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A BOUND OF SAMPLE LOSS AND GRADIENT CHANGE WRT. PARAMETERS

In this section, we prove the maximum change of sample loss and maximum change of gradient of
loss function with respect to parameters {©, W} of spectral GNNs in Eq. (1). These two properties
are widely used in the subsequent analysis.

Based on Assumption 1, we have the following lemmas.

Lemma 17 (Bound of Loss function to Parameters). Under Assumption I, given a loss function {
and a spectral GNN, for parameters ©, W ,©', W' and any node v; with truth class y; we have

16(5ss ile—e w—w) — £us,Gilora )l < ary/18 — O3 + W — W3,
where oy = Lip(£) Lip(P).

Proof. Under Assumption 1, we have

1€(ys; Gilr=7) = €, Gil =) | < Lip(O)||Gilr=7 = ilr=r || F
and
| Lip(O)||9ilr=7 = Gilr=r | F < Lip(V)[|7 — 7' .
This leads to
1€(yis Gilr=7) = €(yi, Yilr=r) || < Lip(€) Lip(¥)||7 — 7'[| p-
O

Lemma 18 (Bound of Gradient to Parameters). Under Assumption 1, Assumption 2, for parameters
O,W,0’", W' of a spectral GNN, the following holds for any node v; with truth class y;

IVUYi; Gilo=e,w=w) = Vi, Jilerw) |l < 042\/||(:) —OF A+ W - W%
where ag = (Smt(V)B1 + Smt(€)Lip(¥)B2) .

Proof. Since we know that
Vl(yi; Gilr=) = Vg l(y, §i)lr=7 - Viilr=7
and
Vl(yi, Jilr=r) = Vg l(y, §i)lr=r' - Vil r=r.
this gives
Vlyi, §ilr=7) = VEYi, Gilr=r') = Vg Ly, §i) lr=7(Vilr=7 — Viilr=7/)
+ (V@if(y, Gi)lr=7 — V@if(y, 9i)lr=r') Vilr=r'.
Hence, we obtain the following
IVU(ys, Gilr=7) = VE(ys, ilr=r)lp < Vg Ly, i) lr=7F - [Vilr=2 — Viilr=r ||
IV by, §i)lr=7 = Vg l(y, §i)lr=r | 7 - IV il r=+ | -

)
Under Assumption land Assumption 2, we have:
IViilr= = Viilr=rllp < Smt(Y)|7 — 7’|l ©)
IVg.6(y, 9i)lr==llF < B1.
Under Assumption 1, we have
IV, l(y, 9i)lr=r = Vg by, §i)lr=r |l p < SmE(O)||Gilr=7 — Gilr=r[lF .
< Smt(0) Lip(®)||7 — /|| p.
Under Assumption 2, we have:
Vil r=r|lF < B2 (3)
Substitute Eq. (6), Eq. (7), Eq. (8) into Eq. (5), we have
VUi, Gile=2) = VUi, Gilr=r)llp < Smt(Q)||T = 7'||p - B1 + Smt(0) Lip(V) |7 — /|| p - B2
= (Smt(V)B1 + Smt(0) Lip(¥)B2) |7 — 7' || F
O
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B UNIFORM TRANSDUCTIVE STABILITY OF SPECTRAL GNNS

Theorem 6 (Stability and Gradient Norm). Let ¥ be a spectral GNN trained using gradient descent
for T iterations with a learning rate 1 on a training dataset S,,, and evaluated on a testing set D,,.
Under Assumption 1, for all iterations t € [1,T] and any sample (x;,y;) in Sy, or Dy, if the gradient
norm satisfies ||V 0(y;, Yilot,w )| < B, where {©, W'} are the parameters at the t-th iteration,
then U satisfies y-uniform transductive stability with:

T
2nay -1
= = 1
vy Tﬁ7 r § ( + 77042) )

t=1

where ay = Lip(¢) - Lip(¥) and ay = Smt(V) 51 + Smt(€) Lip(V)Ss.

Proof. We denote 7 = [O;W] as the concatenation of parameters ©,W.  According
to Lemma 17, Lemma 18, we have

16, G:l=) = (s Bl < eallm =7/l
where oy = Lip(¢) Lip(¥). and
||V£(y’mgl|‘r) - Vg(y“gll‘r/)”F < a2||7— _ T/HF
where ay = (Smt(V)5; + Smt (¢ )sz( ) 62) The updation rule of gradient descent is:
Tt“ 7, —nVL ”( )

1’] "L

where

1 m
= E Zg(yra g’rlT")
m

ng 17 ZZ yryyr|7

are the empirical loss on training dataset .S, and S respectively. The difference between empirical
loss is:

1 - X X
‘CS”( ) ‘CS ( ) E Z ( (yrayr|7— ) (yrvyT‘T )) +£(yjﬂyj|7'ft) *e(yi’yih’t)
r=1,r#14,j
We derive the parameter difference:
It =4 = [ty ~ w9 Loty — 7 40 L, ()
< | = 7' lle +0llV(Ls,, (7°) = Lgi (7)) |7

U S X A A X
=l = 7'lle + |V | D (ﬁ(yr,yrlT;j) —f(ymyrITt)) + (s, Ujlt ) — €wir Gilre)
r=1
L

F

<ty =l | S asllrly — e+ (£ 51s) — i iil)]|| (Assumption 1)
= Ty m i I TN T

r=1

r#i,j F

U U ; ;
<l = 7'l + = (m = Dazllr; = 71l + = [ [ 331wt = sl |
< ||7'¢tJ — 7+ %(m _ 1)0&2”7';; | F + Lﬁ (Theorem 13)
m— 2n8

= (1 e ) I = 711+ 22

2
< (1)l — 7l + 222
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After T iterations, we obtain

_ QNﬂ

’ T-1 _ T 1” -
T 2n3
72” Z’L }

0 t1@
< (1+na2)" ||7; - I\F+Zl+n -

HT —TTHF (1+ nas) ‘

< (1+nag)[(1 + nag) |75 72 =

T
= > (4 ) 2

t=1

If the loss functlon lis o LlpSChltZ continuous, then for the loss function £ on any sample (z;, y;)

with parameter 77 = [0T; WT] 7L T = [@3;, ] we have:
[0, yis 7)) = @iy yis 7i5)| < |77 = 7]
T

O

C UNIFORM TRANSDUCTIVE STABILITY ON GENERAL MULTI-CLASS CSBM

We derive the uniform transductive stability of spectral GNNs defined in Eq. (1) on graphs generated
by G ~ ¢SBM (n, f,I1, Q). Then we discuss how the non-linear feature transformation function
affect the stability.

We first give a brief introduction to inequalities and lemmas used in this proof.

Lemma 19 (Jensen’s Inequality). Let X be an arbitrary random variable, and let f : R — R be a
convex function such that E [f(X)] is finite. Then f(E[f(X)]) < E[f(X)].

Lemma 20 (Markov’s Inequality). If X is a non-negative random variable, then for all a > 0,
E[X]

P(X >a)<
(Xza) <=

That is, the probability that X exceeds any given value a is no more than the expectation of X divided
by a.

Remark. Lemma 19, Lemma 20 are important inequalities about a variable and its expectation.
Details can be found in (Evans & Rosenthal, 2004).

Lemma 21 (Cauchy-Schwarz Inequality (Arfken et al., 2011)).
STURD
k=1 k=1

The square of the ¢2-norm of product of two vectors is smaller than the product of the square of
{5-norm of each vector.

Lemma 22 (Trace and Frobenius Norm). For any matrix A € R™*", the relation between its trance
and its Frobenius norm is
Tr(A) < V- | Alr.

Proof.

n n n n
= Za“ < Z lagi| < ,|n- Z la;i|?  (Lemma 21) = /n - Za?i =||4]lF
i=1 i=1 i=1 i=1
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Lemma 23 (Partial Derivatives). For spectral graph neural networks Y =
sof tmax(Ziio 0, AK XW), node feature matrix X € R™*/ and ground truth node label matrix

Y € R"¥C, the cross-entropy loss of sample (z;,v;) is £(9;,y:; 0, W) = — Z§:1 Y;.log (Yw)
then the partial derivative of ¢(§;,y;; ©, W) with respect to 0, and W is

N . A
G = X (Ve ) ()

c

and

(i, yi; 0, W) (o S
—_— - =Y, - Y; 0. A X
3qu ( ! q) k=0 ’ ip

Proof. We begin with
Z=3 0 AFXW, V= o
k=0 Zc’:l eZie

Then, we have

C
3 E(?)uy'w@vw) = —ZYViclog<Y;-c)
c=1

C

oy; D O
63}1'0 >

= }/ic 500’ - }A/ic’ ;
97, ( )

where d. is the Kronecker delta, which is 1 if ¢ = ¢’ and 0 otherwise.
(1) Gradient w.r.t. 6;,

We have 97,
5, ~ AW
By the chain rule of gradient, we have:
(G, yi: O.W) i Gy 0, W) (s~ Wie 0Zie
a0y, N pt af/u, e 0Z;er 00y

¢ vy o X -

= - g Yric 661:‘/_)/;6/ (ATXW
32 (S0 (o) (i)
c c

= - Y;lc . 5cc/ - Y/ic’ . AkXW
> i (32 (e i) (3w )
c c

-3 Vi ((AkXW) =) Vi (Ahxw) )
c;l . c’'=1

_ [ ik o ik

_ ;y (A XW)+2_:1Y (A XW)M

= (Yie = Yie) (A"XW

5 (5 n) (3xw),
(2) Gradient w.r.t. W
Based on the following
K n . f
ch = Z Gk Z(Ak)z] ZX]' WT‘Ca
k=0 j=1 r=1
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we have

kx
e = S0, = 30 (1)
where d.4 is the Kronecker delta, which is 1 if ¢ = g and 0 otherw1se. Then, by the chain rule of
gradient, we have:

ag(glv Yi; @a W) _ i E(’glv Yis @a W Z Azc aZic/
IMWpq Y 0Zicr 8qu

ip

c=1
(S ,_f/.,).<5, S0 (i), ))
= 2 )A/_ic = ic \ Ucc 1C c’'q — k ip
c c K
3 (3 (i) (s o (14) )
c=1 =1 o ip
C K c A K
S (X (),) - S (s S0 (1), ))
C K c ) K )
-y (acq S0, (Akx)”) i <5 S0 (AkX)w>
=3 () (s 300 (1),
=1 =0 ip
= ZC: ZK: Oxdcq (ch - Yw) (AkX>
c=1 k=0 p
K
= (Vi Yaa) (kz_; ekAkx> )

O

Theorem 8. Consider a spectral GNN V with polynomial order K trained using full-batch gradient
descent for T iterations with a learning rate 1 on a training dataset Sy, sampled from a graph
G ~ ¢SBM(n, f,I1,Q) with average node degree d < n. When n — oo and K < n, under
Assumptions 1, 2, and 4, for any node v;, i € [n|, and for a constant € € (0, 1), with probability at
least 1 — €, U satisfies y-uniform transductive stability, where v = 3 and

1
ﬁze[O(E[@i—yilli]HO(ﬁ e+ 2 1)

p»ts

|

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial
basis expanded on normalized graph matrix can be transformed into the format:

Z Amﬂ u +E[A§j]2y
1

t=

F

K
Y = softmax(z 0 AF X W) ©)
k=0
where A = D=2 AD ™% is the normalized graph adjacency matrix, D is the diagonal degree matrix.
We denotes Y € R™"*C as the ground truth node label matrix.

(1) Walk counting
According to Definition 7, we have

=2 1 aw

pePf (v,v')ep
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(2) Feature expectation

Since we have G ~ ¢SBM (n, f,11, @), node classes have a uniform prior y; ~ U (1, C). Thus,

n

E [XWL‘J‘ = % Z(ﬂ'yuw)j

u=1

u=1c=1 (10)

When k£ > 1, we have

when k& = 0, we have

1 &
= C (WCW)J’
c=1
Thus,
& Xl (meW) k=
E[(APXW);) = S 577 (11)
[ j] {Zszl E [Azs % ZCC=1(7TCW)J’ k = 1
(3) Gradient Norm.
The gradient norm can be relaxed as:
E(IVe(g: yi;0, W)l r] < ]EHIW(ﬁi,yi;G Wlle]
- ZE 12000y, ]y [ 2Rt BT,

A(Gi,yi;©,W)
B — and

According to Eq. (9) and Lemma 23, we get the partial derivatives
2(9:,y:;0,W)
0Wpg ’

Specially, when m = 1, we get the partial derivatives of empirical loss on training sample (z;, y;)

aé(yﬁ Yis 87 7 ) < ¥ Y, A 1%

— o0, Zo:l (’ - ) (AkX ) (43
0l Pi,yi;©, W) V. _v Z A

W, ( e iq) (k_oe"'AkX> i (14
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Thus, we have:

=20y, | e [15 () (), |

2

c

< f:; (E [(Y - Yicﬂ +E {(Akxw) D . (Lemma 28)

c=1
= 2 (B I3 - wl3] + B [1A5x W3] )

(15)

and

“ e “
a£ (2 17®7W a£ (2 Z7®7W
E ||| 2400 6, W) )@1] :ZZE[H@ y )&]

ow ot OMWpq
fc A K
-5 (1) (L) |
p=1g=1 k=0 ip

]) ,  (Lemma 28)

(16)

(4) Expectation [\\AﬁXWH%] and E [||A§;X||%}

For sparse graphs G and its adjacency matrix A, when d < n and k < n, A¥ | A% can be treated
as independent variables due to following reasons: (1) The overlap between walks of different lengths
is limited due to the sparsity; (2) there exist k-length walk between two nodes is rare event when
k < n and the joint occurrences of two rare event can be neglected. (3) when d < n, the variance of

A¥; can be neglected compared with (E [AF] )2. Thus, by Eq. (11), we have the following for the
case k > 1:
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C n
SN A ()., <xw>w]

=303 B[ALAL (), (xw), ]

=Y > B[4 B[4 Bl0ow), w),)

S B ILAIIDEITARCENeon

=1 s=1 t=1,t#s
I N[~ i
LSl 2] o

when k£ = 0:

Thus, we have
ey W (), 7y, + 5y,) Wee, b = 0
C n rt n 7
E |:HA£CXWH%:| = d% Zc:l Zs:l E [Aﬁs:| |:Zt_1,t;£s E [Aft:| ’ (WySW)c : (ﬂ—ytw)c (17)

+E [2155] WL (7], +5,) W] k> 1

Similarly, by Eq. (10), we have

S I () 7wy +2y,) Le k=0

e=11ic \Ty,
E [HAQ‘CX”%} = d% Zf;:l 22:1 E [Af‘z} |:Z?_1,t;és E [Aft} *Tys,q " Tye,q (18)
+E [Afs} I (], +5) Lq} k>1

By putting Eq. (17) into Eq. (15), Eq. (18) into Eq. (16), and Eq. (15), Eq. (16) into Eq. (12),
we have the following
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C
" 1 N
E (Ve 5i:0, W)l < 5 (E (15 = will] + D Wl (mymy, + 5y W)
c=1

n

oyl & 1~ w3 iZE %]

k=1

X B [A] W ), B 2] W (42 W |
t=1,t#s

f
+ {60 (f E (|19 — will3] + CZI:Z (”z—lr”y +3y) I:q)

c=q

+Z|9k {f E [I9: — vill %] + dszZE[ }

= c=1s5=1

=1,t#s

+1
o f2|ek|> (32 — i3]
_|_

E [Aft} Myeq Tyeg T B {Aﬂ : I:Z (7";%5 +3y.) Lq”

N

C
WI (ﬂ;ﬂ'yi + Zyi) W..+ |90\CZII (7‘(;7‘(% + Eyi) L.

c=1

+
[N
e

Q
i
—

n

> ye[i]

c=1s5=1

)=
S|~

2

>
Il
—

> B[] (r W), (m 9, + E[AL] W (7, +3,.) W
t=1,t#s

+§d§k|ok|zzxa[ ‘]

1 g=1 s=1

—

— 0
&=

[Aft} “Tyeq Tyq T E [Ak } : (WT Ty, + Zys) I~q}

K
:( +1+f2|9k|> [19: — will 7]

2
1 C
+§ZWI(7TTJT%+E ) Wee —|—|90|CZI ™, 7Ty1+2 ) Le

y
c=1 c=1
+édi;gﬂ3 [Afs} W, ZE[ } T, Ty, + E [A.s} (’/T;;’/Tys +3,.) | We
t;ﬁs
+kZiC;l|29:| ;: [ } Z]E[ }wy qutq+]E[A§s} 1T (] 7y, + 5,.)) g
t#s

We further simplify it and relax it under Assumption 4 that:
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E[nwwhyi;e,wnﬂs(K; ! fZB@> (19 — il12]

+1ﬂwaﬁ;%+zmM0+Bdnw@;%+2w

2
+§:dlki:ﬂﬂ[/~lﬁs] Tr i:E[;lft] W;?Tyt—FE[Ak}(W Ty, + Xy,)
k=1 =1

t£s

E Alft Tr (7r Wyt) +E [[lfs} Tr ((W;Wys + Eys)) (19)

+
M=
M:

=

‘H\H

K+1

< (2+fB@ (K +1 >]E 19: — vill%]

K n
1+CB
Y D E[AY]Tr E E [Ak] ) my, +E [4] (=) m, +5,)
k=1 j=1
tsﬁj

With Lemma 22, we rewrite it as
E[IV4(§i,yi;©,W)||p] < O (E [||29i —uilF]) + O (

|7TyTi7Tyz‘ + Zyz‘ ”F)

Z || ZE [Am W;Wyt +E [Afj] Eyllr
k=1j=1 t=1
(5) Concentration Bound.
By Jensen’s inequality ( Lemma 19), we have:
E[[VE(Gi, v 0, W) r]* < EllIVEGi, v 0, W) F]
ie.,
B[V (G, yi: €, W)||¢] < /E[IVE(Gr, 550, W) 3] @)
By Markov’s inequality ( Lemma 20), for a positive constant a, we have:
vg 1y JUy 6 W
BV v, W)l > a) < V00 O D] @
solving for a:
E TR

€
Therefore, combining Eq. (20), Eq. (21), Eq. (22), Eq. (23), with probability at least 1 — ¢, we
have

N 1 N
V6@, 550, W)llp < B = “E[IVEGi, y::©, W)llr]

When [|V{(3;,y:;0,W)|lr < S, according to Theorem 6, spectral GNNs on graphs G ~
c¢SBM (n, f,11, Q) has - uniform transductive stability, we rewrite it in big O format:

1
v =188 = [0 & [l — 13]) + O (I m, + S )

K n n
+0 Z ZE [Am | ZE [Ai'gt] ”;”yt +E [Afj] Ey,lle ) |
t=1

k=1j=1
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where r is the same as that in Theorem 6.

D GENERALIZATION ERROR BOUND OF SPECTRAL GNNS

We derive the generalization error bound of spectral GNNs based on uniform transductive stability.
Then we analyze how training sample number affect the generalization error bound.

We first introduce two lemmas for this proof.
Lemma 24 (Inequality for permutation (El-Yaniv & Pechyony, 2006)). Let Z be a random permuta-
tion vector. Let f(Z) be an (m, q)-symmetric permutation function satisﬁ/ing Wf(Z)—=f(Z7)] <p
foralli € IT,j € I Let Hy(n) £ 37 & and w(m, q) £ ¢ (Ha(m + q) — Ha(q)). Then

=1 4

P(/(2) - BLA2)] 2 ) < oo ()

Lemma 25 (Risk and uniform stability (El-Yaniv & Pechyony, 2006)). Give any training set Sy, and
test set D,,, we have:

E[Lp,(©,W)—Ls, (0,W)] =E[A(¢,4,1,%)] € I",j € Imt1,m+q

where A(i, j,i,1) is the loss change of sample (x;,y;) when model is trained on two datasets
exchange sample x;,y; in training dataset and sample (x;,y;) in testing dataset.

Theorem 9 (Generalization Error Bound). Let Ha(n) £ Y & and Q(m,n — m) £
(n —m)® (Hy(n) — Hy(n —m)). For e € (0,1), if a spectral GNN is y-uniform transductive
stability with probability 1 — ¢, then under Assumption 3, for § € (0, 1), with probability at least
(1 = 6)(1 — €), the generalization error Lp,(©, W) — Lg, (©, W) is upper-bounded by:

(27 + (_1 . ) (B, — 'y)) \/QQ(m,n —m)log % 3)

Proof. Let A(i, ], s,t) = £(9s, ys; @”, WT) 0(9s,ys; ©T,WT), where @U, WT are model pa-

rameters trained on dataset S for T iterations and ©7, W7 are model parameters tramed on dataset
Sm.

We first derive a bound on the permutation stability of function f(S,,,D,) = Lp, (0, W) —
L Sim (@, W)Z

I(£p,(0,W) = Ls, (6,W)) = (Lp, (07, W) = Ls, (67, W) || <

1 m—+q 1 1 m 1
- Z ||A('L,j,7“,7“)H+*||A(l,],2,])”+a Z HA(’LL%TJR)H+E”A(7”]7Ja7’)“
q r=m+41,r#j q r=1,r#i

(24)

where g =n —m.

According to Definition 5, Assumption 3 and Theorem 6, we have

T
Wi 127
max |[|[A®i, 4, 7)) <v=o Z(lJrnaQ)t 1#5

1<r<m-+gq P
and Eq. (24) is bounded by
I (£p,(0,W) = Ls,. (O, W)) - (ED (0, W) = Ls, (07, W) |

— 1
<R+ "y 4 B,
q q

—1 -1 1 1
(o2 ()
q m qg m

24
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Let 3 = <q;—1 + m_l) v+ (% + %) By. Then, the function f(S,,,D,) = Lp, (0, W) —

m

Ls. (0, W) has transductive stability 5. Apply Lemma 24 to f(S,,, D,,), equating the bound to &

€2
exp| ———— | =96
( 2[329(m,q))

€= B\/QQ(m,q) log%

Therefore, we obtain that the probability at least 1 — § that

£0,(6,W) ~ L5, (0,W) ~ E [£p, (67, W9) — L5, (67, W9)] < §/20(m, q)log 5 (25)

According to Lemma 25 and Theorem 6, for 1 <7 < m,m + 1 < j < n, we have
E[Lp, (07, WY) = Ls, (07, WY)] = E[A(,],,1)] <~ (26)

we get

Substitute Eq. (26) into Eq. (25), we get:

~ 1

‘We rewrite it as

+ ;) (B, - w) \/29<m,n — m)log 5

O

Lo, (0,W) = Ls, (0,W) <+ (27 N (

n—m

Lemma 10. Consider a spectral GNN trained with m samples as n — 0o. As the sample size m
increases, the generalization error bound decreases at the rate O(1/m) + O(+/2log(1/6)/m).

Proof. (1) —— is neglectable compared with -

As m < n, we have m = o(n).

o —m. 1 whenn — oo, we have 2 — 0 and —& — 1 as m = o(n). Therefore,
1
lim =0, lim 5% =0;
n—,oo N — Mm n—oo —_
m

which indicates

(2) Q(m,n — m) increase with m
Q(m,n —m) = (n—m)? (Ha(n) — Ha(n —m)) and Ha(k) = S5, L. So

Hy(n) — Hy(n—m) = > 5

As .
1 . 1 1
— =<
" nz_z:n;n—i-lZQ_m (n_m)z’
we have 1 1
m E<H2(n)—H2(n—m)<m =)
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Therefore,
2 Lo < 2
(n—m) m-— < (m,n—m) <(n—m)°-m

ie.,

)2

m(n 2m) < Q(m,n—m) <m

n

Thus,

=0+ (06 + (o2 + 1) (Bi-0(2)) ) yf200m 08
= 0() +BZO<>O<m1/2>\/@
_olL g, 2log(3)

Thus, the total effect on bound is: O (;L +O0(y/ 21055‘“)

Proposition 11. For a spectral GNN U5 with a non-linear feature transformation function fy (X
6 (XW), assume the gradient norm bound (3 in Theorem 9 is the same for ¥ and V5. If Lip(5)

and Smt(5) < 1, then v < =, where ~; is the stability of ;.

Proof. We consider spectral GNN W:

K
U(M,X)=0(>_ A*XW)
k=0

and spectral GNN W;:

U5 (M, X) = U(ZK: G (A’“XW))
k=0

(1) Lipschitz Constant:

For any two sets of parameters (01, W;) and (0O, Wa):

26
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W5 (01, W1) = Vs (02, W)

K K
= ||O'(Z 61k6(1¢~1kXW1)) - O‘(Z 92]€5'<AkXW2))H

=0 =0
K K _
< Lip(o)|| Y 016 (AP XW1) =~ 02,5 (A*XWo)|
1=0 =0

< Lip(o ||Z 01 — Oo1)5 (AR X W) +Ze% (AFXW)) — G(AR X))

=0
K
< Lip(o ||Z (01 — O20)5 (AR X)) + 1Y 02k (6 (A" XW7) — 5(AF X))
=0

< sz(a)(||@1 = Ozl - max 16(A*XW1) |2 + [|©2]|F - Lip(5) - max |A*X (W1 — Wa)l|2)
Since Lip(5) < 1, we have:

W5 (01, W) — W5 (02, Wa)|| < Lip(0)([01 — O2flr - Cr + [[O2]lr - W1 — Wl - C)
where C, C, are constants depending on X, A.

The right hand side is identical to the bound we get for ¥ without activation function. Therefore,
Lip(V5) < Lip(P).

(2) Smoothness Constant:

We first get partial derivatives of W:

o i
_ Xi ik
00, VU(iOHAXW) APXW
v X
G _ ~ (At C=( Ak
6, —VO'(E 0,6(A'XW)) - 6(A"XW)

Il
<

K2

Partial derivatives of W are:

v Koo Ko
= VU(Z 0; A XW) - Z 0;A'X

o, al _ K _ _
S = VJ(Z 0:5(A'XW)) - ;&VU(A XW)-A'X

The Lipschitz constant of these gradients determine the smoothness. For ¥, the additional 6 and
V& terms do not increase the Lipschitz constant of the gradient as Lip(6) < 1, Smt(5) < 1.

1) ¢ is 1-Lipschitz, so it doesn’t increase the difference between inputs. 2) V& is bounded by 1
(since Smt(&) < 1), so it doesn’t amplify the gradient.

Therefore, the Lipschitz constant of the gradient of ¥ is at most equal to that of U, i.e., :

Smt(Vsz) < Smt(¥)
(3) stability 5

According to Theorem 6, we have a3 Lip(¢) - Lip(¥) and oz = Smt(¥)p +
Smt(€) Lip(¥) 5. Thus, we have a smaller a5, oz as Lip(¥5) < Lip(¥) and ¥5) < Smit(P).
Then, we have 5 < r.

As (3 is the same for ¥ and ¥ and 5 = 75,y = Br, we have

Y& <y
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E UNIFORM TRANSDUCTIVE STABILITY ON CSBM

We show the uniform transductive stability of spectral GNNs of architecture in Eq. (1) on graphs
generated by G ~ ¢SBM (n, f, u,u, A\, d). Theorem 13 is a specialized form of Theorem 8. The
data model is specialized to be nodes of binary classes and Gaussian node features.

We first introduce lemmas that are closely related to calculating node features after graph convolu-
tion in Appendix E.1. Then we give the expectation and variance of element Af- in adjacency matrix
and the expectation and variance of node features after graph convolution in Appendix E.2. Based on
that, we derive the transductive stability of spectral GNNs on specialized data model in Appendix E.3.

E.1 LEMMAS FOR THEOREM 13

Lemma 26 (Poisson Limit Theorem (Durrett, 2019)). For each n, let X, ,,,1 < m < n be
independent random variables with P [ X, ;,, = 1] = ppom, P[Xo.m = 0] = 1 — Py . Suppose (1)
> Prm — A € (0,00) and (2) maxi<m<n Pnm — 0, if Sp = > _ Xy, then S, obeys
the Gaussian distribution Poisson(\).

Remark. The Poisson limit theorem is also know as law of rare events. It states that the total number
of events will follow a Poisson distribution if the probability of occurrence of an event is small in
every trail and it may occur in a large number of trials. More details can be found in (Durrett, 2019).

Lemma 27 (Binomial coefficient approximation). When n >> k, the binomial coefficient (Z) = %C

(1) = o

Proof.

n-n=1)-n=2)-...-(n—k+1)-(n—k)!
B k- (n—Ek)!
n-n—-1)-(n—=2)-...-(n—k+1)-(n—k)
B k! (n—k)!
n-n—-1)-(n—=2)-...-(n—k+1)
N k!
k
n
O
Lemma 28 (Expecatations of E [AB] ). For any two random variable A, B, we have the expectations
E[AB] < %E[/ﬁ] + %E[Bz}

Proof. Define a function f(t) for any real number ¢:

£(t) = E[(%A - %Bﬂ

Since this is an expectation of a squared term, we have f(¢) > 0 for any real ¢.
Expand f(t):

2 2
£(t) = B A% ~ tAB + - B%] = E[4%] ~ tE[AB] + _E[B
sett = 1, we have ) )
5]E[A?] —E[AB] + 51E[B2] >0
ie.,

E[AB] < —E[A?] + %E[BQ}

N |
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Lemma 29 (Monotonicity of g(\) = <(d + A\/ﬁ)k - (d - A\/Zi)k) ’ ). The function g(\) =
<<d+ A\/&)k —(a- A\/&)k>2,A € [-Vd, Vd|

* monotonously increases on \ € [0,/d);

* monotonously decreases on X € [—/d, 0];

* achieves the minimum value when \ = Q.

Proof. First, observe that g(\) is a symmetry function. Thus, we only need to analyze its behaviour
for A > 0 and then mirror the results for A < 0.

Define:

A=d+M\d, B=d-A\/d

So, the function becomes:
g(\) = (A* — B¥)?

Compute the derivative ¢’ (\):
g'(\) = 2kVd(AF — BF)(AF1 4+ B

When A > 0, A > B > 0, both (Ak —Bk) and (A’“’1 —|—Bk*1) are non-negative, thus, g’(\) > 0.
This indicates that g(\) monotonously increases on A € [0, v/d].

Due to the even symmetry of g()), g(\) monotonously decreases on A € [—+/d, 0].
O

Lemma 30 (Monotonicity of g(\) = 215:1 (d + )\\/g) (d )\\[) ). The function g(\) =
s (a+ A\/&)’H (4-AVd) A€ [-va, V]

« monotonously decreases on \ € [0,/d);

* monotonously increases on \ € [—/d, 0];

* achieves the maximum value at A = 0.

Proof. g(\) can be rewritten as

900 = (2d)* = (d+ A\/&)k —(a- A\/&)k

compute the first derivative of g(\) with respect to \:

g = kVd [(d - A\/E)’H - (d + A\/E)H]

* when A > 0, we have <d . )\\/&) < (d—|— )\\f) ie., g'(\) < 0, thus, g(A) is strictly
decreasing;

* when A < 0, we have (d - )\\/&) > (dJr )\\f) ie., ¢'(A) > 0, thus, g(\) is strictly
increasing;

* when A =0, ¢’(A) > 0, g()\) achieves the maximum value.
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E.2  EXPECTATION AND VARIANCE OF Af; AND (/I’“X W)

)

Theorem 31 (Expectation and variance of Afj). Given a graph generated by G ~

cSBM (n, f,p,u, \,d). Whenn — co,d < n,2 < k < k* < n, the k-length walk connect-
ing node v;,v; obeys Poisson distribution Poisson(p'), where

(k1)1 b1 min(2(a—1),2(k+1—a)) b s )
==zt 2=z O 2 Cin  “Cout |+ U Yi=Y;
; s=min(2,2(a—2),2(k+1—a))
p = (k—1)1 A min(2a—1,2(k—a)+1) e )
p# = TL'Qk_i Za:l o Zl Cin ° Cout | 5 if yi# Yj
s=

and expectation is E [Afj] = p/, variance is V [Ai—“j] =p.
When k = 1, the walk connecting node v;,v; obeys Bernoulli distribution Ber(p), where
:{p_—c;;", if yi=y;
pr =t if Yy F oy
and expectation is E [Afj] = p, variance is V [Afj} =p(1 —p).

Proof. According to Definition 7, we have
k
E[Aij] = Z H Quy’
pePf; (v,v')ep

When C = 2, we have

e ity =y
Quy = {Cn . 27
e iy £y
Casel: y; = y;and k > 2
For nodes v; and v; sharing the same class y;, we consider walks of length k that include a nodes
sharing the class y; and k£ + 1 — a nodes with different classes.

As we start at v; and end at v;, both with class y;, we need to choose a — 2 nodes from the same
cluster and & — a nodes from the other cluster.

The total number of ways to arrange these nodes in a walk is (k — 1)! as we have k — 1 positions
to fill. The probability of each edge depends on whether it’s connecting same-class or different-class
nodes.

Number of ways to choose the nodes:

* Choose a — 2 nodes from (5 — 2) nodes in the same cluster: (2:22),

. _ n . . n
Choose k — a + 1 nodes from % nodes in the other cluster: (, _2_ ).

Number of ways to arrange these nodes: (k — 1)!.

Consider the class change of the k-length walk, we denote s the number of walk of class change,
when 2a > k + 1, we have S5, = min(2,2(k + 1 — a)), Smaz = 2(k + 1 — a); when 2a < k + 1,
we have S5, = min(2,2(a — 2)), Symae = 2(a — 1

Therefore, the probability that there are walk of length k& and a nodes on walk sharing same class
with v; is:

Pr(vi, v | yi = y5) =
2(k+1—a)

(32) (o 2p) - (=10 > () (Cig“t)s> if 20> k+1;
s=min(2,2(k+1—a)
2(a—1)

E NIRRT (e SRR Co T e

s=min(2,2(a—2))
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The probability that there are walk of length £ connecting node v;, v; and y; = y; is:

pr(vi, vjly; = y5) =

k+1

0 (e R sy
a=2 a—2 k—a+l s=min(2,2(a—2)) " " (28)

2(k+1—a)

S (b e[S ey ey

’“‘*‘1 s=min(2,2(k+1—a))

When k < n, using Lemma 27, binomial coefficients

(D)5

n (ﬁ)k—a+1
2 _ _\2
(k—a-i—l) (k—a+1)!

(20 (b o= o
() (72)

2(a—1)

pr(vi, v5lys = y;) = %O(( )k ' (5_;)> 3 (c%)kfs.(c:t)s

s=min(2,2(a—2))

Then,

Then we can simplify Eq. (28) to

k+1 2(k+1—a)

+yo((5) " (52)): S5 () (e

k+1 s=min(2,2(k+1—a))

2(a—1)

k+1
k—s
:n lez (a—?) Z Cin " " Cout

s:min(?,Q(U«—2))

k+1 2(k+1—a)
k—s s
Qk 1 Z ( ) ' Z Cin " Cout

@ s=min(2,2(k+1—a))
k+1 min(2(a—1),2(k+1—a))
k—s s
Qk 1 Cin " Cout

s=min(2,2(a—2),2(k+1—a))
(29)

Case2: y; #y;jand k > 2
For node v;, v;, when they have different classes y; # y;, we count the walk number that the walk
has length % and there are a nodes of same class of y; and k£ + 1 — a nodes of different class of y;.

‘We need to choose a — 1 nodes from the same cluster as v; and £ — a nodes from the cluster of
vj as y; # Y-

The total number of ways to arrange these nodes in a walk is (k — 2)! as we have k — 2 positions
to fill.

Number of ways to choose the nodes:

* Choose a — 1 nodes from (5 — 1) nodes in the same cluster as v;: (%:11 );
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« Choose k — a nodes from (2 — 1) nodes in the same cluster as v;: ().

Number of ways to arrange these nodes: (k — 1)!.

Consider the class change of the k-length walk, we denote s the number of walk of class change,
when 2a > k + 1, we have Siin = 1, 8max = 2(k — a) + 1; when 2a < k + 1, we have
Smin = 1, Smae = 2a — 1.

Therefore, the probability that there are walk of length k£ and a nodes on walk sharing same class
with v; is

p? U’vaj|y7 7é yj

7_1 2_1 ) (k-1 ZQ(k a)+1(cn)k S.(Cout)), if 2a>k+1
7l1 *‘1(k—UL ST Ee)), i 2k

The probability that there are walk of length k connecting node v;, v; and y; # y; is

(i, v5Ys # yj) =

L0 (e (B )

—\a-1 k—a ’ ~\n n (30)
S (5-1) (51 SR e\ B (o)

R e (e e

n n_1ye—1 n n_1\k—a
When k < n, using Lemma 27, we have (3:11) =G (z- ;) = %

I CES VI
Then:
51y (31 _Goy G-t
<a—1>.<k—a>.(k_1)!_ (a—1)! . (k—a)! (k= 1)

S G A

We simplify Eq. (30) to

ki1 ae . s
Pr(vi, vjlyi # y;) = (g - 1>k71 ' (S _ 1) ' (2;1 (%)k ' (cjj:t> >

a=1
k 2(k—a)+1
n k-1 k-1 Cin k=s Cout \*
s ) (e e
DN CE I G R D SIS I
a=%-= s=
k41
1 < k—1 “ k—s s
n-2k_1(;o<(a—1)'<;cin “Cout (31)
k 2(k—a)+1
1 k-1 . .
+ n - 2k—1 Z (a _ 1) Z Cin Cout
a=% s=1
k min(2a—1,2(k—a)+1)
(k _ 1)' —s s
- n - 2k—1 Z 0 Cin Cout
a=1 s=1

Case3: k=1
When k = 1, AF = A,
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In the following, we prove that when a graph is sparse and k is small, Afj can be modeled with
Poisson Distribution.

(1) when a sparse graph contains a large number of nodes n — 0o, d < n, the potential k-length
walk has a low probability of existing; (2) when k < n, the dependence between two different
k-length walks is negligible; (3) the number of potential k-length walk is large n*~,n — oo. Thus,
according to Lemma 26, the k-length walk connecting node v;, v; obeys the Poisson distribution
Poisson(p') when k > 2 where

min(2(a—1),2(k+1—a))
_ (k=1 k+1 o) Z Ck—s .8 ) , if Yi =y,

P= = por-1 a=2 in out
;) s=min(2,2(a—2),2(k+1—a))
p = (k1) A min(2a—1,2(k—a)+1)
P# = it 2iq=10 21 Cin  Cout | » ity # vy,
5=

When k = 1, p(v;, v;) obeys the Bernoulli distribution Ber(p) that

pz{C:?"7 if yi=y,
%Tuta if yl#yj

O

Theorem 32 (Expectation and variance of (flkX W)i;). Given a graph generated by G ~
e¢SBM(n, f, p,u, \,d). The input node feature matrix is X and the normalized adjacency ma-

trix is A. The k-th power matrixfik is applied to obtain a new feature matrix A*XW, then the
expectation and the variance of (A* X W),; are as follows:

Fork =1:
- 1 /u
E [(AkXW)ZJ} = ﬁ E (Cin - Cout) yiqu

o =L (g St B (e W
k - _ Yin out \ [ H N2 g 112
V[(A X ),J} - (d ) <n(“ )+

n f
Fork > 2:
~ (k—1)! m
E [(A’“XW)U} = dk._izkgl() (i = Chur) YW
R E—1)! k41 min(2(a—1),2(k+1—a)) L
]S (o M

a=2 s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1) HW ||2
sYol X ] ) (Baryr BE)
a=1

s=1

Proof. Given that the node feature x; for node v;, generated by a conditional Stochastic Block Model
(cSBM) conditioned on w and node class y;, is distributed as:

. L i
Ty N(\/;yluaf>

For a linear transformation matrix W, the transformed node feature is given by:

T
W~ N (\/ﬁyZuVV, w W)
n f
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Feature after transformation with W and propagation with AF s

(AkXW) = ; AL (XW),y

noo W
= Afr <\/ﬁyTUW;' + = .J>
2 A (w4 =07

r=1 n

and
E {(A’“XW)A - \/g (2:]13 {Afr} y> u, (32)

We now derive the expectation E[Afj} of the adjacency matrix A raised to the power k.

1. Expectation E [([lkXW> } when k > 2

ij

Two clusters generated by cSBM are in equal size. According to Theorem 31, we have

E [(A’“XW)”] = \/g (iE 4% ] y) uW;

1 n
=gk % (Z (B [A% 1y = yr] +E [Afyi # ) yr> uW;
r=1

min(2(a—1),2(k+1—a))

1 " (k- 1)1R ..
SENCT0 (=t T B SE
a=2

r=1 s=min(2,2(a—2),2(k+1—a))

min(2a—1,2(k—a)+1)

(k — 1)' : k—s s
+ n. k-1 Z 0 Z Cin Cout | |YUr JuWy;
a=1

s=1

min(2(a—1),2(k+1—a))

k+1
(k’ — 1)' k—s s
R Qk—lO Z Z Cin " Cout

a=2 s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1) I
k—c
- Z Z Cin 'Cf;ut) \ o YW
a=1 E

(k—1)! k k H
= WO (Cin - cout) EyzUW]

]

2. Variance E [(AkXW) } when k& > 2
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The variance of new feature X ; given u, Y can be expressed as:

ZA \/gyruW;j + )]

- Tzn:_lV [ Ak (\/7 Yr \/V; )} , feature dimension independent
- | A | erW j ~ 2 GTW ] 2
X e o ] e e )]

(Vi) 48 - e[

i E :(A’C)fr: ( ) %
S et ((Bor) s ) (e 8] (s

\3
Il
—

Il
NE
—
S
=
=
S
N———
[\
_|_
<
ES
L‘
N———
VN
VN
=
Neag
el
5
N———
()
+
NE
oo
N——

ZQ;UMMVW?MVMm@wmuW@@]
L (E A= w)) + (B [l 2 ])?) - L
+%§([ |yz—yr]+V[AW|yz7éyr]).(’u(W]) ||Wf||2>

(33)

According to Theorem 31, when k > 2, we have

k 2 (k— 1)1 &= min(2(a—1),2(k+1-a)) ) 2
(B [AGly: = w])" = | Y o 3 et g

s=min(2,2(a—2),2(k+1—a))

9 (k o 1)| k min(2a—1,2(k—a)+1) 2
(]E [Afjhh 7 yj]) “\no2t Z 0 Z Cii:S “Cout

s=1




Under review as a conference paper at ICLR 2025

Two clusters generated by cSBM are in equal size. Then, Eq. (33) is written as:

v [(AxW)y| = =2 (@ [Ably = )" + (B[4l ly £ 1])7)

1 n
Ty

(VA% |y = v, ] + V [AE Jys £ 00]) - (Z W)+

f
2
k+1 min(2(a—1),2(k+1—a))
((k—1)H” h—s s
= a1 2.0 > Cin " Cout
a=2 s=min(2,2(a—2),2(k+1—a))

min(2a—1,2(k—a)+1) 2

. W13
(ol X ) ) S
a=1

s=1
k+1 min(2(a—1),2(k+1—a))
(k — 1)' k—s s
dgk- . Qk Z O Z Cin : Cout
a=2 s=min(2,2(a—2),2(k+1—a))

min(2a—1,2(k—a)+1)

: s s p 2 IWyll3
+ZO Z Cin  * Cout E(UW:J‘) JF?

a=1 s=1

min(2(a—1),2(k+1—a))

k+1
(k — 1)' k—s s
= d2k . 9k Z 0 Z Cin  * Cout

a=2 s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1)
O k—s s K 2 ||W:j||§
+Z Z Cin * Cout E(U’W]) +f y M= o0
a=1

s=1

3. Expectation and variance of ([lkX W) - whenk =1
ij

o <ZE [Airlyi = vl vi = > E[Airlyi # 2] yz> uW;
r=1 r=1

v
1 M(ncin N Cout ) w.
5T Yi T 5 Y ) uW
n \2 ny 2 n 4 /

when k = 1, we have

(E [A5ly: = y,])" = (%)2

(B [A% s # ;])°

I
/N
&

S g
g
N———
[\

Eq. (33) is written as:
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V[(AxW)y] = 52 (& [l = )" + (€ [ably #0))7) - 1
+ %% (V[AE |y = v + V [ALly: #yr]) - (“ ()% + |le|2>
B ()
rag (o (=) S (-5 - (G o+ R
= g (b ) Ll
+ 2 -1d2 (d - Cin Zcout) : (Z (uW;)* + W;'%)
- <d c ZCE‘”) : (Z (W) + 'ng'3> RN,

E.3 UNIFORM TRANSDUCTIVE STABILITY ON G ~ ¢SBM (n, f, u, u, A, d)

We first give a lemma about the order of £ [Ai?j] , which will be used in proof of Theorem 13.

Lemma 33 (order of E [A};

E!-d”

). The order of E [Af'j] is O (

7

Proof. According to Theorem 31, Afj ly; = y; and Afj ly; # y; obeys different Poisson distributions.

As
¢ chur = O (d¥),
then,
k;+1 min(2(a—1),2(k+1—a))
P= Qk 1 C?r:s . Czut
s=min(2,2(a—2),2(k+1—a))
y b+l min(2(a—1),2(k+1—a))
k
L ZO d
s=min(2,2(a—2),2(k+1—a))
) k1
k
s Z O (k-d)
(’f — D' ek
T2k 7O (k2 - d")
k! - dk
o)

similarly, we have p+ = O

According to Theorem
eSBM(n, f, p,u, A, d).

n -2k

k!-d*
n-2k

(%5)

8, we prove Theorem 13 that a specific case that when graph G ~

O

Theorem 13. Consider a spectral GNN V parameterized by ©, W trained using full-batch gradient
descent for T iterations with a learning rate 1 on a training dataset containing m samples drawn
Sfrom nodes on a graph G ~ ¢SBM (n, f, u,u, \,d). Whenn — oo, k < n, and d < n, under
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Assumptions 1, 2, and 4, for any node v; on the graph, with probability at least 1 — € for a constant
€ (0,1), W satisfies ~y-uniform transductive stability, where v = r 3 and

5=~ [0 ® 5~ wllZ)) + O <i (= (b 1y =)’ +E[(4h |y # M})) }

k=2

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial
basis expanded on normalized graph matrix can be transformed into the format:

K
Y = softmam(z kalkXW) (34)
k=0

where A = D=2 AD™ 2 is the normalized graph adjacency matrix, D is the diagonal degree matrix.
We denotes Y € R™*C as the ground truth node label matrix.

When graph G ~ ¢cSBM (n, f, i1, u, A, d), the node feature
x; ~ N(yiv/ p/nu, 1y / f)
Denote B = XW and S = BB, then we have

W 2
B ~ N (yi \/EUW:]{H ”;'F)

when ¢ # j, By, Bji, are independent, then

ZE kBkJ

I
MQi
<

M 2
y?% (uWik)

ol
Il
_

et PV At
zyjn”u ”F
when ¢ = j:
W%
f

U
E[Si] = EHUW”% +

‘When node number n — oo, we have

n

I
> E[S)= erl\uWIIF+2y;( yj)glluWH%:O

q=1,q#j
Z E [Af;A7,] E[S]
J=1q=1,q#j
_ %pgzguuWII%; (vi = yj = ¥q)
:Pk Phrt — —||uWHFv (yi =yj # Yq)
+ Zpk;epk: - EHUWH%; (Yi # Y5 = Yq) 2
+ "Z?pfﬁégnuwllfp; (Yi =Yg # ¥j)
- “; W3- (phe — 2piem0- + p)
- “; LW F - (pu- = prs)’
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According to Theorem 31, when k > 2, Afj ~ Poisson(p),), then

E [HAQF;XWH%] _ R | At xw (xw)T (Aﬁ)T]

_E|its (A;sﬂ

n

—E Zli(AkAk )

ZZ AkAlc

q=1j=1

dzk ZZE (A% AL E[S)q]

q=1j=1

- LR[BS Bl Els

1n 2 1 n 2
= JE g [(Afg) |y = y]} E[Sil+ 2r5 [(Afg) | yi # y]} E 551
1 n?

H 2 2
+ g IR (k= = prz)” (B (39)

1 2 2 H 2 HWH%
= g (e ot g+ ) (B I

1 n% pu 2
+ = EHUWH% (Pr=— Prz)

d2’c 4
AW
e (R R T P,

Whete Gk = ph_ + phe + P + Pk
When k = 1, A;; ~ Ber(p), then

|W||2F>

- 1n
B (LA XWIE] = 25 02 450 = o) 4t st = ) (v + I

4?2
n pon IWIE
=~ (p- B \uw

35 0ot (Ll + 1

1 n2d W3
— a5 (i + 121

d22n f

L(p 2 HW”%«"
== (Ejjuw
3 (Enowi+ I

Substitute it into Eq. (15), we have

|8€(yza Yi; 9 W) |
00, N

E
3 (B (19— ili3] + (“||uW||2+” £)). it k=0
2
3 (E (19— il + (“||uW|\F+“WF)), it k=1
2
3 (E 19 - all2] + zd%ck(unuwnF PR ) W 3 - (i = pie)”) i 22
(36)

39



Under review as a conference paper at ICLR 2025

similarly, we have

Ellu% +1, if k=0
E[IAEXIE) = § & (“lul? +1). it k=1
e G (llule + 1) + e ul} - (prz — pre)”, i k22

Substitute it into Eq. (16), we have

ag Aia u@vW ~
B 1202 | = ol (78 (1 - i) + € (Sl +1))

N 1 /u
+wu(ﬁﬁmm—wﬁ4+cd@ﬂu%+0>

K
1 N np
+ Z dﬁ|9k| (f E (19 — vl 7] + ngk Gk (pllullz +1) + 1a2k [ull% - (pr= — Pk;«é)z)
k=2
(37

Substitute Eq. (36), Eq. (37) into Eq. (12), we have

8€ 15 17@ w ol Aia La@aW
[ e P [ e

E
[va(yuyza@ W HF Z oW

1 w
- 3 (Bl - w3+ (||wa+” JF))

1 1u w2
+3 (Bl - wi2) + 3 (Lpawiz + )

1 ) ) 1 s W% (38)
+kZ:2§ ]E[Hyz'—yz‘HF]"'WCk plluW | + 7 ko” uWl[3 - &7
+ 100l (£ E [ll3: = sl] + € (Ellull} + 1))
i o l2] + O (Pl
102 (7B 151 - wll) + €5 (Llull +1)

K
1 . 1
+ Z dﬁ|9k\ (f E |19 — will 7] + CW@ (ullullz +1) + 4d2k 2 17 - Ck)
k=2

where (k. = pj_ + pr=+ pis + Prz,s Ck = Pr=— Prz-
According to Lemma 33, when n — oo, we have

(@) = nlo - o
(o(8)

—0
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N2
Thus, n (Ck) can be neglected. Thus, we rewrite Eq. (38) as

E V(G yi;©, W)|r] =

We write it in big O format:

_l_

ol(Gi, yi;©, W ol(Ji,yi;©, W
E {(89)”61} E [H(aW)Hh

=
( N9 — willZ] + (guW||§+”V‘;”%)>
i( (15: = will ] + 1(wa4%+?ﬂ?))

+Z s (200wl + e (o + L3 )
+ 160l (£ E [ll3: = ll3] + C (Elulif + 1))

. 1
100 (1B (19— 0] + O s (Xl +1))

Mw

l\D\»—l?V

+

K
1 . 1
+ Z di|6k| (f “E[llg: — will %] + C’Qd—%(k (pllull% + 1)>
k=2

1 . " B2
<3 (Bl -tz + (L st + 22 )

\V]

1 1 B2, (39)
+2(Emm—w%@+d(||FBw+(f))

By,
+Z < [119: — will 7] + QkoCk(MWHFBW—i—nf))
+&4fﬂmm—w%h«%$w@+ﬁ)

+Bo (1B [l - wl] + €5 (Ll +1))
+§:d%39<f1EH% ]+ C e Gl + 1) )

<K+1 +2fB®+ZdJ;kB@>E[”Qi_yiH%]

k=2

(1 ) (( + C’B@) gHuHF + ]j; + CB@>

K n 2
#3  ((ol+ 5 ) 2 Gl 1) 52

k=2

K
B 194035, 0, ] = O (5 [Js — wll2]) + 0 (z <k>
k=2

2 ) 2
where ¢, = E [(A?j | yi = y;) } +E {(Afj | yi # vj) }
After get the upper bound of the norm of gradient, according to Theorem 6, we have the uniform
transductive stability of spectral GNNs on graphs G ~ ¢cSBM (n, f, 1, u, A, d) of two classes C' = 2

in big O format that
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y=rB;f = % O (E[Ig: —will]) +0 <§: (B [(A% 1 3 = )] + B [ (4 s 2 yj)QD> ]

k=2

where 7 is the same as that in Theorem 6.
O

F RELATION BETWEEN STABILITY OF SPECTRAL GNNS, NODE CLASS
DISTRIBUTION AND ARCHITECTURE OF SPECTRAL GNNS

In this section, we fist derive the relation between parameter A in cSBM and the edge homophilic
ratio on graph. Then, we first study how the expected prediction error E [[|g; — y;[|%] and (), changes
with A, K. Next, we discuss how A\, K affect the uniform transductive stability and generalization of
spectral GNNS.

Proposition 12. For a graph G ~ ¢cSBM (n, u,u, A, d), the expected edge homophily ratio is:
d+Ad
d b

Cin
E[Hedge] = 27 ]E[Hedge] = ﬁnct (4)

Proof. As graphs generated with cSBM contains two clusters of same size. Thus, there are 7 nodes
having same class.

The expected number of edges between nodes of the same class is:

2\ cin cin(n—2
IE[E‘same] = <TQL> 7 = <8 )

The expected number of edges between nodes of different class is:

n n Cou 1 Cout™
Bllanl =55 =0 37 3

Thus, the expectation of H,g4g. is the expected number of edges between nodes with the same
class to the total expected number of edges that
E [Hedge] = E[Esame] + IE[l?diff}
Cin(n—2)

(d+\Wd)(n —2)
(d+ M\Wd)(n —2) + (d— \Wd)n

d+ \d
= —.n
2d

— OQ.

We also get the expectation between the H. 44 and c;y,, Coyy that

E [Hedge} = E[Esame] + IE[L?diff]

cin(n—2)
-8
cin(n—2) CoutM
8 + 8
cin(n —2)
Cin(n - 2) + Cout™
Cin
= —— N — 0.
Cin + Cout
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Theorem 14 (E [||QZ — yl||%] and A\, K). Given a graph G ~ ¢SBM (n, p,u, A, d) and a spectral
GNN of order K, E[||§; — ;|| %] for any node v; satisfies the following: it increases with A € [—/d, 0),

decreases with \ € [0,~/d), and reaches its maximum at \ = 0; it increases with K if 2522 Hk%
—1)! .
grows more slowly than Z?:z 0? (kal)' as K increases.

Proof. Denote
K

Z = Z 0, AFXW; Y = softmax (%)
k=0
Then, for any node v; with truth class y;, we denote its prediction as
§; = softmax(Z;.)
For the binary classification C' = 2, for a node with truth class y; = [1, 0], the predicted class

Ui = [gl,gg] = softmax([Zﬂ, Z12]) = [U(Zz - Zi2)7 1- G(Zi - Z; )]

where o(z) = H-% is the sigmoid function.
We denote z; = Z;1 — Z;2, then
i = [o(2i),1 = o(z)]
Thus,
15: = yill T = (o(z) = )* + (1 = o(2))* = 2(1 = o(2))?
and

E [ng - yz||2F] =2E [(1 - U(Zi))z}

As node feature x; ~ N (y;+/p1/nu, Ir/ f), any linear combination of Gaussian variable is still
Gaussian variable, then

where
bz, =Bz =E[Zi1 — Zo) =E[Zin] — E[Z;s]

AS Cin = d + M\Wd, cour = d — A\d, A € [—V/d,\/d], we have

ci'cn - clgut = O(dk)a ci'cn = O(dk)7 Clgut = O(dk) (40)

Asu ~ L£(0,1f),d < f and ©, W are bounded according to Assumption 4, we analyze dominant
terms in /1., and w? .

According to Theorem 32, we have the expectation of (A* X W);;, then

e = E[Zia] —E[Zin] = 60\/5%”(‘/[/:1 — W)

1
015 % (Cin — Cout) Yyiu (W — W)
. (1)
k—1)! 1
+ Z 0,(%0 (Cfn — Cﬁut) \/;yzu (Wl - WZ)
k=2

K
=0 (Z 9k(";,j_})!> (Eq. (40))
k=2

As  AF X are independent and  columns of X are  independent,
(ZkK:O GkAkX ) , (Zszo kalkX ) are independent. According to Theorem 32, we
j t

%] %

43



Under review as a conference paper at ICLR 2025

have the variance of (A* X);;. Then we have

w2 =V ([Zi1 — Z;s)]

(fj 9kA’fX> (Wi — sz)l

=V

= Z (Wi — Wj2)2 i rAY [(flkX) 4 ] (independent)

)

Jj=1 k=0

! 2 [ 1 Gt S\ (1, IWBY @2
=D (Wi =Wpa)* > 0F| o d— A\ W)+

j=1 k=0

(k—1)! (&2 min(2(a—1),2(k+1-a))

! o
+ 42k . ok (ZO Z s
a=2

s=min(2,2(a—2),2(k+1—a))

k min(2a—1,2(k—a)+1)

L W
+QZ:10 2 C:;cn, * Cout ) (Z (uW:j)Q n |fj||2)]
K (k1)
:O< A IR
k=2

L E (|9 — yill3] and A.
According to Lemma 29 and Lemma 30, we know that

* 1, monotonously decreases and wfi monotonously increases on A € [—/d, 0];
* 1, monotonously increases and wg monotonously decreases on \ € [0, v/dJ;

* /i, achieves the minimum value and wi achieves the maximum value when A = 0.

o 1 _(2—142zi)2
E[(1—0(2:))% = / (bo(zﬁ)”me M dz (43)

the integral decreases with i, and wgi, thus,

* E[(1 — o(z;))?] increases on \ € [—/d, 0];
* E[(1 — 0(z;))?] decreases on \ € [0,/d];

* E[(1 — 0(2;))?] achieves the maximum value when A = 0.

E [||§; — yil|%] has the same trend with E [(1 — o(2;))?].
2.E [”@z - yt”%] and K.

we rewrite variable z that
Z =z T+ W2Y,

where y ~ N(0, 1).
Thus, Eq. (43) is rewritten as

B0 -o()] = [ (o ue e e Ty
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(1) 5, increases faster than wfi when K increases

In this case, z will be dominated by ., , thus, we have

E1-0()] = [ (-0 ey
= (1= 0 (1)
<0.25

(2) ., increases slower than wfi when K increases

In this case, z will be dominated by w,,y, thus, we have

0 s}
1 2 1 v?
:/ (1-0) e*%dy+/ (1-1)" —=e 7dy
0

o 2

=0.5

Bl1-0()] = [ (1 -alon) Z=e Fdy

From above analysis, we know that when ., increases slower than wi when K increases,
E [(1 — o(2))?] tends to have a larger value towards 0.5 compared with the case that /1., increases
faster than wi when K increases with corresponding values less or equal to 0.25.

In brief, when 4., increases slower than w? when K increases, E [||§; — y;||%] increases with
K.
(k=1)!

From Eq. (41), Eq. (42) we know the the dominant term of p, is Z oo Ok 2 = 1 , the dominant

term of w? is Zk:2 9,% 7 D' Thus, E 119 — yill%] increases with K if Zk:2 0y, 2,:,11)! grows

slower than Y ¢, 62 (k;kl)! )

O

Theorem 15 ((;, and A, K). Given a graph G ~ ¢SBM (n, u,u, A, d) and a spectral GNN of order

K, (i, has the following properties: (1) it increases with A € [—/d, 0], decreases with X € [0,/d),
and achieves its maximum value at \ = 0; (2) it increases with k as k grows, for k € [0, K].

Proof. The proof of this theorem is incorporated into the proof of Proposition 16. See the proof
of Proposition 16 for details. O

Proposition 16. For a fixed K, vy-uniform transductive stability and generalization error bound
strictly inc rease as \ moves from —/d to 0, and decreases as A moves from 0 to \/d. For a fixed )\, if

Zk 9 Gk ST 1 grows more slowly than Zk 9 92 (k 1) as K increases, then ~-uniform transductive
stability and generalization error bound increase Wzth K.

Proof. According to Theorem 6 and Theorem 13, the uniform stability of spectral GNNs depends on
the upper bound of the gradient norm /3, and

K+1 K
B = ( ;_ +2fBe + Z djzck Be) E [19: — vl 7]
P

2 2
<1 + d) ((B + CB@> %||u||2F + B;—‘}V + CB@)
B? Be
+Z g (sl + 7 ) 220 Gl + 1) 22 )

where ¢, = p2 + p= + pZ% + px, and p— and p are the parameters of distribution in Theorem 31.
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Denote

k=2

K+1 Ky
Yy = <2+2fB@—|-Zd2kB@>;

K
Ck n\ B} Be
v =2 g ((pllellf + % ) =5+ Galual® + 1) 557 )
k=2

We show that the terms E [||y1 -y ||%] , %y, and ¥y can all be affected by A, K.

(1) Term E [||§; — y:l|%]

According to Theorem 14, the expected prediction error E [Hyl — il %] strictly increases
with A € [—+/d, 0] and decreases with A € [0, v/d]. In addition, it increases with K when
S, 0 &Y erows slower than 34, 62 $2 1!

(2) Term 7,

As i, = (% + Zszo |0k | f) which does not contain A, the class distribution has no
effect on 1), It also increases with order K.

(3) Terms v,
1 is closely related with ¢, = p2 + p— + pi + p+. According to Theorem 31, we have

Ck = P2+ p=+ p% + pz
2

(k 1)' k+1 min(2(a—1),2(k+1—a))
) k—s s
B n - 2k—1 Z 0 Z Cin " Cout
a=2 s=min(2,2(a—2),2(k+1—a))
k+1 min(2(a—1),2(k+1—a))
(k — 1)' —s s
+ n - 2k:71 o Z C?n * Cout
a=2 s=min(2,2(a—2),2(k+1—a))
(k 1>‘ k min(2a—1,2(k—a)+1) 2
— : k—s s
+ n - 2k—1 Z o Z Cin " Cout
a=1 s=1
k min(2a—1,2(k—a)+1)
(k - 1)' k—s s
+ Tl~2k_1 ZO Z Cin " Cout
a=1 s=1

As ¢;n = d + M\Wd and ¢y = d — \Wd, all four terms in p are in the form of g(\) =
k—s s
25:1 (d + A\/&) : (d — A\/&) . According to Lemma 30, all functions in the form

of g(\) strictly increase on A € [—+/d, 0] and decreases on A € [0, v/d]. Since all the other

elements in 1)1 except (i, are positive, 17 strictly increases on A € [—\/&, 0] and decreases
on \ € [0,/d].

When £ increases, j, contains more items and thus v; increases with order K.
According to Proposition 12, we have
A€ [0,Vd] & Hegge € [0.5,1] and A € [—V/d, 0] < Hegge € [0,0.5].

According to Theorem 9, any factors affecting ~y affect the generalization error bound. Thus, we
conclude the following cases:

(a) uniform transductive stability 7, generalization error bound and A
From the above analysis, we know that ¢,, is not affected by \, and terms E [||§; — y;[|%].
11, and 1y strictly increase on A € [—+/d, 0] and decrease on A € [0, v/d]. This shows that
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the stability decreases and the generalization error bound increases when H.qge € (0, 0.5].

The stability increases and the generalization error bound decreases when H.gge € [0,5,1).

Spectral GNNs are stable and generalize well on strong homophilic and heterophilic graphs.
(b) uniform transductive stability ~y, generalization error bound, and K

From the above analysis, we know that terms ¢,,,1, increase with k. Thus,

when Zf:z O (g,:_ll) ! grows slower than Zszz 9%%, the expected prediction error
E [[|§: — y:||%] increases with K and the uniform transductive stability ~ also increases
with K. Under this condition, the stability becomes worse and generalization error bound

thus increases when K increase.

G DETAILS OF EXPERIMENTS

G.1 DATASETS

The statistical properties of real-world datasets, including the number of nodes, edges, feature
dimensions, node classes, and edge homophily ratios, are summarized in Table 2 and Table 3. We
use the directed and cleaned versions of the Chameleon and Squirrel datasets provided by (Platonov
et al., 2023), where repeated nodes have been removed.

Statistics Texas Wisconsin Cornell Actor Chameleon Squirrel Citeseer Pubmed Cora
# Nodes 183 251 183 7,600 890 2,223 3,327 19,717 2,708
# Edges 295 466 295 26,752 27,168 131,436 4,676 44327 5,278
# Features 1,703 1,703 1,703 932 2,325 2,089 3,703 500 1,433
# Classes 5 5 5 5 5 6 5 7
Edge Homophily ~ 0.11 0.21 0.22 0.24 0.22 0.74 0.8 0.81

Table 2: Statistics of real-world datasets.

Statistics OGBN-Arxiv OGBN-Products
# Nodes 169,343 2,449,029
# Edges 2,315,598 61,859,140
# Features 128 100
# Classes 40 47
Edge Homophily 0.65 0.81

Table 3: Statistics of OGBN datasets.

G.2 SPECTRAL GNNSs

We detail the spectral GNNs used in our experiments below. For a graph with adjacency matrix A,
degree matrix D, and identity matrix I, we define the following matrices: the normalized Laplacian

matrix L = [ — D~Y/24AD~1/2, the shifted normalized Laplacian matrix L=-D124Ap1/2,
the normalized adjacency matrix A = D~/2AD~'/2, and the normalized adjacency matrix with
self-loops A’ = (D + I)"Y2(A+1)(D + I)~1/2.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral
filter:

K
Y =" 0Ti(L) fw (X)
k=0
where X is the raw feature matrix, © = [0y, 01, . .., 0] is the graph convolution parameter, W is the

feature transformation parameter and fy (X) is usually a 2-layer MLP. T (L) is the k-th Chebyshev

47



Under review as a conference paper at ICLR 2025

basis expanded on the shifted normalized graph Laplacian matrix L and is recursively calculated:

To(L) =1
T(L)=1L
Tw(L) = 20Ty (L) — Tj—o(L)

ChebNetlII (He et al., 2022): The model is formulated as

. 9 K K B
k=0 j=0

where X is the input feature matrix, W is the feature transformation parameter, fy (X) is usually a
2-layer MLP, T}(-) is the k-th Chebyshev basis expanded on -, x; = cos (( + 1/2) 7/ (K + 1)) is
the j-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree
K +1, and §; is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized
with Chebyshev nodes and learnable parameters ;.

JacobiConv (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:
K ~
Y = Z 0T (A) fw (X),
k=0

where X is the input feature matrix, © = [0, 01, ..., 0] is the graph convolution parameter, W is
the feature transformation parameter and fy (X) is usually a 2-layer MLP. T} (A) is the Jacobi

basis on normalized graph adjacency matrix A and is recursively calculated as

TP (A) =1
- 1-9b b+2 -
A = ST A

T (A) = AT (A) + v T2 (A) + ATt (A)

h _ (2k+a+b)(2k+a+b—1) _; _ (2k+a+b—1)(a®—b?) n o (k+1=1)(k+b—1)(2k+a+b)
Where v, = 2k(k+atb) ' Tk = 2k(ktatd)(2ktatb—2) Tk = = k(ktatd)(ktatb—2)
and b are hyper-parameters. Usually, grid search is used to find the optimal @ and b values.

GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

K
Y =Y 0,A% fi (X)
k=0

where X is the input feature matrix, © = [0y, 01, ..., 0] is the graph convolution parameter, W

is the feature transformation parameter and fy (X) is usually a 2-layer MLP. A’ is the normalized
adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:
K
o 1 (K . R
V=) O 2I — L)X FLF fr (X
2 k2K<k>( ) Jw(X)

where X is the input feature matrix, © = [0y, 01, ..., 0k] is the graph convolution parameter, W

is the feature transformation parameter and fyy (X) is usually a 2-layer MLP. L is the normalized
Laplacian matrix.
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G.3 HYPER-PARAMETER SETTINGS

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB of memory.

We employ a two-layer Multi-Layer Perceptron (MLP) with a hidden layer size of 64 for the
feature transformation function fyy, using ReLU as the activation function across all spectral GNN
models.

Following (Tang & Liu, 2023a; Cong et al., 2021), the dropout rate and weight decay are set to
0.0. The Adam optimizer is used for optimization. Each experiment runs for a maximum of 300
iterations and is repeated 10 times to report the mean and variance of the results. A grid search is
conducted to determine the best learning rate from {0.05,0.01,0.001}.

G.4 DETAILED EXPERIMENTAL RESULTS

Heage 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ChebNet 94.92+024  86.08+043 81.09+063 75.112073 72.69+066 74.66x0.65 79.62+078  86.03+06  94.64+039
Acc Gap 5.08+024  13.92+041 18.91x057 24.89+072 27.3x062  25.34#068 20.38+074 13.97+061  5.36+041
Loss Gap 0.64+007  3.15%0.14 3.72+0.2 5.42+0.24 5.88+0.5 6.01+0.27 4.62+03 3.04+018  0.98+0.06

ChebNetIl | 92.19+051 85.03+058 79.83+043 77.55%064 77.34+054  77.7+057 78224073 83.68+041 91.43+048
Acc Gap 7.81x047 14972058 20.17x041 22.45%066 22.66+049 22.3x057 21.77+071 16.32+044  8.57%047
Loss Gap 0.660.07 1.84+0.11 3.55+0.21 4.77+026  4.86x0.13  4.64+021 4.23+033  2.14x017  0.72+005

JacobiConv \ 89.25+335  77.23#451  77.19+066  77.0x055  79.06+061  80.2+057  84.64+039 90.48+024 96.91+024

Acc Gap 10.714286  22.73+436  22.8+067  23.04054  20.94+0.61 19.8+06  15.36+041  9.51+024  3.09+0.25
Loss Gap 0.69+0.26 1.58+045  4.08%0.21 4.33+014  5.36+033 1.95+0.13 1.58+013  0.99+006  0.16x0.01
GPRGNN | 90.33+0.57 87.06+0.64 81.71x041 77.032047 77.232065 79.52+059 82.72+052 89.25+05  96.45+0.18
Acc Gap 9.66+054  12.94+067 18.29+042 22.96+049 22.77+064 20.48+06 17.27+052 10.75%054  3.55%02
Loss Gap 1.42+008  2.21x0.14 3.27+02 4.72+019  5.17+0.13 4.7+0.25 3.7+047 2.4+0.32 1.05%0.11
BernNet 87.44+05 82924067  79.3x044  77.69+053 77.97+054 77.49+072 76.58+079  79.73x13  85.68+1.05
Acc Gap 12.55+05  17.08+076  20.7+044  22.31#054 22.03#055 22.51#064 23.41x08 20.27+139 14.32+1.06
Loss Gap 1.2+0.06 2.45%0.21 3.69+0.16  4.77x024  4.72+0.15 4.7+0.17 4.35+035  2.92+031 1.36+0.14

Table 4: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic datasets with
edge homophilic ratio Hegg4e € [0.1,0.9]. Small accuracy and loss gaps imply good generalization
capability.

Datasets

Texas Wisconsin Actor Squirrel Chameleon  Cornell Citeseer Pubmed Cora
ChebNet | 40.82+725 52.23+377  26.63x053  30.08+1.14  33.94#158  44.88+619 64.16x082 84.742037 74.95%0.96

Acc Gap 59.18+6.94  47.77+392  73.26+054  69.92+128  66.06+152  55.12+595 35.82+075 15.25+037 25.05+0.92
Loss Gap 5.91+0.66 5.77+087  21.64+08  35.68+233  36.17+304  6.57+082  4.68+0.2 1.44+0.06 3.9+029

ChebNetll ‘77.55i5.71 74.38+3.08 27.94+036  28.1+1.82 38.45+163  73.69+5.12  65.85052  84.7+03 74.0x0.8

Acc Gap 224552 25.62+331 7194033  71.83+1.77  61.47x153  2631xs50 34.12+048 15.16+028  26.0x0.75
Loss Gap 1.1%0.27 1.39+032  20.16+0.76  27.56+2.88 19.33+1.68 1.7%03 2.660.09 1.132000  2.14+0.09

JacobiConv \ 78.06+531  77.62+292  27.89+063  26.78+1.28 32.2+2.08 80.41+398 73.56x064 86.33+047 84.31x049

21.94+541 22384285 71.97+066 50.85+11.88  63.82+946  19.59+418 26.41x065 10.87+145  15.69%05
0.94+0.26 1.19+022  31.67+086 32.75+11.57  38.77+7.16 0.91%0.16 2.1620.06 0.510.14 1.2840.09

GPRGNN ‘46.84i6.22 72.08+323  26.29+065 29.91%1.19 34.28+158  61.33%6.12  72.89+062 85.42+04  84.37x051

Acc Gap 53.16x6.12  27.92+292  71.52+482  70.09+1.09  65.72+169  38.67+643 27.08+067 14.58+037 15.63%0.54
Loss Gap 3.35+0.83 1.6+031 29.22+269  35.34+558  29.88+2.22 2.240.53 3.32+0.16 1.24+0.09 1.54+0.1

Acc Gap
Loss Gap

BernNet ‘75.92i5.31 81.85+223  27.28+076  33.42+1.14 33.72+138  81.43+346 67.17+059 84.82+025 73.39+0.87

Acc Gap 24.08+s5.41  18.15%216  72.61+071  66.58+1.11  66.28+133  18.57+357  32.8+057  14.95+045 26.61087
Loss Gap 1.24+031 0.87+026  24.68+071 28.17+147  27.83%175 1.06+0.18  2.66£0.09 1.13x0.13 2.18+0.08

Table 5: Testing accuracy, accuracy gap, loss gap of spectral GNNs on real world datasets with edge
homophilic ratio Heqge € [0.11,0.81]. Small accuracy and loss gaps imply good generalization
capability.
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Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 8731403  89.11x031 88.48+049  84.19+09 713430  79.58+052  80.77+062 76.21x051 82.94+048 86.08+0.41
Acc Gap 12.7+032  10.89+031  11.52#05 15.8+092  28.7+354  20.42+051 19.23x057 23.79+047 17.06+045 13.92+042
Loss Gap 2.2+0.09 1.76x0.07 1.9+0.14 2.84+0.27 724145 3.88+0.2 3.08+0.21 3.79+0.26 3.8x0.11 3.15+0.14
ChebNetIl | 85.92+056  80.1x099  82.65+07  85.56+045 84.64+08 84.62+059 85.27+051 86.2+064  86.39+05  85.030.57
Acc Gap 14.07+0.53  19.9+102  17.35%073 14442045 15362087 153806  14.73205  13.79+06 13.61+049 14.97+058
Loss Gap 1.94+008  3.23+031 2.62+014  2.06%0.14 1.94+021 1.95+0.17 1.99+0.15 1.75+0.14 1.830.11 1.84+0.11

Acc Gap 22.55+062 19.49+046 50.56+1.18  60.13+198 51.19+263 52.25+708 39.7+732  32.45+776 31.96%9.19 22.73+482
Loss Gap 5.72+0.19 5.8+0.26 8.81+079  12.63+122  7.3%101 823+177  498+123 3424139  3.33+1.32 1.58+0.48
GPRGNN | 83.61x0.66 86.14+029 79.44+105 88.36x028 87.25x05  88.0+039 87.57+047  87.5%03 87.17x03  87.060.59
Acc Gap 16.39+060 13.86+029 20.56x106 11.63+029 12.76x049 12.01x032 12432048 12.49+033 12.84+029 12.94+068
Loss Gap 2.370.11 2.21%0.1 3.180.19 1.83+0.1 2.14+02 1.93x009  2.06x0.13 2.12x009  2.190.13 2.210.14

BernNet 82.76+072  81.14x041 81.21x057 81.47x06 81.77+066 82.11+075 82.32+088 82.55+0.84  82.8+081  82.92+0.79
Acc Gap 17.24+071  18.86+039 18.79+056  18.53+07  18.23x062 17.89+085 17.68+084 17.45+079  17.2+079  17.08+0.7
Loss Gap 2.45+017  3.02+0.11 2.95+0.21 2.84+0.2 2.75+021 2.65+021  2.59+022 2.54+02 2.49+0.21 2.45+021

\
|
|
JacobiConv \ 77.44+067 80.51+048 49.44+112 39.85+191 48.81+265 47.73+763 60.29+748 67.53+795 68.0320.15  77.23+4.79
|

Table 6: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic dataset of edge
homophilic ratio Hegge = 0.2 when K € [1,10]. Small accuracy and loss gaps imply good
generalization capability.

Order K 1 2 3 4 5 6 7 8 9 10
ChebNet 83.78+245 80.61x459 80.51+347 61.73x50 63.37#857 36.33%572 44.18+50 24.39+214  30.2+48  40.82+735
Acc Gap 16.224245 1939448  19.49+378  38.27#50 36.63+786 63.67+6.12  55.82+50 75.61+224  69.8+50  59.18%7.15
Loss Gap 1.49+0.44 1.26+0.44 1.48+031 2.77+053 3.08+059  8.98+068  6.09+0.72 7.99+0.93 9.01.03 5.91%0.69
ChebNetll | 80.41+398 7541572 76.53#429 76.53+459 76.94+50 78.78+s561 78.88+52  77.45+49 76.94+s572 77.55%551
Acc Gap 19594378 24.59+52  23.47+459 23.47+449  23.06+48 21224561 21.124582  22.55+449  23.06%561 22.45%531
Loss Gap 0.74+0.14 1.2+044 1.15+0.29 1.28+03 1.23+033 1.110.29 1.16+026  1.21%029 1.24+027 112027

\
|
|
JacobiConv \ 52244541 80.92+378 7531531 74394378  79.08+367 78.67+408  80.0+306  73.67+633 77.65+541 78.06+5.61
|
|

Acc Gap 47.76+531  19.08+£398  24.69+50 25.61+367 20.92+347 21.33+367  20.0+306  26.33x6.84  22.35+51  21.942541
Loss Gap 2.54+042 0.89+0.2 1.1025 1.18+0.27 0.9+0.17 0.97+016  0.93x0.13 1.22+039 097026  0.94+0.24
GPRGNN | 53.88+48  49.18+s5.1  46.73+s582 45.82+664 46.124541  45.61+52  46.43+459  46.12+50  47.55+48  46.84+622
Acc Gap 46.12+49  50.824531 5327561 54.18+663 53.88+572  54.39452  53.57+49  53.88+49 524551  53.16%6.43
Loss Gap 2.6+0.44 321053 3.5+0.67 3.6+0.63 3.58+063  3.51x064 347048 344061 3224073  3.35%083

BernNet 76.73+367  75.92+245 75.61%367 77.04%388 77.14x439 75247 7494572 752452 74.8+592  75.71%s571
Acc Gap 23.27+367 24.08+265 24.39+357 22.96+398 22.86+429  24.8+4.69 25.1+52 24.8+5.61 25.2+602  24.29+5.61
Loss Gap 0.96+022  0.95%0.18 1.01x017 1.020.21 1.06=0.21 1.13+025 1.19031 1.18+0.26 1.27+034  1.25%031

Table 7: Testing accuracy, accuracy gap, loss gap of spectral GNNs on Texas dataset of edge
homophilic ratio Heqge = 0.11 when K € [1,10]. Small accuracy and loss gaps imply good
generalization capability.
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