Under review as submission to TMLR

Graph Reinforcement Learning for Combinatorial
Optimization: A Survey and Unifying Perspective

Anonymous authors
Paper under double-blind review

Abstract

Graphs are a natural representation for systems based on relations between connected en-
tities. Combinatorial optimization problems, which arise when considering an objective
function related to a process of interest on discrete structures, are often challenging due
to the rapid growth of the solution space. The trial-and-error paradigm of Reinforcement
Learning has recently emerged as a promising alternative to traditional methods, such as
exact algorithms and (meta)heuristics, for discovering better decision-making strategies in a
variety of disciplines including chemistry, computer science, and statistics. Despite the fact
that they arose in markedly different fields, these techniques share significant commonalities.
Therefore, we set out to synthesize this work in a unifying perspective that we term Graph
Reinforcement Learning, interpreting it as a constructive decision-making method for graph
problems. After covering the relevant technical background, we review works along the di-
viding line of whether the goal is to optimize graph structure given a process of interest, or
to optimize the outcome of the process itself under fixed graph structure. Finally, we discuss
the common challenges facing the field and open research questions. In contrast with other
surveys, the present work focuses on non-canonical graph problems for which performant
algorithms are typically not known and Reinforcement Learning is able to provide efficient
and effective solutions.

1 Introduction

Graphs are a mathematical concept created for formalizing systems of entities (nodes) connected by relations
(edges). Going beyond raw topology, nodes and edges in graphs are often associated with attributes: for
example, an edge can be associated with the value of a distance metric (Barthélemyl 2011)). Enriched with
such features, graphs become powerful formalisms able to represent a variety of systems. This flexibility led
to their usage in fields as diverse as computer science, biology, and the social sciences (Newman) 2018)).

This type of mathematical modeling can be used to analytically examine the structure and behavior of
networks, build predictive models and algorithms, and apply them to practical problems. Beyond the
characterization of processes taking place on a graph, a natural question that arises is how to intervene in
the network in order to optimize the outcome of a given process. Such combinatorial optimization problems
over discrete structures are typically challenging due to the rapid growth of the solution space. A well-
known example is the Traveling Salesperson Problem (TSP), which asks to find a Hamiltonian cycle in a
fully-connected graph such that the cumulative path length is minimized.

In recent years, Machine Learning (ML) has started to emerge as a valuable tool in approaching combinatorial
optimization problems, with researchers in the field anticipating its impact to be transformative (Bengio
et al., |2021} |Cappart et al., |2023)). Most notably, the paradigm of Reinforcement Learning (RL) has shown
the potential to discover, by trial-and-error, algorithms that can outperform traditional exact methods and
(meta)heuristics. A common pattern is to express the problem of interest as a Markov Decision Process
(MDP), in which an agent incrementally constructs a solution, and is rewarded according to its ability to
optimize the objective function. Starting from the MDP formulation, a variety of RL algorithms can be
transparently applied, rendering this approach very flexible in terms of the problems it can address. In

Under review as submission to TMLR

Graph Reinforcement Learning

/ Structure Optimization \ / Process Optimization \
argmax F (G argmax F (G, k)
Goal o @) reK ’
Attacking Network Network Network
GNNs Design Routing Games
Problems p :
Causal Molecular Spreading Sea:mh .&
\ Discovery Optimization j Processes Navigation j
MDP Reward Algorithms & .. . Engineering ..
Challenges Formulation [Design RepresentationsJ Scalability [Generahzauon][Overhead Interpretability
. . . Computer Operations L
Applications Chemistry Science Economics Epidemiology| | Engineering Research Statistics

Figure 1: Visual summary of the structure and topics of the present survey. G and /C denote the sets of
possible graph structures and graph control actions, respectively; F is a real-valued objective function that
serves as the optimization target. The goal for Structure Optimization is to find the optimal structure G,
while Process Optimization involves finding a set of optimal control actions k.

parallel, works that address graph combinatorial optimization problems with RL have begun to emerge in a
variety of scientific disciplines spanning chemistry (You et al., [2018al), computer science (Valadarsky et al.
2017), economics (Darvariu et al.l 2021b), and statistics (Zhu et al., |2020), to name but a few.

The goal of this survey is to present a unified framework, which we term Graph RL, for combinatorial decision-
making problems over graphs. Indeed, recent surveys have focused on works that apply RL to canonical
problems, a term we use to refer to problems which have been intensely studied, possibly for decades. For
example, research on solving the aforementioned TSP alone dates back nearly 70 years to the paper of[Dantzig|
(1954)), and very effective algorithms exist for solving the problem optimally (Applegate et al., 2009)
or approximately (Lin & Kernighan| [1973; Helsgaunl, 2000)) for instances with up to tens of millions of nodes.
Other notable examples of canonical problems addressed in the RL literature include Maximum Independent
Sets 2020), Maximum Cut (Khalil et al.l 2017;[Ahn et al.,[2020), as well as routing problems such
as the Vehicle Routing Problem (VRP) (Kool et al.| [2019; Kim & Park, [2021). With a few exceptions, even
though work on such benchmark problems is important for pushing the limitations of ML-based methods,
currently they show inferior performance to well-established, highly optimized heuristic and exact solvers.

In contrast, there have been a number of works in recent years that approached non-canonical graph combi-
natorial optimization problems with RL techniques, achieving superior performance over non-RL methods in
empirical evaluations. For these problems, performant exact or approximate algorithms are not known, and
(meta)heuristic algorithms are typically leveraged. This is due to the fact that these are less-studied prob-
lems, but also because, in many cases, they are harder to formalize using existing L(fchniquosﬂ To name but
a few examples: [Yang et al] (2023b)) surpassed the performance of hill climbing, simulated annealing, greedy
search, and an evolutionary algorithm for structural network rewiring; [Darvariu et al.| (2021b]) outperformed
simulated annealing, best response, a payoff transfer approach, and other heuristics based on local node
properties for finding equilibria in network games; [Meirom et al.| (2021]) achieved improvements compared

to local node heuristics and the Local Index Rank (LIR) algorithm for influence maximization (Liu et al.]

IThese two characteristics are intertwined in a sense: indeed, if the problems are difficult to formalize, it is then more difficult
to apply existing classes of techniques or use tools like solvers.

Under review as submission to TMLR

[2017)); [Shen et al| (2018) outperformed several widely used methods that learn vector representations of
entities and relations for knowledge base completion.

Therefore, in this article, we systematize the variety of approaches that comprise the emerging Graph RL
paradigm. We set out to elucidate the landscape of similarities and differences in problem formulations, RL
algorithms, and function approximation techniques that have been adopted, since they can differ substan-
tially. In introducing this framework, we notice that works can naturally be divided depending on whether
the goal is to optimize the structure of graphs or the outcome of processes taking place over them, ded-
icating Sections [3] and [g] to these topics respectively. We note that our work is complementary to other
surveys (Mazyavkina et al} 2021} [Wang & Tang] [2021]) and perspectives (Bengio et al| [2021} [Cappart et al.|
2023) on RL for combinatorial optimization, both in terms of proposing a unifying paradigm and its focus
on non-canonical problems, which these works have largely ignored.

Inclusion criteria. For a work to be covered by this survey, we require that (1) the problem under study is
fully defined as an abstract graph combinatorial optimization problem with a discrete search space and the
goal of optimizing an objective function defined over the solution space, (2) that the problem does not have
existing satisfactory exact or approximate algorithms, and (3) that the problem is addressed by casting it in
the MDP framework and solved approximately using an RL method, interpreted broadly to include planning
and imitation learning. Therefore, examples of works that we do not treat are: those that use a graph
representation as part of a larger pipeline for solving a particular application scenario (e.g., as is common in
robotics and multi-agent systems); work on canonical problems such as the TSP and VRP for which effective
algorithms already exist; and papers that use approaches falling outside of the MDP framework.

The remainder of this paper is organized as follows. In Section [2] we provide the necessary background
regarding combinatorial optimization problems on graphs and the relevant techniques for approaching them
with RL. Subsequently, in Section [3| we review works that consider the optimization of graph structure (i.e.,
creating a graph from scratch or modifying an existing one) such that an objective function is maximized.
Then, in Section [4 we survey papers that treat the optimization of a process under fixed graph structure.
Section [p| discusses common challenges that are faced when applying such techniques, which may also be
viewed as important research questions to address in future work, in addition to summarizing some of the
key application areas. We conclude in Section [7] with a discussion of Graph RL as a unifying paradigm for
addressing combinatorial optimization problems on graphs.

2 Background

In this section, we cover the key concepts that underpin the works treated by this survey. We begin with
discussing graph fundamentals, combinatorial optimization problems over graphs, and traditional techniques
that have been used to address them. Next, we give a high-level overview of the potential of using ML
for tackling these problems, focusing especially on the RL paradigm for learning reward-driven behavior.
We then discuss the fundamentals of RL, including some of the algorithms that have been applied in this
space. Lastly, we discuss how graph structure may be represented for ML tasks, which is often used by RL
algorithms with function approximation. Overall, the goals of this section are as follows:

1. To introduce the key concepts of the graph mathematical formalism, combinatorial optimization
problems over graphs, and traditional algorithms for solving them;

2. To give a concise yet self-contained exposition of the common building blocks used in Graph RL
(namely, RL algorithms and Graph Representation Learning techniques);

3. To provide a unifying notation and perspective on the connections between these areas of research,
which have evolved largely independently, but are used in conjunction in Graph RL.

Under review as submission to TMLR

2.1 Graphs and Combinatorial Optimization

Graphs, also called networks, are the underlying mathematical objects that are the focus of the present
surveyEl We denote a graph G as the tuple (V, E), where V is a set of nodes or vertices that are used to
describe the entities that are part of the system, and FE is a set of edges that represent connections and
relationships between the entities. We indicate an element of the set V' with v or v; and an element of F
with e or e; ;, with the latter indicating the edge between the nodes v; and v;. The adjacency matriz is
denoted by A. Nodes and edges may optionally have attribute vectors associated with them, which we denote
as X, and x. respectively. These can capture various aspects of the problem of interest depending on the
application domain, and may be either static or dynamic. Some examples include geographical coordinates
in a space, the on-off status of a node, and the capacity of an edge for transmitting information or a physical
quantity. Equipped with such attributes, graphs become a powerful mathematical tool for studying a variety
of systems.

Methods from network science allow us to formally characterize processes taking place
over a graph. For example, decision-makers might be interested in the global structural properties such as
the efficiency with which the network exchanges information, or its robustness when network elements fail,
aspects crucial to infrastructure networks (Latora & Marchiori, [2001}; [Albert et al.l [2000). One can also use
the graph formalism to model flows of quantities such as packets or merchandise, relevant in a variety of
computer and logistics networks . Taking a decentralized perspective, we may be interested in
the individual and society-level outcome of network games, in which a network connects individuals that
take selfish decisions in order to maximize their gain (Jackson & Zenou, [2015)).

Suppose that we consider such a global process and aim to optimize its outcome by intervening in the
network. For example, a local authority might decide to add new connections to a road network with the
goal of minimizing congestion, or a policy-maker might intervene in a social network in order to encourage
certain outcomes. These are combinatorial optimization problems, which involve choosing a solution out of
a large, discrete space of possibilities such that it optimizes the value of a given objective function. denoted
as F in the remainder of this work. Conceptually, such problems are easy to define but very challenging to
solve, since one cannot simply enumerate all possible solutions beyond the smallest of graphs.

Combinatorial optimization problems bear relevance in many areas — the TSP, for example, has found
applications in circuit design (Chan & Mercier,|1989) and bioinformatics (Agarwala et al.,[2000). A significant
body of work is devoted to solving them. The lines of attack for such problems can be divided into the
following categories:

o Ezact methods: approaches that solve the problem exactly, i.e., will find the globally optimal solution
if it exists. Notably, if the problem of interest has a linear objective, one can formulate it as an
(integer) linear program (Thie & Keough, 2011), for which efficient solving methods such as the
simplex method (Dantzig & Thapa, 1997) and branch-and-bound (Land & Doig), [1960) exist.

e Heuristics and approzimation algorithms (Williamson & Shmoys| [2011)): approaches
that do not guarantee to find the optimal solution, but instead find one in a best-effort fashion. For
the latter category, one can also obtain theoretical guarantees on the approximation ratio between
the obtained solution and the optimal one. Such approaches make use of insights about the structure
of the problem and objective function at hand. They can typically scale to larger problem instances
than exact methods.

o Metaheuristics: methods that, unlike heuristics, do not make any assumptions about the problem
and objective at hand, and instead are generic (Blum & Roli, 2003; Bianchi et al.l 2009). Notable ex-
amples include local search methods (such as greedy search, hill climbing, simulated annealing
jpatrick et al., [1983))) and population-based approaches, many of which are nature-inspired (such as
evolutionary algorithms (Béck & Schwefel, [1993) and ant colony optimization (Dorigo et al., 2006)).

2Regarding the difference between the terms, “graph” is more accurately used to refer to the mathematical abstraction,
while “network” refers to a realization of this general concept, such as a particular social network. The terms are synonymous
in general usage (Barabasi, 2016, Chapter 2.2) and we use them interchangeably in the remainder of this work.

Under review as submission to TMLR

Their generic formulation makes them widely applicable, but they are typically outperformed by
algorithms that are based on some knowledge of the problem, if indeed it is available.

Many combinatorial optimization problems are A/P-hard, motivating the existence of heuristic and meta-
heuristic approaches for solving them. A formal treatment is out of scope of the present work, and we
refer interested readers to (Garey & Johnsonl [1979)), which gives a catalogue of problems and an extensive
treatment of the area, and (Goldreich] w , which is a more didactic and accessible resource. For the
emerging works in Graph Reinforcement Learning covered by this survey, complexity can occasionally be
characterized formally under specific settings and assumptions; where possible, researchers have referred to
prior complexity results to justify the approximate methodology employed due to the difficulty of a problem.
For example, graph construction with the objective of maximizing algebraic connectivity
, causal discovery with discrete random variables (Chickering et al] [2004), and determining weights for
shortest path routing over graphs (Fortz & Thorup| [2004)) have all been shown to be A'P-hard.

More broadly, however, the formulations considered, which may include learned models, can render general
statements about the problem very difficult or impossible. Furthermore, the goal of many RL approaches
is to accommodate different reward functions: the complexity of the resulting problems is highly dependent
on the choice of the latter. Due to this, many works proceed with formulating and solving the optimization
problem approximately without formally establishing its complexity class. Given the lack of more general
tools to characterize complexity appropriately, authors often resort to describing the sizes of the state and
action spaces or the time complexity required by the RL agent to decide an action with respect to input size.

2.2 Machine Learning for Combinatorial Optimization

In recent years, ML has started to emerge as a valuable tool in approaching combinatorial optimization
problems, with researchers in the field anticipating its impact to be transformative (Bengio et all [2021}
[Cappart et al. 2023). Worthy of note are the following relationships and “points” of integration at the
intersection of ML and combinatorial optimization:

1. ML models can be used to imitate and execute known algorithms. This can be exploited for ap-
plications where latency is critical and decisions must be made quickly — typically the realm of
well-tuned heuristics. Furthermore, the parametrizations of some ML models can be formulated
independently of the size of the problem instance and applied to larger instances than seen during
training, including those with sizes beyond the reach of the known algorithm.

2. ML models can improve existing algorithms by data-driven learning for enhancing components of
classic algorithms, replacing hand-crafted expert knowledge. Examples include, for exact methods,
learning to perform variable subset selection in Column Generation (Morabit et al., [2021]) or biasing
variable selection in branch-and-cut for Mixed Integer Linear Programs (Khalil et al. [2022)).

3. ML can enable the discovery of new algorithms through the use of Reinforcement Learning (RL),
another ML paradigm. Broadly speaking, RL is a mechanism for producing goal-directed behavior
through trial-and-error (Sutton & Barto| [2018)). In this framework, one formulates the problem of
interest as a Markov Decision Process (MDP), which can be solved in a variety of ways. In the RL
paradigm, an agent interacts by means of actions with an unknown environment, receiving rewards
that are proportional to the optimality of its actions; the objective of the agent is to adjust its
behavior so as to maximize the sum of rewards received.

In this work, we are interested in the third aspect. Unlike the first and second scenarios, which use Supervised
Learning and presuppose the existence of an effective algorithm to generate labels, framing combinatorial
optimization problems as decision-making processes and solving them with RL can enable the automatic
discovery of novel algorithms, including for problems that are not yet well-studied or understood. This
provides an alternative to classic heuristic and metaheuristic methods.

Two important pieces of the puzzle that have contributed to the feasibility of applying RL to combinatorial
optimization problems on graphs are, firstly, deep RL algorithms (Sutton & Barto) 2018) with function

Under review as submission to TMLR

approximation such as the Deep Q-Network (DQN) (Mnih et al., 2015) and, secondly, ML architectures able
to operate on graphs (Hamilton et all [2017al). When put together, they represent a powerful, synergistic
mechanism for approaching such problems while merely requiring that the task can be expressed in the
typical MDP decision-making formalism.

Regarding the former, many RL techniques are able to provably converge to the optimal solution; however,
their applicability has been limited until relatively recently to small and medium-scale problems. With
the advent of deep learning, RL algorithms have acquired powerful generalization capabilities, and became
equipped to overcome the curse of very high-dimensional state spaces. RL approaches combined with deep
neural networks have achieved state-of-the-art performance on a variety of tasks, ranging from general game-
playing to continuous control (Mnih et al., |2015; [Lillicrap et al.| 2016)).

With respect to the latter, architectures designed to operate on non-Euclidean data (Bronstein et al., 2017)
have brought the successes of ML to the graph domain. Worthy of note are Graph Neural Networks (GNNs),
which are based on rounds of message passing and non-linear aggregation (Scarselli et al.,[2009). Motivated by
these advances, many works adopt such architectures in order to generalize during the learning process across
different graphs which may, while being distinct in terms of concrete nodes and edges or their attributes,
share similar characteristics.

In the following two subsections, we review the basics of RL and GNNs respectively.

2.3 Decision-making Processes and Solution Methods

Let us first discuss discuss decision-making processes and approaches for solving them. We begin by defining
the key elements of Markov Decision Processes. We also give a broad overview of solution methods for
MDPs and discuss some conceptual “axes” along which they may be compared and contrasted. We then
cover several relevant methods for constructing a policy, including those that perform policy iteration, learn
a policy directly, or perform planning from a state of interest.

The goal for this subsection is to act as a concise, self-contained introduction to the landscape of RL
algorithms and to draw connections to combinatorial optimization problems defined over graphs. As can
be seen in Sections [3] and] Graph RL approaches presented in the literature rely on a wide variety of
algorithms, each of them characterized by different assumptions and principles. Even though it is not possible
to exhaustively cover all algorithms, we consider it necessary to present some of the important methods for
solving MDPs, in order to introduce the core terms and notation used in the later sections. Furthermore,
in Section [5.1.3] we offer some practical guidance about which RL algorithm to choose depending on the
characteristics of the problem.

2.3.1 Markov Decision Processes

RL refers to a class of methods for producing goal-driven behavior. In broad terms, decision-makers called
agents interact with an uncertain environment, receiving numerical reward signals; their objective is to adjust
their behavior in such a way as to maximize the sum of these signals. Modern RL bases its origins in optimal
control and Dynamic Programming methods for solving such problems (Bertsekas| 1995 and early work
in trial-and-error learning in animals. It has important connections to conditioning in psychology as well
as neuroscience — for example, a framework to explain the activity of dopamine neurons through Temporal
Difference learning has been developed (Montague et al., [1996). Such motivating connections to learning in
biological systems, as well as its applicability in a variety of decision-making scenarios, make RL an attractive
way of representing the basic ingredients of the Artificial Intelligence problem.

One of the key building blocks for RL is the Markov Decision Process (MDP). An MDP is defined as a tuple
(S, A, P,R,~), where:

e S is a set of states in which the agent can find itself;

o A is the set of actions the agent can take, and A(s) denotes the actions that the agent can take in
state s;

Under review as submission to TMLR

o P is the state transition function: P(S;y1 = §'|S; = s, Ay = a), which sets the probability of agents
transitioning to state s’ after taking action a in state s;

o R is a reward function, and denotes the expected reward when taking action a in state s: R(s,a) =
E[Rt41]S: = s, A = al;

e v € [0,1] is a discount factor that controls the agent’s preference for immediate versus delayed
reward.

A trajectory So, Ao, R1,51, A1, Ra,...S7_1, Ar_1, R is defined by the sequence of the agent’s interactions
with the environment until the terminal timestep T'. The return H; = Zgzt 11 v#~t=1R;. denotes the sum
of (possibly discounted) rewards that are received from timestep ¢ until termination. We also define a policy
m(als), a distribution of actions over states which fully specifies the behavior of the agent. Given a particular
policy 7, the value function V;(s) is defined as the expected return when following the policy 7 in state s.
Similarly, the action-value function Qr(s,a) is defined as the expected return when starting from s, taking
action a, and subsequently following 7.

There exists at least one policy 7., called the optimal policy, which has an associated optimal action-
value function @, defined as max, Qr(s,a). The Bellman optimality equation Q.(s,a) = E[Ri1 +
Y¥Qu(St+1, Ar11)|S: = s, Ay = a] is satisfied by the optimal action-value functions. Solving this equation
provides a possible route to finding an optimal policy and, hence, solving the RL problem.

Returning to the running TSP example, it can be cast as a decision-making problem taking place over a
fully-connected, weighted graph. A possible framing as an MDP is as follows:

e States specify a sequence of cities to be visited, which is initially empty;
e Actions determine the next city to be added to the sequence;
e Transitions add the city chosen at the previous step to the existing sequence;

e Rewards are the negative of the total cost of the tour at the final step, and 0 otherwise.

The policy 7 will therefore specify a probability distribution over the next cities to be visited given the cities
visited so far. Consequently, the value function V,(s) indicates the average total cost of a tour that we
can expect to obtain when using 7 to select the next city when considering the current partial solution s.
Starting from this formulation, we can therefore apply an RL algorithm to learn 7 in order to solve the TSP.

2.3.2 Dimensions of RL Algorithms

How is a policy learned? There exists a spectrum of algorithms for this task. Before delving into the details
of specific approaches, which we shall do in the following section, we begin by giving a high-level picture of
the main axes that may be used to characterize these methods.

Model-based and Model-free. One important distinction is that between model-based algorithms (which
assume access to a true or estimated model of the MDP) and model-free algorithms (which require only
samples of agent-environment interactions). To be specific, the state space S and action space A4 are assumed
to be known; a model M = (P, R) refers to knowing, or having some estimate of, the transition and reward
functions P, R. Model-based methods can incorporate knowledge about the world to greatly speed up
learning. The model can either be given a priori or learned. In the former case, it typically takes the form
of a set of mathematical descriptions that fully define P and R. In the latter case, learning P corresponds
to a density estimation problem, while learning R is a Supervised Learning problem. Learning architectures
for this purpose can range from probabilistic models such as Gaussian Processes (Deisenroth et al.; 2011)) to
deep neural networks (Oh et all [2015). Model-based RL is especially advantageous where real experience
is expensive to generate and executing poor policies may have a negative impact (e.g., in robotics). When
equipped with a model of the world, the agent can plan its policy, either at the time actions need to be taken
focusing on the current state (decision-time planning), or not focused on any particular state (background

Under review as submission to TMLR

planning). Model-free algorithms, on the other hand, can yield simpler learning architectures. This comes
at the expense of higher sample complexity: they require more environment interactions to train. The two
categories can also be combined: it is possible to use a model to generate transitions, to which a model-free
algorithm can be applied 2016). It is worth noting that, in the context of graph combinatorial
optimization, we can often describe the transition and reward functions analytically based on the process of
interest. For the TSP, both the transition and reward functions can be expressed in closed form and do not
involve any uncertainty induced by the environment or other actors. Hence, in case the underlying model
M is known, model-based algorithms can be leveraged.

On-policy and off-policy. Approaches may also be divided into on-policy and off-policy. The distinction
relies on the existence of two separate policies: the behavior policy, which is used to interact with the
environment, and the target policy, which is the policy that is being learned. For on-policy methods, the
behavior and target policy are identical, while they are different in off-policy algorithms. Off-policy methods
are more flexible and include on-policy approaches as a special case. They can enable, for example, learning
from policy data generated by a controller or a human.

Sample-based and Temporal Difference. The category of sample-based or Monte Carlo (MC) methods
rely on samples of interactions with the environment, rather than complete knowledge of the MDP. They aim
to solve the Bellman optimality equations using the returns of sampled trajectories, albeit approximately,
which requires less computation than an exact method while still yielding competent policies. Temporal
Difference (TD) methods, in addition to being based on samples of experience, use “bootstrapping” of the
value estimate based on previous estimates. This leads to estimates that are biased but have less variance. It
possesses certain advantages such as naturally befitting an online scenario in which learning can occur during
an episode without needing to wait until the end when the return is known; applicability in non-episodic
tasks; as well as empirically better convergence (Sutton & Bartol |2018).

2.3.3 Policy lteration Methods

A common framework underlying many RL algorithms is that of Policy Iteration (PI). It consists of two
phases that are applied alternatively, starting from a policy 7. The first phase is called policy evaluation and
aims to compute the value function by updating the value of each state iteratively. The second phase, policy
improvement, refines the policy with respect to the value function, most commonly by acting greedily with
respect to it. Under certain conditions, this scheme is proven to converge to the optimal value function and
optimal policy (Sutton & Barto, 2018). Generalized Policy Iteration (GPI) refers to schemes that combine
any form of policy evaluation and policy improvement.

Let us look at some concrete examples of algorithms. Dynamic Programming (DP) applies the PI scheme
as described above. It is one of the earliest solutions developed for MDPs . It leverages
the principle that sequential decision-making problems can be broken down into subproblems. The optimal
solutions to the subproblems, once found, can be recursively combined to solve the original problem much
more efficiently compared to algorithms that do not exploit this structure. Beyond an algorithmic paradigm,
DP is also an exact method for combinatorial optimization as defined in Section which highlights the
shared foundation of RL and classic combinatorial optimization methods.

Since DP involves updating the value of every state, it is computationally intensive, and, for this reason, it
is not appropriate for large problem instances. Additionally, it requires full knowledge of the transition and
reward functions. Taken together, these characteristics limit its applicability, motivating the development
of RL algorithms that do not require the exploration of the entirety of the state space and are able to learn
directly from samples of interactions with the environment.

The Q-learning (Watkins & Dayan| (1992) algorithm is an off-policy TD method that follows the GPI
blueprint. It is proven to converge to the optimal value functions and policy in the tabular case with discrete
actions, so long as, in all the states, all actions have a non-zero probability of being sampled (Watkins &

1992)). The agent updates its estimates according to:
Q(s,a) « Q(s,a) + a(r +~ max)Q(Slv a') = Q(s,a)) (1)

a’€A(s’

Under review as submission to TMLR

In the case of high-dimensional state and action spaces, a popular means of generalizing across similar
states and actions is to use a function approximator for estimating Q(s,a). An early example of such a
technique is the Neural Fitted Q-iteration (NFQ) (Riedmiller, [2005), which uses a neural network. The
DQN algorithm (Mnih et al., |2015)), which improved NFQ by use of an experience replay buffer and an
iteratively updated target network for state-action value function estimation, has yielded state-of-the-art
performance in a variety of domains ranging from general game-playing to continuous control (Mnih et al.)
2015} Lillicrap et al.l |2016)).

A variety of general and problem-specific improvements over DQN have been proposed (Hessel et al., [2018)).
Prioritized Experience Replay weighs samples of experience proportionally to the magnitude of the encoun-
tered TD error (Schaul et al., [2016]), arguing that such samples are more important for the learning process.
Double DQN uses two separate networks for action selection and Q-value estimation (van Hasselt et al.,
2016)) to address the overestimation bias of standard Q-learning. Distributional Q-learning (Bellemare et al.,
2017) models the distribution of returns, rather than only estimating the expected value. DQN has been
extended to continuous actions via the DDPG algorithm (Lillicrap et al., 2016[), which features an additional
function approximator to estimate the action which maximizes the Q-value. TD3 (Fujimoto et all [2018)
is an extension of DDPG that applies additional tricks (clipped double Q-learning, delayed policy updates,
and smoothing the target policy) that improve stability and performance over standard DDPG.

2.3.4 Learning a Policy Directly

An alternative approach to RL is to parameterize the policy m(a|s) by some parameters © directly instead
of attempting to learn the value function. In effect, the objective is to find parameters ©* which make the
parameterized policy mg produce the highest expected return over all possible trajectories 7 that arise when
following the policy:

T
oOF = arg(ranax Erre 2 R(S, As) (2)

If we define the quantity under the expectation as Jg, the goal is to adjust the parameters © in such a way
that the value of J is maximized. We can perform gradient ascent to improve the policy in the direction of
actions that yield high return, formalizing the notion of trial-and-error. The gradient of J with respect to
© can be written as:

T
Vol(©) =Erng [(Z Vo log me (A4 S)) (ZR Sy, Ay)) (3)

Such approaches are called policy gradient algorithms, a well-known example of which is REIN-
FORCE (Williams, (1992). A number of improvements over this basic scheme exist: for example, in the
second sum term one can subtract a baseline (e.g., the average observed reward) such that only the proba-
bilities of actions that yield rewards better than average are increased. This estimate of the reward will still
be noisy, however. An alternative is to fit a model, called critic to estimate the value function, which will
yield lower variance (Sutton & Barto, [2018, Chapters 13.5-6).

This class of algorithms is called Actor-Critic, and modern asynchronous variants have been proposed, such
as A3C, which parallelizes training with the effect of both speeding up and stabilizing the training (Mnih,
et al.l 2016)). Soft Actor-Critic (SAC) introduces an additional term to maximize in addition to the expected
reward: the entropy of a stochastic policy (Haarnoja et al., 2018]). Other policy gradient variants concern the
way the gradient step is performed; modern algorithms in this class include Trust Region Policy optimization
(TRPO) (Schulman et al.,2015) and Proximal Policy optimization (PPO) (Schulman et al., 2017). Despite
the popularity of these algorithms, a surprising finding of recent work is that a carefully constructed random
search (Mania et al.| |2018]) or using evolutionary strategies (Salimans et al., 2017 are viable alternatives to
model-free RL for navigating the policy space.

Under review as submission to TMLR

Another means of learning a policy directly is through Imitation Learning (IL). Instead of environment
interactions or model knowledge, it relies on expert trajectories generated by a human or algorithm that
performs very well on the task. The simplest form of IL is Behavioral Cloning (BC) (Pomerleaul {1988}
[Bain & Sammut] [1999). It can take the form of a classification problem, in which the goal is to learn a
state to action mapping from the expert trajectories. Alternatively, in case trajectories include probabilities
for all actions, one can train a probabilistic model that minimizes the distance (e.g., the Kullback-Leibler

divergence) between the expert and model probability distributions.

2.3.5 Search and Decision-Time Planning Methods

Recall the fact that, in the case of model-based methods, we have access to the (possibly estimated) transition
function P and (possibly estimated) reward function R. This means that an agent does not necessarily need
to interact with the world and learn directly through experience. Instead, the agent may use the model
in order to plan the best course of action, and subsequently execute the carefully thought-out plan in the
environment. Furthermore, decision-time planning concerns itself with constructing a plan starting from the
current state that the agent finds itself in, rather than devise a policy for the entire state space.

To achieve this, the agent can perform rollouts using the model, and use a search technique to find the
right course of action. Search has been one of the most widely utilized approaches for building intelligent
agents since the dawn of AT (Russell & Norvig, [2020, Chapters 3-4). Methods range from relatively simple
in-order traversal (e.g., Breadth-First Search and Depth-First Search) to variants that incorporate heuristics
(e.g., A*). Tt has been applied beyond single-agent discrete domains to playing multi-player games
Chapter 5). Such games have long been used as a Drosophila of Artificial Intelligence,
with search playing an important part in surpassing human-level performance on many tasks
|Campbell et al., 2002; Silver et all |[2016)).

Search methods construct a tree in which nodes are MDP states. Children nodes correspond to the states
obtained by applying a particular action to the state at the parent node, while leaf nodes correspond to
terminal states, from which no further actions can be taken. The root of the search tree is the current state.
The way in which this tree is expanded and navigated is dictated by the particulars of the search algorithm.

In many applications, however, the branching factor b and depth d of the search tree make it impossible to
explore all paths, or even perform a Greedy Search of depth 1. There exist proven ways of reducing this
space, such as alpha-beta pruning. However, its worst-case performance is still (’)(bd) (IRussell & Norvig|,
Chapter 5.3). A different approach to breaking the curse of dimensionality is to use random (also
called Monte Carlo) rollouts: to estimate the goodness of a position, run random simulations from a tree
node until reaching a terminal state (Abramson), [1990; Tesauro & Galperinl, [1997).

Monte Carlo Tree Search (MCTS) is a model-based planning technique that addresses the inability to explore
all paths in large MDPs by constructing a policy from the current state (Sutton & Bartol [2018] Chapter 8.11).
It relies on two core principles: firstly, that the value of a state can be estimated by sampling trajectories
and, secondly, that the returns obtained by this sampling are informative for deciding the next action at the
root of the search tree. We review its basic concepts below and refer the interested reader to

2012) for more information.

In MCTS, each node in the search tree stores several statistics such as the sum of returns and the node visit
count in addition to the state. For deciding each action, the search task is given a computational budget
expressed in terms of node expansions or wall clock time. The algorithm keeps executing the following
sequence of steps until the search budget is exhausted:

1. Selection: The tree is traversed iteratively from the root until an expandable node (i.e., a node
containing a non-terminal state with yet-unexplored actions) is reached.

2. Expansion: From the expandable node, one or more new nodes are constructed and added to the
search tree, with the expandable node as the parent and each child corresponding to a valid action
from its associated state. The mechanism for selection and expansion is called tree policy, and it is
typically based on the node statistics.

10

Under review as submission to TMLR

3. Simulation: Trajectories in the MDP are sampled from the new node until a terminal state is
reached and the return (discounted sum of rewards) is recorded. The default policy or simulation
policy dictates the probability of each action, with the standard version of the algorithm simply
using uniform random sampling of valid actions. We note that the intermediate states encountered
when performing this sampling are not added to the search tree.

4. Backpropagation: The return is backpropagated from the expanded node upwards to the root of
the search tree, and the statistics of each node that was selected by the tree policy are updated.

The tree policy used by the algorithm needs to trade off exploration and exploitation in order to balance
actions that are already known to lead to high returns against yet-unexplored paths in the MDP for which
the returns are still to be estimated. The exploration-exploitation trade-off has been widely studied in the
multi-armed bandit setting, which may be thought of a single-state MDP. A representative method is the
Upper Confidence Bound (UCB) algorithm (Auer et al.l [2002)), which computes confidence intervals for each
action and chooses, at each step, the action with the largest upper bound on the reward, embodying the
principle of optimism in the face of uncertainty.

Upper Confidence Bounds for Trees (UCT) (Kocsis & Szepesvari| [2006) is a variant of MCTS that applies
the principles behind UCB to the tree search setting. Namely, the selection decision at each node is framed
as an independent multi-armed bandit problem. At decision time, the tree policy of the algorithm selects
the child node corresponding to action a that maximizes

_ 2InC(s)
UCT(s,a) =74+ 2 — 4
(s,a) = 7¢ + 2€yor COs.a) (4)
where 7, is the mean reward observed when taking action a in state s, C(s) is the visit count for the parent

node, C(s, a) is the number of child visits, and eycr is a constant that controls the level of exploration (Kocsis
& Szepesvari, [20006]).

MCTS is easily parallelizable either at root or leaf level, which makes it a highly practical approach in
distributed settings. It is also a generic framework that does not make any assumptions about the charac-
teristics of the problem at hand. The community has identified ways in which domain heuristics or learned
knowledge (Gelly & Silver, 2007)) can be integrated with MCTS such that its performance is enhanced. This
includes models learned with RL based on linear function approximation (Silver, [2007)) as well as deep neural
networks (Guo et al., 2014).

MCTS has been instrumental in achieving state-of-the-art performance in domains previously thought in-
tractable. It has been applied since its inception to the game of Go, perceived as a grand challenge for
Artificial Intelligence. The main breakthrough in this space was achieved by combining search with deep
neural networks for representing policies (policy networks) and approximating the value of positions (value
networks); the resulting approach was able to surpass human expert performance (Silver et al., [2016]). Sub-
sequent works have significantly improved on this by performing search and learning together in an iterative
way: the search acts as the expert, and the learning algorithms imitate or approximate the play of the expert.
The AlphaGo Zero (Silver et al., [2017; |2018) and Expert Iteration algorithms (Anthony et al., 2017)) both
epitomize this idea, having been proposed concurrently. MuZero (Schrittwieser et al., |2020|) built further in
this direction by using a learned model of the dynamics, which does not require explicit knowledge of the
rules of the game.

Monte Carlo Tree Search has found wide applicability in a variety of decision-making and optimization
scenarios. It is not solely applicable to two-player games, and has been successful in a variety of single-player
games (also called solitaire or puzzle (Browne et al., [2012, Section 7.4)) such as Morpion Solitaire (Rosin,
2011) and Hex (Nashl 1952 |Anthony et al.,|2017)). Indeed, given that such games involve creating connections
on a regular grid, they served as a source of inspiration for leveraging it to optimize generic graph processes.
Techniques combining MCTS with deep neural networks have also been fruitfully applied outside of games
in areas such as combinatorial optimization (Laterre et al.| [2018; [Bother et all |2022)), neural architecture
search (Wang et al.} 2020), and knowledge graph completion (Shen et al.l [2018).

11

Under review as submission to TMLR

Let us also briefly discuss some of the limitations of MCTS (Browne et all |2012). Firstly, being a discrete
search algorithm, it is limited by the depth and branching factors of the considered problem. To obtain
good performance, a task-dependent, possibly lengthy, process is required to find effective ways of reducing
them. Secondly, it is not directly applicable to continuous control problems, and discretization can lead to
a loss of generality. Thirdly, it has proven difficult to analyze using theoretical tools, a characteristic shared
by other approximate search algorithms. An implication of this is that its performance as a function of the
computational budget or parameters are not well understood, requiring adjustments based on trial-and-error.

2.4 Artificial Neural Networks on Graphs

In this section, we discuss how one can represent graphs and tame their discrete structure for
tasks. We begin with a broad overview of graph representation learning and traditional
approaches. We then cover GNNs and related “deep” approaches for embedding graphs.

2.4.1 Graph Representation Learning

As mentioned previously, graphs are the structure of choice for representing information in many other fields
and are able to capture interactions and similarities. The success of neural networks, however, did not
immediately transfer to the domain of graphs as there is no obvious equivalent for this class of architectures:
graphs do not necessarily present the same type of local statistical regularities (Bronstein et al., 2017]).

Suppose we wish to represent a graph as a vector input x that can be fed to a ML model, such as an MLP.
An obvious choice is to take the adjacency matrix A and apply vectorization in order to transform it to a
column vector. In doing so, however, two challenges become apparent. One is the fact that by relabeling the
nodes in the graph according to a permutation, the input vector is modified substantially, and may result in
a very different output when fed to a model, even though the structure has remained identical. Furthermore,
if a new node joins the network, our previous model is no longer applicable by default since the shape of the
input vector has changed. How might we address this, and design a better graph representation?

Such questions are studied in the field of graph representation learning (Hamilton et all [2017a)). Broadly
speaking, the field is concerned with learning a mapping that translates the discrete structure of graphs
into vector representations with which downstream ML approaches can work effectively. Work in this area
is focused on deriving vector embeddings for a node, a subgraph, or an entire graph. A distinction can be
drawn between shallow and deep embedding methods (Hamilton et al., 2017a). The former category consists
of manually-designed approaches such as those using local node statistics, characteristic graph matrices, or
graph kernels. In the latter category, methods typically use a deep neural network trained with gradient
descent, and learn the representation in a data-driven fashion.

The literature on shallow embeddings is extensive. Prior work has considered factorizations of characteristic
graph matrices (Belkin & Niyogi, |2002; |Ou et al.,|2016|). Another class of approaches constructs embeddings
based on random walks: nodes will have similar embeddings if they occur along similar random paths in
the graphs. Methods such as DeepWalk and node2vec (Perozzi et all |2014; |Grover & Leskovec, 2016)) fall
into this category. Other approaches such as struc2vec (Ribeiro et al.,2017) and GraphWave (Donnat et al.,
2018) assign similar embeddings to nodes that fulfil a similar structural role within the graph (e.g., hub),
irrespective of their proximity.

2.4.2 Deep Graph Embedding Methods

Broadly speaking, deep embedding methods rely on the idea of neighborhood aggregation: the representation
of a node is determined in several rounds of aggregating the embeddings and features of its neighbors, to
which a non-linear activation function is applied. This principle is illustrated in Figure

The learning architectures are usually parameter-sharing: the manner of performing the aggregation and the
corresponding weights are the same for the entire network. Another important aspect for deep embedding

12

Under review as submission to TMLR

Figure 2: Illustration of the neighborhood aggregation principle. To determine the features of a node, those
of its neighbours are aggregated using learnable parametrizations, to which an activation function is applied.
While the particulars depend on the architecture, many deep embedding methods follow this blueprint.

methods is that they can incorporate task-specific supervision: the loss corresponding to the decoder can be
swapped for, e.g., cross-entropy loss in the case of classification tasks.

Many deep representation learning techniques can be used to construct representations for a graph or sub-
graph starting from the embeddings of the nodes. Several variants that have been considered in the literature
include: performing a sum or mean over node embeddings in a subgraph (Duvenaud et al. [2015; Dai et al.
2016)), introducing a dummy node 7 using layers that perform clustering (Defferrard et al.
2016)), or learning the hierarchical structure end-to-end (Ying et all, |2018).

Several works have proposed increasingly feasible versions of convolutional filters on graphs, based primarily
on spectral properties (Bruna et al., 2014; Henaff et al., 2015} Defferrard et al., [2016}; Kipf & Welling} |2017)
or their approximations. An alternative line of work is based on message passing on graphs (Sperduti &
Starita, |1997; Scarselli et al., 2009)) as a means of deriving vector embeddings. Both Message Passing Neural
Networks (Gilmer et al., [2017) and Graph Networks (Battaglia et all 2018 are attempts to unify related
methods in this space, abstracting the commonalities of existing approaches with a set of primitive functions.
The term “Graph Neural Network” is used in the literature, rather loosely, as an umbrella term to mean a
deep embedding method.

Let us now take a closer look at some GNN terminology and variants that are relevant to the present survey.
Recall that we are given a graph G = (V, E) in which nodes v; are equipped with feature vectors x,, and,
optionally, with edge features x., ;. The goal is to derive an embedding vector h,, for each node that captures
the features as well as the structure of interactions on the graph. The computation of the embedding vectors
happens in layers [l € 1,2, ..., L, where L denotes the final layer. We use th} to denote the embedding of node
v; in layer . The notation W) possibly indexed by a subscript, denotes a weight matrix that represents a
block of learnable parameters in layer [of the GNN model. Unless otherwise specified, the embeddings are

initialized with the node features, i.e., h,(,?) =X,,,Vv; € V.

Message Passing Neural Network. The Message Passing Neural Network (MPNN) (Gilmer et al.
is a framework that abstracts several graph learning architectures, and serves as a useful conceptual
model for deep embedding methods in general. It is formed of layers that apply a message function M®
and vertez update function UM to compute embeddings as follows:

m{t = 3" p0 (hii),hg?7xei,j)
v EN (v;) (5)
n(+) = g® (hi(,lv),mf,l,ﬂ))

13

Under review as submission to TMLR

where A (v;) is the open neighborhood of node v;. Subsequently, a readout function I is applied to compute
an embedding for the entire graph from the set of final node embeddings: I({hgf)m € V}). The message
and vertex update functions are learned and differentiable, e.g., some form of MLP. The readout function
may either be learned or fixed a priori (e.g., summing the node embeddings). A desirable property for it is
to be invariant to node permutations.

We now discuss the details of 3 popular GNNs in this area. Due to size and scope limitations, we do not
discuss other architectures such as GraphSAGE (Hamilton et al., 2017b]) or GIN (Xu et al., [2018al), for which
we refer the reader to their original papers.

structure2vec. structure2vec (S2V) (Dai et al., [2016)) is one of the earlier GNN variants, and it is inspired
by probabilistic graphical models (Koller & Friedman| [2009). The core idea is to interpret each node
in the graph as a latent variable in a graphical model, and to run inference procedures similar to mean
field inference (Wainwright & Jordan, |2008)) and loopy belief propagation (Pearl, 1988|) to derive vector
embeddings. Additionally, the approach replaces the “traditional” probabilistic operations (sum, product,
and renormalization) used in the inference procedures with nonlinear functions (namely, neural networks),
yielding flexibility in the learned representation. It was shown to perform well for classification and regression
in comparison to other graph kernels, as well as to be able to scale to medium-sized graphs representing
chemical compounds and proteins.

One possible realization of the mean field inference variant of S2V computes embeddings in each layer based
on the following update rule:

h(+1) = ReLU (Wlxvi + Wy > hS})) (6)
v; EN(v;)

where W1, Wy are weight matrices that parameterize the model. We note that there are two differences to
the other architectures discussed in this section. Firstly, the weight matrices are not indexed by the layer
superscript, since they are shared between all the layers. Additionally, the node features x,, appear in the
message-passing step of every layer, rather than only being used to initialize the embeddings. A possible
alternative is to use vectors of zeros for initialization, i.e., hg,?) =0Vy; €V.

Graph Convolutional Network. The Graph Convolutional Network (GCN) method (Kipf & Welling,
2017) is substantially simpler in nature, relying merely on the multiplication of the node features with a weight
matrix, together with a degree-based normalization. It is motivated as a coarse, first-order, approximation
of localized spectral filters on graphs (Defferrard et all [2016). Since it can be formulated as a series of
matrix multiplications, it has been shown to scale well to large graphs with millions of edges, while obtaining
superior performance to other embedding methods at the time. It can be formulated as:

h{)
h(+1) = ReLU <W(”) (7)
' ' U].EZN:[U,L.] /(14 deg(v))(1 + deg(v;))

where deg(v;) indicates the degree of node v;, and Mv;] is the closed neighborhood of node v;, which includes
all its neighbors and v; itself.

Graph Attention Network. Note how, in the GCN formula above, the summation implicitly performs a
rigid weighting of the neighboring nodes’ features. The Graph Attention Network (GAT) model (Velickovié
et al.l |2018]) proposes the use of attention mechanisms (Bahdanau et al., 2016) as a way to perform flexible
aggregation of neighbor features instead. Learnable aggregation coefficients enable an increase in model
expressibility, which also translates to gains in predictive performance over the GCN for node classification.

Let Cz(lj) denote the attention coefficient that captures the importance of the features of node v; to node v;
in layer [. It is computed as:

14

Under review as submission to TMLR

exp <LeakyReLU <0T [ng)hz()l,-) ||ng)h1(1lj) ||ng)xei,j}))

= (8)
5 penrtuy e (LeakyReLU (67 [W{'h{!

wR W',]))

where exp(x) = e” is the exponential function, 6 is a weight vector that parameterizes the attention mech-
anism, and [-||] denotes concatenation. The LeakyReLU(x) activation function, which outputs non-zero
values for negative inputs according to a small slope ayy, is equal to a rz if z < 0, and x otherwise. Given
the attention coefficients, node embeddings are computed according the rule below.

1 1
Rt = S (Owin® (9)
v; EN[v;]

Analogously, it is also possible to use multiple attention “heads”, which can improve model performance in

some settings (Velickovié et all [2018).

2.5 Connections Between RL and Graph Representation Learning

Given the RL algorithms and graph representation learning techniques covered up to this point, let us take the
opportunity to discuss the relationships between them in the context of the Graph RL framework. Learning
techniques designed for operating on graphs are commonly used as function approximators as part of the
RL algorithms. However, not all works covered by the survey employ function approximation — notably,
some of the works that use MCTS-based approaches do not. Furthermore, out of the works employing
function approximation, a few opt for different learning architectures through problem-specific justifications
or experimental validation. Generic architectures such as MLPs, LSTMs, and Transformers are sometimes
employed. Nevertheless, as discussed in our inclusion criteria in Section [T} we require that works formulate
graph combinatorial optimization problems as MDPs, but we do not restrict ourselves to particular forms of
function approximation.

Therefore, the distinction between Graph RL and graph representation learning is indeed blurred, as the
latter is often (but not always) a component of the former. When Graph RL solutions do leverage graph
representation learning for function approxmation, they are a means of obtaining generalization to unseen
instances, as well as for scaling up to larger instances in terms of number of nodes and edges and the
complexity of the considered process taking place on the graph. Furthermore, we note the following difference
between the use of graph representation learning techniques as function approximators in this context versus
the typical benchmarks considered in the graph learning literature. Graph RL methods are constructive and
goal-driven, which allows for flexibility in discovering embeddings relevant for the objective function to be
optimized without a fine-grained supervision signal. Instead, standard graph learning benchmarks rely on
supervised learning and the availability of granular examples (real or synthetic data).

Recall that we denote the set of all weights of a model as ©. Function approximation methods based on
graph representation learning techniques have been used to parameterize the policy mg (Ma et al} 2021} [Yang]
20231)

as well as the action-value function Qe (]Dai et al.L |2018k |Zhou et al.l, [2019). The surveyed
works that use function approximation mostly employ either of the two in isolation, or combine them in
Actor-Critic style architectures (Meirom et al.| [2021]). As previously discussed, the reward function R can
generally be computed analytically or estimated via sampling for the considered problems. An exception in
this sense is the work on molecular optimization of (You et al| [2018a)), who used a Graph Convolutional
Network as a discriminator trained on example molecules to provide part of the reward signal. None of the
works we surveyed learn the transition model P. However, as we have argued, a fully accurate transition
model is known for many of the problems.

It is worth mentioning another recent line of work that connects RL and GNNs. While none of the surveyed
techniques employ this connection, they are nevertheless relevant in a broader sense. Specifically, this litera-
ture draws a connection between GNNs and Dynamic Programming. In this work, a graph representation is

15

Under review as submission to TMLR

constructed in which nodes are possible states in the MDP, and edges correspond to transitions determined
by the actions. With this framing, GNNs can be seen as “executing neurally”; in an approximate fashion,
the steps of DP algorithms. Thus, this can be applied to standard RL problems.

In this line of work, empirically showed that computations carried out by GNNs are aligned
with those performed by the Bellman-Ford algorithm, which uses DP. [Dudzik & Velickovid| (2022) later
established this connection formally for a broader class of DP algorithms. [Deac et al (2020) empirically
demonstrated that, with sufficiently granular supervision, GNNs can accurately model the Value Iteration
algorithm for DP. Lastly, [Deac et al| (2021) took this idea further by integrating learning a model and
planning in latent space. We note that the graph structure used in these works is a higher-level representation
of the MDP itself and not of a combinatorial optimization problem defined on the graph — and indeed, such
techniques have been applied to continuous control tasks. As the scalability of such techniques is currently
limited, they have not yet been applied to combinatorial optimization problems.

3 Graph Structure Optimization

A shared characteristic of the work on ML for canonical graph combinatorial optimization problems is that
they usually do not involve topological changes to the graph. Concretely, one needs to find a solution while
assuming that the network structure remains fixed. The problem of learning to construct a graph or to
modify its structure so as to optimize a given objective function has received comparatively less attention in
the ML literature. In this section, we review works that treat the problem of modifying graph topology in
order to optimize a quantity of interest, and use RL for discovering strategies for doing so. This is performed
through interactions with an environment.

At a high level, such problems can be formulated as finding the graph G satisfying argmax g F(G), where
G is the set of possible graphs to be searched and F, as previously mentioned, is the objective function. We
illustrate the process in Figure 8] The precise framing depends on the problem and may entail choosing
between starting from an empty graph versus an existing one, and enforcing constraints on the validity of
graphs such as spatial restrictions, acyclicity, or planarity. As shown in Figure [4] the design of the action
space can also vary. The agent may be allowed to perform edge additions, removals, and rewirings, or some
combination thereof.

Given the scope of the survey as defined in Section [I} we exclude several works which, at a high level,
share notable similarities. Let us briefly discuss two strands of work that are related yet out-of-scope.
Firstly, several works in the ML literature have considered the generation of graphs with similar properties
to a provided dataset. This is typically performed using a deep generative model, and may be seen as an
ML-based alternative for the classic graph generative models such as that of Barabdsi & Albert| (1999).
These works primarily use datasets of examples of the final graph (i.e, the “finished product’)’ and not
of intermediate ones, which, in a sense, corresponds to the steps of the generation process itself. They
additionally require large collections of related examples, which may not always be available depending
on the domain. In this area, works that use an auto-regressive model (such as LSTM or GRU) resemble
MDP formulations; decisions such as the addition of an edge can be treated as a token in a sequence to
be learned by the model. Some notable works in this area are the technique proposed by |Li et al.| (2018)),
GraphRNN (You et al) [2018Db), and the Graph Recurrent Attention Network (Liao et al., 2019). Other
types of generative models, such as Variational Autoencoders and Generative Adversarial Networks, were
also applied for generating molecules (Kusner et al., 2017; (Guimaraes et al., |2018; De Cao & Kipf} [2018}
. Secondly, optimizing the structure of graphs has also been considered by works that apply RL
agents to physical construction environments, such as stacking blocks (Hamrick et al] [2018} [Bapst et al)
2019). These works use a graph representation in which objects correspond to blocks, and edges indicate
physical relationships between them. A Graph Network (Battaglia et al] [2018) is used to predict Q-values
for each edge. Results in this area indicate that agents equipped with the inductive bias derived from this
representation can attain better performance for physical construction problems. However, as these works
do not treat a discrete optimization problem but instead use the graph representation as part of a more
complex algorithm for a different task, we do not cover them in detail.

16

Under review as submission to TMLR

final graph G*
with F(G*) > F(G)

starting graph G with
objective function value F(G)

Figure 3: High-level illustration of how Graph Structure Optimization problems are approached with RL. The
MDP starts from a (possibly empty) initial graph G with an objective function value F(G). The topology
of the graph is modified incrementally (e.g., via edge additions and removals) until a termination condition,
such as the exhaustion of a modification budget is met. The goal is for the objective function value F(G*)
of the resulting graph G* to be maximally increased relative to the starting point.

Table 1: High-level summary of works that use Graph Reinforcement Learning for structure optimization.

Citation

Dai et al.||2018
Sun et al.|[2020

Problem
Attacking GNNs

Structural Modification Objective Function Base RL Algorithm Function Approximation

Misclassification rate of GCN DQN S2v
Misclassification rate of GCN DQN S2V

Edge addition and removal
Edge addition for newly injected
nodes

Degree-preserving edge rewiring Misclassification rate of GCN REINFORCE S2v Ma et al.||2021
Network Design Edge addition Resilience DQN S2v Darvariu et al.||2021a,
Edge addition with spatial re- Resilience, Efficiency ucCT — Darvariu et al.|[2023a
strictions
Edge rewiring Degree entropy, Maximum Entropy Ran- DQN S2v Doorman et al.
dom Walk
Degree-preserving edge rewiring Resilience, Efficiency PPO FireGNN (GIN-based) Yang et al.||2023

Edge addition Recovering implicit objective MaxEnt Inverse RL MPNN ivedi et al.

Causal Discovery

One-shot graph generation
Node ordering

Bayesian Information Criterion
Bayesian Information Criterion

Actor-Critic
Actor-Critic

Encoder-Decoder
Encoder-Decoder

(Zhu et al.||2020
W al. 1

Node ordering Bayesian Information Criterion DQN Encoder-Decoder 2023a
Edge addition Bayesian Information Criterion UcCT — (Darvariu et al.|[2023b

Molecule Optimization Edge addition Drug-likeness, Synthetic accessibility PPO GCN You et al.|[2018a
Node addition, edge addition Drug-likeness, Similarity to prior molecule DQN Molecular fingerprint ou et al.[12019
and removal

The remainder of this section reviews relevant papers in depth, grouped by the problem family. We cover
work that seeks to learn how to attack a GNN, design the structure of networks, discover causal graphs, and
construct molecular graphs. The considered papers are summarized in Table |1} according to their adopted
techniques and characteristics.

3.1 Attacking Graph Neural Networks

The goal in this line of work is learning to modify the topology of a graph through edge additions and
removals so as to induce a deep graph or node-level classifier to make labeling errors. The problem can be
thought of as the graph-based equivalent of finding adversarial perturbations for image classifiers based on
deep neural networks (Biggio et al. [2013; [Szegedy et al., 2014)).

Traditional approaches for adversarial attacks can be divided into white-box methods (which assume access
to the internals of the classifier, such as gradients) and black-box methods (which do not require this priv-
ileged information). For the latter setting, metaheuristics that perform gradient-free optimization, such as
evolutionary algorithms, can be leveraged . Additionally, an attack based on random edge
rewiring can also be considered; this can induce substantial classification errors despite its apparent simplic-
ity (. Recent works have therefore considered using RL to improve on the performance of
these attack methods in the absence of access to the internal state of classifiers.

The work of was the first to formalize and address this task. The approach proposed by
the authors, called RL-S2V, is a variant of the algorithm proposed by Khalil et al| (2017) that combines

17

Under review as submission to TMLR

incremental edge addition

incremental edge removal

incremental edge rewiring

t=0 t=1 t=2 t=3

Figure 4: Tlustration of several action space designs for Graph Structure Optimization. Edge addition, re-
moval, and rewiring can be formulated as the selection of a single node per timestep, yielding an O(|V])
action space. The topological changes are encapsulated in the definition of the transition function. Con-
straints are commonly used to exclude invalid actions (e.g., the actions corresponding to the addition of an
edge that is already part of the graph will be forbidden).

S2V graph representations with the DQN. The action space is decomposed for scalable training: actions are
formulated as two node selections, with an edge being added if it does not already exist, or removed if it
does. The evaluation performed by the authors showed that it it compares favorably to attacks based on
random edge additions and those discovered by a genetic algorithm.

Building on RL-S2V,|Sun et al.| (2020) argued that attacks on graph data that consist of injecting new nodes
into the network (e.g., forged accounts) are more realistic than those involving the modification of existing
edges. The authors formulated an MDP with 3 sub-actions in which the agent must decide the edges for the
injected nodes as well as their label. The S2V graph representation and DQN learning mechanism are used.
The proposed method, NIPA, was demonstrated to outperform other attack strategies while preserving some
of the key topological indicators of the graph, and is more effective in sparser networks.

Ma et al.| (2021)) also considered graph adversarial attacks, framing the problem similarly to|Dai et al.| (2018)).
However, they instead adopted a rewiring operation that preserves the number of edges and the degrees of
the nodes in the graph, arguing that such attacks are less detectable by linking to matrix perturbation
theory. They used a GCN to obtain graph representations, and trained a policy gradient algorithm to learn
graph rewiring strategies. The authors showed that the proposed ReWatt method outperforms RL-S2V,
which they attribute to a better comparative balance of edge additions and removals, as well as the design
of the reward function, which provides rewards after every rewiring operation and not solely at the end of
the episode.

18

Under review as submission to TMLR

3.2 Network Design

There is a long tradition of using graphs to represent and analyze the properties of infrastructure networks
such as power grids, computer networks, and metro transportation systems. Their construction (or design)
for optimizing a given objective, on which there has been comparatively less work, has typically been ap-
proached using (meta)heuristic methods.

Darvariu et al.| (2021al) approached the problem of constructing graphs from
the ground up or modifying an existing graph so as to optimize a global objective function. The considered
objectives capture the resilience (also called robustness) of the network, quantified by the fraction of the
nodes that needs to be removed before breakdown when the graph is exposed to random failures (Cohen
et al., |2000) and targeted attacks (Cohen et al. |2001). The work is motivated by the importance of modern
infrastructure networks such as power grids. The MDP formulation, which also breaks down the edge
addition into two actions, is able to account for the exclusion of already-existing edges, leading to strictly
better performance than RL-S2V. The authors showed that the proposed RNet-DQN method is able to learn
better strategies for improving network robustness than prior heuristics, and can obtain generalization to
larger networks.

Subsequently, [Darvariu et al.| (2023a) made two further contributions to goal-directed graph construction
with RL. Firstly, the authors proposed to use model-based, decision-time planning methods such as MCTS
for cases in which optimality for one graph (i.e., a given infrastructure network) is desirable over a gen-
eral predictive model. Secondly, the authors contributed an MDP for graph construction that is better
suited for networks positioned in physical space, which influences the cost and range of connections. The
authors consider the optimization of efficiency (Latora & Marchiori, |2001) and a more realistic resilience
metric (Schneider et al.l |2011). The proposed algorithm, SG-UCT, builds on the standard UCT and tailors
it to this class of problems by considering a memorization of the best trajectory, a heuristic reduction of
the action space, and a cost-sensitive simulation policy. The algorithm was evaluated on metro networks
and internet backbone networks, showing better performance than the baselines in its ability to improve the
objectives, and substantially better scalability to large networks than model-free RL.

Doorman et al.| (2022)) extended the approach of [Darvariu et al. (2021a) to the problem of rewiring the
structure of a network so as to maximize an objective function. They considered the practical cybersecurity
scenario of Moving Target Defense (MTD), in which the goal is to impede the navigation of an attacker that
has entered the network. The authors approached this task through the maximization of the Shannon entropy
of the degree distribution (Solé & Valverdel 2004) and of the Maximum Entropy Random Walk (Burda et al.,
2009) as proxy metrics for “scrambling” the network structure. The models trained for entropy maximization
were shown to effectively impede navigation (simulated with a random walk model) on several synthetic
topologies and a real-world enterprise network.

Yang et al.[(2023b)) considered learning to perform degree-preserving graph rewiring for maximizing the value
of a global structural property. The authors adopted the same resilience and efficiency metrics as |[Darvariu
et al.| (2023a), as well as a linearly weighted combination of them. The proposed ResiNet method features the
custom FireGNN graph representation technique, which is justified by the lack of meaningful node features,
and uses an underlying Graph Isomorphism Network (GIN) model (Xu et al.,[2020) to learn a representation
solely from graph topology. The rewiring policy is trained with the PPO algorithm. The evaluation was
conducted on synthetic networks, a power grid and a peer-to-peer network, showing superior performance
over several heuristic and learned baselines.

Trivedi et al. (2020) tackled the inverse problem of the one discussed thus far. Namely, given a graph,
the goal is to learn a plausible underlying objective function that has lead to its generation. The authors
proposed an MDP formulation of graph construction through edge additions, and used maximum entropy
inverse RL and a MPNN to implicitly recover the optimization objective. The authors empirically showed
that the learned model is able to generate graphs that match statistics such as the degree and clustering

19

Under review as submission to TMLR

coeflicient distributions of the observed graphs. The resulting model can also be used to generate similar
examples of networks that optimize the discovered objective, as well as for performing link prediction.

3.3 Causal Discovery

Building a graph so as to maximize an objective function also has applications in causal inference and
reasoning. In this area, Directed Acyclic Graphs (DAGs) are commonly used to represent statistical and
causal dependencies between random variables. Causal discovery can be approached as a combinatorial
optimization problem that asks to find the DAG structure that best explains the observed data. This can
be quantified by score functions such as the Bayesian Information Criterion (BIC) , which

serve as objective functions in this context.

Notable combinatorial methods include Greedy Equivalence Search (Chickering] [2002)), which carries out
a Greedy Search in the space of Markov equivalence classes, and GOBNILP (Cussens| [2011]), an exact
method that leverages an Integer Programming formulation of the problem. RL approaches have begun to
be explored recently as a means of achieving flexibility in the data generation and score functions that can
be used, as well as to improve on the simplistic Greedy Search mechanism.

RL-BIC (Zhu et al., 2020) is an actor-critic algorithm that leverages the continuous characterization of
acyclicity proposed by |Zheng et al| (2018) in the reward function together with the score function itself
to ensure that generated graphs do not contain cycles. The authors used an encoder-decoder model to
approximate the policy. The encoder is based on the Transformer architecture, while the decoder is a single-
layer non-linear transformation whose output is a square matrix used for predicting the probability of each
possible edge in the graph. The evaluation, conducted on synthetic random graphs and a benchmark in
the biological domain, highlights the flexibility of the framework to accommodate varying data generation
processes and score functions.

Building on this work, [Wang et al.| (2021)) considered carrying out the search in the space of orderings.
An ordering is a permutation over the nodes that places a constraint on the possible relationships, i.e., for
every node, its parents must come before it in the permutation. From the ordering, a causal graph can be
constructed by (1) translating the ordering to a fully-connected DAG; and (2) pruning away statistically
insignificant relationships. The proposed CORL method formulates actions as the selection of a node to add
to the ordering and makes use of two reward signals, of which one is provided at the end of the episode when
the graph is scored, and one is given after each decision-making step by exploiting the decomposability of
BIC. CORL uses function approximation for the policy through an encoder-decoder architecture. It features
the same encoder as and an LSTM-based decoder that outputs an ordering node-by-node
(with already-chosen nodes being masked). The authors use an actor-critic RL algorithm and achieve better
scalability than RL-BIC.

[Yang et al| (2023a) also leveraged the smaller search space of causal orderings and formulated actions as
the selection of a node to add to the ordering. Instead of optimizing the score of a single source graph, the
proposed RCL-OG method learns the posterior distribution of orderings given the observed data, basing this
on the fact that the true DAG may not be identifiable in some settings. The resulting probabilistic model
can be used for sampling orderings. The method uses a symmetric learning architecture that leverages
Transformers both for the encoder and the decoder. The output of the decoder is passed in input to an
MLP to obtain estimates of the Q-values for each action (i.e., the next node to include in the ordering). The
approach features several @Q-networks (one per layer of the order graph) trained using the DQN algorithm.
Authors show that the correct posterior is accurately recovered in some simple examples and that better or
comparable performance is obtained on a series of synthetic and real-world benchmarks.

Darvariu et al.| (2023b) is another work that approached the causal discovery problem with RL to search
directly in the space of DAGs. Unlike RL-BIC, which performs one-shot graph generation, the authors
formulated an MDP in which the graph is constructed edge-by-edge. The proposed CD-UCT method features
an incremental algorithm for determining the candidate edges whose addition would cause the graph to
become cyclic, which are excluded from the action space. The evaluation was carried out on benchmarks
from the biological domain as well as synthetic graphs. CD-UCT was shown to substantially outperform

20

Under review as submission to TMLR

starting graph G control actions x for graph G
control actions x not set s.t. F(G, k) maximal

PinPiabite b

Figure 5: High-level illustration of how Graph Process Optimization problems are approached with RL. The
agent starts with a graph topology G that remains fixed throughout the MDP. At each step, the agent
incrementally selects one of the control actions k. For example, in the case of some routing formulations, s
is a set of edge weights that are used to compute how the flows should be split at every node. The goal is
for the objective function value F(G*, k), which is defined over the graph topology and the control actions,
to be maximized.

RL-BIC even with orders of magnitude fewer score function evaluations, and also to compare favorably to
Greedy Search. The approach is based on MCTS and does not rely on function approximation.

3.4 Molecular Optimization

The final class of works we discuss in this section target molecular optimization. This is a fundamental task
in chemistry, with applications in drug screening and material discovery. Molecules with various desirable
properties such as drug-likeness and ease of synthesizability are sought. To represent molecules as graphs,
atoms are mapped to nodes and edges to bonds.

You et al.| (2018a)) considered learning to construct molecular graphs . The objective functions that
the method seeks to optimize are the drug-likeness and synthetic accessibility of molecules. The action space
is defined as the addition of bonds or certain chemical substructures, and the transition function enables the
environment to enforce validity rules with respect to physical laws. The proposed approach, called Graph
Convolutional Policy Network (GCPN), uses GCN to compute the embeddings for state representation
and trains the policy using PPO. In addition to the objective functions, the reward structure incentivizes
the method to generate molecules that are similar to a given dataset of examples. GCPN was shown to
outperform a series of previous generative models for the task.

Zhou et al.| (2019)) proposed an MDP formulation of molecule modification that operates on graphs and only
allows chemically valid actions. The considered reward function is explicitly multi-objective, allowing the
user to trade off between desiderata such as drug-likeness and similarity to a starting molecule. The authors
use a Double DQN that operates with a state representation based on a molecular fingerprinting technique.
Unlike GCPN and other prior methods, the method does not require pretraining, which the authors argue
introduces biases present in the training data. The authors show that the performance of their proposed
MolDQN approach is better or comparable to other molecular optimization techniques.

21

Under review as submission to TMLR

Table 2: High-level summary of works that use Graph Reinforcement Learning for process optimization.

Problem Decision Space Objective Function Base RL Algorithm Function Approximation Citation
Routing on Networks Split ratios, edge weights used with softmin rout- Maximum Link Utilization TRPO MLP
ing
Split ratios Delay, Throughput (multi-objective) DDPG MLP
Flows to be rerouted with LP Maximum Link Utilization REINFORCE CNN
Selecting node as flow middlepoint Maximum Link Utilization PPO MPNN
Edge weights used with softmin routing Maximum Link Utilization PPO Graph Network
Network Games Continuous action vector used for edge formation ~Recovering per-agent objective function MA-AIRL MPNN
Node to include in maximal independent set Social Welfare, Fairness UCT, GIL (Imitation Learning) S2v
Spreading Processes Node to be influenced Maximize influenced vertices DQN GCN
Node to be influenced (uncertain) Maximize influenced vertices DQN S2vV.
Ranking over nodes Minimize infected nodes, maximize influ- PPO 2 Custom GNNs
enced vertices
Search and Navigation Next node towards unknown target Identifying target node REINFORCE LSTM
Next node towards unknown target Identifying target node UCT with Policy, Value Networks RNN
Next cluster, next node towards unknown target Identifying target node REINFORCE LSTM
Next node towards known target Number of node expansions until reaching SalL (Imitation Learning) MLP
target
Next node towards known target Number of node expansions until reaching PHIL (Imitation Learning) Custom MPNN
target
Next node (no explicit target) Minimize topological gaps, maximize com- DQN GraphSAGE
pressibility

4 Graph Process Optimization

In this section, we discuss works that apply Reinforcement Learning to the optimization of a process occurring
on a graph. Such works typically assume a fixed graph structure over which a process, formalized as a set of
mathematical rules, takes place. In this scenario, the aim is still to optimize an objective function, but the
levers the agent has at its disposal do not involve manipulating the graph structure itself. Notable examples
of such processes (Barrat et al., [2008) include the routing of traffic (the agent controls how it should be split),
mitigating the spread of diseases (the agent decides which nodes should be isolated), as well as navigation
and search (the agent makes a decision on which node should be visited next).

At a high level, such problems can be formulated as finding the point x in the discrete decision space K
satisfying argmax, ¢, F(G, k), which remains a discrete optimization problem over a fixed graph topology
G. We illustrate this in Figure Some examples of such control actions x are the selections of nodes or
edges that incrementally define a trajectory or graph substructure, and decisions over attributes (e.g., labels,
weights) to be attached to nodes or edges. The considered papers are summarized in Table [2| according to
their adopted techniques and characteristics.

4.1 Routing on Networks

Techniques for routing traffic across networks find applicability in a variety of scenarios including the Internet,
road networks, and supply chainsEl In the RL literature, routing across a network topology has been
approached from two different perspectives. A first wave of interest considered routing at the packet level
in a multi-agent RL formulation. The second, more recent, wave of interest originated in the computer
networks community, which has begun to recognize the potential of ML methods in this space
|& Rexford, [2018; |Jiang et al., |2017). This work generally considers routing at the flow level rather than
the more granular packet level, which tends to be a more scalable formulation of the problem, and is more
aligned to current routing infrastructure.

We now briefly discuss non-RL methods. The flow routing problem can be solved optimally by Linear
Programming). However, this requires the unrealistic assumption that the demands are
known a priori and do not change (Fortz & Thorup}[2002)). Shortest-path algorithms are also applicable, being
commonly deployed in routing infrastructure via protocols, such as Open Shortest-Path First (OSPF)
). The problem of determining weights for OSPF routing cannot be formulated as an LP and has been
shown to be A'P-hard, motivating the use of local search heuristics (Fortz & Thorup| [2000]). Simpler

heuristics, such as setting weights inversely proportionally to capacity, have also been recommended by
hardware manufacturers).

3We note that some works refer to problems in the TSP and VRP family as “routing” problems, since they involve devising
routes, i.e., sequences of nodes to be visited. This is an unfortunate clash in terminology with problems that involve the routing
of flows over graphs, which are discussed in this section. The problems have little in common in structure and solution methods
beyond this superficial naming similarity.

22

Under review as submission to TMLR

4.1.1 Early RL for Routing Work

The first work in this area dates back to a 1994 paper in which Boyan & Littman| proposed Q-routing,
a means of performing routing of packets with multi-agent Q-learning (Boyan & Littman) [1994). In this
framework, an agent is placed on packet-switching nodes in a network; nodes may become congested and
so picking the shortest path may not always yield the optimal result. Agents receive neighbors’ estimates
of the time remaining after sending a packet and iteratively update their estimates of the Q-values in this
way. The authors showed, on a relatively small network, that this approach is able to learn policies that can
adapt to changing topology, traffic patterns, and load levels.

Subsequent works have introduced variations or improvements on this approach: |Stone|(2000]) considered the
case in which nodes are not given information about their neighbors, and applied a form of Q-learning with
function approximation where states are characterized by feature vectors. Another approach that instead
uses policy gradient methods (Tao et al., |2001)) was able to learn co-operative behavior without explicit
inter-agent communication, adapt better to changing topology, and is amenable to reward shaping. |Peshkin
& Savova, (2002) proposed a softmax policy trained using a variant of REINFORCE, which was shown to
perform substantially better than Q-routing in scenarios for which the optimal policy is stochastic.

4.1.2 Recent RL for Routing Work

We next discuss more recent attempts to use RL for learning routing protocols, which has been performed
with a variety of formulations. Typical solutions to routing in computer networks either assume that traffic
quantities are known a priori (as is the case with Linear Programming methods) or optimize for the worst-
case scenario (called oblivious routing). |Valadarsky et al.| (2017) was the first work to highlight the potential
of ML to learn a routing strategy that can perform well in a variety of traffic scenarios without requiring
a disruptive redeployment. The authors proposed two RL formulations in which the agent must determine
split ratios for each node-flow pair, as well as a more scalable alternative in which edge weights are output,
then used to determine a routing strategy via the softmin function. Input to the model consists of a sequence
of demand matrices, processed with an MLP learning representation. The model is trained with TRPO to
optimize a reward function quantifying the maximum link utilization relative to the optimum. Promising
results were shown in some cases but scalability is fairly limited.

Xu et al| (2018b) considered a different formulation of the problem, in which the state space captures
the status (in terms of delay and throughput) of all transmission sessions, actions consist of deciding split
ratios across each possible path in the network, and rewards are based on a weighted combination of delay
and throughput. The authors proposed an actor-critic algorithm based on DDPG that features prioritized
experience replay alongside an exploration strategy that queries a standard traffic engineering technique.
The evaluation, performed using the ns-3 simulator, showed that the method achieves better rewards than
DDPG and several heuristic and exact methods.

Zhang et al.| (2020) proposed a hybrid method that is integrated with Linear Programming. The agent
takes traffic matrices as input, and decides actions that determine a set of K important (critical) flows to be
rerouted. The reward signal is inversely proportional the maximum link utilization obtained after solving the
rerouting optimization problem for the selected flows. A Convolutional Neural Network is used for function
approximation, and the policy is trained with REINFORCE with an average reward baseline. The method
is successfully evaluated on network topologies with up to 49 nodes and achieves better performance than
other heuristics for choosing the top-K flows.

Almasan et al.| (2021)) introduced a formulation that computes an initial routing based on shortest paths,
then sequentially decides how to route each flow, which then becomes part of the state. The actions were
framed as selecting a node to act as middle point for the flow, with each flow being able to cross at most
one middle point by definition, which improves scalability compared to deciding split ratios directly. The
maximum link utilization is used for providing rewards. Authors used a MPNN for representing states and
PPO for learning the policy. Results showed that the proposed method achieves better performance than
standard shortest path routing and a heuristic method. While the technique performed worse than a solution
computed with Simulated Annealing, it is substantially faster in terms of runtime.

23

Under review as submission to TMLR

Hope & Yoneki (2021) adopted the softmin routing variant of the RL formulation proposed by
et al| (2017). The work focuses on the learning representation used, arguing for the benefits of GNNs over
the standard MLP used in the original paper. The authors used a variant of Graph Networks for this task,
trained using PPO. The results showed that the use of the GNN representation yields better maximum link
utilizations than the same model equipped with an MLP in one graph topology. The GNN model, while
transferable in principle to different topologies, obtained mixed results compared to shortest path routing.

4.2 Network Games

Network games (Jackson & Zenou, 2015)) represent decentralized game-theoretic scenarios in which a social
network connects self-interested agents. The actors have the liberty to take individual actions and derive
utility based on their neighbors’ actions as well as their own. Typical questions of interest are finding
equilibrium configurations of the game (from which agents would not unilaterally deviate given self-interested
behavior) and devising strategies for incentivizing agents to move towards desirable configurations (e.g.,
as quantified by an objective function). In general, computing an equilibrium is often computationally
challenging or even intractable (McKelvey & McLennan) [1996} [Conitzer & Sandholm} [2003]), motivating the
use of approximate methods.

[Trivedi & Zhal (2020) focused on learning in the class of network emergence games. In this category, the
strategic behavior of agents leads to the creation of links. The paper seeks to recover the unknown utility
functions of the agents from an observed graph structure. The action taken by each agent is the “announce-
ment” of intentions, represented as a continuous vector which is used to decide which links are formed.
Training was performed using a GNN-parameterized policy and a multi-agent inverse RL algorithm. The
authors showed that MINE is able to discover a payoff mechanism that is highly correlated to the true utility
functions, achieves good performance when transferring to different scenarios, and also provides reasonable
performance on link prediction despite not being specifically trained for the task.

Darvariu et al.| (2021b]) considered the problem of finding an equilibrium in the networked best-shot public
goods game that optimizes an objective function. The authors exploited the correspondence of equilibria in
this game with maximal independent sets — a set of nodes defined such that no two nodes are adjacent and
each node is either a member of the set or not. The incremental construction of a maximal independent set
was formulated as an MDP in which actions consist of node selections to be added to the set. Social welfare
and fairness were considered as objectives. The authors leveraged the collection of demonstrations of an
expert policy using MCTS, which are used by the proposed Graph Imitation Learning (GIL) technique for
training a S2V-parameterized policy that generalizes to different problem instances and sizes. The method
outperforms a number of prior approaches for this task including best-response dynamics, a method based

on simulated annealing (Dall’ Asta et al] [2011]), a distributed search algorithm based on side payments (Levit

2018)), and heuristics that allocate resources based on local node properties.

4.3 Spreading Processes

Mathematical models of spreading processes are applicable for capturing the dynamics of phenomena such as
the spread of disease, knowledge and innovation, or influence in a social network. They have a rich history in
the mathematical study of epidemics, with models such as Susceptible, Infected, Recovered (SIR) enabling
tractable analytical study (Kermack & McKendrick, [1927). Typical questions that are considered include the
existence of a tipping point in the spread (beyond which the phenomenon propagates to the entire network)
or how to best isolate nodes in the network to achieve containment.

The problem of influence maximization in a social network is NP-hard and, for this reason, it has been

approached with greedy search (Kempe et al] [2003) and hand-crafted heuristics (Liu et al] 2017), as exact

methods are only usable at a small scale. For epidemic models, heuristics based on node properties (such as

degree and betweenness) are typically used to identify nodes that would be influential in the spreading and
hence should be isolated (Pastor-Satorras et al] [2015]).

Several recent papers have considered applications of RL to spreading processes on graphs, with the tech-
niques being applicable to more complex interaction mechanisms. Manchanda et al|(2020)) set out to improve

24

Under review as submission to TMLR

the scalability of prior RL methods for combinatorial optimization problems such as S2V-DQN. The authors
proposed to (1) train a model by Supervised Learning that predicts whether a node is likely to be part of
the solution and (2) train a policy by RL that only operates on this subset of nodes. The GCN architecture
was adopted and the model is trained with Q-learning. GCOMB was applied on the influence maximization
problem, obtaining similar solution quality to prior methods while scaling to substantially larger graphs with
billions of nodes.

Chen et al.| (2021)) studied a contingency-aware variant of the influence maximization problem, in which
nodes selected as “seeds” may not participate in the spreading process according to a given probability. This
non-determinism leads to complications in designing the state space and reward function, which the authors
successfully addressed via state abstraction and theoretically grounded reward shaping. The technique
also uses the S2V GNN in combination with DQN. RL4IM outperformed prior RL methods that do not
explicitly account for the uncertainty in influencing nodes, and runs substantially faster on large graphs than
a comparable greedy search algorithm for the problem.

Meirom et al.| (2021) proposed an approach based on RL and GNNs for controlling spreading processes
taking place on a network, in which an agent is given visibility over the status of the nodes as well as past
interactions. The actions were framed as the selection of a ranking of the nodes in the network. RLGCN was
applied for controlling an epidemic spreading process (the agent decides which nodes should be tested and
subsequently isolated, with the goal of minimizing the number of infections) and an influence maximization
process (the agent decides a set of seed nodes to spread influence to their respective neighbors, with the goal
of maximizing the number of influenced nodes). The approach features a GNN for modeling the diffusion
process and one for capturing long-range information dependencies, and was trained end-to-end using PPO.
Their method was shown to perform better than several prior heuristics (e.g., removing highly central nodes
in epidemic processes).

4.4 Search and Navigation

Search and navigation processes over graphs have also been studied in the RL literature. They can roughly
be classified into three sub-categories: works that treat completion on knowledge graphs (in which the search
target is not explicitly known), works on learning heuristic search algorithms (the search target is known and
a path must be found to it), and papers that seek to validate theories about how humans navigate graphs.

Let us consider the first line of work, which addresses graph search in the context of reasoning in knowledge
graphs. The task is typically formulated as completing a query: given an entity (e.g., Paul Erdés) and a
relation (e.g., country of birth), the goal is to find the missing entity (e.g., Hungary). This is realized through
guided walks over the knowledge graph. A model is trained using queries that are known to be true, and
subsequently applied to tuples for which the knowledge is incomplete.

Das et al.| (2018]) formulated the task as an MDP in which states encode the current location of the agent in
the graph and the entity and relation forming the query. Actions correspond following one of the outgoing
edges, while rewards are equal to 41 if the agent has reached the target node, and 0 otherwise. The policy
is represented as an LSTM and trained using REINFORCE with an average cumulative reward baseline.
The performed evaluation shows that the method is competitive with other state-of-the-art approaches, and
superior to a path-based model for searching the knowledge base.

M-Walk (Shen et al.l 2018) built further in this direction by leveraging the observation that the transition
model when performing graph search is known and deterministic: given the current node and a chosen
edge, the next node is uniquely determined with probability 1. This can be exploited through the use of
model-based algorithms such as MCTS. The authors proposed a method that combines the use of MCTS
(for generating high-quality trajectories) and policy & value networks (which share parameterization and
are trained using the MCTS trajectories). The method was shown to outperform MINERVA and several
traditional baselines for knowledge base completion.

25

Under review as submission to TMLR

A recent work by |[Zhang et al. (2022) addressed the issue of degrading performance of RL models for
knowledge graph completion with increases in path length (e.g., MINERVA limits the path length to 3 due
to this). The authors proposed a hierarchical RL design with two policies that act cooperatively: one higher-
level policy for picking the cluster in the knowledge graph to be searched, and a fine-grained policy that
operates at the entity level. The initial clustering is performed using embeddings obtained with the TransE
algorithm and K-means. The method outperforms MINERVA and M-Walk, particularly when answering
queries over long paths.

We now move on to discussing works that aim to learn heuristics for classic graph search, i.e., scenarios in
which a topology is given and a path from a known source node to a known destination node must be found.
Simple algorithms for this task, such as Depth-First Search and Breadth-First Search, can be improved by
using a heuristic function for prioritizing nodes to be expanded next together with an algorithm such as
A*. An important application is motion planning in robotics, for which resource constraints dictate that the
search should be performed as effectively as possible.

Bhardwaj et al| (2017)) considered precisely the robotic motion planning use case, in which the graph cor-
responds to possible configurations of the robot, and edges are mapped to a set of valid maneuvers. The
authors formulated this task as a POMDP and used a simple MLP to parameterize the policy, which was
trained using imitation learning. The authors leveraged the existence of a powerful oracle algorithm whose
computational cost prevents its use at runtime but may be queried during the training procedure. The opti-
mization target is to minimize the expected difference between the Q-values (often referred to as cost-to-go
in robotics, in which the equivalent goal is to minimize cost instead of maximizing reward) of the agent and
the optimal Q-values supplied by the oracle. Search as Imitation Learning (Sall.) was shown to outperform
several simple heuristics , an SL model, and model-free RL.

Pandy et al.| (2022)) built further in the direction of imitation learning for graph search, with a few key
differences with respect to Sall.. The authors set out to learn a perfect heuristic function to be used in con-
junction with a greedy best-first search policy, instead of attempting to directly learn the search policy itself
as in SalL.. Furthermore, the policy is parameterized as a custom recurrent GNN, which intuitively provides
a mechanism for tracking the history of the graph traversal without storing the graph in memory, which is
computationally infeasible. Finally, the authors proposed a custom IL procedure suitable for training using
backpropagation through time. The authors showed superior performance over Sall. and other methods in
several domains: 2D navigation tasks, search over real-world graphs such as citation and biological networks,
and planning for drone flight.

Patankar et al.| (2023) studied RL for graph navigation in the context of validating prior theories of how
humans perform exploration in graphs (e.g., in content graphs such as Wikipedia). Such theories posit that
people follow navigation policies that are content-agnostic and depend on the topological properties of the
(sub)graph: namely, that navigation is performed to regulate gaps in knowledge (Information Gap Theory)
or to compress the state of existing knowledge (Compression Progress Theory). The authors trained policies
parameterized by a GraphSAGE GNN using the DQN algorithm for navigating the graph so as to optimize
the two objective functions. Subsequently, the policies were used to derive centrality measures for use with
a biased PageRank model that mimics human navigation. The evaluation, performed over synthetic graphs
and several real-world graphs including book and movie reviews, showed that the approach results in walks
on the graph that are more similar to human navigation than standard PageRank.

5 Challenges and Applications

5.1 Challenges of Graph RL

Let us take the opportunity to discuss some of the general challenges faced by works in this area. In the
absence of a major breakthrough, they are likely to persist long-term, and we conjecture that addressing
them satisfactorily requires deep insights. Complementarily, they may be viewed as open questions that can
be treated towards the advancement of the field.

26

Under review as submission to TMLR

5.1.1 Framing Graph Combinatorial Optimization Problems as MDPs

In order to apply RL for a given graph combinatorial optimization problem, one needs to decide how to
frame it as a Markov Decision Process, which will impact the learning effectiveness. While the objective
function is typically dictated by the application, the designer generally has the liberty to decide the state
and action spaces as well as the dynamics. Let us discuss some general considerations.

While many deep learning architectures such as autoencoders generate outputs in a one-shot fashion, RL
approaches enable a constructive way of solving optimization problems. The underpinning Bellman principle
of optimality captures the intuition that, whatever action is taken in a given state, the
optimal policy must also be optimal from the resulting next state. This provides a way of breaking up a
highly complex decision-making problem into sequential subproblems, greatly enhancing scalability in large
state spaces. Incremental construction of the solution using RL is also more interpretable than one-shot
generation, as the sequential local decisions can be inspected. In RL combinatorial optimization settings in
which one-shot solution generation and incremental construction have been compared directly, the former
has proved superior (Darvariu et al., [2023b} [Sanokowski et al. [2023)).

Beyond this, several concepts have been shown to be beneficial. Compositionality can be exploited by means
of decomposing actions into independent sub-actions (e.g., choosing an edge is split into two node selection
actions). This has the effect of reducing the breadth of the MDP at the expense of increasing the depth, but
has often proven beneficial if the action space observes such a structure (He et all 2016} Dai et al. 2018;
Darvariu et al., 2021a). Hierarchical designs have also proven successful for problems in which regions of a
solution can be considered largely independently (Chen & Tian, 2019; Zhang et al. [2022)).

There is also a tension between framing the problem at a very high level versus more granularly, which
requires sacrifices in expressivity and generality to gain speed. Many of the surveyed works consider action
spaces that are mapped to node identifiers and attributes. Instead, one can consider actions that execute
certain predefined transformations that have a high chance of improving the solution (e.g., swapping two
components of the solution based on a greedy criterion, as in the 2-opt heuristic for the TSP). This is a
common approach in some metaheuristics such as ALNS (Ropke & Pisinger} 2006) and can aid scalability
by decreasing the size of the action space. Downsides include loss of generality and the problem-specific
experimentation required to create effective transformations.

To reduce the action space dimension, other works in deep RL have considered generalizing across similar
actions by embedding them in a continuous space (Dulac-Arnold et al., [2015)) and learning which actions
should be eliminated via supervision provided by the environment (Zahavy et al.,2018)). Existing approaches
in planning consider progressively widening the search based on a heuristic (Chaslot et al., 2008) or devising
a policy for eliminating actions in the tree (Pinto & Fern| [2017)). Such techniques have also been applied for
Graph RL (Darvariu et al] [2023a]), but remain largely unexplored.

5.1.2 Reward Design: Balancing Accuracy, Speed, and Multiple Objective Functions

Objective function values are an assessment of solution quality and are used to provide rewards for the
RL agent. For many canonical problems, they are fairly inexpensive to evaluate (e.g., linear or low-degree
polynomial time in the size of the input). As an example, computing the cost of a TSP solution simply
requires summing pre-computed edge weights. Other objective functions require computational time that is a
low-degree polynomial (e.g., the robustness and efficiency metrics used in the works discussed in Section.

In some domains, the true objective function may be too expensive to evaluate, requiring the designer to opt
for a proxy quantity that can be computed more quickly. It is possible to exploit known correlations between
objectives, e.g., those between quantities based on the graph spectrum and robustness (Wang et al., [2014]).
Alternatively, works have also opted for training a model as a proxy for running the expensive simulation,
which speeds up the process at the expense of introducing errors. As an example objective too expensive
to calculate online in the RL loop, estimating how drug-like molecules bind to target proteins can take
on the order of hours even on commercial-grade software (Stark et al.) [2022)). In the extreme case, some
scenarios (Zhavoronkov et all, [2019) may require wet lab experiments that can take weeks to complete.

27

Under review as submission to TMLR

Some problems are inherently multi-objective, such as balancing drug-likeness and similarity to a previous
molecule (Zhou et all 2019), or delay and throughput for routing in computer networks (Xu et al., [2018b)).
Usually, works adopt a linear weighted combination between objectives, for which existing single-objective
RL algorithms can be used. For scenarios in which the interaction between objectives is not linear, other
techniques for multi-objective RL are required (Roijers et all 2013), but have not yet received attention in
this literature.

Aside from the choice of which reward function to use, there is also the question of when to provide rewards.
Many works opt for providing rewards only at episode completion once the solution is fully-formed. This
makes the training loop faster in wall clock time, but may be problematic due to reward sparsity and credit
assignment issues. Providing intermediate rewards can improve sample complexity but will incur a slowdown
of the training loop.

5.1.3 Choosing and Designing Algorithms and Learning Representations for Graph RL

Given an MDP formulation, how does one choose an RL algorithm to solve it? Since the application
of RL to graph combinatorial optimization problems is still a nascent area of investigation, this complex
question is often glossed over by papers. The literature as a whole lacks systematic comparisons of RL
techniques for combinatorial optimization problems, or guidelines on which algorithm to pick depending on
the characteristics of the problem.

Regarding this choice, we make the following observations to help practitioners select between RL algorithms.
We note that there is no “clear winner”, and choices must be made in accordance with the characteristics of
the problem, constraints on data collection and environment interaction, and the deployment scenario

1. For Graph RL problems, the ground truth model M = (P, R) comprising the transition and reward
functions is often known a priori. For many problems, transitions P are also deterministic, meaning
that each action a will uniquely determine a next state s’. For example, choosing an edge to add
to the graph when performing construction or choosing the next node to move to when performing
navigation both result in uniquely determined next states. For providing the rewards R, the math-
ematical definition of the objective function F is used to fully accurately judge the solution. While
this may seem trivial, knowing M unlocks the use of model-based RL algorithms, which have greatly
improved performance and scalability over their model-free counterparts when compared for Graph
RL problems (Shen et all |2018; [Darvariu et all [2023a3bl), echoing results in model-based RL for
games, in which the model is typically learned (Guo et al.,|2014; |/Anthony et al., |2017; |Schrittwieser
et al., |2020). We therefore advise opting for model-based RL if applicable and the absolute best
performance and scalability are the goals.

2. However, model-based methods are more complex to develop and implement, and do not have open
implementations as widely available in the open source community. This may explain the greater
popularity of model-free algorithms. If the goal is to reach a prototype assessing the potential of RL
for a given problem, the quickest means to do so is by opting for a model-free algorithm.

3. Among model-free algorithms, off-policy algorithms (e.g., DQN) are more sample-efficient than on-
policy algorithms (e.g., PPO), meaning that they will require fewer environment interactions to
reach a well-performing policy. If evaluating the objective function is computationally expensive, as
is often the case for Graph RL problems, then using an off-policy algorithm is advisable.

4. Furthermore, value function methods usually learn a greedy policy (i.e., they act greedily with
respect to the learned value function), while policy gradient methods learn a stochastic one. If the
optimal policy is inherently stochastic (e.g., in a packet routing scenario, the best strategy for a
node is to distribute the load among its neighbors in the graph), or the learned probabilities are
used downstream to guide another algorithm or search procedure, then policy gradient methods
should be preferred.

The challenge of choosing algorithms appropriately is further amplified by the adoption of computational
techniques that arose in different domains. Deep RL algorithms were developed and are often tested in

28

Under review as submission to TMLR

the context of computer games, which have long acted as simplified testbeds for assessing decision-making
strategies. It would be reasonable to expect, however, that the solution space and the optimal way of
navigating it may be substantially different for combinatorial optimization problems. Furthermore, using a
standard RL algorithm is usually the first step towards the validation of a working prototype, but is typically
not sufficient, as generic algorithms do not take advantage of the problem structure. Proposing problem-
specific adjustments and expansions, or even devising entirely new approaches, are frequently necessary to
achieve satisfactory performance.

Care is also needed when selecting or designing the learning representation, with different methods trading
off expressibility and scalability in general. For combinatorial optimization problems specifically, whichever
choice is made, alignment between its computational steps and those of the algorithm that it is trained to
approximate or discover can lead to better predictive performance. For example, the computational steps of
a GNN are better aligned with the Bellman-Ford algorithm than an MLP. Similarly to the algorithm, a GNN
proceeds in loops over the node set, performing a computation for each edge. When trained to mimic the
steps of the algorithm, this leads to better accuracy than an MLP 2020), whose computations do
not follow this structure. The inductive bias that is encoded in the learning representation is also important,
and there is evidence that the wrong choice of inductive bias can be harmful (Darvariu et al., 2022).

Symmetries that are present in the problem and solution spaces are also highly relevant and can be fruitfully
exploited by algorithms and learning representations alike. For example, a TSP solution that visits nodes
(A, B, C) is equivalent to one that visits (B, C, A). Exploiting this may lead to better sample complexity and
more robust models. Approaches for canonical problems have considered encoding symmetry with specific
terms in the loss function (Kwon et al., [2020; Kim et al.,|2022)) or augmenting the dataset of sampled solutions
at inference time (Kwon et al.| [2020). A recent work (Drakulic et al., [2023)) proposed exploiting symmetries
at the level of the MDP formulation itself by proposing a transformation of the original MDP that reduces
the state space. Symmetries may also be encoded in the learning representation itself, as it can be achieved
by the use of GNNs with appropriate permutation-invariant readout functions (Khalil et all, 2017).

5.1.4 Scalability to Large Problem Instances

Scalability is also an important challenge for the adoption of ML-based methods for combinatorial optimiza-
tion. In a sense, solutions to the previously enumerated challenges all contribute to effective scalability of
these methods. To begin with, we note that the primary difficulty is not the computational cost of evaluating
the model, which is usually inexpensive. Rather, the challenge lies in the cost of exploring the vast solution
space associated with large problem instances, for which training directly is prohibitively expensive.

Let us enumerate some further possibilities beyond those outlined in the challenges above. One can study the
application of models trained on small problem instances to larger ones. This technique requires models that
are independent of the size of the problem, and can obtain impressive results in scenarios in which the model
transfers well, but can equally suffer from substantial degradation in solution quality if the structure of the
solution space is dissimilar at varying scales. GNNs, in particular, have proven to be an effective function
approximation technique in this context, since they enable representing problem instances of different sizes

ransparently via subgraph embeddings 1alil et al. 12017)). ecision-time planning algorithms can be
t th; bgrap! beddings (Khalil et al.| |2017 D t] g algoritl I

used to examine a small fraction of the entire decision-making process by focusing on constructing optimal
trajectories only from the current state. Hence, instead of learning a general model for solving a wide
range of instances of a graph combinatorial optimization problem, the available computational budget can
be concentrated on the problem instance at hand (Darvariu et all] [2023a). Lastly, another approach for
improving scalability involves using demonstrations of a well-performing algorithm to collect data instead of

L

online environment interaction (Bhardwaj et al.}[2017)). This means that the expensive trial-and-error process

associated with RL can be partially circumvented, and further training and fine-tuning can be performed
starting from near-optimal trajectories.

5.1.5 Generalization to Unseen Problem Instances

An important issue is the fact that one cannot guarantee that the learned models will generalize well when
encountering instances outside of the training distribution. This fundamental limitation is reminiscent of the

29

Under review as submission to TMLR

No Free Lunch theorems (Wolpert & Macreadyl, [1997) in Supervised Learning, which suggest that it is not
possible to obtain a model that performs well in all possible scenarios. Partial mitigation may be possible by
training models on a wide variety of scenarios including different initial starting points for the RL agent in
the environment (i.e., different initial solutions), problem instances of varying difficulty and size, and even
different variants of related problems.

Many works in Graph RL diversify training conditions as a means of obtaining models that generalize. This
strategy is often successful (Khalil et al.| 2017]) but can fail in unexpected ways; for example, [Darvariu et al.
found that the same RL approach for graph construction generalizes well to unseen larger instances
using one objective function (resilience of the graph to random node failures), but performance collapses

using a closely related objective (resilience to targeted node attacks).

To the best of our knowledge, there are currently no methods able to guarantee robustness to unexpected
distribution shifts or adversarial perturbations, even for restricted classes of graph combinatorial optimization
problems. In settings where such models are deployed, one may want to have the tools in place to detect
distribution shift, and possibly use a fall-back approach whose properties and expected performance are
well-understood.

5.1.6 Engineering and Computational Overhead

Graph RL approaches typically require spending an overhead in terms of experimentation and computational
resources for the various stages of the pipeline, such as setting up the datasets, performing feature engineering,
training the model, and selecting the values of the hyperparameters. However, once such a model is trained, it
can typically be used to perform predictions whose computational cost is negligible in comparison. Costs may
be mitigated in the future by collective efforts to train generalist “foundation models” that can be shared
among researchers working on similar problems, akin to the current dynamics of sharing large language
and protein folding models. It is reasonable to expect that highly related problems such as the TSP and
its increasingly complex variants VRP, Capacitated VRP, and VRP with Time Windows have sufficiently
similar decision spaces to enable the use of a common model. However, the unique nature of different graph
combinatorial optimization problems may prove challenging in this sense.

5.1.7 Interpretability of Discovered Algorithms

Finally, a challenge that should be acknowledged is the limited interpretability of the learned models and
algorithms. Generic ML interpretability techniques are not directly applicable for the considered problems
given the graph-structured data and their framing as MDPs. Interpretability of both GNNs and RL are
areas of active interest in the ML community (e.g., |Ying et al| (2019); Verma et al| (2018)) but there
remains significant work to be done, especially at their intersection. Notably, a recent work
2022) adapts concept-based explainability methods to GNNs in the Supervised Learning setting, showing
that logical rules for several classic graph algorithms, such as Breadth-First Search and Kruskal’s method
for finding a minimal spanning tree, can be extracted. Akin to work that tackles the explainability of RL in
visual domains (e.g., Mott et al| (2019) treats Atari games), we consider that there is scope for developing
techniques that are tailor-made for explaining policies learned by RL on graphs for solving combinatorial
optimization problems.

The literature contains many instances in which the methods can optimize the given objectives remarkably
well, but we are not necessarily able to identify the mechanisms that lead to this observed performance.
Much like physicists would simulate a process of interest then work backwards to try to derive physical laws,
interpretability of an algorithm learned through RL may help formulate it in a traditional way. This can
potentially lead to low-level, highly optimized procedures and implementations that dramatically improve
efficiency and scalability. As there is a clear parallel between traditional algorithm design and using RL
to discover algorithms, advancements in interpretability would enable us to “close the loop” and use the
two approaches jointly. Furthermore, the explicit formulation of an algorithm can, in turn, enable deeper
understanding about the problem itself. We illustrate this in Figure [6]

30

Under review as submission to TMLR

Clas§ © Expert Knowledge EXpliCit

Algorithm Problem and Manual Design”| AJoorithm -
Design g :
[
[
Graph — I
Reinforcement Problem Trial—.and—Err'or :(Impl.ICIt _ .:

Learning Machine Design L Algorithm

Figure 6: Comparison between the algorithm discovery mechanisms in classic algorithm design and Graph
RL. Interpretability techniques may enable the explicit definition of algorithms that are implicitly discovered
by RL, opening the door to optimizations and improved performance.

5.2 Applications of Graph RL

The applicability of Graph RL techniques is broad as they share the versatility of the graph mathematical
framework for representing systems formed of connected entities and their relationships. As we have noted,
beyond the descriptive characterization of the problems at hand, it is natural to treat questions of optimiza-
tion, in which the goal is to intervene in the system so as to improve its properties. The core requirements
for Graph RL to be applicable can be summarized as:

1. Graphs are a suitable representation for the problem under consideration, with nodes and edges
having clear semantics;

2. A decision-maker is able to intervene in the system beyond mere observation;

3. The objective function of interest can be expressed in closed form or estimated, and such samples
are cheap to generate;

4. Tt is acceptable to solve the problem approximately.

We now review some of the important application areas that were mentioned throughout this survey.

The discipline of operations research, which studies how individuals, organizations, etc. can make optimal
decisions such that their time and resources are used effectively, is one of the most popular testbeds for these
techniques. Relevant applications include the optimization of supply chains and production pipelines. For
example, the TSP problem is commonly represented as a graph by mapping cities to nodes and creating
a fully-connected graph in which edges capture the pairwise travel cost. For the Job Shop Scheduling
Problem, which asks to find the optimal processing sequence for a set of items on a set of machines, the
disjunctive graph representation (Balas, [1969) captures tasks as nodes and creates edges that represent
timing constraints. Given the scope of our survey, as discussed in Section [I} we refer the reader to the works
of Mazyavkina et al.| (2021]) and [Bengio et al.| (2021)) for citations in this area.

Graph RL methods are also relevant for molecular and materials science applications in computational
chemistry (Butler et al., [2018). Compounds can be represented as graphs using nodes to capture atoms and
edges to indicate bonds, while RL is a natural way for framing the navigation of the search space towards
molecules with desirable properties. Graph RL has been leveraged to search for molecules that optimize
similarity to existing drugs and are easy to synthesize (You et al., 2018a; [Zhou et al.l [2019). At a larger
scale of the considered networks, in engineering, graphs are commonly used to model electrical networks
and physical structures. In this area, Graph RL techniques have been leveraged for optimizing the resilience
and efficiency of networks (Darvariu et al., [2021a; |2023a}; Yang et al., 2023b)).

In computer science, Graph RL methods have been applied extensively for problems in computer networks,
in which nodes represent (systems of) computers that are connected by links as defined by a communication

31

Under review as submission to TMLR

protocol. A great deal of interest has been dedicated to routing problems (Boyan & Littman, 1994; Valadarsky|
. For cybersecurity, Graph RL methods have been applied to disrupting the navigation of an
attacker in a computer network (Doorman et al.| 2022, as well as for adversarial machine learning, in which
the goal is to induce a classifier for graph-structured data to make errors (Dai et all [2018} [Sun et al., 2020)).
Another related application is their use in robotics, where graphs are commonly used as a model for motion
planning (nodes represent valid configurations of the robot, while edges are movements of the robot between
these configurations). Graph RL has been applied for searching the space of possible robot configurations
towards a goal state (Bhardwaj et al.,2017). Searching over a graph has also been approached with Graph
RL in information retrieval for the completion of knowledge bases (Das et all, 2018} [Shen et all, [2018]).

In economics, graphs can be utilized to model systems of individuals or economic entities, wherein links are
formed between individuals based on proximity, costs, or benefits (Goyal, [2012)). Graph RL has been used
to find desirable solutions to games taking place over networks (Darvariu et al., 2021b) as well as recovering
the mechanism that has lead to the formation of a network of self-interested agents (Trivedi & Zha), [2020).
Social network representations are also common in epidemiology (Barrat et all,[2008) to model the spread
of a disease over a network of individuals. Recent works have shown the potential of Graph RL to identify
containment strategies that can outperform well-known heuristics (Meirom et al., 2021)).

Lastly, there is an important connection to statistics, given that a common class of probabilistic models
(Bayesian Networks and Structural Causal Models) is based on graphs (Koller & Friedman| 2009} [Peters|
et all [2017). Graph RL has been leveraged for structure identification and causal discovery (Zhu et al.,
2020; Darvariu et al., [2023b)), in which the goal is to find the graph structure relating the random variables
that “best explains” the available data via objectives such as the Bayesian Information Criterion. Such
probabilistic and causal models have downstream applications in countless sciences.

6 Practical Considerations

Starting from the analysis of the existing literature and current research trends, we now derive a series of
practical considerations about when and why to use (and not to use) RL for combinational optimization
problems over graphs.

6.1 When and Why to Use Graph RL

When are RL approaches useful, and why might they outperform non-RL methods? Three high-level reasons
that do not depend on the specific characteristics of the specific problem at hand are given below.

Flexibility regarding objective function: RL methods place few requirements on the reward function and
therefore, in the context of combinatorial optimization problems, on the objective function to be optimized.
RL can therefore accommodate objectives that are not “well-behaved” mathematically speaking such as
non-differentiable, non-convex, and non-linear functions. It does not even require the objective function to
be expressed analytically as long as samples can be generated. Exact methods, on the other hand, cannot
be applied if the objective function does not belong to a pre-specified function class. Therefore, for such
problems, heuristics or metaheuristics need to be used, compared to which RL can perform better due to
the reasons outlined below.

Longer decision horizon: metaheuristics (e.g., greedy search, simulated annealing, evolutionary algorithms)
typically use a shallow decision horizon. They move through the search space by small, local modifications
of the solution. This means that, if a desirable component of the solution is unlikely to be reached by a
sequence of locally optimal modifications, it may be challenging for such methods to discover them. In
contrast, RL explicitly models the impact of longer sequences of actions. It is able to learn policies that,
while they may not lead to large returns in the short term, will typically lead to larger expected returns
over a longer decision horizon. As a relevant example, consider a network design scenario in which one aims
to produce a graph with small average shortest path lengths. The ideal topology in this case is a star, but
the path lengths are undefined until the network becomes connected. Methods with short decision horizons
therefore struggle, while RL does not. This is indeed the case for the network design problems covered in
Section for which RL proves superior over a host of metaheuristics.

32

Under review as submission to TMLR

Training stage as problem-specific tuning: Another aspect that enables RL methods to outperform meta-
heuristics is the fact that they undergo a training stage. At a high level, this may be seen as tuning the
parameters of a meta-algorithm on the particular distribution dictated by the search space of a given prob-
lem. Therefore, after training, an RL model already contains knowledge about the problem that can be
used in the process of constructing a solution for an instance that, while not identical to those it has seen
during training, comes from the same distribution on which the model was fit. In contrast, metaheuristics
start from scratch. In practice, after model training, this translates to solutions of the same quality being
found more efficiently by RL compared to generic methods, or better solutions being reached within the
same computational budget.

We note that the discussion in Section [5.1.7]is also relevant but refers to the narrower goal of understanding
the intricacies of the learned algorithms’ operation for an instance of a particular problem.

6.2 When and Why Not to Use Graph RL

Conversely, let us discuss situations in which RL solutions are unlikely to bring a substantial benefit over
classic optimization approaches if one is interested in practical usage. For a variety of well-specified problems,
especially the canonical ones, a large number of solutions and practical software tools are available. In these
cases, the use of RL might be intellectually interesting, but, in practical terms, the resulting performance
gain is usually very limited or absent. In general, if the objective function and decision variables of the
problem are such that it can be cast into well-known paradigms, such as, for example, Integer Programming
or Linear Programming, powerful and highly-optimized solvers can be leveraged.

It is also worth noting that RL does not typically yield considerable improvements if the structure of the
problem is such that shallow decision horizons are sufficient for constructing optimal solutions. In this
setting, modelling the expected returns of sequences of decisions, as performed by RL, is redundant.

The problem formulations considered by the current survey are such that they are amenable to RL-based
approaches, which motivates the use of these methodologies in the absence of satisfactory solutions. Even in
such settings, however, it is difficult to ascertain a priori how much of a gain we might obtain over a classic
approach. Overall, the literature is lacking in thorough experimental comparisons between RL and non-RL
methods beyond the scope of each individual paper. Furthermore, given their technical complexity and
experimental challenges, RL methods may require several development cycles until satisfactory performance
is obtained.

7 Conclusion and Outlook

7.1 Summary

In this survey, we have discussed the emerging area of Graph Reinforcement Learning, a methodology for
addressing computationally challenging optimization problems over graphs by trial-and-error learning. We
have dedicated particular attention to problems for which efficient algorithms are not known, and classic
heuristic and metaheuristic algorithms generally do not yield satisfactory performance. We have grouped
these works into two categories. The first, Graph Structure Optimization, comprises problems where an
optimal graph structure must be found and has notable applications in adversarial attacks on GNNs, network
design, causal discovery, and molecular optimization. The second, Graph Process Optimization, treats
graph structure as fixed and the agent carries out a search over a discrete space of possible control actions
for optimizing the outcome of the process. This encompasses problems such as network routing, games,
spreading processes, and graph search. Finally, we have discussed major challenges that are faced by the
field, whose resolution could prove very impactful.

Taking a broad view of these works, we obtain a blueprint for approaching graph combinatorial optimization
problems in a data-driven way. One needs to specify:

1. The elements that make up the state of the world and are visible to the decision-making agent.
Typically, the state will contain both fixed elements (out of the control of the agent) and malleable

33

Under review as submission to TMLR

parts (may be modified through the agent’s decisions). The constituents of a state can take the
form of a subset of nodes or edges, subgraphs, as well as features and attributes that are global or
attached to nodes and edges.

2. The levers that the agent can use to exert change in the world and modify part of the state.

3. How the world changes as a result of the actions and/or outside interference. While many works
assume deterministic transitions, one can also consider situations with stochastic properties. These
are manageable as-is by model-free RL techniques, while planning methods can be extended to
stochastic settings, for example by “averaging out” several outcomes (Browne et all, [2012).

4. Finally, the quantity that one cares about, and seeks to optimize. This would typically take the
form of an objective function for which the set of world states is the domain.

7.2 Closing Thoughts

Can we, therefore, collectively hang up our boots, leaving the machines to discover how to solve these
problems? We argue that this not the case. Generic decision-making algorithms and learning representations
are clearly not a silver bullet since they do not necessarily exploit problem structure efficiently. There are
substantial improvements to be made by encoding knowledge and understanding about the problem into
these solution approaches.

In this work, we have presented and argued for RL methodologies as an alternative to exact methods,
heuristics, and metaheuristics. This dichotomy does apply when RL techniques are used in a constructive
way, i.e., they build a complete solution to the problem starting from the MDP formulation as performed
in the surveyed works. However, in a broader sense, RL and traditional methods are not in opposition. A
number of works have explored the integration of RL and classic methods (Chen & Tian] 2019} [Hottung &]
[Tierney] [2020} [Lu et al] [2020)), in which the “main loop” is a traditional optimization algorithm, and RL is
used for improving decisions within the method. This represents a possible path for developing algorithms

that leverage both deep problem insights and highly efficient machine-learned components.

Considering the current popularity of RL, one might also ask if their application in this problem space is
an instance of Maslow’s hammer [1966). Is it the case that we favor the ubiquitous use of this
tool over careful appreciation of what might be the appropriate methodology for a given set of problems?
Nevertheless, the potential of RL approaches in this problem space is significant and transformative, a belief
that is strongly supported by the emerging body of literature. As RL techniques become more widespread,
we expect them to find successful applications far beyond canonical problems, and to transform the scientific
discovery process (Wang et al.l [2023).

References

Bruce Abramson. Expected-outcome: a general model of static evaluation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(2):182-193, 1990.

Richa Agarwala, David L. Applegate, Donna Maglott, Gregory D. Schuler, and Alejandro A. Schéffer. A
fast and scalable radiation hybrid map construction and integration strategy. Genome Research, 10(3):
350-364, 2000.

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent sets. In
ICML, 2020.

Ravindra K. Ahuja. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs,
NJ, 1993.

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabasi. Error and attack tolerance of complex networks.
Nature, 406(6794):378-382, 2000.

Paul Almasan, José Sudarez-Varela, Bo Wu, Shihan Xiao, Pere Barlet-Ros, and Albert Cabello. Towards
real-time routing optimization with deep reinforcement learning: Open challenges. In HPSR, 2021.

34

Under review as submission to TMLR

Thomas Anthony, Zheng Tian, and David Barber. Thinking Fast and Slow with Deep Learning and Tree
Search. In NeurIPS, 2017.

David L. Applegate, Robert E. Bixby, Vasek Chvatal, William Cook, Daniel G. Espinoza, Marcos Goycoolea,
and Keld Helsgaun. Certification of an optimal tsp tour through 85,900 cities. Operations Research Letters,
37(1):11-15, 20009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit Problem.
Machine Learning, 47(2):235-256, 2002.

Thomas Béck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter optimization.
Evolutionary Computation, 1(1):1-23, 1993.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning
to Align and Translate. In ICLR, 2016.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence 15, pp.
103-129, 1999.

Egon Balas. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Operations
Research, 17(6):941-957, 1969.

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld, Pushmeet Kohli, Peter
Battaglia, and Jessica Hamrick. Structured agents for physical construction. In ICML, 2019.

Albert-Lészl6 Barabési. Network Science. Cambridge University Press, 2016.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of Scaling in Random Networks. Science, 286(5439):
509-512, 1999.

Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Dynamical Processes on Complex Networks.
Cambridge University Press, 2008.

Marc Barthélemy. Spatial networks. Physics Reports, 499(1-3), 2011.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sénchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis
Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,
Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering. In NeurIPS, 2002.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning.
In ICML, 2017.

Richard A. Bellman. Dynamic Programming. Princeton University Press, 1957.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for Combinatorial Optimization: a
Methodological Tour d’Horizon. European Journal of Operational Research, 290:405-421, 2021.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. Improving Network Robustness by
Edge Modification. Physica A, 357:593-612, 2005.

Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic search via imitation. In
CoRL, 2017.

35

Under review as submission to TMLR

Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr. A survey on metaheuristics
for stochastic combinatorial optimization. Natural Computing, 8(2):239-287, 2009.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndié¢, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learning at test time. In ECML-PKDD, 2013.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys (CSUR), 35(3):268-308, 2003.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. In NeurIPS, 2013.

Maximilian Béther, Otto Kiflig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What’s
wrong with deep learning in tree search for combinatorial optimization. In ICLR, 2022.

Justin A. Boyan and Michael L. Littman. Packet Routing in Dynamically Changing Networks: A Reinforce-
ment Learning Approach. In NeurIPS, 1994.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric Deep
Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlf-
shagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):
1-43, 2012.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally Connected
Networks on Graphs. In ICLR, 2014.

Zdzislaw Burda, Jarek Duda, Jean-Marc Luck, and Bartek Waclaw. Localization of the maximal entropy
random walk. Physical review letters, 102(16):160602, 2009.

Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine learning
for molecular and materials science. Nature, 559(7715):547-555, 2018.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. Artificial Intelligence, 134(1-2):
57-83, 2002.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Velickovié.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learning
Research, 24(130):1-61, 2023.

Donald Chan and Daniel Mercier. Ic insertion: an application of the travelling salesman problem. The
International Journal of Production Research, 27(10):1837-1841, 1989.

Guillaume M. J-B. Chaslot, Mark H. M. Winands, H. Jaap Van Den Herik, Jos W. H. M. Uiterwijk,
and Bruno Bouzy. Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural
Computation, 04(03):343-357, 2008.

Haipeng Chen, Wei Qiu, Han-Ching Ou, Bo An, and Milind Tambe. Contingency-aware influence maximiza-
tion: A reinforcement learning approach. In UAI 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In
NeurIPS, 2019.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3:507-554, 2002.

Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard.
Journal of Machine Learning Research, 5:1287-1330, 2004.

36

Under review as submission to TMLR

Cisco. OSPF Design Guide, 2005. URL https://www.cisco.com/c/en/us/support/docs/ip/open-sho
rtest-path-first-ospf/7039-1.html.

Martin P. Clark. Data Networks, IP and the Internet: Protocols, Design and Operation. John Wiley & Sons,
2003.

Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Resilience of the Internet to Random
Breakdowns. Physical Review Letters, 85(21):4626-4628, 2000.

Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Breakdown of the Internet under
Intentional Attack. Physical Review Letters, 86(16):3682-3685, 2001.

Vincent Conitzer and Tuomas Sandholm. Complexity Results about Nash Equilibria. In IJCAI, 2003.
James Cussens. Bayesian network learning with cutting planes. In UAI 2011.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured data.
In ICML, 2016.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In ICML, 2018.

Luca Dall’Asta, Paolo Pin, and Abolfazl Ramezanpour. Optimal Equilibria of the Best Shot Game. Journal
of Public Economic Theory, 13(6):885-901, 2011.

George B. Dantzig and Mukund N. Thapa. Linear Programming, 1: Introduction. Springer, 1997.

George B. Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-salesman problem.
Journal of the Operations Research Society of America, 2(4):393-410, 1954.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-directed graph construction using
reinforcement learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 477(2254):20210168, 2021a.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Solving Graph-based Public Goods Games
with Tree Search and Imitation Learning. In NeurIPS, 2021b.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph Neural Modeling of Network Flows.
arXiw preprint arXiv:2209.05208, 2022.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Planning spatial networks with Monte
Carlo tree search. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
479(2269):20220383, 2023a.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Tree Search in DAG Space with Model-
based Reinforcement Learning for Causal Discovery. arXiv preprint arXiv:2310.13576, 2023b.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy,
Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning. In ICLR, 2018.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs. In
ICML Deep Generative Models Workshop, 2018.

Andreea Deac, Pierre-Luc Bacon, and Jian Tang. Graph neural induction of value iteration. In ICML
Workshop on Graph Representation Learning and Beyond, 2020.

Andreea-loana Deac, Petar Velickovi¢, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and Mladen Nikolic.
Neural algorithmic reasoners are implicit planners. In NeurlPS, 2021.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In NeurIPS, 2016.

37

https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html

Under review as submission to TMLR

Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to control a low-cost manipulator
using data-efficient reinforcement learning. In RSS, 2011.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning Structural Node Embeddings
Via Diffusion Wavelets. In KDD, 2018.

Christoffel Doorman, Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Dynamic Network
Reconfiguration for Entropy Maximization using Deep Reinforcement Learning. In LoG, 2022.

Marco Dorigo, Mauro Birattari, and Thomas Stiitzle. Ant colony optimization. IEEE Computational Intel-
ligence Magazine, 1(4):28-39, 2006.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
quotienting for generalizable neural combinatorial optimization. In NeurIPS, 2023.

Andrew J. Dudzik and Petar Velickovi¢. Graph neural networks are dynamic programmers. In NeurIPS,
2022.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,
Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep Reinforcement Learning in
Large Discrete Action Spaces. In ICML, 2015.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli, Timothy Hirzel,
Aldn Aspuru-Guzik, and Ryan P. Adams. Convolutional Networks on Graphs for Learning Molecular
Fingerprints. In NeurIPS, 2015.

Nick Feamster and Jennifer Rexford. Why (and How) Networks Should Run Themselves. In ANRW, 2018.

Bernard Fortz and Mikkel Thorup. Internet Traffic Engineering by Optimizing OSPF Weights. In IEEFE
INFOCOM, 2000.

Bernard Fortz and Mikkel Thorup. Optimizing OSPF/IS-IS Weights in a Changing World. IEEE Journal
on Selected Areas in Communications, 20(4):756-767, 2002.

Bernard Fortz and Mikkel Thorup. Increasing internet capacity using local search. Computational Optimiza-
tion and Applications, 29(1):13-48, 2004.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In ICML, 2018.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark for
practical molecular optimization. In NeurIPS, 2022.

Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co, 1979.

Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In ICML, 2007.

Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Velickovié, and Pietro Lio. Algorithmic concept-
based explainable reasoning. In AAAI 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In ICML, 2017.

Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008.

Sanjeev Goyal. Connections: An Introduction to the Economics of Networks. Princeton University Press,
2012.

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD, 2016.

38

Under review as submission to TMLR

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep g-learning with model-
based acceleration. In ICML, 2016.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha Farias, and Aldn
Aspuru-Guzik. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation
Models. arXiv preprint arXiv:1705.10843, 2018.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. Deep Learning for
Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning. In NeurIPS, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

William L. Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IFEE Data Engineering Bulletin, 40(3):52-74, 2017a.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs.
In NeurIPS, 2017b.

Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenenbaum, and
Peter W. Battaglia. Relational inductive bias for physical construction in humans and machines. arXiv
preprint arXiv:1806.01203, 2018.

Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and Li Deng. Deep Reinforce-
ment Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads. In EMNLP,
2016.

Keld Helsgaun. An effective implementation of the Lin—Kernighan traveling salesman heuristic. Furopean
Journal of Operational Research, 126(1):106-130, 2000.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on Graph-Structured Data.
arXiv preprint arXiv:1506.05163, 2015.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in Deep Reinforcement
Learning. In AAAI 2018.

Oliver Hope and Eiko Yoneki. GDDR: GNN-based Data-Driven Routing. In ICDCS, 2021.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In ECAI, 2020.

Matthew O. Jackson and Yves Zenou. Chapter 3 - Games on Networks. In Handbook of Game Theory with
Economic Applications, volume 4, pp. 95-163. Elsevier, 2015.

Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the potential of data-driven networking.
In COMSNETS, 2017.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for Molecular
Graph Generation. In ICML, 2018.

David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence through a social network.
In KDD, 2003.

William Ogilvy Kermack and Anderson G. McKendrick. A contribution to the mathematical theory of
epidemics. Proceedings of the Royal Society of London Series A, 115(772):700-721, 1927.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In NeurIPS, 2017.

39

Under review as submission to TMLR

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. In AAAI 2022.

Minsu Kim and Jinkyoo Park. Learning collaborative policies to solve np-hard routing problems. In NeurIPS,
2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetricity for Neural Combina-
torial Optimization. In NeurIPS, 2022.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In
ICLR, 2017.

Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671-680, 1983.

Levente Kocsis and Csaba Szepesvari. Bandit based Monte-Carlo planning. In FCML, 2006.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,
2009.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In ICLR,
2019.

Matt J. Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar Variational Autoencoder. In
ICML, 2017.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. In NeurIPS, 2020.

Alisa H. Land and Alison G. Doig. An automatic method of solving discrete programming problems. Econo-
metrica, 28(3):497-520, 1960.

Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl Hajjar, Torb-
jorn S. Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: Enabling self-play reinforcement learning
for combinatorial optimization. arXiv preprint arXiv:1807.01672, 2018.

Vito Latora and Massimo Marchiori. Efficient Behavior of Small-World Networks. Physical Review Letters,
87(19):198701, 2001.

Vadim Levit, Zohar Komarovsky, Tal Grinshpoun, and Amnon Meisels. Incentive-based search for efficient
equilibria of the public goods game. Artificial Intelligence, 262:142-162, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence Neural Networks.
In ICLR, 2017.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models
of graphs. In ICML, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David Duvenaud,
Raquel Urtasun, and Richard S. Zemel. Efficient Graph Generation with Graph Recurrent Attention
Networks. In NeurIPS, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR, 2016.

Shen Lin and Brian W. Kernighan. An Effective Heuristic Algorithm for the Traveling-Salesman Problem.
Operations Research, 21(2):498-516, 1973.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings
for knowledge graph completion. In AAAI 2015.

40

Under review as submission to TMLR

Dong Liu, Yun Jing, Jing Zhao, Wenjun Wang, and Guojie Song. A fast and efficient algorithm for mining
top-k nodes in complex networks. Scientific Reports, 7(1):43330, 2017.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing
problems. In ICLR, 2020.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via rewiring.
In KDD, 2021.

Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. GCOMB:
Learning budget-constrained combinatorial algorithms over billion-sized graphs. In NeurIPS, 2020.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

Abraham H. Maslow. The Psychology of Science: a Reconnaissance. Harper & Row, 1966.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Richard D. McKelvey and Andrew McLennan. Computation of equilibria in finite games. Handbook of
Computational Economics, 1:87-142, 1996.

Eli Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Controlling graph dynamics with reinforcement
learning and graph neural networks. In ICML, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P Lillicrap,
David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. In
ICML, 2016.

P. Read Montague, Peter Dayan, and Terrence J. Sejnowski. A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. The Journal of Neuroscience, 16(5):1936-1947, 1996.

Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning—based column selection for column
generation. Transportation Science, 55(4):815-831, 2021.

Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard. Operations Research
Letters, 36(6):677-679, 2008.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende. Towards
interpretable reinforcement learning using attention augmented agents. In NeurIPS, 2019.

John Nash. Some games and machines for playing them. Technical Report D-1164, Rand Corporation, 1952.
M. E. J. Newman. Networks. Oxford University Press, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. In NeurIPS, 2015.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric Transitivity Preserving Graph
Embedding. In KDD, 2016.

Michal Pandy, Weikang Qiu, Gabriele Corso, Petar Velickovi¢, Zhitao Ying, Jure Leskovec, and Pietro Lio.
Learning graph search heuristics. In LoG, 2022.

Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani. Epidemic
processes in complex networks. Reviews of Modern Physics, 87(3):925-979, 2015.

41

Under review as submission to TMLR

Shubhankar P. Patankar, Mathieu Ouellet, Juan Cervino, Alejandro Ribeiro, Kieran A. Murphy, and Dani S.
Bassett. Intrinsically motivated graph exploration using network theories of human curiosity. In Lo G, 2023.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Long-
man Publishing Co., Inc., 1984.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social Representations. In
KDD, 2014.

Leonid Peshkin and Virginia Savova. Reinforcement learning for adaptive routing. In IJCNN, 2002.

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of Causal Inference: Foundations and
Learning Algorithms. MIT Press, 2017.

Jervis Pinto and Alan Fern. Learning Partial Policies to Speedup MDP Tree Search via Reduction to IID
Learning. The Journal of Machine Learning Research, 18(1):2179-2213, 2017.

Dean A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network. In NeurIPS, 1988.

Leonardo F. R. Ribeiro, Pedro H. P. Savarese, and Daniel R. Figueiredo. struc2vec: Learning Node Repre-
sentations from Structural Identity. In KDD, 2017.

Martin Riedmiller. Neural Fitted Q Iteration — First Experiences with a Data Efficient Neural Reinforcement
Learning Method. In ECML, 2005.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A Survey of Multi-Objective
Sequential Decision-Making. Journal of Artificial Intelligence Research, 48:67-113, 2013.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455-472, 2006.

Christopher D. Rosin. Nested Rollout Policy Adaptation for Monte Carlo Tree Search. In IJCAI 2011.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: a Modern Approach. Prentice Hall, Fourth edition,
2020.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Sebastian Sanokowski, Wilhelm Franz Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. In NeurIPS, 2023.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The Graph
Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61-80, 2009.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In ICLR,
2016.

Christian M. Schneider, André A. Moreira, Joao S. Andrade, Shlomo Havlin, and Hans J. Herrmann. Miti-
gation of malicious attacks on networks. PNAS, 108(10):3838-3841, 2011.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588(7839):604—-609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In ICML, 2015.

42

Under review as submission to TMLR

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-Walk: Learning to Walk over
Graphs using Monte Carlo Tree Search. In NeurIPS, 2018.

David Silver. Reinforcement Learning of Local Shape in the Game of Go. In IJCAI 2007.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, loannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent
Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of Go without
human knowledge. Nature, 550(7676):354-359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science, 362(6419):1140-1144, 2018.

Ricard V. Solé and Sergi Valverde. Information theory of complex networks: on evolution and architectural
constraints. In Complex Networks, pp. 189-207. Springer, 2004.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(3):714-735, 1997.

Hannes Stark, Octavian Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola. Equibind:
Geometric deep learning for drug binding structure prediction. In ICML, 2022.

Peter Stone. TPOT-RL Applied to Network Routing. In ICML, 2000.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. Omne pixel attack for fooling deep neural
networks. IEEFE Transactions on Evolutionary Computation, 23(5):828-841, 2019.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Adversarial attacks on
graph neural networks via node injections: A hierarchical reinforcement learning approach. In WWW,
2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Nigel Tao, Jonathan Baxter, and Lex Weaver. A Multi-Agent, Policy-Gradient approach to Network Routing.
In ICML, 2001.

Eva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research,
34(2):250-256, 1986.

Gerald Tesauro and Gregory R. Galperin. On-line Policy Improvement using Monte-Carlo Search. In
NeurIPS, 1997.

Paul R. Thie and Gerard E. Keough. An Introduction to Linear Programming and Game Theory. John
Wiley & Sons, 2011.

43

Under review as submission to TMLR

Rakshit Trivedi and Hongyuan Zha. Learning strategic network emergence games. In NeurlPS, 2020.

Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. GraphOpt: Learning Optimization Models of Graph
Formation. In ICML, 2020.

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to Route with Deep RL. In
NeurIPS Deep Reinforcement Learning Symposium, 2017.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning. In
AAAI 2016.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In ICLR, 2018.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Program-
matically interpretable reinforcement learning. In ICML, 2018.

Martin J. Wainwright and Michael 1. Jordan. Graphical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao
Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial intelligence. Nature,
620(7972):47-60, 2023.

Huijuan Wang and Piet Van Mieghem. Algebraic connectivity optimization via link addition. In Bionetics,
2008.

Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. Neural Architecture Search
using Deep Neural Networks and Monte Carlo Tree Search. In AAAI 2020.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial opti-
mization: A survey. Knowledge-Based Systems, 233:107526, 2021.

Xiangrong Wang, Evangelos Pournaras, Robert E. Kooij, and Piet Van Mieghem. Improving robustness of
complex networks via the effective graph resistance. The European Physical Journal B, 87(9):221, 2014.

Xiaogiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao, and Jun Wang. Ordering-
based causal discovery with reinforcement learning. In IJCAI, 2021.

Christopher J. C. H. Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning, 8(3-4):
279-292, 1992.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3-4):229-256, 1992.

David P. Williamson and David B. Shmoys. The Design of Approzimation Algorithms. Cambridge University
Press, 2011.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67-82, 1997.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2018a.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. What
can neural networks reason about? In ICLR, 2020.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun Yang.
Experience-driven networking: A deep reinforcement learning based approach. In IEEE INFOCOM,
2018b.

44

Under review as submission to TMLR

Dezhi Yang, Guoxian Yu, Jun Wang, Zhengtian Wu, and Maozu Guo. Reinforcement causal structure
learning on order graph. In AAAI 2023a.

Shanchao Yang, Kaili Ma, Baoxiang Wang, Tianshu Yu, and Hongyuan Zha. Learning to boost resilience of
complex networks via neural edge rewiring. Transactions on Machine Learning Research, 2023b.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec. Hierar-
chical Graph Representation Learning with Differentiable Pooling. In NeurIPS, 2018.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer: Generating
explanations for graph neural networks. In NeurIPS, 2019.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network
for goal-directed molecular graph generation. In NeurIPS, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In ICML, 2018b.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and Shie Mannor. Learn What Not to
Learn: Action Elimination with Deep Reinforcement Learning. In NeurIPS, 2018.

Denghui Zhang, Zixuan Yuan, Hao Liu, Hui Xiong, et al. Learning to walk with dual agents for knowledge
graph reasoning. In AAAIL 2022.

Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H. Jonathan Chao. CFR-RL: Traffic engineering
with reinforcement learning in SDN. IEEE Journal on Selected Areas in Communications, 38(10):2249—
2259, 2020.

Alex Zhavoronkov, Yan A. Ivanenkov, Alex Aliper, Mark S. Veselov, Vladimir A. Aladinskiy, Anastasiya V.
Aladinskaya, Victor A. Terentiev, Daniil A. Polykovskiy, Maksim D. Kuznetsov, Arip Asadulaev, et al.
Deep learning enables rapid identification of potent DDRI kinase inhibitors. Nature Biotechnology, 37(9):
1038-1040, 2019.

Xun Zheng, Bryon Aragam, Pradeep K. Ravikumar, and Eric P. Xing. DAGs with no tears: continuous
optimization for structure learning. In NeurIPS, 2018.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of molecules via
deep reinforcement learning. Scientific reports, 9(1):10752, 2019.

Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. In ICLR, 2020.

45

	Introduction
	Background
	cyanGraphs and Combinatorial Optimization
	Machine Learning for Combinatorial Optimization
	Decision-making Processes and Solution Methods
	Markov Decision Processes
	Dimensions of RL Algorithms
	Policy Iteration Methods
	Learning a Policy Directly
	Search and Decision-Time Planning Methods

	Artificial Neural Networks on Graphs
	Graph Representation Learning
	Deep Graph Embedding Methods

	Connections Between RL and Graph Representation Learning

	Graph Structure Optimization
	Attacking Graph Neural Networks
	Network Design
	Causal Discovery
	Molecular Optimization

	Graph Process Optimization
	Routing on Networks
	Early RL for Routing Work
	Recent RL for Routing Work

	Network Games
	Spreading Processes
	Search and Navigation

	Challenges and Applications
	Challenges of Graph RL
	Framing cyanGraph Combinatorial Optimization Problems as MDPs
	Reward Design: cyanBalancing Accuracy, Speed, and Multiple Objective Functions
	Choosing and Designing Algorithms and Learning Representations cyanfor Graph RL
	Scalability cyanto Large Problem Instances
	Generalization cyanto Unseen Problem Instances
	Engineering and Computational Overhead
	Interpretability cyanof Discovered Algorithms

	Applications of Graph RL

	Practical Considerations
	When and Why to Use Graph RL
	When and Why Not to Use Graph RL

	Conclusion and Outlook
	Summary
	Closing Thoughts

