
Under review as submission to TMLR

A Survey on Data Selection for Language Models

Anonymous authors
Paper under double-blind review

Abstract

A major factor in the recent success of large language models is the use of enormous and
ever-growing text datasets for unsupervised pre-training. However, naively training a model
on all available data may not be optimal (or feasible), as the quality of available text data
can vary. Filtering out data can also decrease the carbon footprint and financial costs of
training models by reducing the amount of training required.
Data selection methods aim to determine which candidate data points to include in the
training dataset and how to appropriately sample from the selected data points. The
promise of improved data selection methods has caused the volume of research in the area
to rapidly expand. However, because deep learning is mostly driven by empirical evidence
and experimentation on large-scale data is expensive, few organizations have the resources
for extensive data selection research. Consequently, knowledge of effective data selection
practices has become concentrated within a few organizations, many of which do not openly
share their findings and methodologies.
To narrow this gap in knowledge, we present a comprehensive review of existing literature
on data selection methods and related research areas, providing a taxonomy of existing
approaches. By describing the current landscape of research, this work aims to accelerate
progress in data selection by establishing an entry point for new and established researchers.
Additionally, throughout this review we draw attention to noticeable holes in the literature
and conclude the paper by proposing promising avenues for future research.
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1 Introduction

Data selection is a long-standing challenge of machine learning where, given a collection of raw data, the goal
is to design a dataset that is optimal in some sense (John & Draper, 1975).

One often used sense of optimality in data selection is with regard to a model’s performance. In this work,
we adopt the commonly held view that, at their core, machine learning models are a method for modeling
statistical patterns in data and, from the probabilistic viewpoint, the optimal dataset is that which most closely
matches the distribution under which the model will be evaluated (Murphy, 2012). While the probabilistic
viewpoint presents a common view of how to select data that improves model performance, this is not the
only goal of data selection methods. Data selection methods can reduce costs (by reducing dataset size (Ortiz
Suárez et al., 2019; Schreiber et al., 2020; Brown et al., 2020; Lee et al., 2022a; Sorscher et al., 2022)), ensure
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the integrity of evaluation metrics (by removing data that is suspected to be from the evaluation data (Rae
et al., 2021; Marone & Van Durme, 2024; Oren et al., 2024)), and reducing undesirable behaviors (such as
bias and toxicity (Dodge et al., 2021; Welbl et al., 2021; Luccioni & Viviano, 2021; Longpre et al., 2023c)).

Data selection has recently become especially important in the context of large language models. Language
models can undergo multiple stages of training (pretraining (Peters et al., 2018; Radford & Narasimhan, 2018;
Devlin et al., 2019; Raffel et al., 2020; Touvron et al., 2023a), instruction-tuning (Mishra et al., 2021; Sanh
et al., 2022; Longpre et al., 2023a; Muennighoff et al., 2024), alignment (Ziegler et al., 2019; Bai et al., 2022b;
Ouyang et al., 2022; Rafailov et al., 2023), etc.), and data selection plays an important role in each stage.
However, as the objectives of training differ across each stage, the goals of data selection also vary accordingly.
For example, language models are commonly pretrained on large corpora of text from a variety of sources.
Among these sources is the internet, where estimates suggest that there are around 250 billion webpages.
These webpages amount to around 11 petabytes of data, collected from internet scraping efforts since 2008,
with an additional 3-5 billion new web pages being crawled monthly.1 Due to the massive size of pretraining
corpora, a common goal of data selection during pretraining is to remove significant quantities of data through
a series of filters (Conneau & Lample, 2019; Raffel et al., 2020; Wenzek et al., 2020; Gao et al., 2020; Rae
et al., 2021; Lee et al., 2022a) that aim to only retain data that is deemed “high-quality”. In contrast with
pretraining, one form of data selection for fine-tuning a model on a target task is to select additional auxiliary
samples that will be most beneficial as additional learning signals for the target task (Albalak et al., 2023b;
Ivison et al., 2023a).

In this work, we unify the wide array of data selection methods under a conceptual framework that allows
us to compare and contrast the variety of methods under our probabilistic viewpoint (§2.2), with a focus
on model pretraining. Through this survey, we demonstrate how all data selection methods define a utility
function that determines the utility of data, as well as a selection mechanism that determines how to use a
data point based on its utility. Our conceptual framework enables us to classify the wide variety of data
selection methods and create a taxonomy of the existing literature. Overall, this survey aims to achieve two
goals: 1) we provide a collected resource of data selection methods that describes the current best practices
and considerations when selecting data for training a language model, and 2) we provide a unifying view of
data selection methods that allows us to define and describe potentially fruitful future directions of research.
While this survey aims to be comprehensive, it would be prohibitively long to include the exact details of
every method, so we select a representative sample to discuss in depth and provide citations to the many
methods that we cannot cover in depth.

We organize the survey as follows. First, we present a taxonomy and unified conceptual framework for data
selection (§2). Next, we present the main focus of this work: surveying methods of data selection for language
model pretraining (§3). Then, we follow up with data selection methods for other language model training
regimes including multitask training and instruction-tuning (§4), alignment (§5), in-context learning (§6),
and task-specific fine-tuning (§7). Next, we extend the survey to notable methods of data selection used in
domains other than language (§8), as well as a brief discussion of related topics(§9). Then, we discuss some
of the implications surrounding data selection (§10). Although the main focus of the survey is on language
model pretraining, we also cover methods from other training regimes and domains so that we can point out
promising directions of research in the final section (§11).

2 A Taxonomy for Data Selection

In this section we define our taxonomy of data selection methods. We start by defining concepts for data
points and datasets (§2.1), then we describe the components of a data selection method in our unified
framework (§2.2), followed by common dimensions of variance in the taxonomy (§2.3).

1According to https://commoncrawl.org/ accessed on 11/02/23 (MM/DD/YY).
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Figure 1: An overview of the data pipeline for language models. The process starts with raw data,
that is cleaned, filtered, and mixed to create a final dataset by the data selection process, then used to train
(or evaluate) a model. The details and objectives of data selection methods vary depending on the learning
stage, and we identify five common objectives: improving model performance, improving data efficiency,
selecting data efficiently, ensuring evaluation integrity, and reducing model bias and toxicity. For example,
when selecting data for pretraining (§3) we may care about data and selection efficiency more than about
reducing toxicity in the data. In addition to pretraining, data selection can be used for instruction-tuning
(§4), alignment (§5), in-context learning (§6), and task-specific fine-tuning (§7), where each stage has differing
priorities.

2.1 Background and Motivation of Data Selection

Prior to discussing data selection methods, we first define and describe the “units” of a dataset, from smallest
to largest. First, the smallest unit of data for language models is the token, which can be composed of bytes,
characters, subwords, or larger components, depending on the tokenizer.
Definition 2.1 (Data point). A data point, x(i), is an ordered collection of tokens that constitutes a single
sample of data used to train or evaluate a model.

For example, in language modeling, x(i) can be a sequence of tokens from an internet document, a book, or a
scientific article. Language models have a limited input sequence length when training, so long documents are
often split into multiple data points. In practice, this means that x(i) may constitute a portion of a document
(rather than a complete one).
Definition 2.2 (Data point characteristics). The characteristics of a data point refer to a number of measures
used to describe a data point, x(i), and determines where x(i) is located within the space of all possible data
points.

The data point characteristics are a crucial component of data selection as they are frequently used to
determine whether a data point needs to be cleaned or possibly removed entirely. A number of different
measures can be used to describe individual data points. Common measures used to describe data points can
be either simple statistics (e.g. number of characters in x(i), or the percent of alphabetic characters in x(i))
or a distributed representation (e.g. the embedded representation using BERT (Devlin et al., 2019)).
Definition 2.3 (Dataset). A dataset, D, is the collection of data points {x(1), . . . , x(N)} (where N = |D| is
the number of examples in D) that will be used to either train or evaluate a model.
Definition 2.4 (Dataset distribution). The distribution of a dataset, D, refers to the distribution of data
points within the space of all data possible data points. The distribution of D has a significant impact on the
final capabilities and properties of a model that is trained on it.

4



Under review as submission to TMLR

The dataset distribution is also a crucial component of data selection as models can struggle with out-of-
distribution generalization and the dataset distribution specifies what data is in-distribution vs. out-of-
distribution (Shi et al., 2023). Specifically, a dense region of the data distribution generally suggests that
a model will perform well on unseen data from that region (e.g. similar distribution of tokens). With this
in mind, increasing the density of data around desirable regions while reducing density around undesirable
regions generally leads to a model that performs well in the desired settings.

2.2 A Unified Conceptual Framework for Data Selection

High-level goal of data selection. Data selection is the process of creating a dataset from a collection
of candidate data points, which will be used to train or evaluate a machine learning model. Prior to data
selection, generally speaking, data is collected, annotated, and stored. Then, once the target use case for a
model is determined, the goal of data selection is to filter and select the data points that maximize the desired
objective.

Formal definition of data selection.

Definition 2.5 (Data selection). A data selection function, ϕ, takes as input a dataset Draw and objective
function fobj and filters, cleans, and selects data points from Draw to create a final dataset ϕ(Draw) = D such
that, for a model M trained on dataset D, ϕ aims to maximize/minimize the objective function fobj(M).

In practice, multiple selection methods are often composed to improve the coverage and specificity of the final
dataset. In this case, we denote the component functions as ϕj and the composition as ϕ(D) = ϕ1 ◦ · · · ◦ϕn(D).
For example, ϕ = ϕ1 ◦ ϕ2 ◦ ϕ3 can include a simple filtering component, ϕ3, that first removes undesirable
data points, followed by a cleaning component, ϕ2, that removes undesirable content from within individual
data points, followed by a mixing component, ϕ1 that determines the number of times the remaining data
points should be used in the final dataset. Through these mechanisms, data selection functions can adjust
both the individual data point characteristics and the dataset distribution towards more desirable regions of
the data space in the aim of improving desirable properties of the model for the target purpose.

Components of a data selection method. We identify the common components of selection functions
ϕj : the utility function and selection mechanism.

The utility function υ(x(i)) : D → R defines a mapping from a data point to a real number representing the
calculated utility. For example, a utility function may be a binary indicator defined as: 1 if the total number
of tokens in x(i) is greater than 10, or 0 otherwise. Another utility function might assign x(i) a utility equal
to the likelihood of x(i) being a Wikipedia article.

The selection mechanism uses the output from the utility function to determine whether a data point will
be included in the resulting subset (and in some cases, how many times the data point should be repeated).
It can be a simple indicator (e.g., only include x(i) in D if the number of characters is greater than 10), or
probability functions (e.g. if υ is the likelihood of x(i) being a Wikipedia article, include x(i) in D according
to the probability defined by υ(x(i))). Additionally, a selection sensitivity is needed for selection mechanisms
that require a threshold (e.g. only include x(i) if υ(x(i)) > 0.9).

Data selection methods are used to solve a wide range of objectives, and by adjusting the utility mechanism,
selection mechanism, and filter sensitivity can achieve the desired outcomes. We save discussion of the specific
instantiations of each component to the respective sections where they are introduced.

2.3 Dimensions of Variance in the Data Selection Taxonomy

Data selection methods can be utilized for various goals, where the goal of the method will, in part, determine
the exact utility function and selection mechanisms used. To help form a taxonomy and a better understanding
of the relationship between methods, we define some specific dimensions of commonality and variance across
methods (in no particular order).
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Distribution Matching Distribution Diversification

Figure 2: A conceptual demonstration of two common goals for data selection methods: Distri-
bution Matching and Distribution Diversification. On the left we see distribution matching where
the goal is to select data points (green crosses) that are similar to data points sampled from a target data
distribution (blue circles) and reject data that is too far out of distribution (red exes). On the right we see
dataset diversification which aims to select/reject data points (green crosses/red exes) in such a way that
maintains coverage over the full distribution while reducing the total number of data points.

2.3.1 Distribution Matching vs. Diversification

The main goal of distribution matching methods is to select data with properties similar to the desired
target distribution, upon which a model will be evaluated or deployed. For instance, the desired distribution
could be defined as data of known high quality, a specific language, or a target domain (e.g finance, medicine,
or law). The exact specifications of the desired target distribution can vary from being well defined (e.g. as
in detecting a language) to being quite ambiguous (e.g. “high quality” data). Some distribution matching
methods will try to match data representation distributions where the similarity to the target distribution
will usually be the utility (e.g. similarity to Wikipedia data). Other distribution matching methods use the
statistics of data sampled from the target dataset as the utility (e.g. total number of characters per example).

Distribution diversification methods aim to prioritize heterogeneity in a sample, removing redundancies.
They operate within a representation space that allows for similarity to be measured across data points. The
utility of a data point is defined by its relation (similarity) to the other data points in the representation
space. Distribution diversification methods often remove data points that are similar in some representation
space (e.g. characters or vectors). By removing data points that are very similar, diversification methods
can remove redundancies in the data, leading to improved training efficiency by reducing the dataset size.
Additionally, because distribution diversification methods force the dataset distribution to be flatter, they
can lead to decreased memorization, decreased bias, and improved robustness.

2.3.2 Altering the Dataset vs. Data Point

Methods that alter the dataset aim to increase or decrease the frequency of individual data points within
the dataset in order to increase (decrease) the resultant distribution density around desirable (undesirable)
regions. These methods take as input a dataset and assign each individual data point a non-negative integer
value representing the number of times that data point should be included in the resultant dataset. Formally,
a dataset distribution altering function ϕj : DN → NN

0 maps each data point x(i) ∈ D to a non-negative
integer based on the utility function, υ(x(i)).

Methods that alter the data point aim to adjust the content within a data point to better match a desirable
distribution of tokens so that the individual data points within a dataset more closely resemble the desired
characteristics. In practice, this can take the shape of removing individual lines, or chunks of text, from a
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Pretraining Data Selection Methods

Selection Method Distribution Matching Output Adjust Dataset
vs. Diversification Space vs. Data Point

Language Filtering (§3.1) M {0, 1} D
Heuristic Approaches (§3.2) M N0 D + P
Data Quality (§3.3) M {0, 1} D
Domain-specific (§3.4) M {0, 1} D
Deduplication (§3.5) D {0, 1} D + P
Toxic and Explicit Content (§3.6) M {0, 1} D + P
Multilingual Filtering (§3.7) M + D N0 D + P
Data Mixing (§3.8) M + D N0 D

Table 1: Pretraining data selection methods can be described along three axes of variation: whether they aim
to do distribution matching or diversification, what the output space is, and whether they make adjustments
to the dataset distribution or data point characteristics.

document. For example, when training a model for natural language, it can be beneficial to remove lines that
contain HTML tags as they are likely to be out of distribution for the desired target domain.

2.3.3 Output Space: Binary vs. Natural Number Selection

Methods that alter the dataset distribution lead to another dimension of variance; whether the selection
function ϕ assigns binary values (i.e. include or remove) or whether larger integer values are permitted.
Methods that only assign binary values are generally referred to as filtering, and the goal is usually to
adjust the dataset distribution by removing undesirable data points from the dataset. On the other hand,
methods that can assign any natural number are commonly referred to as data mixing, and their goal is
often to adjust the dataset distribution by prioritizing certain subsets of the dataset that have high utility
values, while decreasing the distribution density around subsets with lower utility. It is very common for
data mixing methods to define a utility function that assigns the same utility to entire subsets of data (e.g.
all web text gets the same utility, and all books get a different utility). Filtering and mixing can be used as
part of a pipeline, where data is first filtered and then mixed.

2.3.4 Training Stage

Language model training often requires multiple stages where each stage serves a different purpose. In
this work we identify and discuss five distinct language model training stages during which data selection
can be used: pretraining, instruction-tuning, alignment, in-context learning, and task-specific
fine-tuning.

Each training stage has different goals, and so the data selection methods for each stage will use different
mechanisms to achieve those goals. For example, the target distribution is fairly well defined when training
a language model for a specific domain or task, but much less defined when pretraining a general purpose
language model, thus data selection methods can utilize this information to target better data. Another
consideration is the number of candidate data points at each training stage. For example, pretraining likely
has a significantly larger number of candidate data points than instruction-tuning, motivating the need for
efficient data selection methods in pretraining, while instruction-tuning can afford more expensive methods.
In this work, we focus on data selection for pretraining.
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Figure 4: An overview of the data filtering pipeline for pretraining. Each filtering component is
described in Section 3, and depicts common filters used for preprocessing text data. Note that different works
employ different filters, at different stages, and do not necessarily adhere to the order conveyed here. This
figure was adopted and modified from Soldaini et al. (2024)
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Figure 3: Data selection: pretraining. The
first training stage of modern language models.
Typically, the most important selection objectives
are model performance, evaluation integrity, and
selection efficiency.

The goal of pretraining is usually to train a general-purpose
model, which requires training on massive quantities of
text, commonly measured in the billions and trillions of
tokens. Selecting the best data from such large quantities
can be very expensive, so a common first step in the
process is to remove data with various filters, and it is
likely that multiple filters will need to be pipelined together
to achieve the desired dataset. The order in which we
present pretraining data selection methods is, roughly,
based on the order that they are used within a real data
selection pipeline. Of course, not all pipelines require
every method presented here, and depending on the case
the exact ordering may differ slightly.

3.1 Language Filtering

When curating data for language model pretraining, a crucial first step is to consider the languages the model
will operate in and to filter out data that doesn’t belong to those languages. This applies not only to natural
languages, but coding languages as well, however, the methods to determine each will differ. For multilingual
language models, in addition to filtering out undesirable languages, it is also important to track metrics on
the quantity of data coming from each language. Similarly, for models with code capabilities, it is important
to track the quantity of data from each coding language.

Common utility functions. When filtering for language, it is crucial that the utility functions be fast
to compute as the utility calculation will be performed on huge quantities of data. Thus, many methods
that aim to filter for specific natural languages utilize fast-to-compute utility functions from classifiers based
on character n-grams (Conneau & Lample, 2019; Wenzek et al., 2020; Raffel et al., 2020; Xue et al., 2021;
Laurençon et al., 2022) including langdetect2, cld33, and fastText (Joulin et al., 2016; Grave et al.,
2018). Some methods aim to remove all non-English data, while others may include over 100 languages and
require different utility function strategies.

Filtering for English-only datasets. When developing the English-only C4, Raffel et al. (2020) use a
naive Bayes classifier with character n-grams (langdetect) to filter out any pages not classified as English
with a probability of 0.99. They find the use of a very high threshold sensitivity to be appropriate as the

2https://pypi.org/project/langdetect/
3https://github.com/google/cld3
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filtered dataset still contains a significant quantity of data ( 750GB of data). More recently, when developing
Dolma, Soldaini et al. (2024) utilize fastText’s (Grave et al., 2018) language identification model and filter
out any documents classified as English with a probability less than 0.5, finding that this removed 61.7% of
web pages. However, when filtering books (from Project Gutenberg4) they first split each book by paragraph
and compute the language score for each paragraph, only removing books that have an average probability
of English (assigned by fastText) of below 0.5. Penedo et al. (2023) also use fastText when filtering
RefinedWeb, but differently to Dolma, they use a higher threshold (0.65) and filter out higher quantities of
web pages.

The lower thresholds used by the more recent methods is likely due to a combination of factors. First, when
developing C4, 750Gb of data was considered a very large dataset, but more recent datasets can be well into
the terabytes worth of data, and using a lower threshold will allow more data to pass through the filter.
Additionally, it is difficult to measure the differences in accuracy across different language identification
models (e.g. langdetect vs. cld3. vs. fastText) due to the differences in supported languages and
strengths on text of varying lengths, but some experiments show that fastText has improved accuracy over
other language identification models,5 as well as reduced latency. In general, the threshold used for keeping
or filtering out a data point can be in part determined by the desired dataset size, where a lower threshold
will retain higher quantities of data, but possibly containing non-English text.

Filtering for multilingual datasets. Filtering methods for multilingual corpora often rely on the
fastText (Joulin et al., 2016) language classifier from CCNet (Wenzek et al., 2020) which was trained
to classify 176 languages using wikipedia data (Grave et al., 2018; Conneau et al., 2020; Laurençon et al.,
2022). The fastText classifier is desirable as it can process 1,000 documents per second on a single CPU
core (Wenzek et al., 2020). One example of this method comes from Laurençon et al. (2022) who use a
fastText model to obtain a prediction for the document language along with a prediction confidence score
when creating the ROOTS corpus. If the confidence score is below a threshold, the document is removed,
where the confidence score is determined by native speakers on a language-by-language basis, but are not
disclosed in their paper. The need to determine a threshold for each language individually adds significant
amount of additional effort to develop language filters for multilingual corpora. Additionally, these filters can
fail on documents in which the language changes several times as the classifier cannot confidently predict a
single language. Furthermore, while this classifier was trained on 176 languages, there are 1000s of languages
that cannot be covered by this method (van Esch et al., 2022). This has prompted the creation of even
broader language detectors covering thousands of languages, however, they still suffer from poor precision for
extremely low-resource languages (Caswell et al., 2020; Kudugunta et al., 2023).

Another common approach for multilingual filtering is by country domains or selecting URLs that are known
to contain data in certain languages (Luukkonen et al., 2023). Especially for very low-resource languages,
such as Uyghur, this can be a more reliable method than language classifiers (Zhang et al., 2023a).

For further discussion on data selection for multilingual models, see Section 3.7.

Filtering for code languages. The utility functions that have been used to detect code languages are
very rudimentary. For example, Chowdhery et al. (2023) filter for data from 24 programming languages
simply by searching for documents that match a set of approved filename extension (e.g. “.py” for python).
This strategy works well when filtering over data from known code data that contains file names, such as
snapshots of Github repositories (Chen et al., 2021; Li et al., 2022a). However, no filtering methods that we
know of find code within natural language documents, which is entirely possible within some domains such as
in Stack Exchange6 and may contribute meaningful quantities of interleaved natural language and code.

Challenges for language filtering. There are trade-offs occurring in the filter sensitivity for language
detection, where a lower threshold allows greater quantities of data to pass through the filter, at the risk of
sacrificing some quality. On the one hand, using a strict filter for English data may reduce the quantities of

4https://www.gutenberg.org/
5https://modelpredict.com/language-identification-survey
6https://archive.org/details/stackexchange
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non-English data, but on the other hand, using a lower threshold can mitigate some of the inherent biases
of the language detector against dialects spoken by minority groups (e.g. African-American Vernacular
English (Blodgett et al., 2016)). Determining the exact threshold to use for language classifiers is highly
dependent on the use case. While fastText is the current standard for language detection due to its
combination of speed and accuracy, it is not perfect. More accurate systems built in on recurrent- (Toftrup
et al., 2021) and transformer-based7 architectures have been developed, but run with higher computational
costs.

• Language filtering is an important first step of data selection where documents are selected to
include only the desired languages.

• Classifier-based methods are the norm when creating both english-only and multilingual datasets.
• For lower-resourced languages, URL-based methods are also useful for classifying the language

used in multilingual datasets and can sometimes can be more reliable than classifiers.
• Filtering for code languages is very simple, most works simply using the file extension.

One interesting direction for future research is developing methods that find code data within
documents of natural language. To the best of our knowledge, no such methods currently exist,
but a code-language identifier could be used in domains with interleaved code and natural
language to find meaningful quantities of new code data.

Language Filtering Summary & Ideas

3.2 Heuristic Approaches

When pretraining a language model, raw datasets are generally composed of massive quantities of text from a
wide variety of sources that are filtered through a set of simple heuristics. Major models are often trained on
web scrapes such as CommonCrawl and GitHub, though transparency into their precise compositions are on
the decline (Bommasani et al., 2023). It is widely known however that pretraining data contains significant
quantities of boiler-plate text, error messages, and offensive text (Raffel et al., 2020; Touvron et al., 2023a).
For example, Gao et al. (2020) find that, when creating the Pile, the most common 13-grams were character
repetitions such as a string of dashes (“– –”) with 11 million instances. Removing such undesirable text is
very important, but must be done efficiently due to the size of the corpora involved. In this case, a common
approach to filtering data involves simple and efficient-to-compute heuristics.

The goal with heuristic approaches is to constrain the training distribution along some dimension (e.g.
sentence length, repetitiveness), with the assumption that the evaluation distribution will exhibit similar
characteristics. The number of heuristics that have been used in past works is extensive, but generally fall
into one of the following categories of heuristics: item count, repetition count, existence, ratio, or
statistics. In this section we discuss a representative sample of them, provide Table 2 as an overview of
heuristic methods, and include a comprehensive listing in Appendix A.

Common utility functions. For heuristic-based text filtering, the utility functions should be very fast
to compute and generally rely on one or more qualities of the raw text included in each data point of the
dataset. However, the exact text qualities that lead to best performance depend on the desired use case for
the model, and are yet unknown. Thus, a wide variety of distinct utility functions have been proposed, each
making assumptions about the expected testing distribution, and filtering out data that does not fit those
assumptions. For example, Raffel et al. (2020) discard any web page with fewer than five sentences, Rae et al.
(2021) discard documents with fewer than 50 or greater than 100,000 words, and Xue et al. (2021) discard
documents with fewer than three lines of text with 200 or more characters. Another common heuristic is to
remove documents with specific black-listed words or phrases. Raffel et al. (2020) remove documents with
any word on the "List of Dirty, Naughty, Obscene, or Otherwise Bad Words".8 However, Penedo et al. (2023)

7https://huggingface.co/papluca/xlm-roberta-base-language-detection
8https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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Heuristic
Category Common Utility Functions Example Selection Mechanisms

Item Count # of characters in a {word/line/paragraph/document}
# of {words/lines/sentences} in a document

Remove documents with fewer
than 5 words (Raffel et al., 2020)

Repetition
Count

# of times a {character/n-gram/word/
sentence/paragraph} is repeated

Remove lines that repeat the same
word more than 4 times consecutively
(Laurençon et al., 2022)

Existence Whether a {word/n-gram} is in the document
Whether a terminal punctuation is at the end of a line

Remove lines starting with “sign-in”
(Penedo et al., 2023)

Ratio % of alphabetic characters in a document
% of numerals/uppercase characters in a {line/document}

Remove documents with a symbol-to-
word ratio greater than 0.1
(for “#” and “. . . ”) (Rae et al., 2021)

Statistics The mean length (and standard deviation)
of all lines in a document

Remove code files that have mean
line length greater than 100
characters (Chen et al., 2021)

Table 2: Commonly used heuristic utility functions and demonstrative selection mechanisms.

suggest that the NSFW word block lists as used by Raffel et al. (2020) can often lead to false positives,
resulting in the over-filtering of legal and medical content.

Another heuristic often associated with the quality of a document is repetitiveness. Rae et al. (2021) find
that excessive repetition within a document is linked to uninformative content and suggest that filtering out
entire documents that have high proportions of repeated lines, paragraphs, and n-grams leads to improved
performance. For example, if a repeated line accounts for greater than 30% of a document they remove the
entire document. See Table A1 in Rae et al. (2021) for their list of 13 different repetitions and threshold
sensitivities.

Domain-specific heuristic approaches. Another dimension to consider when designing a filter is the
domain of interest. For example, when collecting code data for the ROOTS dataset, Laurençon et al. (2022)
filter source files between 100 and 200,000 characters, with between 15-65% alphabetic characters (a-zA-Z),
and line lengths between 20-1000 characters. If these filters were applied on natural language data, significant
quantities of desirable data would be removed (e.g. many books have greater than 65% alphabetic characters).
Additionally, Laurençon et al. (2022) filter out files which have line lengths that are highly uniform (line
length standard deviation 3 characters or less). While filtering out data with uniformly lengthed lines may
improve data quality for code, it would likely filter out significant quantities of poems and other rhythmic
text due to the similarity in line length, and would likely remove data which has been collected from pdf files,
which could be desirable when training a model for a non-code domain.

Adjusting data points with heuristics. While the previously described approaches remove entire data
points from the training dataset, removing content from within a data point can be a useful method. Rather
than removing an entire data point, heuristic methods that remove individual lines within a larger document
aim to improve the coverage of the training data distribution, while limiting the density around undesirable
qualities. For example, when working with content from web crawled data, removing HTML can be an
important part of the filtering process that helps to reshape the data distribution towards natural language
(assuming that is the desired outcome). Laurençon et al. (2022) and Aghajanyan et al. (2022) create lists of
HTML tags where all content within sub-trees of the tags will be removed. Additionally, Raffel et al. (2020)
remove lines that do not end in a terminal punctuation mark and lines with fewer than four words, and Penedo
et al. (2023) remove lines that are mainly composed of uppercase or numerical characters. Furthermore, a
common component of line-by-line filtering is the removal of the entire data point if enough of the individual
lines within it are filtered out. For example, Penedo et al. (2023) remove the full document if the individually
removed lines account for greater than 5% of the total document length.
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Deterministic vs. stochastic selection mechanisms. Many heuristic utility functions can be used
as part of a deterministic or stochastic selection mechanism. In a deterministic selection mechanism, any
data points which are above/below the utility threshold will be removed. The vast majority of existing
heuristic filters use a deterministic selection mechanism. However, this may unnecessarily remove data that
resembles the evaluation distribution (Brown et al., 2020). In particular, the target dataset distribution
may be long-tailed in the characteristic of interest, and deterministically removing all data above/below a
threshold can harm the modelling of that characteristic.

Heuristic filters commonly based on item counts, repetitions, ratios, and statistics can all utilize stochastic
selection mechanisms. For example, Rae et al. (2021) remove documents with a symbol-to-word ratio greater
than 0.1, but a stochastic selection mechanism would allow for some data with low utility to not be filtered out.
While a stochastic selection mechanism may not always be appropriate, there are certainly some heuristics
where it may benefit the dataset distribution, but the exact settings where a stochastic selection mechanism is
an open research question. Data quality filters (§3.3) often use stochastic selection mechanisms, and applying
stochasticity in heuristic filters is one area of data selection that has not been explored.

Drawbacks of heuristic selection approaches. One disadvantage to heuristic selection approaches
is that they do not judge the quality or content of a document, rather, they rely entirely on surface level
statistics and counts, lacking the finesse of other data selection methods. This can lead to desirable data
being removed, but this is often accepted as a trade-off as long as the quantity of data after filtering is still
within the desirable range.

Another disadvantage of heuristic filters is the challenge of validating their effectiveness. After a heuristic has
been developed and used on a raw dataset, to determine whether the heuristic is an improvement requires
either: 1) manually validating that the filtered documents are undesirable and the kept documents are
desirable, or 2) training and evaluating a model. Both of these methods are time consuming and expensive,
which make experimentation on heuristic filtering approaches very slow.

Considerations when designing a heuristic filter. When designing a set of heuristic filters, it is very
important to understand the data source. By first looking at the data and validating the performance of a
heuristic filter on a small sample of data, the designer of such a filter can better understand what type of data
the method will remove, and what types of data will remain. That way, by composing multiple heuristics in
succession, the resultant dataset will reflect the desired data qualities. There are a wide variety of existing
tools to better understand the data within a dataset (data auditing), as well as for data selection. See §10.4
for some useful tools.

The current known best practices for heuristics have not changed significantly in the past few years. Soldaini
et al. (2024) recently use a combination of the filters from MassiveText (Rae et al., 2021) and c4 (Raffel
et al., 2020), while Penedo et al. (2023) also follow the rules defined for MassiveText (Rae et al., 2021).
However, it is unclear whether the lack of progress in common heuristics is due to a lack of exploration in the
space (due to limited resources and studies), or if the known heuristics truly are optimal. To the best of our
knowledge, there have not been studies specifically comparing the many possible heuristics in a systematic
study.

3.3 Data Quality

Training on the highest quality data can lead to stronger performance (Du et al., 2022). However, “high-quality”
is not a well defined term with respect to language model pretraining data. Additionally, there is no one-
size-fits-all characterization as, depending on the use case, “high-quality” data can vary drastically (Longpre
et al., 2023c). Additionally, implementations of toxicity filters and quality filters can further marginalize
communities whose text is not commonly considered “high quality” (Xu et al., 2021; Longpre et al., 2023c).
In this work, we narrow the use of the phrase “high-quality” to a common use of the phrase referring to:
data that is known to be written by humans, and has likely gone through an editing process (Grave et al.,
2018; Gao et al., 2020; Brown et al., 2020; Chowdhery et al., 2023). Some data domains that fall under the
“high-quality” category are Wikipedia, books, patents, and peer-reviewed journal articles.
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• Heuristics are a very efficient method for removing large quantities of data, but lack finesse.
• Most common heuristic utility functions fall into 5 categories: item count, repetition count,

existence, ratio, and statistics.
• Heuristics should be designed specifically for the domain of interest (e.g. heuristics for code will

not work for natural language).
• Heuristics can also be used to improve data point characteristics (e.g. removing HTML from a

web document, or specific lines within a document).
Because heuristics lack finesse, it may be worth exploring the use of stochastic selection
mechanisms to allow higher quantities of data through the filter (with the hope that a filter
farther down the pipeline will remove data that is actually undesirable).
Validating the quality of a heuristic filter is a very slow process, requiring either manual
inspection, or training and evaluating a model. Developing methods that can directly measure
the data itself could significantly improve iteration time.

Heuristic Approaches Summary & Ideas

Common utility functions. Similarly to heuristic methods, the utility functions used for data quality
filtering should be fast and cheap to compute, however, in contrast with heuristic filtering approaches, quality
filtering requires fuzzy matching which generally has higher computational requirements. Thus, methods for
data quality often use relatively cheap distributional representation methods, such as n-grams, to allow for
more ambiguous filtering criteria.

One commonly used method when filtering for quality is classifier-based quality filtering, where the goal is
to identify data points that are likely from the same (or similar) distribution as a known “high-quality” corpus
of data points (reference corpus) (Longpre et al., 2023c). For example, Brown et al. (2020) filters a version of
Common Crawl9 based on similarity to “high-quality” reference corpora (including WebText (Radford et al.,
2019), Books1, Books2, and English wikipedia). They train a classifier using the “high-quality” reference
corpora as the positive class and unfiltered Common Crawl documents as the negative class. This classifier
then defines the utility metric for selecting data that follows the desired distribution. The classifier used to
assign quality scores to each document should be fairly lightweight due to the scale of pretraining datasets.
For example, Du et al. (2022) use a feature hash based linear classifier, while Brown et al. (2020) and Gao
et al. (2020) use a fastText model (Joulin et al., 2016) with an n-gram size of 2. Similarly, Xie et al. (2023b)
computes the utility as an importance weight between two hashed n-gram generative models. While modern
language models may be able to better model the reference corpus distribution, they would also significantly
increase the amount of compute required over hashing and n-gram based methods.

A competing method of computing utility is perplexity-based quality filtering, where the goal is to train
a language model on the reference corpora and evaluate on the data to be filtered, assigning a utility score
to each candidate document. For example, Wenzek et al. (2020) train a 5-gram Kneser-Ney (Heafield,
2011) model on Wikipedia, and compute the perplexity of each paragraph in their Common Crawl dump.
Paragraphs with low perplexity are assumed to be close to the reference domain while data with paragraphs
with higher perplexity are assumed to be of low quality.

Recently, Wettig et al. (2024) have explored a very different direction, and create a utility function from
the outputs of a language model system (GPT-4) by asking it to rate multiple documents along various
dimensions of perceived quality. While their work shows that the model-based ratings can be a good signal
for quality, it can be costly to make enough API calls to such systems. Additionally, biases from the system
may be carried over into the quality signal.

Selection mechanisms. One potential negative impact of classifier-based quality filtering is that the
reference corpora are unlikely to contain examples of all data that are considered high quality. Thus, it is

9https://commoncrawl.org/

13

https://commoncrawl.org/


Under review as submission to TMLR

desirable to allow some stochasticity in the selection mechanism. For example, Brown et al. (2020) use their
classifier to score Common Crawl documents and keep each document only if they satisfy

np.random.pareto(α) > 1 − document_score,

where α = 0.9 was determined by matching the distribution of scores from the WebText corpus. By selecting
documents that don’t match the “high quality” distribution with some stochasticity, they ensure that
documents in the final corpus are mostly high-scoring, but still include some documents that are out of
distribution with respect to the reference corpora.

When the utility metric is an importance weight (Xie et al., 2023b), the selection mechanism is to sample
examples according to the importance weights across the dataset. Sampling (without replacement) according to
the importance weights can be done efficiently with the Gumbel top-k trick, which perturbs the unnormalized
log-importance weights with Gumbel noise before selecting the top k.

Potential challenges for quality filtering. An important consideration when performing quality filtering
is that certain reference corpora may be biased towards or away from certain demographics, dialects, and
socialects (Rae et al., 2021). Additionally, Gururangan et al. (2022) find that a quality filter trained on
Wikipedia, books, and newswire (a replication of the quality filter from Brown et al. (2020)), evaluated on high
school newspaper articles, prefers articles from high schools in wealthier, higher-educated, and urban areas.
They demonstrate that even though quality filtering is often assumed to be fairly neutral, it carries with it an
implied judgment of preferred values. Thus, quality filtering should be done with care to ensure that biases
are avoided and the distribution of data sufficiently covers the desired dialects and demographics. Filtering
text for quality, while avoiding the introduction of biases is an important direction for future research.

It is still an open question whether using quality filters is a beneficial practice. Some recent works that have
entirely foregone using a quality filter include MassiveText (Rae et al., 2021), RefinedWeb (Penedo et al.,
2023), and Dolma (Soldaini et al., 2024). Specifically, Penedo et al. (2023) elect not to perform any quality
filtering and to spend more compute on a stringent deduplication instead. It is not fully understood when
quality filtering is beneficial and when it is not required, requiring further research.

• Data quality methods aim to select data points that are similar to data which is of known
“high-quality”.

• Classifier- and perplexity-based quality filtering are the existing approaches, with classifier-based
filtering being the more popular method.

• For both classifier- and perplexity-based methods, it is important to be careful when training the
classifier because this can introduce biases (e.g. against lower-income, less-educated populations).
Exactly which situations quality filtering is beneficial is still undecided, as recent works have
trained performant models without using quality filters at all. This is an area that requires
further study.

Data Quality Summary & Ideas

3.4 Domain-Specific Selection

While some language models are pretrained for general domain use, they can also be trained with a specific
domain in mind, where selection can assist in finding data similar to the desired domain’s distribution (e.g.
medicine or law). Domain-specific filtering methods mostly assume access to some in-domain data and
additional data from auxiliary sources. The goal of filtering is then to find the auxiliary data which most
resembles the distribution of in-domain data.

Common utility functions. In order to produce representations for data that can separate in-domain vs.
out-of-domain data, utility functions for domain-specific selection often make use of models trained on one or
both data distributions.
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Many domain-specific selection methods stem from Moore-Lewis selection (Moore & Lewis, 2010) which
follows from the following conditions. Let I be an in-domain dataset, N be a general purpose dataset, and
NI be a subset of N that is in-domain that we wish to discover. They note that the probability of a data
point x(i) drawn randomly from N being in NI is

P (NI |x(i), N) = P (x(i)|I)P (NI |N)
P (x(i)|N) ,

derived from a variant of Bayes rule. If the probability P (NI |x(i), N) could be directly measured, it would form
a very strong utility function. The exact distributions are intractable, but estimates for P (x(i)|I) and P (x(i)|N)
can be calculated by training language models on I and a sample of N . Additionally, the probability P (NI |N)

can simply be disregarded because it does not depend on x(i), so for all x(i) P (x(i)|I)
P (x(i)|N) ∝ P (x(i)|I)P (NI |N)

P (x(i)|N) .

In order to work directly with language model outputs, the ratio P (x(i)|I)
P (x(i)|N) is converted into the log domain

as log(P (x(i)|I)) − log(P (x(i)|N)). Finally, the cross-entropy loss from models trained on I and N is used to
estimate each of these values.

More recent variants of Moore-Lewis selection have improved on the original idea. Axelrod (2017) propose
cynical data selection, a theoretical framework for selecting data that maximizes the information gained by
the model from each data point. Feng et al. (2022) empirically validate that the perplexity of encoder models
improves when using cynical data selection compared to a “high-quality” subset (Wikipedia and Books).
Xie et al. (2023b) reframe the ratio of probabilities as an importance weighting from an in-distribution and
general purpose model.

Notably, while the original Moore-Lewis selection method suggests using a language model to estimate the
utility function, modern language models have grown to sizes that would make the naive use of this method
extremely costly. Thus, more efficient language models based on n-grams are typically used. For example, Xie
et al. (2023b) utilize a bag of hashed n-gram model that can be computed very efficiently10 and find that
data selection with hashed n-gram features is strongly correlated with performance on target domains.

Engstrom et al. (2024) propose a model-dependent alternative to Moore-Lewis-based methods, which only
depend on the data. They propose to use datamodels, a utility function that can approximately map a subset
of training data to model performance after training on that subset. Generally, estimating this requires
training some models with different subsets of data. At very high filtering ratios (less than 25% of original
dataset size), they demonstrate improved performance over DSIR (Xie et al., 2023b), but require significantly
more compute.

In general, methods derived from Moore-Lewis selection have been the gold-standard, but it may be
possible to adopt other methods of data attribution and valuation, similar to datamodels, for the purpose
of selecting in-domain data. However, these methods typically have higher computational requirements, a
challenge that needs to be addressed. Perplexity-based methods, similar to perplexity-based quality filtering
methods (§3.3), which only require an in-domain model are also a plausible research direction.

Selection mechanisms and thresholds. Domain-specific filtering methods can utilize either deterministic
or stochastic selection mechanisms. Most Moore-Lewis-based methods tend to use deterministic selection
with a threshold. As previously mentioned, domain-specific filtering methods often assume access to in-domain
data in addition to the auxiliary data. In order to select an appropriate threshold sensitivity, a held-out set
of in-domain data can be used (Sethy et al., 2006). It is also possible to use stochastic selection mechanisms.
For example, DSIR (Xie et al., 2023b) resamples the data according to the importance weights. A stochastic
mechanism can allow for a wider diversity of data, especially when there are minority subpopulations of the
target that may be ignored when deterministically selecting high-scoring data under some metric.

Comparison to data quality filters. Domain-specific filtering methods are quite similar to data quality
filtering and can be viewed as a generalization of data quality filtering. The core difference is that in data

10https://github.com/p-lambda/dsir
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quality filtering, the in-domain data (reference corpus) is used as a proxy for the desired distribution but in
reality this is not guaranteed, thus an element of stochasticity is crucial for data quality filtering. On the
other hand, given enough in-domain data, domain-specific filters can directly measure whether auxiliary data
matches the desired distribution.

Challenges for domain-specific selection. Prior methods of domain-specific selection utilize just a
model of the in-domain data, but these methods can skew the resultant distribution towards the modes of the
existing in-domain data (Sethy et al., 2006). For example, it is possible that the in-domain data contains some
very common phrases (e.g. “okay”) which are not necessarily representative of the domain. To avoid this issue,
it is possible to perform deduplication on the in-domain data. However, a delicate balance must be reached,
as deduplication can skew the in-domain data away from valid modes. Domain-specific selection methods that
utilize a general-domain model in addition to the in-domain model (e.g. Moore-Lewis selection) handle
this issue quite well and thus it is highly recommended to use such methods.

• Domain-specific selection aims to find data most similar to a specific domain (e.g. medicine or
law).

• Moore-Lewis style methods (requiring one in-domain model and one general purpose model)
have stood the test of time and are still the most popular methods for domain-specific filtering.
Datamodels and other methods based on data attribution and valuation can be explored as
competitive methods, but generally have higher computational requirements.
Perplexity-based methods may be another direction to explore. They require only an in-domain
model, which could improve efficiency. It’s possible that they would not perform as well as
Moore-Lewis based methods, but because they use less compute they could be used in multiple
rounds of selection, as in bootstrapping.

Domain-Specific Selection Summary & Ideas

3.5 Data Deduplication

Datasets originating from internet dumps often abound with duplicate and near duplicate documents (Elazar
et al., 2023; Magnusson et al., 2023). A dataset with duplicated data, or near duplicates, increases the
distribution density around those areas. In cases where these high-density points are of high value, keeping
near duplicates can be beneficial. However, for pretraining where the exact evaluation distribution is unknown,
it is generally preferred to remove duplicates so that the training distribution provides greater coverage with
less redundancy. Carlini et al. (2023) demonstrate a direct relation between the number of times a data
point is duplicated and the degree to which a model will memorize the data point, a relation which increases
with model scale. Additionally, filtering out duplicates can reduce the training time of machine learning
models (Sorscher et al., 2022) and has been shown to sometimes improve accuracy on downstream tasks (Lee
et al., 2022a; Tirumala et al., 2024).

Common utility functions. Deduplication can come in multiple forms, where most approaches are
based on URLs, hashing, string metrics, and model representations. Some methods find exactly
matching strings and documents while others use approximate matching methods calculated according to
some similarity measure.

Exact match utility functions. Determining exact matches over whole documents is fairly straightforward,
and can be performed cheaply. URL deduplication is a common first step when using a snapshot of crawled
web pages. It is possible for individual web pages to appear multiple times in the snapshot, so removing data
that shares the same URL is a very cheap and efficient method for initial deduplication (Agarwal et al., 2009;
Soldaini et al., 2024).

Some exact-matching utility functions utilize hash functions. These hash-based methods are guaranteed
to find all exact matches but, due to the possibility of collisions, may also find false positives (accidentally
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removing non-matching documents), although Elazar et al. (2023) demonstrate that a simple hash function
on large scale datasets can experience no collisions. CCNet (Wenzek et al., 2020) performs deduplication by
first normalizing all text, then computing a hash code for each document, and finally comparing the first
64-bits of SHA-1 digits of the hashed documents. When developing OSCAR, Ortiz Suárez et al. (2019) use a
simple non-collision resistant hashing algorithm to determine whether whole documents are exact matches,
and. Another common method for deduplication is the Bloom filter which utilizes a space-efficient bit array
to compare hashed documents (Bloom, 1970; Soldaini et al., 2024).

Determining exactly matching text segments, as opposed to whole documents, is more expensive, but equally
as important to remove. Lee et al. (2022a) propose the ExactSubstr algorithm that finds examples which
share sufficiently long substrings. In their case, their utility function determines that a pair of examples are
duplicates if they share a 50-token substring. To perform the deduplication efficiently, they utilize suffix
arrays (Manber & Myers, 1993) which allows them to find duplicates in linear time. This method raises the
question: how much text surrounding the duplicate should be removed? Lee et al. (2022a) remove only the
exact substring that is duplicated, while Penedo et al. (2023) experiment with dropping the entire document,
or masking the loss of the duplicated span, finding that all methods lead to similar downstream performance.
Similar to the use of Bloom filters for matching entire documents, they can also be used to detect matching
segments of any size.

Approximate match utility functions. Removing approximately matching documents is generally more
expensive to compute than exact matches, and is often performed as a secondary step after exact match
deduplication (Laurençon et al., 2022).

Similarly to exact matching methods, hash-based methods are very commonly used for approximate matching
methods. For example, MinHash (Broder, 1997) is an approximate hashing algorithm that excels at finding
templated documents (e.g. licenses with only specific entities differing or placeholder SEO text repeated
across websites). Modern deduplication methods use other variants of hashing such as MinHashLSH (Brown
et al., 2020) and SimHash (Charikar, 2002) that utilize locality sensitive hashing.11 The general method
behind hashing methods for deduplication is to first group small segments of each documents (often called
shingling), then to encode each segment using a large number of hashing functions into features. Next,
aggregate the features (e.g. MinHashLSH keeps only the smallest features). Finally, documents can be
compared with some method of similarity computation between features (e.g. MinHashLSH uses a Jaccard
similarity) and removing documents below some threshold. When creating MassiveText, Rae et al. (2021)
use MinHash with 13-grams and 450 hash functions and set the jaccard similarity threshold at 0.8, randomly
removing either of the documents that are determined to be duplicates. In contrast, Gao et al. (2020) use
only 10 hash functions, but Rae et al. (2021) find that the more aggressive deduplication leads to better
model performance.

In addition to hashing techniques, string metric-based methods can be used for futher filtering, although
they are generally more computationally expensive. For example, Lee et al. (2022a) compute an edit
similarity metric based on token sequences using their token edit distance. Furthermore, when filtering code
files, Chowdhery et al. (2023) find duplicated files based on a Levenshtein distance.

Finally, model-based approximate matching techniques utilize a learned representation of data points to
deduplicate similar data. These methods can be very costly, but allow for more flexibility by considering the
semantics of text. For example, SemDeDup (Abbas et al., 2023) uses a pretrained 125M OPT model and
calculates a representation for each data point in the C4 dataset by using the last layer embedding of the
final token in the document. Then, they cluster data points to create groups of rough similarity, followed
by computing the pairwise cosine similarity of data points within each cluster. Document De-duplication
and Diversification (D4) (Tirumala et al., 2024) go even further, using a pipeline of first deduplicating
documents with MinHash, then applying SemDeDup (Abbas et al., 2023) and clustering the remaining
data using K-means, and finally applying the SSL prototypes method of Sorscher et al. (2022) which removes
the “most prototypical” examples in each cluster. The authors demonstrate that deduplication with multiple
methods leads to improved performance as each method is designed to remove only some aspect of similarity.
One concern with these methods is that they have only been tested on CommonCrawl data, which is

11See the blogpost by Mou (2023) for implementation details on MinHashLSH
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known to be quite noisy, and have not been demonstrated to be beneficial on cleaner datasets. Prior work
has shown that the embedding performance of pretrained decoder language models such as OPT 125M is
suboptimal (Muennighoff, 2022). Thus, a promising future direction for this line of work is using better
embedding models that are specifically trained for clustering (Muennighoff et al., 2022a; 2024; Xiao et al.,
2023).

Challenges for data deduplication. One concern with hashing-based method for approximate deduplica-
tion is that because hashing functions do not consider the order of each individual shingle, they act similarly
to bag-of-word models where long documents are more likely to have similar representations. Laurençon et al.
(2022) found that this led to long documents having a higher percentage of false positive as duplicates. Thus,
they did not remove documents in a cluster of near-duplicates if a document is longer than 6000 characters.
Instead, they use substring deduplication based on the suffix array (as in Lee et al. (2022a)) for documents
with more than 6000 characters.

Methods can search for duplicated documents, or just chunks of text which are duplicated within and across
documents. Once duplicated chunks have been found, the question arises: what to do with these chunks? In
the ExactSubstr method, Lee et al. (2022a) proposed to remove only the exact substring that is duplicated
and Penedo et al. (2023) also elect to remove only the duplicated span and keep the rest of the document.
This can lead to incoherent documents, but Penedo et al. (2023) empirically find it to work better than
removing the entire document. Another option is to loss-mask the duplicated tokens (prevent the loss from
being computed on duplicated text), but this adds code complexity as the start and end of each duplicated
span will need to be tracked and considered when training the model.

• Deduplication is a very important step and is often used multiple times within the data selection
pipeline. First with a simple URL-based filter, then with more complicated hashing- and
model-based methods.

• Deduplication generally relies one of four methods: URLs, hashing, string metrics, or model
representations.

• Bloom filters are often used as state-of-the-art exact deduplication (even though they can remove
non-duplicated data) as they are very space efficient.

• For a more thorough deduplication, approximate matching methods can be used, where
MinHashLSH is currently the most commonly used method.
In settings where data efficiency is the primary goal, model-based deduplication has
demonstrated good results. However, these methods are relatively new and need further study to
demonstrate their benefits in other cases (e.g. when performance is the primary goal).

Data Deduplication Summary & Ideas

3.6 Filtering Toxic and Explicit Content

Practitioners often aim to curate a dataset that is “unbiased and fair”. As such, the aim is for models trained
on such data to follow similarly unbiased behavior. Certain popular datasets have also been found to have
illegal or extremely inappropriate content, which motivates strict data filters (David, 2023). Towards this
purpose, most datasets employ a process to filter out documents that do not conform with such behaviors.
Bias and fairness are one of the least well-defined filtering requirements and may be in conflict with different
ideologies (Gururangan et al., 2022) and implications (Longpre et al., 2023c). A crucial aspect of this topic is
the lack of transparency (Bommasani et al., 2023), requirements, and the effects of such bespoke bias filtering
from pretraining data on downstream behavior. Many works solely provide minimal information about the
heuristics used for filtering out “biased” data without reporting any ablation on the impact on downstream
tasks. Longpre et al. (2023c) being one of the only papers that controls and ablates for some of these filters
to comprehensively study their effects. They find that using toxicity filters (specifically, Jigsaw’s Perspective
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API12) leads to models that produce less toxic texts, however, the model’s ability to detect toxic content also
decreases. As such, depending on the end-application one must be careful when using such filters.

In what follows we summarize the filters related to bias and fairness used in different papers based on the
filter types. As mentioned above, such filters are often used due to some heuristics and the effect of such
filtering is not well studied.

URL-based methods. Much of the existing NSFW content can be filtered solely based on the source URL,
a typical metadata stored alongside the text of datasets. Datasets such as RefinedWeb (Penedo et al., 2023)
filter out documents coming from URLs that match words from a curated list, as well as from blacklisted
domains.

Lexicon-based methods. One of the most common methods simply filters documents containing words
or phrases that match a lexicon. It is often unclear what an appropriate threshold is for this strategy (e.g.,
whether a single match, or multiple matches, are required to justify the exclusion of an entire document), but
many datasets use such methods (Raffel et al., 2020; Xue et al., 2021; Achiam et al., 2023). Laurençon et al.
(2022) go further and adapt such lexicon based on the detected language, to tailor such toxicity filters across
multiple languages.

Classifier-based methods. Another common approach is to score documents using a classifier that aims
to detect “toxic” documents. Such classifiers are often trained using a simple classifier (e.g., a linear model
over bag-of-words embeddings) so it can be applied at scale on a large dataset. Others use an external,
blackbox tools for classifying toxicity, e.g., Jigsaw, or Google’s SafeSearch13 (Rae et al., 2021; Longpre et al.,
2023c).

Perplexity-based methods. A less common method is to score documents using a model trained only on
the undesirable content. Jansen et al. (2022) train a model directly on adult and harmful content, and then
evaluate the model on documents, using the perplexity as a utility function where documents with a high
perplexity are assumed to not contain any adult or harmful content. Of course, there are limitations to this
method. It is important to train the harmful content model on a wide variety of harmful content, otherwise
this method may struggle to detect new types of harmful content.

Personally Identifiable Information obfuscation. Finally, Personally Identifiable Information (PII) is
another source of concern, which may expose the personal information of individuals. Frequent targeted PIIs
are phone numbers, email addresses, IP addresses, and secret keys. A common approach for handling PII is
to detect them using regex (Subramani et al., 2023; Elazar et al., 2023; Soldaini et al., 2024; Groeneveld
et al., 2024) or classifiers (Allal et al., 2023). Once PII terms are detected, a common practice is to obfuscate
them with special tokens.

3.7 Specialized Selection for Multilingual Models

Besides filtering for the desired languages as detailed in Section 3.1, there are additional considerations when
dealing with multilingual pretraining data.

Language-specific filtering hyperparameters. Many selection methods, such as deduplication, can be
reused across languages (Laurençon et al., 2022). However, it is critical to adapt the hyperparameters for the
respective language and often manually tune them (Laurençon et al., 2022; Scao, 2023; Scao et al., 2022;
Workshop et al., 2022). For example, while heuristics based on technical characters ([0-9{}+/()>]) are still
valid, for a length-based filter (discussed in §3.2) one needs to consider that languages like Chinese have much
higher information density per character leading to the same content requiring fewer characters than English.
Thus, in a filtering pipeline Chinese would require a smaller cut-off value for minimum text length than
English (Scao, 2023). Additionally, when using language identification models (e.g. fastText) to detect the

12https://www.perspectiveapi.com/
13https://support.google.com/websearch/answer/510
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• There is a wide variety of toxic and explicit content that are generally undesirable to have in
training or evaluation data.

• Common methods for filtering out toxic and explicit content include blacklisting certain web
domains, blacklisting certain words, using a classifier to detect harmful content, using perplexity
to detect harmful content, and removing PII with regular expressions or classifiers.
There have been limited studies on the effects of these filters, warranting further research on the
impacts of such filtering to understand how they affect the distribution of data and the
downstream models behaviors.
A useful direction for research is how to mitigate any negative impacts of this filtering. Or
conversely, how can toxic and explicit behaviors be reduced at other stages of model development
(e.g. alignment), or possibly even at evaluation time through decoding methods.

Toxic and Explicit Content Filtering Summary & Ideas

language of a document, it is important that the threshold for removal is determined by native speakers,
and specific to each language (Laurençon et al., 2022). Not only is the language ID used for determining
the language of a document, but it can also be used at the sentence level, where Kudugunta et al. (2023)
consider removing sentences if the sentence level language ID and document level ID do not match.

Script-based filtering. Languages with non-Latin scripts (e.g. Mandarin, Arabic, and Hindi) commonly
suffer from incorrect encoding which may require additional filtering or noise correction (Kudugunta et al.,
2023). Further, some scripts such as Dongba symbols are not yet supported by Unicode, making the selection
of such data especially difficult. Using script-based filters can also serve as language identification for languages
that have a one-to-one mapping with a script, such as Japanese Hiragana (§3.1).

Manual selection. Due to difficulties in language identification and data availability, noisy language
classifications tend to correlate with language rarity (Kudugunta et al., 2023). Thus, it is often necessary to
manually inspect multilingual datasets to ensure language identification is correct and data in low-resource
languages is useful (Kudugunta et al., 2023). Kreutzer et al. (2022) demonstrate that simply ignoring this
issue has led to at least 15 corpora with no usable text, while a significant portion of the available multilingual
datasets contain less than 50% of acceptable quality. While large-scale collaborations on projects such as
ROOTS (Laurençon et al., 2022) have been able to outsource this to speakers of each language, this filtering
step can also be effective when done by people who do not speak the respective language. Using translation
services to gauge the quality and looking for irregularities is possible even for non-speakers (Kudugunta et al.,
2023).

• Many of the selection methods from other sections in this work can simply be reused when
filtering for multilingual data (e.g. deduplication, heuristics on technical characters, data mixing),
but some require special parameters for each language (e.g. length-based heuristics).
Particularly for low-resource languages, native speakers must be incorporated into the filtering
process to ensure that the data maintains an acceptable quality. Aya (Singh et al., 2024) is a
great example of how this type of inclusion and collaboration can look.

Specialized Selection for Multilingual Models Summary & Ideas

3.8 Data Mixing

Large pretraining corpora are often comprised of a mixture of data from k domains, where domains are
typically defined by provenance. The weighting across domains are specified by the domain weights α ∈ ∆k,
which comprise a k-dimensional probability vector. For example, the Pile dataset (Gao et al., 2020) is
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composed of 24% web data, 9% Wikipedia, 4% GitHub, etc.14 The choice of domain weights can result in
significant differences in downstream accuracy (Xie et al., 2023a; Albalak et al., 2023a; Xia et al., 2024a; Fan
et al., 2023). Given a fixed training budget, data mixing methods optimize the domain weights to improve
training efficiency and model performance.

Utility function and selection mechanism. Data mixing methods work with a constrained utility
function and selection mechanism. We define a domain as a set of data points D ⊆ D. Given a set of
domains D1, . . . , Dk, in all data mixing methods, the utility value υ(x) for a data point x ∈ Di is equal to
the normalized domain weight αi/|Di|. In particular, the utility value υ(x) is constrained to be equal to υ(y)
whenever x, y are elements of the same domain. Consequently, any two domains with a nonempty intersection
would have the same utility, and thus data mixing methods typically work with domains that are mutually
disjoint. The selection mechanism simply samples data points according to the utility function (which is a
valid distribution over data points) in a hierarchical manner. In particular, to sample a data point, we first
sample a domain index I ∼ Categorical(α) and then sample a data point uniformly within that domain DI .

Common baselines. Using heuristic or manually determined weights is a common baseline. Defining
the domain weights according to the natural domain sizes weights all the individual data points equally (Raffel
et al., 2020). Beyond this, popular datasets and models (e.g., the Pile (Gao et al., 2020), LLaMA (Touvron
et al., 2023a)) often use heuristics to adjust the data mixture, upweighting domains with intuitively higher
quality text that have likely gone through an editing process, such as books and Wikipedia articles. However,
these manually-determined domain weights are likely not optimal (Xie et al., 2023a; Albalak et al., 2023a).

Empirically determined weights provide another common method, where the domain weights are tuned
according to the performance of a model on downstream tasks. This approach tends to be expensive since
it may require pretraining many models within a zeroth-order optimization algorithm or heuristic search
strategy. For example, the GLaM dataset (Du et al., 2022) sets mixture weights based on (1) the downstream
performance of smaller models and (2) the sizes of each domain, preventing small sources such as Wikipedia
from being over-sampled. While the size of these smaller models is unknown, these models must be large
enough to have a meaningful downstream performance (roughly 1B parameters). Similarly, the dataset used
to train Gopher (Rae et al., 2021) used domain weights tuned by sweeping over 7 combinations of domain
weights and choosing the one that leads to the best downstream performance.

Overall, the optimal domain weights may not be intuitive and likely depend on all parts of the training
pipeline, including the tokenizer, dataset, model architecture, optimizer, and other hyperparameters. For
example, recent work has shown that repeating data can provide similar benefits to adding new data, up to a
limit (Muennighoff et al., 2023b). Muennighoff et al. (2023b) also find that including a large proportion
of code (e.g., 50%) does not harm natural language performance, while having the additional benefit of
improving performance on reasoning-based tasks.

Principled approaches. Recent works have derived their data mixing methods based on well-studied
fields and concepts including information theory, importance sampling, distributionally robust optimization,
and multi-armed bandits. We divide these methods into two categories: methods that determine the weights
separate from model training (offline), and those which determine the weights during model training (online).

Offline data mixing methods optimize a static set of domain weights, which define a new reweighted
dataset for training a language model. DoReMi (Xie et al., 2023a) optimizes domain weights without
using downstream tasks by aiming to achieve a low loss on all domains, formalizing this problem as group
distributionally robust optimization (Group DRO (Oren et al., 2019; Sagawa et al., 2020)). To avoid the
pessimism of DRO, DoReMi optimizes the excess loss of each domain with respect to a pretrained reference
model. DoReMi first optimizes the domain weights with a small proxy model, then uses the optimized
domain weights (the time-averaged domain weights over the optimization trajectory) to train a larger model.
DoReMi uses a multiplicative update by an exponential function of the excess loss, which is derived from
online mirror descent and is equivalent to the exponentiated gradient/Hedge algorithm update. Similarly,
DoGE (Fan et al., 2023) optimizes the domain weights with a two-stage process that generalizes across

14The mixture weights depend on the tokenizer.
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model scales, with the same update rule. However, instead of optimizing the excess loss, DoGE optimizes
the gradient alignment between each domain and all other domains, with the goal of putting higher weight
on domains with better generalization or transfer to other domains.

Online data mixing methods change the domain weights for sampling examples during training, allowing
for the algorithm to enforce an ordering on the training data. Skill-it (Chen et al., 2023c) uses a similar
multiplicative weights update to the offline methods, but additionally scales the losses by a matrix that
captures pairwise interactions between domains. This matrix is learned from data by training many models
on pairs of domains. Skill-it considers both domains defined by task or “skill” as well as by provenance.
ShearedLLaMA (Xia et al., 2024a) uses an online variant of DoReMi (Xie et al., 2023a) that replaces the
pretrained reference model with estimates of the reference model loss, computed using domain-level scaling
laws fitted on the Pythia (Biderman et al., 2023b) suite of pretrained models. ODM (Albalak et al., 2023a)
proposes an efficient online data mixing method based on EXP3 (Auer et al., 2002), an extension of the
Hedge algorithm in the adversarial bandit setting. Motivated by the goal of maximizing information gain
during model training, ODM formulates the reward for each domain as the loss/perplexity of each domain
(directly proportional to information gain). In the machine translation setting, Schioppa et al. (2023) aim to
train a model using a mix of standard language modeling data and parallel machine translation data. They
propose an online data mixing method that optimizes a relative loss improvement score, and updates the
domain weights by simply keeping a moving average of the scores.

Challenges of data mixing. There is a natural trade-off in data mixing; when increasing the proportion
of data from one domain the distribution density increases for that domain, but the relative proportion
(density) of all other domains decreases, which can lead to poorer performance on less represented domains.

One challenge that has not been addressed in any of these works is how their weights transfer to new settings.
For example, Albalak et al. (2023a) find that the weights determined by Xie et al. (2023a) do not transfer
well when using a different tokenizer. It is unclear how to transfer the weights learned under one tokenizer to
a new tokenizer without learning the weights from scratch. Furthermore, none of the principled approaches
discuss the effects of extrapolating the calculated weights to training on larger quantities of tokens. To
exemplify the problem, consider that the weights are calculated by training a model on 50B tokens, and the
weights are then used to train a model on 1T tokens. Any domains that saw 1 epoch at 50B tokens, will now
see 20 epochs at 1T, leading to possible overfitting on smaller domains.

• When a pretraining corpus is composed of data from multiple domains, data mixing is an
important step of data selection that assigns weights to each domain, determining the final
composition of the dataset.

• Weights can be determined manually, by heuristics, empirically determined, or from principled
approaches. Each of these methods have been proven under specific evaluations, but none has
proven as a general-purpose best method.
Data mixing is challenging, as there is a natural trade-off when upweighting one domain, the
remaining domains must be downweighted. Research on overcoming this trade-off may be
difficult, but would be very impactful. One possible direction are methods that consider the
interactions (similarities) between domains, which could identify domains that can be
downweighted without reducing performance, and those specific domains whose weights cannot
be reduced without detriment to performance.
Each of the approaches discussed has different benefits, and combining approaches (e.g. 1/3
heuristic, 1/3 empirically-drive, 1/3 principled) could lead to better general purpose use, but how
to best combine them leads to additional complexity.
Although principled approaches are prominent and have lead to state-of-the-art mixing, the
weights they determine can also be brittle when used under different settings (e.g. tokenizer,
longer training), which are issues that need to be addressed and explored in future research.

Data Mixing Summary & Ideas
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4 Data Selection for Instruction-Tuning and Multitask Training
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Figure 5: Data selection: instruction-tuning.
Generally, the most important objectives when
selecting data for instruction-tuning are model
performance and evaluation integrity.

Instruction-tuning and multitask training are methods for
addressing the mismatch between the pretraining objective
and a downstream user’s objective. Multitask training
is a method where the model is trained on a wide vari-
ety of supervised tasks with the goal of performing all
the training tasks, and possibly generalizing to unseen
tasks. Recently, instruction-tuning has become a domi-
nant training paradigm where the model is trained on pairs
of (Instruction, Output), where Instruction denotes
a human instruction for the model, and Output is the
desired output, or an example of a desirable output. The
goal of instruction tuning is to allow the model to constrain
the models outputs in a way that is more controllable and
helpful for the user (Zhang et al., 2023c).

Both multitask training and instruction-tuning generally assume that the model has been pretrained and has
already acquired fundamental language capabilities. The intent of models that have been trained with either
multitask training or instruction-tuning is, broadly speaking, to handle a very wide variety of possible inputs
for downstream use cases as either classification or generative models. Thus, the aim of data selection for
these settings is almost always focused on collecting a wider variety of data, and diversifying the data that
already exists.

Diversification by scaling tasks and datasets. As model sizes have scaled up and model capacity has
correspondingly improved, distribution diversification has proven to be an effective method of improving
model generalization, for both specialized tasks and general purpose model performance (Wei et al., 2021).
Methods of multitask training (e.g. MT-DNN (Liu et al., 2019), Muppet (Aghajanyan et al., 2021), T5 (Raffel
et al., 2020), ExT5 (Aribandi et al., 2021)) demonstrated the benefits of training on a range of datasets
and tasks, selected for their perceived high-quality curation. Subsequently, a number of works (Khashabi
et al., 2020; McCann et al., 2018; Keskar et al., 2019) proposed unifying the format of any language task into
questions and answers, effectively adjusting the data point characteristics, with the goal of better matching
the train and test distributions and expanding the number of tasks a model could learn in tandem, further
improving model generalization. Based on this premise, Natural Instructions (Mishra et al., 2021), FLAN
2021 (Wei et al., 2021), and P3 (Sanh et al., 2022) scaled up the number and diversity of training tasks,
distinguished by templated instructions—now known as instruction tuning.

At this stage, data selection was based mainly on availability across open-sourced dataset repositories (e.g.
Hugging Face and TensorFlow Datasets), and pressure to scale, rather than any principled selection criteria.
To extend this scaling beyond the openly available data, data augmentation techniques such as translation
(Muennighoff et al., 2022b; Yong et al., 2022; Dhole et al., 2021; Singh et al., 2024; Üstün et al., 2024), input
inversion (Min et al., 2022; Longpre et al., 2023a), and negative examples (Wang et al., 2022b) have successfully
been used to further enrich the data variety. A number of works also increase data diversity by templatizing
data in multiple prompt formats, including zero-shot, few-shot, and chain-of-thought prompts (Chung et al.,
2022; Iyer et al., 2022). These works demonstrate that task variety and template variety both drive greater
generalization, though Wei et al. (2021) report easier training tasks, such as sentiment analysis, contribute
less.

Manual and heuristic-based diversification. While scaling tasks has been an effective method of
diversifying data, naively including all data possible can lead to severely imbalanced datasets and has
motivated the use of better mixing and balancing techniques. For example, Wei et al. (2021) impose
a maximum number of sub-dataset examples to prevent large datasets overwhelming the training mix.
Additionally, Iyer et al. (2022) experiment with a range of maximum values, finding that including at most
512 data points from each sub-dataset achieves the best results across held-out test sets. By setting an upper
limit to the number of samples from any individual sub-dataset, these methods improve the data diversity
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by reducing the distribution density around arbitrary regions of the sample space, as defined by individual
sub-datasets.

Iyer et al. (2022); Longpre et al. (2023a); Chung et al. (2022); Wang et al. (2024) achieve strong performance
improvements by varying the proportions of sub-mixtures with a manual grid search, but this can be very
costly. Furthermore, Wang et al. (2024) and Ivison et al. (2023b) show that none of the available mixtures
are by default best on all evaluations. This strongly motivates the need to design and explore data selection
methods in the instruction-tuning setting.

Model-based diversification. More recently, instruction-tuning data has been further diversified through
the use of existing models using conversation as the unified data format. Training data can be generated
directly by a model, often from the OpenAI API, creating examples in a loop (Honovich et al., 2022; Wang
et al., 2023c; Xu et al., 2023; Taori et al., 2023; Lee et al., 2023; Kim et al., 2023). Wang et al. (2023c)
begin with a small seed pool of example tasks, which the model uses to iteratively generate new tasks and
instances of that task, followed by filters to ensure that data is “high-quality” and to remove duplicated
data. Evol-instruct methods enhance these techniques to iteratively re-write training instances to be
more complex and challenging (Xu et al., 2023). Lu et al. (2023a) iteratively trains on and produces its
own training data with self-refinement techniques. These methods are shown to produce a diverse array of
prompts that can be guided to match the distribution of certain real world tasks, domains, and topics which
are not covered in existing datasets such as P3, FLAN, or the dataset used to train OPT-IML.

A survey of synthetic data tasks showed that they tend to focus on longer-form responses than what exists in
academic datasets, as well as tasks related to brainstorming, planning, explanation, and creativity (Longpre
et al., 2023b). The advent of synthetic data has also spurred developers to filter out system-specific outputs,
such as disclaimers and refusals (e.g. “I’m sorry, but[...]”15 from OpenAI models).

Data efficiency. As larger and more diverse instruction tuning collections have become available, the
benefits of scale seem to have diminished, and in response recent methods have explored a variety of utility
functions aimed at improving data efficiency while focusing on quality, diversity, difficulty, and complexity
as components of the utility. LIMA demonstrated strong results with only 1000 highly curated, diverse
training instances meant to approximate real user prompts with high-quality responses (Zhou et al., 2023).
Similarly, the best performing variants of Open Assistant are high-quality subsets, as graded by human
reviewers (Köpf et al., 2023; Muennighoff et al., 2023a; Zhuo et al., 2024). The previous works use human
judgments to determine quality, but new work has developed methods to automatically measure and sub-select
for instruction data quality and diversity. For instance, Cao et al. (2023) use natural language indicators
(such as input/output lengths, perplexity, and textual lexical diversity) with BlendSearch to measure and
identify the highest quality data points. Similarly, InsTag (Lu et al., 2023b) labels instructions based on
semantics and intentions. On the other hand, Lian et al. (2023) improve data efficiency through the use of
a model-based quality filtering. They perform a pass over the FLAN dataset and remove datapoints where
the answer appears to be incorrect (according to GPT-4), then train a model on this reduced dataset and
find they get a model with similar quality level, but only 2/3 the compute. Similarly, Chen et al. (2023b)
use ChatGPT to score data points and use this score utility function to select a subset of data, improving
data efficiency compared to using the full Alpaca (Taori et al., 2023) dataset. Additionally, Li et al. (2023a)
introduce the Instruction-Following Difficulty metric which allows a model to self-select the data points which
are most important. Data Efficient Instruction Tuning for Alignment (DEITA) surveys InsTag and other
prior methods that measure data complexity, quality, and diversity, and propose a unified data selection
strategy that samples high quality examples, while being diversity-aware (Liu et al., 2023b). Lastly, Kung
et al. (2023) introduce Active Instruction Tuning, a framework that identifies informative tasks to improve
generalization, using prompt uncertainty as the utility function. These methods demonstrate a growing focus
on automated measures of quality selection, often dynamically as part of the model training process.

Data selection is increasingly guided by data governance, liability, and other concerns Data
selection is not always guided only by performance considerations. A large-scale audit of popular instruction
tuning datasets shows a marked rise in datasets with non-commercial terms and licenses (Longpre et al., 2023b).

15https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned
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Whereas non-commercial restrictions applied to ≤ 30% of datasets in the prior decade, 61% of 2023 datasets
had such restrictions. Similarly, new lawsuits (Saveri et al., 2023) and pushback from creators (Chayka,
2023) over alleged copyright infringement has become a central concern for developers navigating legal risk in
their training data selection. The legal outcomes and enforceability of such restrictions remain uncertain,
and may vary by jurisdiction. Additionally, data selection may be guided increasingly by factors related to
multlinguality, target task type, or domain, as prior work has shown no size fits all for instruction tuning
data (Wang et al., 2024). To address some of these concerns, the Data Provenance Initiative (Longpre et al.,
2023b) has provided tools to search and filter for datasets according to license, terms, and characteristics
criteria.

5 Data Selection for Preference Fine-tuning: Alignment
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Figure 6: Data selection: alignment. Often,
the most important objectives when selecting data
for alignment is reducing bias and toxicity and
model performance.

Various alignment methods, referred to under the um-
brella of Reinforcement Learning from Human Feedback
(RLHF), RL from AI Feedback (RLAIF), or Direct Prefer-
ence Optimization (DPO) methods, involve the integration
of human preferences into model behavior. This training
process is designed to steer model responses to be generally
more helpful and less harmful, whereas in other training
phases such as pretraining or instruction-tuning, these
preference signals may not be clearly defined within the
utility function. These methods, grouped under Preference
Fine-tuning (PreFT), typically follow instruction-tuning
in the training pipeline of large generative models. The
format of this data is often trios of (Prompt; Chosen,
Rejected), where a Prompt is an instruction or other request from a user, Chosen is the preferred answer
and Rejected is the lesser answer. Some methods work on groups of responses to a prompt, but they are less
prevalent, and recently, Ethayarajh et al. (2024) proposed Kahneman-Tversky Optimization (KTO) which
requires only the chosen or rejected continuation, but not both. The benefit of PreFT methods is to
remove the requirement of strict next-token or accuracy-based predictions from ML models and integrate
other, sometimes nuanced, qualitative signals instead.

RLHF and RLAIF methods have a central step which is the independent training of a reward model for
active selection or weighting of samples during training. A reward model is a separate model fine-tuned to
take in any input, such as text, and output a scalar reward indicating the utility (as represented by the
probability that the text would be chosen). Data selection methods can be applied via training a reward
model or the downstream policy, except for Direct Preference Optimization (DPO) methods that directly
optimize the reward model and policy jointly from one set of data (Rafailov et al., 2023).

Data selection methods for PreFT are very nascent and are often focused on obtaining signal on specific
capabilities and evaluations from the model. In this setting, the primary approaches to data selection are
manual filtering, model-based evaluation, and reward model re-weighting (e.g. rejection sampling). The
simplicity of the data selection methods reflects the relative underspecification of the goals of preference
training, where basic questions are actively being studied on how best to collect preference data, and for
what purpose (Lambert et al., 2023a; Casper et al., 2023). This area is also studied in Liu et al. (2023b)
primarily for aligning instruction-tuned models, where the authors focus on three axes: complexity, quality,
and diversity.

Manual and heuristic selection. Initial methods for collecting and filtering data for PreFT involved
manually selecting data and using heuristic utility functions. For example, LIMA (Zhou et al., 2023)
utilized post score, response length, formatting, topic, and other heuristics to manually select content
from StackExchange, wikiHow, and Reddit to formulate 1000 high-quality training datasets for superficial
alignment. Multiple works have indicated the use of external organizations to procure their data (Touvron
et al., 2023b; Nakano et al., 2021; Bai et al., 2022b; Rajani et al., 2023), where detailed instructions are
written by researchers and sent to a data-labeling company. However, it is common practice for data-labeling
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companies to filter the data internally before sending it to the model training organization and these processes
are not documented beyond general notions of controlling for diversity and quality. Furthermore, this process
is not reproducible. Ethayarajh et al. (2022) filter Reddit data based on the number of votes received on
comments and posts in the comment chain when creating the Stanford Human Preferences (SHP) dataset.
Similarly, Bai et al. (2022a) and Lambert et al. (2023b) weigh data points based on a measure of minimum
engagement from users when creating their respective datasets. UltraFeedback, a popular dataset used to
train state-of-the-art chat models such as Zephyr-β (Tunstall et al., 2023) and Tulu 2 (Ivison et al., 2023b),
implements a multi-aspect filtering process to create a preference dataset focused on instruction following,
helpfulness, truthfulness, and honesty (Cui et al., 2023a). Further manual filtering has been performed on
this data, and others such as Orca DPO pairs16 to improve the performance by verifying accuracy (Bartolome
et al., 2023). The authors perform stratified sampling across a variety of existing preference datasets, filter
for length, and decontamintate their data. Additionally, they use a set of 17 models to obtain diversity in
their dataset.

Model-based selection. While human oversight can be higher quality, the ability of models to accurately
label undesirable (e.g. incorrect) data has improved significantly, leading to an increased usage of language
models to assign utility. For example, the Phi series of models (Gunasekar et al., 2023) use filtering to achieve
“textbook quality” data from the web, as performed by a custom LM-based classifier, combined with synthetic
data generated from OpenAI models. UltraFeedback (Cui et al., 2023a) and Nectar (Zhu et al., 2023) use
GPT-4 to filter and/or rank the responses for quality. Critic models (Shepherd (Wang et al., 2023a) and
Prometheus (Kim et al., 2023)) are used to critique model responses and identify diverse errors, and can be
used to rank data points for quality. An example of using a model to filter data is by asking an LLM if an
edited piece of text fixed a critique, and if the answer is no, the datapoint is removed, as done in Castricato
et al. (2024). They are used as a part of the RLAIF cycle, where the critic is used as a reward model, to
rank multiple model outputs. As this area of methods matures, it is likely that such critic models will form a
central part of the data selection process by simply removing erroneous data.

Reward model re-weighting. A number of works have also demonstrated that using a reward model
directly to assign utility to candidate data points is a viable data selection method (Bai et al., 2022b;
Touvron et al., 2023b; Yuan et al., 2023). In rejection sampling (RS), or Best-of-N sampling (BoN) as used
in Nakano et al. (2021); Gao et al. (2023a), n candidate outputs are sampled from the generative model
and the reward model selects the best candidate. Touvron et al. (2023b) use rejection sampling as part of a
continued instruction-tuning by selecting the top percentage of their instruction dataset to continue training
on, while Yuan et al. (2023) use rejection sampling over reasoning paths to improve mathematical abilities,
where reasoning path length is a key factor. They evaluate the reasoning steps programmtically in a Python
environment and use the candidate completions from multiple models while fine-tuning a single model. Liu
et al. (2023a) improve on standard rejection sampling, inspired by the unsupervised RL training loop, to
have a critic model consistently evaluate data in the RLHF process, gating which data is passed to the model
and offering critiques on the rejected data. Beirami et al. (2024) demonstrated that a popular KL distance
measuring the impact of Best-of-N sampling is actually bounded by KL distance rather than a scaling law on
the number of samples scored over.

Pace et al. (2024) propose West-of-N sampling, a method of utilizing synthetic data to improve the reward
model, which can in turn improve the base generative model with RS or BoN techniques. West-of-N sampling
takes the synthetically generated candidate outputs (as in rejection sampling) and extracts the best and
worst candidates as a pair of preference data. This data is then used to iteratively fine-tune the reward
model, which can be used for many of the other methods in this section. Similar to West-of-N is the method
of Self-rewarding LLMs (Yuan et al., 2024b), where instead of using the synthetic pairwise data to train a
reward model, the data is iteratively used to directly update the policy with direct preference optimization
(DPO) (Rafailov et al., 2023). However, self-rewarded models have been shown to be biased towards their
own rewards (Xu et al., 2024a) and, similarly to other methods which utilize synthetic data, it is crucial to
ensure that the data generating process yields a diverse set of data to reduce the chances of mode collapse.

16https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
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Emerging methods have applied reward-weighted data selection within a feedback loop, more akin to earlier
forms of RLHF, such as with DPO models (Yuan et al., 2024b), or methods imitating self-play with less clear
data selection methods (Chen et al., 2024). For example, Liu et al. (2024b) performs a rejection-sampling-like
optimization with statistical weightings predicting the likelihood of whether a completion came from the
optimal policy or base SFT policy to improve downstream preference optimization similar to DPO or Sequence
Likelihood Calibration (SLiC). Especially in preference-based alignment, the border between synthetic data
generation and data selection are often blurred as best practices are determined.

6 Data Selection for In-Context Learning

Model  
Performance

Evaluation IntegritySelection Efficiency

Pretraining

Instruction-tuning

Task-specific Fine-tuning

In-Context Learning

Alignment

Learning Stage Selection Objective

Reduce Bias/Toxicity
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Figure 7: Data selection: in-context learning.
Generally, the most important selection objectives
for in-context learning are data efficiency and
model performance.

In-context learning (ICL) is a widely used prompting
paradigm for language models (LMs). Instead of being
fine-tuned with the LM, a few demonstration examples are
given as a prompt to guide the language model to perform
a similar prediction task on the input query (Brown et al.,
2020). In-context learning is known to be sensitive to
the choice (Perez et al., 2021), and even ordering (Lu
et al., 2022), of the demonstrations. To improve the ICL
performance without extensively training the potentially
large LM, many recent papers have worked on constructing
better in-context demonstrations by: selecting an optimal
ordering from a fixed set of demonstrations, selecting from
a large set of labeled data, or strategically annotating a
small set of unlabeled data.

Demonstration reordering. Lu et al. (2022) point out that the ordering of demonstrations significantly
affects the in-context learning performance, and propose to reorder the demonstration using the entropy of
the predicted labels as a utility function.

Demonstration selection. Suppose we have a set of annotated data that cannot all fit into the prompt of
a pretrained language model, and we also do not want to fine-tune the potentially very large language model
due to a limited budget. How do we select the set of data points to be used as in-context demonstrations
that leads to optimal performance? As discussed below, some methods select a fixed set of demonstrations,
while others select demonstrations for each individual test data point using either retrieval-based methods or
sampling-based methods.

Some works have focused on selecting a fixed set of demonstrations that achieves the best average
performance across all testing inputs sampled from a target task. For example, Zhang et al. (2022) use
reinforcement learning techniques to learn a policy that assigns utility to demonstrations for use on previously
unseen tasks. A different approach, proposed by Wang et al. (2023b), is to use a smaller pre-trained language
model to learn task-defined latent tokens and then select the examples that can best reconstruct the latent
tokens.

Many other works propose retrieval-based methods, where they train a demonstration retriever that can
select demonstrations specifically tailored to each individual test data point. A straightforward method is
retrieving the most similar examples to the testing input by cosine similarity of sentence embeddings (Liu
et al., 2022). Gao et al. (2023b) further enhance this approach by retrieving demonstrations whose label lies
in top-2 zero-shot predictions of the testing input. Rubin et al. (2022) score the similarity-based retrieved
candidate demonstrations by their one-shot in-context learning performance for sequence-to-sequence tasks,
then train a retriever with the collected scores. Li et al. (2023c) advance this framework through unified
training across various datasets. Hashimoto et al. (2023) analyze the effect of different utility functions in
training demonstration retrievers, and propose that incremental utility, which is the 1-shot utility score minus
the 0-shot utility score, is better than directly using the 1-shot utility score. Ye et al. (2023) improve upon
the previous works by scoring a set of demonstrations instead of only one demonstration. Finally, when
prompting a model for semantic parsing, Levy et al. (2023) propose to select diverse demonstrations that
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collectively cover all of the structures required for the output program. For a comprehensive survey on this
line of work, please see Xu et al. (2024b).

There are also (iterative) sampling-based methods that do not require training a retriever to select the
demonstrations. The most straightforward approach would be to uniformly sample a set of demonstrations
from the candidate set as used by Min et al. (2022). Chang & Jia (2022) train a datamodel to predict
the validation performance for a set of chosen demonstrations and select the demonstrations with the
highest validation performance. Similarly, Nguyen & Wong (2023) propose constructing a validation set and
evaluating each training data point by contrasting the validation performance of prompts with and without
that data point, and formalizing the performance difference as influence. Li & Qiu (2023) iteratively select
in-context demonstrations by an informativeness score, which is the language model prediction probability
difference between one-shot and zero-shot inputs, and a diversity score, which discounts semantically similar
examples. Gupta et al. (2023) propose to select the most informative set of demonstrations, instead of
individual informative demonstrations, with a greedy algorithm to maximize the coverage of the chosen
demonstrations. Similarly, Xu & Zhang (2024) iteratively refine the selected set of demonstrations by
computing the misconfidence score, which is the ratio between the highest probability that the language
model assigned to any incorrect label, and the output probability of the correct label.

Selective annotation. SU et al. (2023) first propose the selective annotation setting: given an unlabeled
dataset and a fixed budget, the goal is to select the most informative examples for annotation, which are
used to further select demonstrations for each testing input to maximize ICL performance. In this way, we
aim to minimize the human annotation effort in creating labeled datasets. We also maximize the advantage
of in-context learning that only a small number of labeled examples are needed as demonstrations.

Various methods for selecting the annotation set have been proposed, usually based on the difficulty and
diversity of the unlabeled examples. Then, a sentence-transformer (Reimers & Gurevych, 2019) is usually
employed to compute the cosine similarity between each annotated example and the testing input, then the
most similar examples are selected as the ICL demonstrations.

SU et al. (2023) propose vote-k, which constructs a graph by applying k-NN over the sentence-transformer-
embedded (Reimers & Gurevych, 2019) unlabeled examples, to select examples for annotation. They also try
to use an exponential score to discount examples that are close to the already selected examples. Zhang et al.
(2023b) also contract a graph over the unlabeled examples by k-NN. They use a diffusion process to quantify
the influence of unlabeled subsets and a greedy algorithm to conduct the final selection. Their proposed
method, IDEAL, achieves better performance under lower time consumption than vote-k. Mavromatis
et al. (2023) combines diversity and uncertainty sampling, by assuming each wrongly predicted demonstration
is most useful in predicting inputs from its semantic neighborhood, therefore formalizing demonstration
selection as a max coverage problem. Wu et al. (2023) propose an interactive data annotation system, that
iteratively samples unlabeled examples with task-specific patterns and then let the human annotators correct
the LLM-suggested annotations.

7 Data Selection for Task-specific Fine-tuning

Fine-tuning a model on a specific target task is a very different learning setting from pretraining, instruction-
tuning, or RLHF, but the data selection methods that apply are not vastly different. In some ways, selecting
data for a specific target task can be easier than the previous settings. First, because there is only one target
task, the target distribution will generally be more narrow than in either pretraining, instruction-tuning, or
multitask learning. Also, task-specific fine-tuning is generally easier to evaluate because the target distribution
is more narrow, the expected use cases are more clear, and success has a more straightforward definition,
leading to a less ambiguous evaluation than the previously discussed settings.

Data selection for task-specific fine-tuning can be roughly divided by whether the goal is to match the target
distribution or to diversify the existing data distribution. The first setting, where the goal is to match a target
distribution, is particularly beneficial in data-limited situations such as few-shot learning (Albalak et al.,
2022b; Ivison et al., 2023a; Albalak et al., 2023b). For example, there may be very little data for the target
task (the task we want the model to perform), but we do have access to a wide variety and large quantity of
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auxiliary data that we can utilize. The second setting, where the goal is to diversify the data distribution,
can further be divided into two settings, where the goal is either to improve data efficiency (Lang et al., 2022;
Maharana et al., 2024), or improve the model’s robustness (Haghtalab et al., 2022; Sagawa et al., 2020; Bejan
et al., 2023).

Model  
Performance

Evaluation IntegritySelection Efficiency

Pretraining

Instruction-tuning

In-Context Learning

Alignment

Task-specific Fine-tuning

Learning Stage Selection Objective

Reduce Bias/Toxicity

Data 
Efficiency

Figure 8: Data selection: task-specific fine-
tuning. Commonly, the most important objec-
tives when selecting data for fine-tuning are model
performance, data efficiency, and evaluation in-
tegrity.

Selecting from auxiliary data to improve general-
ization. There have been a number of works that utilize
auxiliary data, data from a source other than the target
task, to improve a model’s ability to generalize to the
target distribution. In these settings, the goal of data
selection is to determine the optimal auxiliary data that
improves a model’s performance on the target distribu-
tion, and because we have access to data from the target
distribution the utility function for these methods is often
a form of similarity between the auxiliary and target data.
These methods tend to have some similarities with domain-
specific data selection for pretraining data (§3.4) with the
main difference being that in a fine-tuning setting, more
computationally expensive utility functions are feasible.

The availability of pretrained models has been a huge benefit to the ability of models to generalize on
fine-tuning settings, allowing information learned during pretraining to be transferred and applied to the
downstream task. A number of earlier works have taken this a step further and perform an intermediate
training step of training on auxiliary data between pretraining and fine-tuning, often relying on empirical
evidence to determine which auxiliary data is best (Phang et al., 2018; Pruksachatkun et al., 2020; Iter &
Grangier, 2021; Grangier & Iter, 2022).

Phang et al. (2018) introduce the Supplementary Training on Intermediate Labeled-data Tasks (STILTs)
method where the goal is to fine-tune a model for tasks in the GLUE dataset (Wang et al., 2018a). They
manually select textual entailment (MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015)), paraphrase
detection (QQP17), and fake-sentence detection as their auxiliary tasks specifically because they are similar
to the tasks in the GLUE dataset. Similarly, Pruksachatkun et al. (2020) evaluate the transfer between 11
intermediate auxiliary datasets and 10 target tasks, but also evaluate the models on 25 probing tasks to
try and understand what skills are being learned from the auxiliary data. These methods provided early
efforts at understanding task transfer, but the data selection was performed entirely by human decisions on
similarity to the target task.

While Phang et al. (2018) and Pruksachatkun et al. (2020) focus on task transfer from the auxiliary to target
data, Iter & Grangier (2021) and Grangier & Iter (2022) focus on domain adaptation from the auxiliary to
target data. Iter & Grangier (2021) find that the best data selection method for domain adapatation uses a
domain classifier as the utility function, a model that is trained to discriminate between data from the target
distribution and from a general distribution, similar to methods on domain-specific selection for pretraining
(§3.4). Grangier & Iter (2022) further explore the use of three separate data selection methods: importance
sampling, contrastive data selection, and influence functions, finding that all three methods select for very
similar data points.

More recently, methods that select from auxiliary data train on both the auxiliary and target data simulta-
neously. For example, FETA (Albalak et al., 2022b) performs a comprehensive task transfer study similar
to Pruksachatkun et al. (2020), training a model on all auxiliary-target pairs, and finding that similarity
between the auxiliary and target task’s label-space (e.g. binary classification, multi-class classification, etc.)
can be used as a good heuristic utility function. However, using the label-space is only possible when the
structure of the target task is very clear, and is only useful when the label-space is fairly unique. Additionally,
the structure of a task does not fully describe the data, and this method is not feasible at large scales as it
requires human judgment. DEFT-Few (Ivison et al., 2023a) improves on the ideas from FETA by using a
model-based utility function to select the 500 auxiliary data points that are nearest neighbors to the target

17https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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dataset. Skill-it (Chen et al., 2023c) also builds on the ideas from FETA (Albalak et al., 2022b), defining
tasks as different skills that a model can learn, and learning a pairwise correlation between skills by training
on each pair of skills to find when skill A benefits skill B. Based on this, they create a graph of skills ordered
by dependencies and define a data mixing algorithm that incorporates the loss on the target task. However,
training a separate model on every pairwise combination of tasks may be very inefficient. Albalak et al.
(2023b) improves upon the inefficiencies of Skill-it by formulating the auxiliary data selection problem as a
multi-armed bandit, where the utility function is an aggregated reward function of the cosine similarity and
magnitude similarity between gradients of batches from the auxiliary and target datasets. By formulating
the auxiliary data selection problem as a multi-armed bandit, their algorithm runs online without requiring
any knowledge of the auxiliary data prior to training. While Albalak et al. (2023a) design a gradient-based
utility function for data mixing, Xia et al. (2024b) use a similar gradient-based utility to assign values to
individual auxiliary data points. To improve the efficiency of assigning utilities to each data point, they
only calculate gradients for the parameter-efficient LoRA (Hu et al., 2022) modules and further reduce the
gradient dimension through a random projection.

Improving task-specific data efficiency. Another setting where data selection can be applied beneficially
for task-specific fine-tuning is when we wish to select a subset of the target dataset to improve data efficiency.
Methods in this category have a similar motivation to fuzzy data deduplication from §3.5, but because the
target datasets when performing fine-tuning are significantly smaller than pretraining corpora, the methods
used here can apply more complex, computationally expressive utility functions.

Maharana et al. (2024) propose a method of diversifying data based on the expected difficulty. They represent
the dataset as a graph, where individual nodes (data points) are connected to their k-nearest neighbors in
representation space and use variability (Swayamdipta et al., 2020) as the utility function for each individual
data point. Next, they perform a forward message passing process which propagates information on the utility
function of a data point to it’s neighbors. Finally, they perform data selection through an iterative reverse
message passing process, where at each step the highest scoring data point is kept, and all it’s neighbors
get down-weighted to encourage the selection of diverse data points. Lang et al. (2022) also use a graph
representation as part of their utility function, determining which weakly-labeled data points to keep based
on their nearest neighbors, and the label of their nearest neighbors. They only keep data points whose nearest
neighbors have mostly the same label, thereby using the representations geometry to identify accurate subsets
and removing ambiguous data points. Bejan et al. (2023) develop the task-agnostic self-influence score as a
utility function for filtering data (and designing a curriculum). The intuition behind the self-influence score
is: if not training on data point x(i) leads to a significantly higher loss on that data point, then there must
not be many supporting data points around x(i) and it is likely to be an outlier, and therefore a low-quality
data point. They suggest that self-influence functions can identify data with label noise, out-of-distribution
data, data that is ambiguous, and difficult to learn samples, and removing such data can improve the models
performance.

Many methods of improving data efficiency exist in general machine learning settings (e.g. data pruning
and coreset selection), but most have exclusively been developed and evaluated in the computer vision
domain. Azeemi et al. (2023) is one of the limited tests of data pruning on language tasks, where they observe
that selecting for difficult to learn examples leads to improved model performance, while reducing the dataset
size by up to 60%. The many other works on data pruning and coreset selection (further discussed in §9)
may provide effective methods of improving data efficiency for task-specific fine-tuning, but could require
some alterations to work for NLP tasks.

Selecting data for robustness. Finally, an important problem that data selection can solve is to improve
a models robustness by ensuring that a model is not biased towards any particular subpopulation of data and
to avoid relying on spurious correlations. Because these methods concern themselves with subgroups of data,
they share similarities with data mixing (§3.8). Sagawa et al. (2020) introduce group distributionally robust
optimization (group DRO) to train models that minimize the worst-case loss over groups in the training
data. As their utility function, they use a notion of the generalization gap (the difference between training
and validation loss) and prioritize training on data from those subgroups which have a large generalization
gap. Haghtalab et al. (2022) also aim to minimize the worst-case error of a model across subgroups, while
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also aiming to improve the data efficiency by minimizing the number of samples required for each subgroup.
They formulate the multi-distribution learning problem as a zero-sum game and aim to learn the minimax
equilibrium by introducing an online learning algorithm, Resampling-based Multi-Distribution Learning
(R-MDL) that uses estimates of the training error and generalization error as the utility.

Considerations for task-specific fine-tuning. Compared with data selection for pretraining, the goals
of data selection for task-specific fine-tuning are very similar: improving data efficiency, selecting a diverse set
of samples, and reducing a models bias towards any particular subgroup. However, the task-specific datasets
used in fine-tuning are often small enough that methods with high computational requirements are plausible.
Though many of the methods presented in this section may be beneficial for pretraining (or other settings),
they may be unreasonably costly to use on web-scale data. For example, Azeemi et al. (2023) requires training
a model on the full dataset prior to determining which data points to keep/remove, and Haghtalab et al.
(2022) assumes that the model will be validated on each subgroup at every step of the learning algorithm.
Although these ideas may be computationally prohibitive to be used as-is, it may be possible to adjust them
to work at larger scales by reducing the frequency of updates, or using smaller models as proxies.

8 Data Selection for Other Domains

This survey focuses on data selection for language models, but data selection is an active area of research in
computer vision, vision-and-language and broadly in machine learning. Some of the data selection methods
covered by this survey are domain-specific (e.g. the total number of characters in x(i)), while others are
domain agnostic (e.g. selecting data most similar to a target distribution). Therefore, some of the methods
previously presented in this work may be more applicable in other domains, and vice-versa. Similar to
language models, data selection methods have been applied at multiple stages of model training in other
domains (e.g. vision-language model pretraining) and for similar purposes (e.g. data efficiency, model
performance, and reducing bias). In this section we will briefly discuss some of the prominent uses of data
selection in non-language domains, and compare and contrast them with the previously discussed methods.

Data selection for pretraining. Of particular interest has been the rise in pretrained vision-language
models, which has followed closely after the success of large language models (Radford et al., 2021; Schuhmann
et al., 2022; Zhu et al., 2024). For example, Schuhmann et al. (2022) and Zhu et al. (2024) design datasets
for vision-language pretraining using some of the same methods and ideas presented in §3 as well as some
methods that are specific to their vision-language data. Schuhmann et al. (2022) collect web-text along with
images that contain an alt-text in order to create data with image-text pairs. They utilize some heuristic
filters on the text, similar to those from §3, but they also remove data with less than 5kb of image data, as
well as image-text pairs that have cosine similarity less than 0.28 for english data and 0.26 for other languages
(image and text separately encoded using OpenAI’s ViT-B/32 CLIP model). The similarity step removed
significant quantities of data, reducing the original corpus from around 50 billion images to 6 billion. While
LAION-5B is a corpus entirely of image-text pairs, Multimodal C4 (Zhu et al., 2024) introduces a dataset of
interleaved sentences and images, where each data point can contain multiple sentences and images. Zhu et al.
(2024) use a preprocessed English-only C4 dataset and gather image files (png/jpeg/jpg) that were found on
the source websites for C4. They perform an image-deduplication step to ensure that a single image is not
overrepresented within a single document or across the entire corpus. Then, they discard images with a height
or width smaller than 150 pixels, which accounts for many small icons and navigation buttons, as well as
images with aspect ratios greater than 2 or less than 0.5 (removes many banners at the top/bottom or sides
of websites). Finally, to interleave images into the existing text, they use cosine similarity between images
and individual texts, interleaving only the images which have a similarity score of at least 0.15. Another
unique filtering done for this domain is a step of removing images that contain faces.

Recently, Bruce et al. (2024) collect a dataset of publicly available internet videos and train a foundation
world model to generate action-controllable worlds given image inputs. They filter their dataset using a
mixture of heuristics (e.g. video titles must contain certain keywords such as “speedrun” or “playthrough”)
and quality filtering. Specifically, they hand label 10,000 videos and train a classifier on their labeled data.
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These methods mainly filter data with heuristic approaches, and have the same drawbacks as heuristic
approaches for language datasets; namely, the difficulty of validating a method, and slow iteration time as it
requires training multiple models. Data Filtering Networks aim to overcome these weaknesses by filtering
data not with heurstics, but with a trained network (Fang et al., 2024). While Fang et al. (2024) demonstrate
that it is possible to train a filtering network that can select data points which lead to a better model, in
a cruel twist, they find that data quality is key to training a good filtering network, leading to a circular
problem.

In addition to data collection and filtering, data mixing is also a topic of concern for non-language pretrain-
ing. Piergiovanni et al. (2023) propose an online data mixing method for vision-language models that mixes
a variety of tasks together (e.g. image captioning or visual question answering). Their method, dynamic
difficulty sampling, calculates the loss of each task t, Lt, and weights each task proportionally with the total
loss L, getting the final sampling weight as St = Lt

L
. This mixing method maintains some similarities to

the online data mixing methods from language model pretraining (Xia et al., 2024a; Albalak et al., 2023a;
Schioppa et al., 2023).

Data selection for task-specific fine-tuning. The dominant paradigm in machine learning’s history
has been task-specific fine-tuning, and many methods of data selection have been proposed for this setting.
For the most part, the methods of data selection for non-language domains are quite similar to the methods
for language. Generally speaking, these methods use the output of a model as the representation upon
which the utility function is built. In an early work on support vector machines, Wang et al. (2005) devise
a method of selecting data that reduces the training set size while maintaining generalization by filtering
out data points which do not affect the final decision function. This idea resonates in the language domain,
with similarities to methods that use loss (Albalak et al., 2023a) or methods that attempt to estimate data
difficulty (Mindermann et al., 2022). A more recent direction has been how to best utilize synthetic data,
and Yuan et al. (2024a) demonstrate that generating large quantities of synthetic images and selecting
data using distribution matching (matching the synthetic data to the target data using maximum mean
discrepancy) leads to models that perform well for image classification with synthetic data only, as well as
when mixing real and synthetic data.

Adaptive batch selection. A number of methods have been developed to improve the data selection
on the level of individual batches, sometimes called data difficulty estimation. One of the motivations of
these methods is that they use the current model’s state to determine which data to select, but this can
add significant computational overhead. Additionally, because these methods are run alongside the model
training, their cost is not amortized across training runs as it would be for static datasets. Chang et al.
(2017) propose two methods for Active Bias that emphasize training on data points where the model is
uncertain, based on their prediction variance or closeness to the decision threshold. Similarly, Song et al.
(2020) propose Recency Bias, a method that further emphasizes training on uncertain data points that
were predicted inconsistently in recent iterations of training. Finally, (Mindermann et al., 2022) present
Reducible Holdout Loss Selection (RHO-Loss), a method of adaptive batch selection that, intuitively, avoids
selecting data points that are redundant, noisy, or less relevant. RHO-Loss was validated on a very small
sample of NLP tasks, task-specific fine-tuning on SST2 (Socher et al., 2013) and CoLA (Warstadt et al., 2019),
but has not been demonstrated to work in other learning settings, and Kaddour et al. (2024) show that it is
not computationally efficient.

Adaptive batch selection methods are similar to online data selection, except that they are often performed
on the level of individual data points, rather than groups, domains, or tasks. This particular direction has
found minimal success with LLMs, in particular for pretraining, but the success of such methods in other
domains suggests that it would be worthwhile adapting these methods to language.

Bias, fairness, and robustness. Reducing a models bias towards or away from any particular class is
a long-standing challenge in machine learning, related to the desire to create fair datasets and improve a
model’s robustness to distribution shifts and out-of-distribution data.
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There have been a number of recent works that aim to prepare fair datasets. Biswas & Rajan (2021) analyze
stage-specific fairness (SF), measuring fairness metrics with and without certain data preprocessing stages,
and provided experimental results. González-Zelaya et al. (2023) introduced FairPipes, a heuristic approach
to find an optimal data preparation pipeline configuration. A number of works have also developed software
tools for tracing distribution distortions linked to fairness in the data preparation workflow (Yang et al.,
2020a; Grafberger et al., 2021; Schelter et al., 2019).

Additionally, there exist fairness-aware balancing techniques (Yan et al., 2020; Sonoda, 2023; Chakraborty
et al., 2021; Salazar et al., 2021; Yang et al., 2020b) as well as reweighting/resampling methods aimed at
ensuring fairness (Kamiran & Calders, 2012; Jiang & Nachum, 2020). In NLP, using balanced training for
fairness has been explored (Wang et al., 2019; Han et al., 2022). Jeong et al. (2022b) showed that different
proportions of demographics can lead to nontrivial differences in fairness. To alleviate the challenge of
gathering additional data, recent research has focused on designing adversarial networks. These networks are
developed to acquire a balanced representation, which helps in minimizing the adverse effects of sensitive
attributes (Madras et al., 2018; Adel et al., 2019).

There are a number of works presented in this survey that discuss filtering and cleaning data, but another
common issue when collecting new data is missing values. When a data entry contains missing values, should
the entry be dropped, or can the missing value be imputed? Recent and concurrent research papers that study
fairness in missing values (Caton et al., 2022; Schelter et al., 2019; Fernando et al., 2021; Mansoor et al., 2022;
Jeanselme et al., 2022; Zhang & Long, 2021), which primarily focus on empirically assessing how dropping or
various imputation algorithms affect fairness in downstream task. Jeong et al. (2022a) theoretically showed
how discrimination risks can arise during data imputation and developed an algorithm called Fair MIP
Forest that integrates missing value treatment and learning into a single process, and impose a fairness
regularizer in an end-to-end process.

Learning representations that are robust to distribution shifts, or out-of-distribution data, is very challenging,
and a very active area of research. Deng et al. (2023) propose Progressive Data Expansion (PDE), a method
for learning robust representations by progressively expanding the training dataset. While naively training on
all data creates models that are susceptible to learning non-generalizable spurious features, by progressively
expanding the training dataset, Deng et al. (2023) demonstrate that PDE improves the model’s robustness
for a better worst-group performance. Nguyen et al. (2022) demonstrate, on six publicly available image-text
datasets, that each individual dataset can lead to robustness to certain distribution shifts, but no individual
dataset dominates the robustness. They explore the interactions between datasets by combining multiple
datasets and find that this does not lead to an overall better model, rather it dilutes the robustness from each
component dataset. Their results demonstrate that simply gathering large amounts of data is not optimal.

Increasing the rate of data selection research. Recently, the importance of data selection and quality
has gained notoriety, and thus a few efforts have been developed to try and lower the barrier to entry for
research to be done. One such effort is DataComp (Gadre et al., 2023), a benchmark for multimodal dataset
design. DataComp provides two tracks for participation: the filtering track, and the bring-your-own-data
track. The filtering track is of particular interest as it gives participants a common dataset (12.8B image-text
pairs from Common Crawl), and the participants goal is to determine the best subset to train a model
on. Additionally, Gadre et al. (2023) provide over 300 baseline experiments, and find that, similar to the
language-only setting, a smaller, more selective dataset can lead to models that generalize better than larger
datasets. Of course, this still comes with the same limitations as all previously discussed sections, where the
exact evaluation setting plays a large role in what data is “best”. Specifically, DataComp evaluates models’
abilities to perform image classification and retrieval tasks, but does not evaluate generative capabilities. This
suggests that distribution matching methods may fare well on DataComp, while an evaluation of generative
capabilities may prefer data selection methods that favor distribution diversification. DataPerf (Mazumder
et al., 2023) provides another entry for data selection research. The DataPerf benchmark contains 4 data
selection settings: vision, speech, debugging, and language. The various settings allow researchers to test
their algorithms for selection, augmentation, quality assesment, and cleaning. Mazumder et al. (2023) find
that automated methods tended to perform better than manual cleaning or filtering, specifically, they found
that submissions succeeded with automated methods for recognizing noisy images and labels, identifying
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mislabeled images, correcting class imbalance, and selecting and enhancing images from the long-tailed
distribution of classes.

By providing a shared resource where researchers can test their methods, benchmarks and competitions
like these can help to increase the pace of research, as well as giving a direct comparison between methods.
Specifically, DataComp has evaluated 21 submissions18 and DataPerf has evaluated 54 submissions.19 Some
of the promising methods from these benchmarks may be useful for language domains, but their transfer may
be limited due to their domain-specific nature. Benchmarking data-centric methods, and data selection in
particular, for the language domain has not been fully utilized and should be in the future to accelerate the
pace of data selection research.

9 Related Topics

There are a number of data-focused topics in machine learning that are related to data selection, but have
separate aims and use cases.

Data cleaning. As discussed in sections 3.2 and 3.5, some utility functions can determine both whether an
entire data point should be removed from the dataset and also whether a chunk of text should be removed
from a data point. Data cleaning refers to the latter scenario. While some of the selection methods described
in this work can also be used for cleaning pretraining data, there are additional data cleaning methods not
covered here. For example, in supervised settings data can be labeled incorrectly and methods for detecting
incorrectly labeled data often assume that such data are outliers, utilizing outlier detection methods to clean
(or remove) the incorrectly labeled data (Abedjan et al., 2016; Narayan et al., 2022). Data cleaning can also
refer to imputing missing values or finding inconsistencies across data points (see Li et al. (2021) for more
details on data cleaning in non-language domain data).

Dataset distillation and coreset selection. Dataset distillation (also known as dataset condensation)
and coreset selection (also known as data pruning) have been extensively studied for reducing the size
of training data. Dataset distillation aims to synthesize a small dataset such that the model trained on
that synthetic dataset achieve performance akin to one trained on the full dataset. Dataset distillation is
first introduced by Wang et al. (2018b), where the model weights are treated as a function of the distilled
dataset (outer optimization) and the distilled dataset is optimized (inner optimization) so that randomly
initialized models trained on it with one-step gradient descent could achieve good performance. Such a
bi-level meta-learning framework often incurs substantial computational costs. To improve the scalability and
effectiveness of dataset distillation, subsequent research (Zhao et al., 2020; Lee et al., 2022b; Zhao & Bilen,
2021) has employed gradient matching as the supervision signal, aligning the gradients of model parameters
trained on the original dataset and the distilled dataset. Moreover, researchers have proposed techniques
such as feature distribution matching (Wang et al., 2022a; Zhao & Bilen, 2023; Zhao et al., 2023), training
trajectory matching (Cazenavette et al., 2022; Cui et al., 2023b; Guo et al., 2024), and kernel methods
(Nguyen et al., 2020; 2021; Zhou et al., 2022).

In contrast, the objective of coreset selection (Mirzasoleiman et al., 2020a; Borsos et al., 2020; Killamsetty
et al., 2021b; Guo et al., 2022; Killamsetty et al., 2021a) is to select a subset from the given dataset so that
a model trained on it achieves optimal performance, which better aligns with the topics discussed in this
paper. Many coreset selection methods design a series of scores and rank the data instances accordingly.
Within this realm, geometry-based coreset selection methods selects the examples based on their distances
from k-means cluster centers (Chen et al., 2012; Sener & Savarese, 2018; Sorscher et al., 2022; Xia et al.,
2023). Additionally, predictive uncertainty and model loss metrics can also serve as criteria for ranking data
instances (Coleman et al., 2019; Pleiss et al., 2020; Paul et al., 2021; Zheng et al., 2022).

There also exist coreset selection methods that are optimization-driven. Craig (Mirzasoleiman et al., 2020a)
optimizes the coreset selection so that the sum of the gradients on the subsets closely match the gradients
on the full dataset. This approach has been extended to handle noisy data settings in the subsequent

18As of 02/06/2024, found at https://www.datacomp.ai/leaderboard.html.
19Across vision, speech, debugging, and language tasks, as of 02/06/2024, found at https://www.dataperf.org/
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work (Mirzasoleiman et al., 2020b). Glister (Killamsetty et al., 2021b) and Grad-Match (Killamsetty
et al., 2021a) focus on coreset selection on noisy and imbalanced datasets and propose to match the gradient
of the coreset with the training of a held-out validation set. The AdaCore (Pooladzandi et al., 2022) method
incorporates the second-order gradient information for better gradient matching. Notably, the techniques
of coreset selection have found application in LLM fine-tuning (Liu et al., 2023b; Xia et al., 2024b). For
example, the LESS (Xia et al., 2024b) method selects influential data for supervised fine-tuning based on the
similarity of gradients evaluated on the coreset and the validation set.

Data attribution and valuation. Data valuation and attribution focus on understanding how each
training data point affects a models predictions. Methods for valuation and attribution can help to identify
potentially mislabeled data, identify brittle predictions, quantify the affect of a training data point on an
evaluation data point, and even quantify train-test contamination. These methods tend to be computationally
expensive, although recent progress has improved their efficiency.

In recent work, Ghorbani & Zou (2019) propose Data Shapley, a principled framework for data valuation,
where the goal is to quantify the value of each data point to a predictors performance. The Data Shapley
value for each data point can then be used as the utility function in a data selection method for either
distribution matching or diversification purposes. Ilyas et al. (2022) present datamodels, a framework used
to predict a models performance on a data point x(i), given that the model is trained on a known subset
of training data. They demonstrate that even using a linear function as the predictor, their datamodelling
framework is capable of accurately predicting model outputs and counterfactuals, as well as encoding a
metric for data point similarity. Similarly, Park et al. (2023) propose TRAK, a data attribution method that
can make accurate counterfactual predictions, trying to answer the question “why did my model make this
prediction”. They show that TRAK is a plausible method for determining which training data was most
impactful on a models prediction.

Data augmentation. Data augmentation methods are used to generate new data by modifying the
existing data points in a dataset. Similar to data selection, data augmentation also aims to shift the training
distribution. Data selection is often used to improve the data coverage in domains where there is limited
data (Li et al., 2022b; Chen et al., 2023a) and can be used in conjunction with existing data selection methods
(e.g. domain-specific selection in §3.4 or “selecting from auxiliary data to improve generalization” in §7).
For example, Albalak et al. (2022a) use a policy gradient along with information from an auxiliary task to
improve their main model. However, the quality of the coverage produced from augmentation may be limited,
as the semantics of augmented data can diverge from the underlying distribution of language, leading to an
undesirable distribution shift and possibly a decrease in performance (Li et al., 2022b; Chen et al., 2023a).
Thus, care should be taken when performing data augmentation to ensure that the augmentations do not
stray too far from the desired distribution. Nonetheless, data augmentation can still be a useful tool, and we
refer readers to existing surveys on the many methods for augmentation in NLP (Chen et al., 2023a; Feng
et al., 2021), code (Zhuo et al., 2023), and computer vision (Yang et al., 2022).

Data curation. Data curation is a set of processes surrounding the discovery, organization, integration,
annotation, cleaning, storage and maintenance of data (McLure et al., 2014; Freitas & Curry, 2016; Thiru-
muruganathan et al., 2020). Some of the methods that are used for curation overlap with those from data
selection (e.g. cleaning and filtering), but there are also methods from data selection which are not included
in data curation (e.g. heuristic filters, data mixing, and filtering toxic and explicit content). Data selection is,
generally speaking, a process that occurs after data curation, once a practitioner is prepared to train a model.
After the data has been curated, then data selection methods can be used to create a dataset for the desired
purpose.

Curriculum learning. While data selection aims to determine which data points a model should train or
evaluate on, and how many times they may be repeated for training, curriculum learning aims to improve a
model through an orthogonal goal. Curriculum learning is often motivated by the idea that the training data
should be increasing in complexity according to the models current capability, and aims to determine when a
data point should be trained on.
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Curriculum learning has found limited success in the natural language domain. For example, Graves
et al. (2017) use multi-armed bandits to determine an appropriate curriculum for language modeling with
LSTMs. Xu et al. (2020) demonstrate that curricula can be used to improve learning in natural language
understanding tasks for a BERT model. More recently, Fan & Jaggi (2023) propose irreducible curriculum
for language model pretraining, which prioritizes training on samples with higher learnability (motivated by
RHO-Loss (Mindermann et al., 2022)). Curriculum learning is one aspect of data-centric AI that has not
yet seen a large adoption in large language models, in part due to its limited success.

10 Discussion

10.1 Test set decontamination

Understanding a model’s capabilities requires evaluation on a fair benchmark, but the training of language
models on web-scale data has raised concerns and speculation about the possible inclusion of evaluation
benchmarks in training data. Given the scale of data it is not feasible to manually check, so automated
methods have been designed to detect the existence of evaluation data in the training set (Rae et al., 2021;
Li et al., 2022a; 2023b; Magnusson et al., 2023; Elazar et al., 2023), as well as detecting models that have
already been trained on evaluation data (Carlini et al., 2018; Jagielski, 2023; Marone & Van Durme, 2024).
Jacovi et al. (2023) on the other hand, suggest three strategies for reducing the risks of contamination. Data
decontamination is an important step in ensuring the integrity of model evaluation, and is included in the
discussion section because this critical step is relevant, and should be required, for all stages of model training.

Detecting test set contamination with n-grams. Test set contamination methods often follow a similar
form to deduplication methods. When decontaminating MassiveText, Rae et al. (2021) compute the 13-gram
Jaccard similarity between train and test documents (as originally proposed by Lee et al. (2022a)) and remove
train documents that have a Jaccard similarity over 0.8, the same exact method that they use to detect
duplicated documents. Similarly, Brown et al. (2020) and Gao et al. (2020) use 13-gram overlap filtering to
detect contamination in their respective training sets. To make decontamination easier, some tools have been
developed. For example, CarperAI create a GitHub repository with code for decontaminating evaluation data
from a training dataset using MinHashLSH.20 Additionally, Marone & Van Durme (2024) propose Data
Portraits, a method of investigating the data that a model was trained on. Data portraits are an artifact that
records training data, allows downstream inspection, and enables answering questions about test set leakage
and model plagiarism through a novel membership testing tool, a strided bloom filter. In addition to the new
method, they release a demo of their tool21 which uses 50-character grams to detect overlap between training
data and an input sequence.

Protecting test data with canaries. A canary string is a unique sequence of characters that is included
within a dataset, or a document, used to empirically evaluate, or audit, whether a language model was
trained on that document (Carlini et al., 2018). By including canary strings within a benchmark, they can
protect the integrity of an evaluation metric, demonstrating the likelihood of a model having been trained
on that evaluation benchmark. For example, BIG-bench (Srivastava et al., 2023) includes a canary GUID
string in each task to allow for detecting whether models were trained on the evaluation data.22 To detect
canaries, Carlini et al. (2018) propose the secret sharer framework for efficiently extracting unique, secret
sequences such as personally identifiable information, and demonstrate that such information can be extracted
from a model. Jagielski (2023) expand on the secret sharer framework, and demonstrate how to interpret
canary exposure by relating it to membership inference attacks and differential privacy.

Detecting models trained on test data. Proving that black-box models have trained on a data point
can be very challenging, but also important to ensure that their results can be trusted. Because their data is
not disclosed, it is impossible to know with certainty what their training data was, but some methods have
been proposed as efforts to address this issue. Shi et al. (2024) propose min-k% prob, using the intuition

20CarperAI decontamination GitHub repository
21https://dataportraits.org/
22BIG-bench canary GUID README

36

https://github.com/CarperAI/decontamination/tree/main
https://dataportraits.org/
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/training_on_test_set/README.md#training-on-the-test-set


Under review as submission to TMLR

that unseen examples are more likely to contain outlier words with low probabilities according to the model,
whereas unseen examples are less likely to exhibit such low probability words. While this is not explicitly
a method of decontamination, it is a useful tool for determining how contaminated a pretrained models
data was. This tool can be used for benchmark example contamination detection, privacy auditing for
machine unlearning, and copyrighted text detection. Oren et al. (2024) present another method for detecting
contaminated data based on the observation that models have a tendency to memorize the order of examples
as they exist in the dataset, and provide provable guarantees of test set contamination through a framework
of statistical tests.

Decontaminating code data. Decontamination in code data is particularly important, as Li et al. (2022a)
suggest that competitors in coding competitions tend to publish their solutions online after a competition.
One solution to this problem is to use a temporal split when dividing data into training and evaluation.
To ensure that test data does not exist in the training dataset, the training dataset can be constructed
only from files that originate prior to the test competition. This ensures that the training data includes
only information that would be available for human participants of the competition. In a more traditional
method, StarCoder (Li et al., 2023b) decontaminates The Stack by removing files that contained either exact
matching docstrings or solutions from the HumanEval (Chen et al., 2021) or MBPP (Austin et al., 2021) datasets,
docstrings from APPS (Hendrycks et al., 2021), questions from GSM8K (Cobbe et al., 2021), or prompts from
DS1000 (Lai et al., 2023).

10.2 Tradeoffs between memorization and generalization

While most methods of data selection discussed here, data deduplication in particular, suggest that memo-
rization is a negative model property, this is not always the case. There are truths about the world which
always hold and memorization is indeed a desirable property in those cases. For example, when answering
the question “what is the formula for Pythagoras’ theorem?” we expect a model’s answer to deviate very
minimally from “a2 + b2 = c2” and a serious deviation can have real world consequences if such a model
was used in an education setting. However, generalization is still desirable in this situation as changing the
variable names should still be recognized as correct (e.g. “s2

1 + s2
2 = s2

3”). Furthermore, memorization is also
desirable for code data, such as specific API calls in tool usage for LLMs (Schick et al., 2023; Pan et al.,
2023), and syntax for coding languages (Chen et al., 2021; Li et al., 2022a; Allal et al., 2023). Memorization
is desirable in many other contexts as well, and Brown et al. (2021) have theoretically proven that in many
cases memorization is a requirement of any reasonably accurate training algorithm.

On the other hand, it has been demonstrated that not only do models memorize the desirable information,
but also the undesirable information such as personally identifiable information, phone numbers, credit
card information and much more. Carlini et al. (2020) demonstrate this with a simple attack for extracting
verbatim sequences of an LLMs training data, finding that although data points from the training set do
not have noticeably lower loss than test data points on average, there are some individual examples that are
indeed memorized. Biderman et al. (2023a) study whether it is possible to predict which sequences from the
training data will be memorized by using smaller models, or partially trained models. Carlini et al. (2023)
demonstrate that memorization grows significantly with three factors: the capacity of a model, the number
of times a sample is repeated in the training data, and the number of tokens used to prompt the model to
emit the memorized data. While the third factor, the number of tokens in a prompt, is not in the control of
model developers, the first two are. Model developers can choose to use smaller models to satisfy the needs
for a given use case, rather than relying on massive models which generalize across many use cases, but tend
to memorize data. Furthermore, deduplication has been demonstrated as a strong method for minimizing
memorization. However, as previously discussed, deduplication needs to be intelligently applied so that “good”
memorization can occur (e.g. facts), while reducing “bad” memorization (e.g. PII).

10.3 There’s no free lunch for filtering

Overly filtering the data can lead to undesirable biases in the model. In particular, Dodge et al. (2021) find
that blocklist filtering used to create C4 (Raffel et al., 2020) disproportionately removes text written by, and
about, minority individuals. Additionally, Welbl et al. (2021) find that removing toxic content (as determined
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by the Jigsaw Perspective API23 can lead to worse evaluation loss and disproportionately affects texts about
and by marginalized groups. This finding was also replicated by Longpre et al. (2023c). Additionally, in spite
of the filtering performed in C4, Luccioni & Viviano (2021) still find significant quantities of sexually explicit
content and hate speech. These works demonstrate the need for filtering strategies with improved precision
(remove less text that is desirable) and recall (remove more text that is undesirable).

10.4 Tools for data selection

When performing data selection, a first step should generally be to understand the raw dataset, and a number
of tools have been developed to assist in data exploration and auditing. For example, researchers at AI2
developed a search engine over the C4 dataset,24 and Piktus et al. (2023) create a search engine over C4,
the Pile, ROOTS, and text captions from LAION.25 Elazar et al. (2023) describe their What’s in my big data
tool, which can search for and count n-grams in a number of popular pretraining corpora. Additionally, their
online demo contains tools for exploring the internet domains included in datasets, a visualization of the
amount of text overlap between corpora, and a visualization to understand the length of documents in each
corpus.26 Finally, Liu et al. (2024a) developed the Infini-gram which uses suffix arrays as a method for
language modeling, and provide a demonstration of the Infini-gram trained on the RedPajama, the Pile,
and Dolma corpora and is capable of very quickly searching for n-grams within any of those corpora. 27

Once the data has been explored and audited, the next step of data selection is to devise the appropriate
selection mechanisms and apply them over the data. Some of the methods discussed in this work have been
implemented as open-sourced tools, allowing anyone to easily make use of them. The CCNet pipeline (Wenzek
et al., 2020) 28 is a commonly used tool for downloading and cleaning Common Crawl data. The CCNet
pipeline performs deduplication at the line level, performs language identification with a fastText linear
classifier, and can train an n-gram language model to calculate perplexity per document. Soldaini et al. (2024)
open-source tools for identifying non-language text, language identification, personally identifiable information,
toxic text, text quality, and duplicated data.29 Xie et al. (2023b) provide a pip-installable tool for selecting
data with a distribution similar to a target dataset, that can be used either for domain-specific selection, or for
quality filtering.30 Lee et al. (2022a) provide the code to run their ExactSubstr deduplication,31 and Computer
(2023) provide tools for computing exact duplicates with a bloom filter, and fuzzy deduplication with locality
sensitive hashing.32 Additionally, the tools provided by Computer (2023) contain code for calculating a wide
variety of data signals including heuristics, quality, duplication, and toxicity. Finally, CarperAI provide a
pip-installable package for decontaminating datasets from a number of openly available benchmarks.33

For a more comprehensive and up-to-date list of available tools, see the Foundation Model Development
Cheatsheet (Longpre et al., 2024).

10.5 Considerations when applying data selection to your setting

The first step in determining appropriate actions for data selection is to determine whether you are in a
setting where you wish to increase the distribution coverage from your data, or if you wish to select a subset
from your data. For pretraining, the goal will usually be to increase coverage, unless the model has a well
defined downstream use case (e.g. for medical domain), in which case the goal can be to select a subset of
general data which is most similar to the downstream use case. For multitask training and instruction tuning,
the goal is generally to increase coverage because the goal of these settings is to produce a capable general

23https://perspectiveapi.com/
24https://c4-search.apps.allenai.org/
25code at https://github.com/huggingface/gaia, demonstration at https://huggingface.co/spaces/spacerini/gaia is not

functioning as of 02/07/2024
26https://wimbd.apps.allenai.org/
27https://huggingface.co/spaces/liujch1998/infini-gram
28https://github.com/facebookresearch/cc_net
29https://github.com/allenai/dolma
30https://github.com/p-lambda/dsir
31https://github.com/google-research/deduplicate-text-datasets
32https://github.com/togethercomputer/RedPajama-Data
33https://github.com/CarperAI/decontamination/tree/main
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purpose model. Additionally, depending on the number of parameters in the model you plan to train, you
may have a range for the desired number of training tokens according to your compute budget (Kaplan et al.,
2020; Hoffmann et al., 2022; Penedo et al., 2023). The various filter sensitivities will need to be adjusted
depending on the number of tokens in the raw data in order to achieve the desired number of training
tokens. For task-specific fine-tuning, the setting depends on how large the task-specific dataset is. Generally,
if the dataset is relatively small, the goal of data selection will be to increase coverage over the expected
test distribution. However, if the task-specific dataset is very large then models can plausibly model the
distribution with fewer data points by removing redundant information from the dataset, and costs can be
reduced.

The next step in the decision making is with regards to how much information you have on the test distribution
as this will determine which utility functions available to you. Depending on whether you have data sampled
from the test distribution, you may be able to find an appropriate model-based utility function, otherwise
you will need to determine appropriate heuristics. Furthermore, the available utility functions may be limited
by the amount of compute available.

Cost is another consideration when determining how to apply data filtering. Cost can be calculated in money,
time, or effort. The ordering of filters used can have a great impact on the final cost. An appropriate choice
of filtering order is from least expensive to most expensive, so that the more expensive selection methods
will be executed on fewer data points. Additionally, Coleman et al. (2020) demonstrated that data selection
methods requiring a model can be improved in efficiency by using proxy models much smaller than the actual
model being trained, to further reduce costs.

11 Future Directions: Challenges and Opportunities

11.1 Accelerating research on data selection

Research on data can be a very slow and tedious process, potentially requiring significant investments of
time, compute, and human effort. Here we describe four directions of future research that can reduce the
effort required, and the barriers to entry, for research in data selection.

Scaling down. One direction that can enable more researchers to participate, as well as allowing for faster
iteration is scaling down the current dataset sizes and models. For example, Kaddour (2023) demonstrate
that it is possible to train a model on 745x less data, but lose only 1.9% performance on GLUE (Wang et al.,
2018a) and 2.5% performance on super-natural instructions (Wang et al., 2022b). Additionally, Polo et al.
(2024) show that a wide variety of evaluation benchmarks can be distilled into only 100 data points, while
maintaining an accuracy within 2% of the true accuracy. One area that is still uncertain is whether the
results from small models scale up to larger models, or if there is any way to predict the results on large
models, based on experiments from small models. This is an active area of research.

Metrics that directly evaluate data. One very high impact, but challenging, way to accelerate research
on data selection is to develop metrics that directly evaluate the data chosen by a selection method, thereby
removing (or reducing) the need for expensive model training. Recalling the definition of data selection in
§2.2, the goal of a data selection method is inherently tied to it’s ability to minimize or maximize the objective
function of a trained model. The dependence of data selection on model training significantly increases the
iteration time for experiments, reducing the amount of experimentation that researchers can perform.34

Preliminary works have been done in this direction, including some works on data attribution and valua-
tion (Ghorbani & Zou, 2019; Ilyas et al., 2022), and data measurements (Mitchell et al., 2022). Works on data
valuation and attribution (discussed in §9) attempt to better understand how each data point affects a models
predictions, but may be used as inspiration for methods that directly evaluate the data itself. Additionally,
there are a number of metrics that directly measure the intrinsic characteristics of data including distance,
density, diversity, tendencies (mean, median, mode), and association (correlation, mutual information), but

34For reference, training a 1 billion parameter model on 50 billion tokens takes roughly 5 days to train on 8 A100 GPUs using
GPT-NeoX (Andonian et al., 2023; Albalak et al., 2023a).
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these measures have yet to be connected with a model’s performance on downstream data (Mitchell et al.,
2022).

Developing metrics that directly evaluate data can significantly increase the time spent on method development
and increase the amount of exploratory work possible. Furthermore, removing the need to train models
(which are very costly) can allow for lower-resourced organizations and individuals to contribute to the field,
improving diversity and inclusion in the process of large model development.

Data-centric benchmarks and challenges. Another high-impact direction for increasing the rate of
research on data selection is the development of data-centric benchmarks and challenges. One hurdle of
advancing data selection is that works are done across a wide variety of settings and cannot be directly
compared. Specifically, much of data selection research using heuristics filters is performed as part of collecting
a new dataset. This makes it impossible to compare selection methods with another dataset as they may
contain different quantities of data, and sometimes even use varying model architectures and sizes. In other
domains, such as vision and vision+language, challenges and benchmarks have been developed that provide
well-founded evaluation settings that allows researchers from many institutions to participate in a combined
effort to push the frontier of knowledge and capabilities in data selection (discussed in "Increasing the rate
of data selection research" in §8). Creating similar challenges for language models can go a long way in
encouraging progress.

One challenge for developing benchmarks is there is no current consensus for what the appropriate toy settings
are for data selection research. With the exception of the Loose track from BabyLM (Warstadt et al., 2023),
no prior benchmarks or challenges have been created for data selection (BabyLM is also not specifically for
data selection, but rather to improve the speed of development on architectures and hyperparameters for
language models). The DataComp (Gadre et al., 2023) and DataPerf (Mazumder et al., 2023) challenges
can provide inspiration for creating similar challenged and future benchmarks in language.

Due to the large number of training settings (pretraining, instruction-tuning, alignment, in-context, task-
specific) and goals (general-purpose, knowledge-intensive, chat, etc.) for language models, there are a wide
variety of benchmarks and challenges that would be beneficial for the community. Creating challenges and
benchmarks allows for direct comparison between methods, lowers the bar for entry into the field, and
encourages open progress on this important task.

Open-sourcing tools and best practices. As the field develops in the open, new rules and best practices
will emerge. Open sourcing the tools that implement these best practices is crucial. The combination of
new best practices being developed in the open, and the open-sourcing of such tools can significantly reduce
the overhead required to get started into research on data. This also allows researchers to focus on specific
components of the pipeline, further accelerating research progress.

11.2 Better understanding the properties of the target distribution

Having a clear goal is crucial to defining and developing successful data selection methods. Using the
terminology and conceptual framework developed in this work can improve the understanding of what data
selection methods may be appropriate depending on the properties of the desired target distribution. For
example, the goal of data selection is very clear for task-specific fine-tuning, but less clear for preference fine-
tuning (PreFT). Because the definition of success is less specific for PreFT, developers will likely benefit from
data diversification methods. For example, it may be possible to utilize existing auxiliary data for preferences
by drawing inspiration from methods in §7 (“Selecting from auxiliary data to improve generalization”), or
improving robustness across preference groups by utilizing methods for robustness (§7 “Selecting data for
robustness” or §8 “Bias, fairness, and robustness”).

11.3 Shifting compute time from model training to data processing

It is now well known that training data plays a very significant importance in the performance of a model,
therefore creating an increased desirability to spend more compute on data processing and selection (and
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possibly away from model training). To improve beyond what is possible only through heuristics, it may be
necessary to utilize more expensive methods.

One example of how this may be accomplished is through the use of methods which have previously only
been used in low-data settings (e.g. alignment) and applying them to settings with greater amounts of data
(e.g. pretraining). For example, methods inspired by model-based filtering, or reward model-reweighting
techniques can be used to improve the “quality” of pretraining data. Additionally, techniques for generating
synthetic data can be used to create more diverse training data Bradley et al. (2023) and methods previously
used only for red-teaming (Samvelyan et al., 2024) can be used to generate training data for more robust
models. As compute gets cheaper, it becomes more feasible to spend the cost of directly applying the existing
methods. However, another avenue worth exploring is using cheap approximations for utility functions, such
as computing similarity using bag-of-n-grams and hash functions rather than from model representations.

Another method for improving data that would require large amounts of compute is additive data selection.
Currently, most data selection methods (especially for pretraining) remove undesirable content from data
points. However, it is possible that in the future it will be beneficial to have additive data selection methods.
For example, it would be possible to use a language model to infill information within a data point. One
example would be to include explanations for some phrases: “e.g. the basketball player wasn’t able to move
due to the double dribble rule so he passed the ball to his teammate” where the italicized text has been added
by an infilling model.

12 Conclusion

In this work, we have compiled an in-depth review on the current state of data selection and present a unified
framework with which to consider and compare the wide variety of methods. This survey has described the
current best practices and considerations when selecting data for training a language model. Additionally,
the unified framework has allowed us to define and describe some potentially fruitful future directions of
research which we have highlighted throughout the paper. However, there is much more room for innovation
and improvement in data selection.
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A Heuristic Filtering Details

RefinedWeb (Penedo et al., 2023) heuristics. Removes lines based on the following rules:

• If the line is “mainly” composed of uppercase characters

• If the line is composed of only numerical characters

• If the line is a counter (e.g. “3 likes”)

• If the line contains a single word

Note that some of these rules are underspecified, and the paper does not contain a threshold used to determine
that a line is “mainly” composed of uppercase characters. Additionally, they do not include information on
how they determine that a line contains a counter.

Furthermore, Penedo et al. (2023) also edit lines if they have fewer than 11 words and match one of the
following patterns:

• At the beginning of the line (e.g. “sign-in”)

• At the end of the line (e.g. “Read more...”)

• Anywhere in the line (e.g. “items in cart”)

Note again that these rules are also underspecified as the exact patterns that were matched are not included
in the manuscript.

MassiveText (Rae et al., 2021) heuristics. Remove documents that do not meet all of the following
conditions:

• between 50 and 100,000 words

• mean word length is between 3 and 10 characters

• symbol-to-word ratio is less than 0.1 (for the symbols “#” and “. . . ”)

• fewer than 90% of lines start with a bullet point

• fewer than 30% of lines end with “. . . ”

• greater than 80% of words contain an alphabetic character

• contain at least two of the following “stop words”: the, be, to, of, and, that, have, with

C4 (Raffel et al., 2020) heuristics Remove lines that:

• do not end in a terminal punctuation, including periods, exclamation marks, question marks, and
end quotation marks.

• have fewer than 5 words

• have the word “Javascript” because many of the scraped web pages had warning statements about
Javascript being enabled

Remove documents that:

• have fewer than 3 sentences
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• have an word from the "List of Dirty, Naughty, Obscene, or Otherwise Bad Words"35

• have the placeholder phrase “lorem ipsum”

• contain a curly bracket, “{” because it appears in many programming languages and they desired for
C4 to contain only natural language

• have any of the phrases “terms of use”, “privacy policy”, “cookie policy”, “uses cookies”, “use of
cookies”, or “use cookies” because they found many pages to have boilerplate policy notices

mC4 Xue et al. (2021) Heuristics mC4 is a multilingual dataset, strongly motivated by the methods
of the C4 dataset. They compare that while C4 can remove lines which do not end in an English terminal
punctuation mark, that is not possible for a multilingual corpus. Instead, they apply a line length filter,
which removes pages that:

• contain fewer than three lines of text with 200 or more characters

• have an word from the "List of Dirty, Naughty, Obscene, or Otherwise Bad Words"36

• have a primary language confidence (determined by cld337) below 70%

MADLAD-400 (Kudugunta et al., 2023) Heuristics MADLAB-400 is a multilingual corpus, so some
of the heuristics are unique to a multilingual setting, but many can be shared with English-only corpora.

They remove pages that:

• Contain fewer than 4 lines with 200 or more characters (as in Xue et al. (2021))

• have fewer than 5 sentences

Remove lines that:

• contain the word “Javascript”

• contain the placeholder text “lorem ipsum”

• contain curly brackets (“{” and “}”)

Additionally, Kudugunta et al. (2023) design a set of 5 characteristics that make a document “questionable”.
If more than 20% of the sentences in a document have one of the following questionable characteristics, then
the whole document is removed. The questionable characteristics are:

• The predicted language ID of the sentence does not match the document-level language ID

• over 50% of tokens in the sentence begin with a capital letter (only if the line has at least 12 tokens)

• the sentence has less than 20 or more than 500 characters

• Over 20% of the characters in the sentence match [0-9{}+/()>]

• the sentence matches a “cursed regex”. A cursed regex is a set of substrings and regexes that they
found accounted for a significant quantity of questionable content (fully specified in Appendix A.2
of Kudugunta et al. (2023)).

GPT-3 (Brown et al., 2020) Heuristics None listed.
35https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
36https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
37https://github.com/google/cld3
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ROOTS Corpus Laurençon et al. (2022) Heuristics Laurençon et al. (2022) collect and select data
from multiple sources. First they collect a code dataset from BigQuery38 and use the following heuristics:

• remove files with fewer than 100 or greater than 200,000 characters

• remove files with less than 15% or greater than 65% alphabetic characters

• remove files with line lengths less than 20 or greater than 1000, or a token length standard deviation
of 3 or less

Laurençon et al. (2022) mention their use of 8 different filters, and describe the details of each filter in a
separate document39 but do not specify what thresholds they use for their selection mechanisms40. They use
filters for:

• Number of words

• Character repetition ratio

• Word repetition ratio

• Special characters ratio

• Closed class word ratio

• Flagged word ratio

• Language identification prediction score

• Perplexity score

GLaM (Du et al., 2022) Heuristics None listed.

Llama (Touvron et al., 2023a) Heuristics To train Llama, Touvron et al. (2023a) create a corpus
composed of 7 domains: CommonCrawl, C4, Github, Wikipedia, Books, ArXiv, and StackExchange. The
processing of each dataset is done separately as follows (where details are provided):

• English CommonCrawl - They use the CCNet pipeline (Wenzek et al., 2020) which does not perform
any heuristic filtering.

• GitHub - “low quality” files were removed based on heuristics including the line length and proportion
of alphanumeric characters. Additionally, boilerplate, such as headers, were removed using regular
expressions.

• Wikipedia - hyperlinks, comments, and other formatting boilerplate was removed

• ArXiv - They follow the method of Lewkowycz et al. (2022) and remove everything prior to the first
section as well as the bibliography. They also remove all comments, inline-expanded definitions, and
user-written macros.

• StackExchange - They remove all HTML tags, and sort the answers by score so that the highest
scoring answer is closest to the original question.

38https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
39https://drive.google.com/file/d/1cCJ8sWE88TRLDAa3eHLmXO4JlkR2QzLY/view
40It is possible that the selection mechanisms can be determined by mapping values

in parameters_filtering_default from this file: https://github.com/bigscience-workshop/data-
preparation/blob/main/preprocessing/training/01b_oscar_cleaning_and_filtering/parameters_filtering.py, but this
has not been confirmed.
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Pile (Gao et al., 2020) Heuristics The Pile dataset consists of 22 separate sub-domains, each domain
requiring it’s own preprocessing. While the main goal of the Pile project was to gather data from a wide
variety of domains, they include some heuristic filters when collecting data. Code to replicate their dataset
processing can be found at https://github.com/EleutherAI/the-pile.

They use the following filters for each domain (where details are provided):

• Pile-CC - jusText (Endrédy & Novák, 2013) to extract the text from Common Crawl. They decide
to use jusText based on visual inspection of the outputs compared with using Trafilatura, Newspaper,
Goose3, and DragNet. No details on the heuristics are specified.

• OpenWebText2 - Newspaper was used to extract text instead of jusText to maintain consistency
with OpenWebTextCorpus.

• ArXiv - They use the TeX source file and pandoc to convert the files to Markdown, discarding papers
that had errors during the conversion process. They remove any line that begins with “: : :”, which
indicates an html class in Markdown.

• FreeLaw - They use BeautifulSoup to extract raw text from CourtListener41.

• NIH - Award applications were removed if their abstract was too short, or missing. They also removed
some administrative boilerplate (not specified).

HTLM (Aghajanyan et al., 2022) Heuristics HTLM utilizes a unique heuristic because their data
maintains some of the original HTML code from web documents in a simplified form called Minimal-HTML
(MTHML). MHTML removes all sub-trees of the HTML DOM that does not contain text of a specific
character size (128 for text elements, 64 for lists/tables/spans), and removes all headers, footers, copyrights,
forms and iFrames. Then, they combine consecutive <div> elements, and remove any attributes which are
not class or id attributes.

This preprocessing leads to data which has a mix of HTML and text. Aghajanyan et al. (2022) only use a
single heuristic filter, they remove any MHTML document that has a text-to-HTML ratio of 0.46 or less.

HumanEval (Chen et al., 2021) Heuristics HumanEval is a corpus of code repositories and has different
considerations when filtering data. They remove files that:

• have average line length greater than 100 characters

• have a maximum line length greater than 1000 characters

• were likely auto-generated (unspecified)

• contain a small percentage of alphanumeric characters (unspecified)

AlphaCode (Li et al., 2022a) Heuristics AlphaCode also creates a dataset of code repositories for
training. They remove files that:

• are larger than 1MB

• have a maximum line length greater than 1000 characters

• were likely auto-generated (unspecified)

In addition to the training dataset, Li et al. (2022a) also create the CodeContests dataset to be used as an
evaluation for competitive programming problems. These files contain problems, user solutions, and test
cases. For this set, they remove:

41https://www.courtlistener.com/api/bulk-info/
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• submissions that do not pass any tests

• tests where less than 10% of submissions produce non-empty outputs

• submissions that pass less than 10% of remaining tests

Minerva (Lewkowycz et al., 2022) Heuristics Lewkowycz et al. (2022) create a dataset of 38.5B
tokens combining webpages filtered for mathematics, arXiv papers, and general purpose natural language
data. To create a dataset of webpages with mathematics, they filter for pages that include the string “<math”
or “MathJax-Element-”. Next, they extract the mathematical content from within the following html tags:

• <script type=“math/latex”>

• <script type=“math/asciimath”>

• <annotation encoding=“application/x-tex”>
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