± 3.7 70.7 ± 1.3
FoSR 50.5 ± 1.8 56.0 ± 3.9 82.0 ± 2.5 64.8 ± 3.1 71.4 ± 1.4
SDRF 45.8 ± 2.2 53.3 ± 2.3 87.5 ± 2.3 58.0 ± 4.4 69.3 ± 1.6

Clique
None 50.5 ± 2.1 62.8 ± 3.8 90.5 ± 2.2 61.5 ± 4.6 68.3 ± 1.3
AFR4 52.7 ± 1.6 > 1 day 84.5 ± 3.3 60.6 ± 4.8 66.7 ± 1.3
FoSR 43.0 ± 2.1 64.7 ± 1.5 78.5 ± 2.4 72.9 ± 0.5 71.9 ± 1.0
SDRF 47.7 ± 1.5 > 12 hours 81.0 ± 3.0 76.8 ± 0.4 70.0 ± 1.7

Table 10: Baseline and rewiring results for SIN, CIN, and CIN++. Numbers highlighted in blue
correspond to no rewiring and numbers highlighted in red are the best among the rewiring methods.

Parameter Value
Layers 4
Hidden 64
Dropout 0.5
Pooling mean
Multidimensional False
Max Dimension 2

Table 11: Model Parameters

Parameter Value
Optimizer Adam
Batch Size 64
Learning Rate 0.001
Max Epochs 500
Stop Criteria Validation
Stop Factor 1.01
Stop Patience 100

Table 12: Optimization Parameters
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Figure 11: Comparison of model performance between graph representations (Lift=None) and corre-
sponding clique complex representations (Lift=Clique). Each point corresponds to a specific model
on a given dataset, comparing the performance with and without rewiring.
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F.2 HARDWARE

Experiments were run on a system with Intel(R) Xeon(R) Gold 6152 CPUs @ 2.10GHz and NVIDIA
GeForce RTX 2080 Ti GPUs.

F.3 LIBRARIES

Code Use: Rewiring algorithms were adapted from the works of Karhadkar et al. (2023) and Fesser
& Weber (2023). We used PyTorch Geometric Benchmarks for neural network hyperparameters.
We build on the work of Giusti et al. (2024) for clique graph lifting and ring transfer. The real world
graph datasets were sourced from the work of Morris et al. (2020). The SGC model was adapted
from the work of Wu et al. (2019). For curvature implementations, we adapt code from Nguyen
et al. (2023) for Ollivier-Ricci and Fesser & Weber (2023) for BFC and AFC.

Python libraries: Torch Geometric (Fey & Lenssen, 2019). Torch (Paszke et al., 2019). Scikit-Learn
(Pedregosa et al., 2011). Ray (Moritz et al., 2018). Ray Tune (Liaw et al., 2018). Seaborn (Waskom,
2021). Matplotlib (Hunter, 2007). Networkx (Hagberg et al., 2008). Pandas pandas development
team (2020). Numpy Harris et al. (2020). Numba (Lam et al., 2015). Gudhi (The GUDHI Project,
2020). POT (Flamary et al., 2021).

F.4 GRAPH LIFTING

We lift graphs to clique complexes for relational message passing using Algorithm 3. We refer to
this graph lifting as the Clique lift. Note that when representing a graph in a simplicial complex (eg
max dim = 0), we simply add the ↑ relation to the edges. We refer to this graph lifting as the None
lift. The resulting complex has trivial cell intersections and does not contain cell unions. This is
outlined in Algorithm 2.

Algorithm 2 Graph Lifting (None)
Input: Unweighted undirected graph G = (V,E), node features (xv)v∈V

Output: Relational structure (S, {Rupper}) and features (xσ)σ∈S
1: Initialize S = ∅ ▷ Entities
2: for each node v ∈ V do
3: σ ← {v}
4: S ← S ∪ {σ}
5: xσ ← xv ▷ Features
6: end for
7: Initialize Rupper = ∅ ▷ Relations
8: for each edge {u, v} ∈ E do
9: σ, τ ← u, v

10: Rupper ← Rupper ∪ {(σ, τ), (τ, σ)}
11: end for
12: return (S, {Rupper}) and (xσ)σ∈S

F.5 LAYERS

We review the implementation of the layers and update rules used in the models considered in this
work. In the following, B(·), C(·), N↑(·), and N↓(·) follow the definitions in Definition 2.3. Given
a relational structure R = (S, R1, . . . , Rk), the notation r ∈ R refers to iterating over the relation
indices r = 1, 2, . . . , k. For a binary relation R ⊆ S × S,R(·) denotes the incoming neighborhood
of an entity, i.e., for any σ, τ ∈ S, if τ ∈ NR(σ), then (σ, τ) ∈ R.

SGC Following Wu et al. (2019), the SGC update rule is:

h(t+1)
σ =

∑
r∈R

∑
τ∈NRr (σ)

h(t)
τ ,

where no learnable weights nor non-linearities are used, and signals are simply aggregated over
neighborhoods.
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Algorithm 3 Graph Lifting (Complex)
Input: Unweighted undirected graph G = (V,E), node features (xv)v∈V , relation types A ⊆
{boundary,coboundary,lower,upper}, max simplex dimension max dim
Output: Relational structure (S, {Rr}r∈A) and features (xσ)σ∈S

1: Initialize S = ∅ ▷ Entities
2: for each non-empty clique σ ⊆ V with |σ| ≤ max dim+ 1 do
3: S ← S ∪ {σ}
4: xσ ← 1

|σ|
∑

v∈σ xv ▷ Features
5: end for
6: for each relation type r ∈ A do
7: Initialize Rr = ∅ ▷ Relations
8: for each entity σ ∈ S do
9: if r = boundary then

10: for each τ ∈ B(σ) do
11: Rr ← Rr ∪ {(σ, τ)}
12: end for
13: else if r = coboundary then
14: for each τ ∈ C(σ) do
15: Rr ← Rr ∪ {(σ, τ)}
16: end for
17: else if r = lower then
18: for each τ ∈ N↓(σ) do
19: Rr ← Rr ∪ {(σ, τ, σ ∩ τ)}
20: end for
21: else if r = upper then
22: for each τ ∈ N↑(σ) do
23: Rr ← Rr ∪ {(σ, τ, σ ∪ τ)}
24: end for
25: end if
26: end for
27: end for
28: return (S, {Rr}r∈A) and (xσ)σ∈S

GCN Following Kipf & Welling (2017), the GCN update rule is:

h(t+1)
σ = f

W(t)

∑
r∈R

∑
τ∈NRi

(σ)∪{σ}

1√
d̂σd̂τ

h(t)
τ

 ,

where f is a point-wise non-linearity (e.g., ReLU), W(t) is a learnable weight matrix, and d̂τ =
deg(τ) + 1.

GIN Following Xu et al. (2019), the GIN update rule is:

h(t+1)
σ = MLP(t)

(1 + ϵ)h(t)
σ +

∑
r∈R

∑
τ∈NRi

(σ)

W(t)h(t)
τ

 ,

where W(t) is a learnable weight matrix and ϵ is a learnable scalar. Here, MLP consists of two layer
fully connected layers, each followed by a point-wise non-linearity (e.g., ReLU) and a BatchNorm
layer.

R-GCN Following Schlichtkrull et al. (2018), the R-GCN update rule is:

h(t+1)
σ = f

W
(t)
rooth

(t)
σ +

∑
r∈R

∑
j∈Nr(i)

1

|Nr(i)|
W(t)

r h(t)
σ

 ,

where f is a component-wise non-linearity (e.g., ReLU), and W
(t)
root and W

(t)
r are learnable weight

matrices.
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R-GIN Following Xu et al. (2019) and Schlichtkrull et al. (2018), the R-GIN update rule is

h(t+1)
σ = W

(t)
rooth

(t)
σ +

∑
r∈R

MLP(t)
r

(1 + ϵr)h
(t)
σ +

∑
τ∈Nr(σ)

h(t)
τ

 ,

where W(t)
root is a learnable weight matrix and each ϵ• is a learnable scalar. Here, each MLP consists

of two layer fully connected layers, each followed by a point-wise non-linearity (e.g., ReLU) and a
BatchNorm layer. and MLP(t)

r is a relation-specific MLP.

SIN Following Bodnar et al. (2021b), the SIN update rule is:

h(t+1)
σ = MLP(t)

U,p



MLPB,p

(1 + ϵB)h
(t)
σ +

∑
δ∈B(σ)

h
(t)
δ


MLP↑,p

(1 + ϵ↑)h
(t)
σ +

∑
δ∈N↑(σ)

h
(t)
δ


additionally, when rewiring:

MLPRnew,p

(1 + ϵRnew
)h

(t)
σ +

∑
δ∈NRnew (σ)

h
(t)
δ




,

where [·] denotes column-wise concatenation and each ϵ• is a learnable scalar. Here, each MLP con-
sists of two layer fully connected layers, each followed by a point-wise non-linearity (e.g., ReLU)
and a BatchNorm layer. and MLP(t)

r is a relation-specific MLP.

CIN Following Bodnar et al. (2021a), the CIN update rule is:

h(t+1)
σ = MLP(t)

U,p



MLPB,p

(1 + ϵB)h
(t)
σ +

∑
τ∈B(σ)

h(t)
τ



MLP↑,p

(1 + ϵ↑)h
(t)
σ +

∑
τ∈N↑(σ)
δ∈C(σ,τ)

MLPM,p

[
h
(t)
τ

h
(t)
δ

]
additionally, when rewiring:

MLPRnew,p

(1 + ϵRnew)h
(t)
σ +

∑
δ∈NRnew (σ)

h
(t)
δ





,

where [·] denotes column-wise concatenation, each ϵ• is a learnable scalar, and MLPM,p is a single
fully connected layer projecting back to the dimension of h(t)

σ . The other MLPs consists of two layer
fully connected layers, each followed by a point-wise non-linearity (e.g., ReLU) and a BatchNorm
layer. When entity unions aren’t contained in the relational structure due to dimension constraints,
we instead use h

(t)
δ := 0.
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CIN++ Following Giusti et al. (2024), the CIN++ update rule is:

h(t+1)
σ = MLP(t)

U,p



MLPB,p

(1 + ϵB)h
(t)
σ +

∑
τ∈B(σ)

h(t)
τ



MLP↑,p

(1 + ϵ↑)h
(t)
σ +

∑
τ∈N↑(σ)
δ∈C(σ,τ)

MLPM,p

[
h
(t)
τ

h
(t)
δ

]
MLP↓,p

(1 + ϵ↓)h
(t)
σ +

∑
τ∈N↓(σ)
δ∈B(σ,τ)

MLPM ′,p

[
h
(t)
τ

h
(t)
δ

]
additionally, when rewiring:

MLPRnew,p

(1 + ϵRnew)h
(t)
σ +

∑
δ∈NRnew (σ)

h
(t)
δ





,

where [·] denotes column-wise concatenation, each ϵ• is a learnable scalar. MLPM,p and MLPM ′,p

are single fully connected layers projecting back to the dimension of h(t)
σ . The other MLPs consists

of two layer fully connected layers, each followed by a point-wise non-linearity (e.g., ReLU) and
a BatchNorm layer. When entity unions or intersections aren’t contained in the relational structure
due to dimension constraints, we instead use h

(t)
δ := 0.

G HIGHER-ORDER GRAPHS ARE RELATIONAL STRUCTURES

Although we do not focus on higher-order graph neural networks (k-GNNs) (Morris et al., 2019)
in this work, we briefly illustrate how they naturally fit into our relational framework. In k-GNNs,
graphs are lifted into higher-order graphs following the procedure outlined in Algorithm 4. In our
framework, these higher-order graphs can be viewed as relational structures, where each entity rep-
resents a set of nodes of size n = k. The relations between these entities are of two types: local
relations, which connect entities differing by one node and where the differing nodes are adjacent
in the original graph, and global relations, where the differing nodes are not adjacent in the origi-
nal graph. From this perspective, k-GNN message passing on higher-order graphs is equivalent to
R-GCN message passing on the corresponding relational structures. We leave the theoretical and
empirical study of these relational structures for future work.

H WORKED EXAMPLE: RELATIONS AND OPERATORS FOR A PATH GRAPH

In this section, we illustrate, via a small example, the definitions of a simplicial complex, relational
structure, and influence graph.

Simplicial Complex. Consider the simplicial complexK corresponding to the path graph i−j−k.
The complex K consists of

• 0-simplices (vertices): {i}, {j}, {k}, and
• 1-simplices (edges): {i, j}, {j, k}.

Relational Structure. The relations on the set of entities S = K are as follows:

• Relation R1 (identity):

R1 = {(σ) | σ ∈ K}
= { ({i}), ({j}), ({k}), ({i, j}), ({j, k}) } .
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Algorithm 4 Graph Lifting (Higher-Order Graph)
Input: Unweighted undirected graph G = (V,E), node features (xv)v∈V , entity size n
Output: Relational structure (S, {Rlocal, Rglobal}) and features (xσ)σ∈S

1: Initialize S = ∅ ▷ Entities
2: for each subset σ ⊆ V with |σ| = n do
3: S ← S ∪ {σ}
4: xσ ← 1

|σ|
∑

v∈σ xv ▷ Features
5: end for
6: Initialize Rlocal = ∅, Rglobal = ∅ ▷ Relations
7: for each pair σ, τ ∈ S do
8: if |σ ∩ τ | = n− 1 then
9: Let {sσ} = σ \ τ and {tτ} = τ \ σ

10: if {sσ, tτ} ∈ E then
11: Rlocal ← Rlocal ∪ {(σ, τ), (τ, σ)}
12: else
13: Rglobal ← Rglobal ∪ {(σ, τ), (τ, σ)}
14: end if
15: end if
16: end for
17: return (S, {Rlocal, Rglobal}) and (xσ)σ∈S

• Relation R2 (boundary):
R2 = {(σ, τ) | σ ∈ K, τ ∈ B(σ)}

=

{
({i, j}, {i}), ({i, j}, {j}),
({j, k}, {j}), ({j, k}, {k})

}
.

• Relation R3 (co-boundary):
R3 = {(σ, τ) | σ ∈ K, τ ∈ C(σ)}

=

{
({i}, {i, j}), ({j}, {i, j}),
({j}, {j, k}), ({k}, {j, k})

}
.

• Relation R4 (lower adjacency):
R4 = {(σ, τ, δ) | σ ∈ K, τ ∈ N↑(σ), δ = σ ∩ τ}

=

{
({i, j}, {j, k}, {j}),
({j, k}, {i, j}, {j})

}
.

• Relation R5 (upper adjacency):

R5 = {(σ, τ, δ) | σ ∈ K, τ ∈ N↓(σ), δ = σ ∪ τ}

=

{
({i}, {j}, {i, j}), ({j}, {i}, {i, j}),
({j}, {k}, {j, k}), ({k}, {j}, {j, k})

}
.

If we assume, for the sake of example, that all relations are involved in message passing, this gives
rise to the relational structure

R(K) = (S, R1, R2, R3, R4, R5).

Of course, one could restrict message passing to a smaller subset of the relations
{R1, R2, R3, R4, R5}.

Shift Operators. In what follows, we index the entries in matrices as follows:

Index Simplex
1 {i}
2 {j}
3 {k}
4 {i, j}
5 {j, k}
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(a) Simplicial Complex K
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(c) Influence Graph G(S,B)

Figure 12: (a) The simplicial complex K consisting of nodes i, j, k, and edges {i, j}, {j, k}. (b)
The adjacency relations on K, showing boundary, co-boundary, lower, and upper relations. (c) The
influence graph G(S,B) representing the information flow between the entities.

For instance, the 14th entry in a matrix would correspond to the connection ({i}, {i, j}). We assume,
for the sake of example, that all shift operators correspond to the adjacency tensors, i.e., the entries
with indices corresponding to entities that are related by a relation are equal to 1, and the remaining
entries are all 0. Of course, normalized adjacency tensors and others could be similarly considered.
As such, we get the following:

• Shift operators AR1 and ÃR1 (identity relation):

AR1 = ÃR1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

• Shift operators AR2 and ÃR2 (boundary relation):

AR2 = ÃR2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 1 0 0

 .

• Shift operators AR3 and ÃR3 (co-boundary relation):

AR3 = ÃR3 =


0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 .

• Shift operator AR4 and ÃR4 (lower adjacency relation):
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The non-zero entries of AR4 are

AR4 :

{
AR4

{i,j},{j,k},{j} = 1

AR4

{j,k},{i,j},{j} = 1
.

The aggregated influence for ÃR4 :

ÃR4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 1
0 1 0 1 0

 .

• Shift Operator AR5 and ÃR5 (upper adjacency relation):
The non-zero entries of AR5 are

AR5 :


AR5

{i},{j},{i,j} = 1

AR5

{j},{i},{i,j} = 1

AR5

{j},{k},{j,k} = 1

AR5

{k},{j},{j,k} = 1

.

The aggregated influence for ÃR5 :

ÃR5 =


0 1 0 1 0
1 0 1 1 1
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0


.

Lastly, the aggregated influence matrix Ã arising from including all relations R1 to R5:

Ã = ÃR1 + ÃR2 + ÃR3 + ÃR4 + ÃR5

=


1 1 0 2 0
1 1 1 2 2
0 1 1 0 2
1 2 0 1 1
0 2 1 1 1

 .

The maximum row sum of Ã is γ = 7, giving rise to the augmented adjacency matrix
B = γI+ Ã

=


8 1 0 2 0
1 8 1 2 2
0 1 8 0 2
1 2 0 8 1
0 2 1 1 8

 .

The influence graph is finally constructed from B as follows:

• Nodes: Each simplex in K.
• Edges: For each (σ, τ), if Bσ,τ > 0, there is a directed edge from τ to σ with weight Bσ,τ .

I COMPUTATIONAL COMPLEXITY

It is well known in the TDL community that topological methods can require much more computa-
tion due to directly modeling higher order structures. This typically incurs combinatorial complexity
in the algorithms. A common strategy is to truncate the dimensionality of the objects considered to
maintain polynomial complexity. Another option is to use a sparse complex construction method. As
noted earlier, more work is needed in understanding graph lifting and which method is preferred in a
given setting. In this section, we analyze the running times required for TDL with clique complexes.
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I.1 CLIQUE COMPLEX SIZE

The exact computational requirements of performing clique lifting depend on the graph in consider-
ation. However, there are a few cases where we can provide precise estimates.

Clique lifting of dimension 1 In this case, the highest dimensional cell is the edge cell. Consider
a graph G = (V,E) with |V | = n nodes, |E| = m edges, and maximum node degree d. The
corresponding clique complex K has:

1. n+m cells
2. 2m boundary relations
3. 2m co-boundary relations

4.
∑

v∈V 2
(
deg(v)

2

)
≤ 2md lower relations

5. 2m upper relations

Note that we need to count the upper and lower relations for each direction of the edge so we get a
factor of 2.

Clique lifting of dimension 2 If G has |F | = k faces, then the clique K contains

1. n+m+ k cells
2. 2m+ 3k boundary relations
3. 2m+ 3k co-boundary relations

4.
∑

v∈V 2
(
deg(v)

2

)
+
∑

σ∈F

∑
τ∈F χ(σ ∩ τ) lower relations

5. 2m+ 6k upper relations

In dense graphs, the number of lower relations can be very large. Depending on the dataset under
consideration, one may opt for a model like CIN where lower relations are ignored.

Complete Graph We can provide precise estimates when we have a complete graph. This can
help us understand performance in the limiting case that the graph is very dense or contains large
cliques. Consider a complete graph Kn on n nodes and the cell σ = {1, 2, ...,m} for m ≥ 1. This
is the boundary of n−m cells and is the co-boundary of m cells. It is upper adjacent to (n−m)m
cells. It is lower adjacent to m(n−m) cells. Counting all the cells of dimension d = m− 1, we get

1. nd =
(

n
d+1

)
cells

2. nd(n− d− 1) boundary relations (if d > 0)
3. nd(d+ 1) co-boundary relations
4. nd(d+ 1)(n− d− 1) lower relations (if d > 0)
5. nd(d+ 1)(n− d− 1) upper relations

, where the d > 0 condition comes from the fact that there isn’t a cell {} in the complex so there
aren’t lower or co-boundary relations for zero dimensional cells. Computing the total number of
cells gives 2n − 1. The total number of edges is

−n− n(n− 1) +

n−1∑
d=0

(
n

d+ 1

)
(n+ (n− d− 1)(d+ 1))

=
n

2
(2nn+ 2n − 2)− n2 = O(n22n)

This bound is prohibitive for large n. If we restrict to two dimensional cells, we get the total number
of cells is

n+

(
n

2

)
+

(
n

3

)
=

n3 + 5n

6
= O(n3)

and the total number of relations is
n

6
(−24 + 41n− 24n2 + 7n3) = O(n4)
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I.2 CLIQUE LIFT COMPLEXITY

Our main use case is computing complexes for two dimensional cells. In this section we compute
the complexity of clique lifting. Note that computing the 0 and 1 dimensional cells is fast since they
are encoded directly in the graph as nodes and edges, respectively. The boundary and coboundary
relations encode edge indcidence to a node and are also easily obtained. The upper relations on
the 0-cells are just the edges in the graph. The lower relations on the edges are all pairs of edges
in the graph sharing a node. This can be efficiently computed by storing the edge incidences in
a dictionary in O(m) time and then computing all pairs in the neighborhood of each node. This
requires O

(
n+m+

∑
v∈V

(
deg(v)

2

))
computation. For connected graphs, this reduces to O(md).

Computing the two dimensional cells can also be done efficiently. By storing the neighborhood
dictionary, we just need to loop over pairs of edges (u, v), (u,w) in the neighborhood of u and
check if (v, w) ∈ G. This can be done in O

(∑
v∈V

(
deg(v)

2

))
= O(md) time. The boundary,

co-boundary, and upper adjacencies can be easily computed in O(k) time. The lower adjacency
computation for 2-cells can require more time. For a given edge (u, v), consider the 2-cells σ such
that (u, v) ≺ σ. Each pair of these gets a lower adjacency and can be efficiently added. This results
in

O

(∑
e∈E

(
|C(e)|
2

))
computation. We can bound this as∑

e∈E

(
|C(e)|
2

)
≤ 1

2

∑
e∈E

|C(e)|2 ≤ 1

2
max

e
|C(e)|

∑
e∈E

|C(e)| = 3k

2
max

e
|C(e)|

and we get the complexity bound
O
(
kmax

e
|C(e)|

)
This is analogous to the result with lower adjacency of 1-cells that relied on the maximum node
degree in G. The maximum co-boundary degree maxe |C(e)| is the analogue of node degree for
2-cells. So, the clique complex construction up to dimension 2 has time complexity:

O(md+ kmax
e
|C(e)|)

I.3 RUNNING TIMES

Lift ENZYMES IMDB-B MUTAG NCI1 PROTEINS ZINC MOLHIV

None 2.12 3.51 1.60 4.70 2.99 63.47 12.92
Clique 6.89 45.04 1.22 20.26 16.07 94.70 128.18
Ring 11.81 101.98 1.48 26.62 30.73 106.37 169.45

Table 13: Time to perform graph lifting and download datasets from Torch Geometric.
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