
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRUCTURED-INITIALIZATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The emergence of large language models (LLMs) has revolutionized natural lan-
guage processing, but their development and deployment face significant chal-
lenges in computational resources and environmental sustainability. Traditional
self-supervised learning (SSL) paradigms requiring extensive computational in-
frastructure and exhibiting slow convergence rates, leading to increased energy
consumption and longer training durations. While existing model fine-tuning
techniques such as Low-Rank Adaptation (LoRA) are resource-intensive and fail
to facilitate swift knowledge updates when integrating a mount of new data in
model version iteration. To mitigate these challenges, we introduce Structured-
initialization learning (SAIL), a novel method for accelerating the training of neural
network models by leveraging knowledge from (publicly available) pre-trained
models. Our approach comprises two key components: (1) a parameter transforma-
tion technique that adjusts the dimensions of pre-trained model parameters to match
the target architecture, and (2) a proximal parameter integration and retraining
strategy that efficiently combines transformed parameters to initialize new models.
We formalize the concept of Proximal Parameter and provide theoretical guarantees
for its convergence advantages. Our approach achieves substantial reductions in
training time and computational resources while maintaining or improving model
performance on downstream tasks. These results indicate that SAIL provides a
promising direction for the more efficient and accessible development of the deep
learning community. Our code will be made publicly available.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) such as GPT-3 (Brown et al., 2020), GPT-4 (Ope-
nAI et al., 2023), PaLM (Chowdhery et al., 2023), and Gemini (Team et al., 2023) has ushered in a
new era of natural language processing. These models have demonstrated unprecedented capabilities
across a wide range of sequence tasks, showcasing remarkable advancements in representation
learning. However, their success is accompanied by significant challenges. The development
and deployment of LLMs require enormous computational resources, raising serious concerns
about environmental sustainability and accessibility (Strubell et al., 2020). Moreover, while recent
advancements have introduced efficient methods for data augmentation (Zhou et al., 2024) and
synthesis of higher-quality data (Kaddour et al., 2023) to streamline the dataset, the pre-training
process for these models remains prohibitively expensive and time-consuming (Sun et al., 2017).

A similar challenge constrains the advancement of self-supervised learning in both language
and vision domains. Specifically, self-supervised learning for large models effectively leverages
unlabeled data for representation learning (Liu, 2019; He et al., 2020; Chen et al., 2020), but it faces
significant challenges in convergence speed and efficiency (Liu & Zhao, 2021; Wang et al., 2021).
This paradigm renders the learning and fine-tuning process particularly resource-intensive (Faiz et al.,
2023; Gao et al., 2020). As diverse new training data are curated, including high-quality synthetic
data (Fan et al., 2024), the computational demands continue to escalate.

While techniques like LoRA and QLoRA (Hu et al., 2021; Dettmers et al., 2024; SONG et al.,
2024) enable efficient fine-tuning of pre-trained models on domain-specific data, and model editing
techniques (Meng et al., 2022) allow for rapid knowledge modification, these methods still demand
substantial resources. Multiple modifications and edits can lead to model collapse (Wu & Papyan,
2024; Gu et al., 2024). Moreover, as indicated by Zhu & Li (2023), post-training fine-tuning struggles
to rectify erroneous knowledge learned during the training phase, potentially perpetuating hallucina-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Merge Transform
(Width & Depth)

Train (Slow)

Train (Fast
)

. . .

. . .

Loss Landscape

Figure 1: The Structured Initialization Learning framework. Our method leverages diverse pre-trained
models from open-source platforms, applying weight linear transformations to adapt them to the target model size.
We then merge these transformed models through parameter aggregation, creating a informative initialization
(θP). This amalgamated starting point serves as the initial parameters in the Loss Space, enabling a more
efficient optimization trajectory towards the optimal parameters (θ⋆) for the new target model. This unified
framework can facilitate rapid model iteration on new datasets while harnessing the advantages of pre-trained
models, leading to faster convergence to the θ⋆.

tions (Ji et al., 2023) and persistent model biases (Blodgett et al., 2020). Furthermore, fine-tuning is
typically infeasible when dealing with changes to model architecture (Dettmers et al., 2024). Conse-
quently, the current strategy for updating model versions with architectural, capacity, and knowledge
modifications—–such as progressing from Llama 1 to Llama 2/3 (Touvron et al., 2023)—–involves
training new models from scratch using large volumes of fresh data through repeated training cycles.

Building upon the preceding analysis, we propose that a key computational challenge in current
model training methods lies in their failure to effectively leverage knowledge from cross-architectural
and cross-domain pre-trained models, instead relying solely on training from randomly initialized
models. The question then arises: how can we effectively utilize pre-trained models to initially tap
into their existing knowledge, followed by efficient new training or continued training?

In this paper, we aim to harness pre-trained models to obtain an initialized parameter that is proximal
to optimal parameter of model that accelerates the training of a new large model, facilitating easier
adaptation to new data and techniques. To achieve this, we first need to transform the parameters of
previously trained models to match the parameter size and architecture of our new target model. We
then need to find an optimal integration of these parameters to form the proximal parameter.

To address these challenges and bridge the gap, we introduce an innovative training paradigm:

Proposition 1 (Accelerating task-agnostic training via pre-trained model knowledge) . Let
M = {ψ1, . . . ,ψk,ψK} be a set of models pre-trained over datasets S = {D1, . . . , DK}, D a
new dataset, ϕθ(0) a initialized model, and LD a training process with T steps on data D. We
propose a parameter initializer P centered on θ, aimed at improving training efficiency such that:

LD(θ(T) ← LD(θ(0) ←P(M,S))) < LD(θ(T) ← LD(θ(0))) , (1)

where LD represents the loss function evaluating performance on data D.

To investigate our new learning paradigm claim in Proposition 1 , we introduce SAIL, a novel method
that leverages freely available pre-trained models to accelerate training. Our approach improves
efficiency in the initial training stages by effectively utilizing the parameters of pre-trained models
directly, thus establishing a rapid pathway for representation model training (see Figure 1).

The core of our method involves inheriting and integrating knowledge directly from pre-trained model
parameters, creating a shortcut in the learning process. This approach allows the initial model ϕ
to effectively reach a “Proximal Parameter” θP that is closer to optimal than randomly initialized
parameters, thereby significantly accelerating the learning process. As formalized in Definition 1 ,
our method first aligns the parameter dimensions from various pre-trained models into a unified
format. Subsequently, we execute a weighted parameter averaging that accounts for the effective
knowledge embedded in the parameters of each model, thereby enhancing both knowledge transfer
and representation learning efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

This framework leverages the extensive range of publicly available pre-trained models, providing a
novel paradigm for representation learning and notably expediting the model development process.
Our main contributions are as follows:

(a) We introduce SAIL, a novel method for accelerating the training of large language models by
leveraging knowledge from pre-trained models. This approach includes a parameter transforma-
tion technique and a proximal parameter integration strategy, effectively utilizing the wealth of
publicly available models (see Section 4).

(b) We provide theoretical foundations for our method, including the formalization of the Proximal
Parameter concept and convergence guarantees. Our analysis demonstrates how SAIL leads to
faster convergence compared to random initialization (see Section 3 and Appendix A).

(c) We conduct extensive experiments across multiple modalities, including natural language process-
ing and computer vision tasks and various model architectures. Our results show that SAIL not
only accelerates training on its own but also demonstrates consistent performance improvements
across different datasets, model sizes, and learning paradigms (supervised and self-supervised).
This versatility is evidenced by experiments on GPT-2 variants for NLP and ResNet architectures
for image classification, showcasing the broad applicability of our method. (see Section 4.4 and
Section 4.5).

2 RELATED WORK

Our work on SAIL builds upon and extends several areas of research in efficient training techniques,
particularly for LLMs. We discuss three distinct relevant areas: 1) techniques for efficient training;
2) methods for transforming and reusing deep models; and 3) model merging methods to combine
different models.

Efficient training techniques for representation learning. A critical aspect of efficient training
involves effective model initialization, which can significantly influence convergence speed and
overall training efficiency. Techniques such as Xavier Initialization (Glorot & Bengio, 2010) and
Kaiming Initialization (He et al., 2015) have been foundational in ensuring stable gradients and
accelerating convergence during training.

Beyond initialization, dynamic architecture approaches achieve efficiency by dynamically activating
or deactivating network components during training, employing strategies such as layer stacking
(Gong et al., 2019), layer dropping (Zhang & He, 2020), and the use of sparse attention mechanisms
(Child et al., 2019). Batch selection techniques enhance learning efficiency by prioritizing the most
informative training examples, utilizing methods like selective backprop (Jiang et al., 2019), RHO loss
(Mindermann et al., 2022), and curriculum learning (Bengio et al., 2009). Furthermore, innovative
optimizers such as Lion (Wang et al., 2023a), Sophia (Liu et al., 2023), and AdaFactor (Shazeer &
Stern, 2018) provide alternatives to traditional optimizers like Adam(W), promoting more efficient
convergence. Techniques like mixed-precision training (Micikevicius et al., 2017) and gradient
checkpointing (Chen et al., 2016) further mitigate computational demands by reducing memory
consumption, thereby enabling the training of larger models on limited hardware resources.

Unlike these methods, our SAIL directly leverages the parameters of multiple pre-trained models to
create a well-informed starting point, potentially reducing the need for complex training optimizations.
While these existing techniques could be combined with our approach for further efficiency gains.

Model reuse and expansion. Approaches in this category focus on leveraging pre-existing knowl-
edge to initialize or expand models. Model reuse methods enable the adaptation of pre-trained models
for new tasks or larger architectures without retraining from scratch. Notable examples include
Samragh et al. (2024), who explore scalable model reuse strategies, and Wang et al. (2023b), who
investigate data-driven approaches for model adaptation.

Model expansion techniques aim to scale smaller models to initialize larger ones, ensuring that the
expanded models retain the learned representations. Classic methods like Net2Net (Chen et al.,
2015) provide a foundation for expanding neural networks by transferring knowledge from smaller to
larger architectures. More recent advancements, such as Learning to Grow (Wang et al., 2023a) and
MorphNet (Gordon et al., 2018), focus on dynamically increasing model capacity during training,
thereby enhancing scalability and performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Progressive learning methods gradually increase model capacity during training, which can lead
to more efficient learning and better generalization. Works by Li et al. (2022); Pan et al. (2024)
introduce automated strategies for progressive model scaling.

Knowledge transfer techniques utilize distillation to transfer knowledge from smaller to larger models
or between models of similar sizes, enhancing performance and training efficiency. Methods such
as Knowledge Inheritance (Qin et al., 2021) and Born-Again Networks (Furlanello et al., 2018)
exemplify effective strategies for transferring learned representations.

Our research focuses on the novel capability to incorporate parameters from multiple pre-trained
models with diverse architectures. This approach generates a sophisticated initialization for the target
model, surpassing conventional methods that are limited to single-model adaptation or expansion.

Model merging. This area focuses on combining multiple models to create a single, more powerful
model. Simple approaches like Model Soup (Wortsman et al., 2022) apply straightforward weight
averaging to merge models, thus combining their diverse learned representations. Advancements
such as Checkpoint Merging (Liu et al., 2024) introduce Bayesian optimization to effectively select
and weight various checkpoints, resulting in a more robust and high-performing merged model.
Additionally, techniques like cross-model integration via MindMerger (Huang et al., 2024) enable
the fusion of models with varying specializations, enhancing the overall capabilities of the merged
system. Dynamic expert merging methods, including DELLA-Merging (Tej Deep et al., 2024),
integrate specialized expert models dynamically, allowing the merged model to adapt to a variety of
tasks during inference. Adaptive weighting approaches such as AdaMerging (Yang et al., 2023) and
MetaGPT (Zhou et al., 2024) leverage dynamic weighting schemes and meta-learning to fine-tune
the merging process, ensuring optimal integration of constituent models’ strengths. Furthermore,
task-oriented merging strategies like Task Arithmetic (Ilharco et al., 2022), Language and Task
Arithmetic (Chronopoulou et al., 2023), and Task Arithmetic in Tangent Space (Ortiz-Jimenez et al.,
2024) focus on blending models trained on different tasks, thereby creating versatile LLMs adept at
multiple applications.

3 ACCELERATED TRAINING VIA PROXIMAL PARAMETER

In this section, we formalize the problem of accelerating the training of large auto-regressive language
models (LLMs) by leveraging knowledge from pre-trained models. We introduce the concept of
Proximal Parameter, which serves as the foundation for our acceleration technique. We present
rigorous mathematical definitions and theorems illustrating the accelerated convergence benefits of
using proximal parameter initialization for model training.

3.1 PROXIMAL PARAMETER

Let ϕθ : X → Y denote an model parameterized by θ ∈ Rd, where X is the input space and Y is the
output space. Let ℓ : Y ×Y → R≥0 be a loss function measuring the discrepancy between the output
of model and the target output. Our goal is to minimize the expected loss E [ℓ(ϕθ(x),y)]:

θ⋆ = argmin θ{JD(θ)} = argmin θ{E(x,y)∼D [ℓ(ϕθ(x),y)]} , (2)

where (x,y) are input-output pairs sampled from real data distribution D and y ∈ Y .

To accelerate convergence during training, we aim to find an effective initialization for the model
parameters θ. The key insight is that we can leverage the knowledge encoded in multiple pre-trained
models to construct a more informed starting point for training the new model. We now introduce
the concept of Proximal Parameter, which represents an aggregation of knowledge from multiple
pre-trained models, adjusted to match the architecture and knowledge of the target model ϕθ⋆ .

Definition 1 (Proximal Parameter) . Let {θ1,θ2, . . . ,θK} be a set of K parameter vectors from
pre-trained models M , where each θi ∈ Rdi . Define T i : Rdi → Rd as a transformation function
mapping each θi to the parameter space Rd of the target model ϕθ⋆ . The proximal parameter
θP ∈ Rd is the optimal linear combination of the transformed parameters, weighted by γi, defined

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

as θP =
∑K

i=1 γ
⋆
i θ̃i based on the loss function JD and training process LD such that:

γ⋆
1 , . . . , γ

⋆
K = argmin γ1,...,γK

{JD(LD(
∑K

i=1 γiθ̃i))} . (3)

However, calculating (3) poses a challenge due to the nonlinear properties of JD and LD.
Alternatively, define the proximal parameter based on Frobenius norm in parameter space as:

γ⋆
1 , . . . , γ

⋆
K = argmin γ1,...,γK

∥∥∥∑K
i=1 γiθ̃i − θ

⋆
∥∥∥2
F
, (4)

where the transformed parameters are defined as θ̃i = T i(θi) ∈ Rd for i = 1, . . . ,K.

The proximal parameter θP aggregates information from multiple pre-trained models into a single set
of parameters, serving as an informed initialization for the target model.

3.2 CONVERGENCE ANALYSIS

Before presenting the theorem, we introduce key assumptions that underpin our analysis. We
concentrate on linear models, assuming that all pre-trained models share an identical architecture.
Under these conditions, any variation among the models stems solely from differences in their training
datasets. Additionally, in linear models, the parameters are uniquely determined by the training data.
These assumptions allow us to quantify model proximity by examining dataset differences, offering a
coherent framework for comparing pre-trained models with randomly initialized ones.

Theorem 1 (Proximity-based model initialization advantage, proof in Appendix A) . For any
proportionality factor α ∈ (0, 1), the squared Euclidean distance between the pre-trained model
parameters θi and the target parameters θ⋆ satisfies the following probabilistic bound:

Pr
(
∥θi − θ⋆∥22 ≤ α ∥θrand − θ⋆∥22

)
≥ 1−O

(
τ2+β

α

)
, (5)

Here, θrand represents the randomly initialized model parameters, τ quantifies the variance of the
pre-training dataset mean difference compared to the target dataset, while β represents the upper
bound on the variance of the perturbation in the pre-training dataset’s variance. Smaller values of
τ and β reflect greater proximity between θi and θ⋆.

Theorem 1 shows that, with high probability, pre-trained parameters θi are closer to the optimal
target parameters θ⋆ than randomly initialized parameters, especially when the pre-training dataset
distribution Di is statistically similar to the target D⋆.

Theorem 2 (Convergence of proximal parameter initialization, proof in Appendix B) . Let
{θ(t)} be the sequence of parameters generated by gradient descent with fixed learning rate
η ∈

(
0, 1

L

)
, initialized at θ(0) = θP =

∑n
i=1 γ

⋆
i θ̃i, where θP is defined as in (3). Then, the

suboptimality at iteration T satisfies:

JD(θ(T))− JD(θ⋆) ≤ (1− ηµ)T
(
JD(θP)− JD(θ⋆)

)
, (6)

where L > 0 is the Lipschitz constant of the gradient of the loss function JD(θ), and µ > 0 is the
strong convexity parameter of JD(θ). Furthermore, we have:

JD(θP)− JD(θ⋆) ≤ L
2

∥∥∥θP − θ⋆∥∥∥2
2
. (7)

By choosing the weights γ⋆
i to minimize

∥∥∥θP − θ⋆∥∥∥
2
, we effectively minimize the bound on the

initial suboptimality, leading to faster convergence compared to random initialization.

In light of Theorem 2, we propose that initializing with the proximal parameter θP is likely to
lead to faster convergence compared to random initialization. Specifically, Theorem 2 shows
that the convergence rate of the loss function can be controlled by the initial parameter distance,
while Theorem 1 demonstrates that the distance between the proximal parameter θP and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

optimal parameter θ⋆ is, with high probability, smaller than that of randomly initialized parameters.
Therefore, by combining these results, we can assert that, with high probability, initialization with
the proximal parameter θP leads to faster convergence compared to random initialization. A detailed
proof of this argument can be found in Appendix C. Moreover, by weighting the contributions of
each transformed parameter, we can prioritize models closer to the target. This strategy ensures that
the optimization process starts from a point nearer to the global optimum, thereby enhancing the
overall convergence rate of the gradient descent algorithm.

4 STRUCTURED-INITIALIZATION LEARNING

In this section, we introduce SAIL, a novel approach that accelerates the training of large language
models by directly leveraging the parameters of pre-trained models. Traditional methods, such as
knowledge distillation, focus on aligning model outputs or hidden states, often neglecting the rich
information embedded in the model parameters themselves. We posit that the parameters of a model
encapsulate compressed knowledge acquired during training, and different models may provide
diverse perspectives even when trained on similar data. By directly utilizing these parameters, we
aim to create an effective starting point for training new models, leading to faster convergence and
improved performance.

Our methodology comprises two main components: (1) Parameter Transformation, where we adjust
the dimensions of pre-trained model parameters to match the target model architecture, and (2)
Proximal Parameter Integration and Retraining, where we integrate the transformed parameters to
initialize the new model and continue training on new data.

4.1 PARAMETER TRANSFORMATION

To harness the knowledge embedded in pre-trained models, we first transform their parameters to be
compatible with the target model’s architecture. This involves adjusting both the width (dimensionality
of layers) and the depth (number of layers) of the models.

Width transformation. For each layer in the model, we define a width transformation function
that maps the parameters from the source dimensionality to the target dimensionality. Given a weight
matrix θ ∈ Rdin×dout from a pre-trained model, we aim to transform it into a matrix θ̃ ∈ Rd′

in×d′
out that

aligns with the target model’s dimensions.

θ̃ =

c11 c12 · · · c1din

c21 c22 · · · c2din

...
...

. . .
...

cd′
in1

cd′
in2
· · · cd′

indin

D

c′11 c′12 · · · c′1d′

out

c′21 c′22 · · · c′2d′
out

...
...

. . .
...

c′dout1
c′dout2

· · · c′doutd′
out

⊤

(8)

where cin ∈ Rd′
in×din and cout ∈ Rd′

out×dout are transformation matrices that map dimensions from the
source to the target. This mapping can be learned or defined using schemes such as random projection
or interpolation, followed by normalization to ensure numerical stability.

Depth transformation. To adjust the number of layers, we introduce a depth transformation
function that combines or splits the parameters of layers. Given L layers in the pre-trained model and
L′ layers in the target model, we define:

θ̃
k
= [dk1 dk2 · · · dkL]

θ1

θ2

...
θL

 , for k = 1, . . . , L′ (9)

Here, θ̃
k

represents the parameters of the k-th layer in the target model. The transformation is
defined as a linear combination of the source model’s layer parameters θi (i = 1, . . . , L). The
coefficient matrix Ddepth = [dki] ∈ RL′×L controls this linear combination. For each row k of Ddepth
corresponds to a layer in the target model. Each column i corresponds to a layer in the source model.
The element dki represents the contribution of the i-th source layer to the k-th target layer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 PROXIMAL PARAMETER INTEGRATION AND RETRAINING

After transforming the parameters of the pre-trained models to match the target architecture, we
integrate them to form the proximal parameter θP as defined in (3).

Integration of transformed parameters based on total variation distance. Using the transformed
parameter θ̃i, we compute the proximal parameter by approximately optimal weights γ⋆

i , i.e., θP =∑n
i=1 γ

⋆
i θ̃i. Specifically, let DTV(P,Q) denote the total variation distance between two distributions.

Building on Theorem 3 , we can compute the approximately optimal weights γ⋆
i .

Theorem 3 (Optimal combination coefficients, proof in Appendix E) . Given the proximal
parameter θP ∈ Rd, defined as the weighted convex combination of transformed parameters:

θP =
∑n

i=1 γ
⋆
i θ̃i, where

∑n
i=1 γ

⋆
i = 1, γ⋆

i ≥ 0, (10)

the optimal combination coefficients γ⋆ = [γ⋆
1 , γ

⋆
2 , . . . , γ

∗
n]

⊤ that minimize the distance between
θP and the target parameter θ⋆ are as follows:

(a) Case n = 2: When there are two pre-trained models, the optimal combination coefficients γ⋆
1

and γ⋆
2 can be explicitly determined under the constraint γ⋆

i ≥ 0:

γ⋆
1 = DTV(D2,D

⋆)2+DTV(D1,D2)
2−DTV(D1,D

⋆)2

2DTV(D1,D2)2
, γ⋆

2 = 1− γ⋆
1 , (11)

This solution is optimal provided that γ⋆
1 , γ

⋆
2 ≥ 0.

(b) Case n > 2: For more than two pre-trained models, an explicit solution for the optimal
combination coefficients γ⋆ generally does not exist under the constraints γ⋆

i ≥ 0. However,
if we further impose γ⋆

i > 0 for all i, the optimal coefficients can be explicitly determined as:

γ⋆ = H−1e
e⊤H−1e

, (12)

where H ∈ Rn×n is a matrix with elements Hij determined by:

Hij = DTV(Di, D
⋆)2 +DTV(Dj , D

⋆)2 −DTV(Di, Dj)
2. (13)

and e is an n-dimensional vector with all entries equal to 1.

Furthermore, Theorem 3 reveals an important insight: the smaller the total variation distance
DTV(Di, D

⋆), the larger the corresponding weight γ⋆
i . In other words, pre-trained models closer to

the target distribution receive higher weights in the optimal combination, ensuring that these models
contribute more significantly to the proximal parameter and improve the approximation accuracy.

Retraining on new data. With the proximal parameter θP as the initial parameter of model ϕ, we
proceed to retrain the model ϕ on new data D. The training objective is to minimize the expected
loss J (θ) as in (2). Starting from θ(0) = θP, the model is expected to converge faster due to
the informative initialization, as demonstrated in Theorem 2 . Furthermore, its generalization error
remains bounded as shown in Theorem 4 .

4.3 EXPERIMENTAL SETTING

In this section, we provide a comprehensive overview of our experimental setup, encompassing
the models, datasets, baselines, metrics, and training details used to evaluate the effectiveness of
our proposed SAIL method across different modalities, including natural language processing and
computer vision tasks. Additional implementation details, including specific hyperparameters, and
detailed model architectures, are provided in Appendix H .

Base Models. For the natural language processing sequence modeling task, we utilize the GPT-2
architecture (Radford et al., 2019), employing the nanoGPT1 implementation. We consider models of

1https://github.com/karpathy/nanoGPT

7

https://github.com/karpathy/nanoGPT

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

varying sizes to assess the scalability of our method. Specifically, our base experiment configuration
includes models with 6 layers and a hidden dimension of 384, amounting to approximately 21 million
parameters. For the computer vision task, we employ convolutional neural network architectures,
focusing on ResNet variants (He et al., 2016). We use the standard ResNet-18 models to evaluate
the applicability of our method in the vision domain. Additionally, we consider modified version of
ResNet-18 and ResNet-34. See more detailed configurations in Appendix H

Datasets. In the NLP domain, we use the OPENWEBTEXT (Gokaslan et al., 2019) and WIKITEXT-
103 (Merity et al., 2016) datasets for training and evaluation. These datasets are partitioned to
simulate different training subsets, allowing us to train multiple models on different data partitions
for the Proximal Parameter method. In the computer vision domain, we conduct experiments on
standard image classification datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny
ImageNet (Le & Yang, 2015).

Methods. We pre-train ResNet models using both supervised and self-supervised learning
paradigms, with the latter employing the BYOL framework (Grill et al., 2020).

Metrics. We measure performance using top-1 and top-5 accuracy on the validation sets of CIFAR-
10, CIFAR-100, and Tiny ImageNet. We also monitor training loss and convergence rates to assess
the efficiency of different training methods.

4.4 EMPIRICAL EVALUATION OF SAIL’S EFFICACY

To evaluate the robustness and effectiveness of our SAIL method across different data distributions
and scenarios, we conducted a series of experiments focusing on data distribution effects, overlap
impacts, and cross-dataset generalization.

Dataset Partitioning and Distributional Analysis We partitioned our dataset into three distinct
subsets (D1, D2, and Dt) based on feature segmentation using mean token values. This partitioning
strategy, inspired by the theoretical foundations of our method, allows us to simulate diverse data
distributions commonly encountered in real-world scenarios. We computed the mean token value for
blocks of data and used the 33rd and 66th percentiles as thresholds, a choice motivated by our aim
to create balanced yet distinct subsets. Samples with mean token values below the lower threshold
were assigned to D1, those between the thresholds to D2, and those above the upper threshold to
Dt, resulting in three datasets with distinct distributions that serve as an ideal testbed for our SAIL
method.

As illustrated in Figure 2a , a t-SNE visualization shows that these datasets form three clearly
separated clusters, empirically confirming the effectiveness of our theoretically-motivated feature-
based splitting approach.

To demonstrate the superiority of SAIL over random initialization in practice, we trained two
foundation models, θ1 and θ2, on D1 and D2, respectively. Our objective was to merge these models
using our SAIL method and evaluate the convergence speed of the merged model on the new data
partition Dt, thereby testing the practical implications of our theoretical framework. As shown
in Figure 2b , the validation loss for random initialization is 10.8866, significantly higher than the
minimum loss of 4.9782 achieved by our SAIL method. This substantial gap not only demonstrates the
effectiveness of our approach in providing a more favorable initialization point in the loss landscape
but also validates our theoretical predictions about the benefits of informed parameter initialization.

We systematically explored the parameter space by merging θ1 and θ2 using 30 values of γ in the
range [−1, 2] with increments of 0.1. This comprehensive sweep allows us to empirically validate
the theoretical predictions of the optimal combination coefficient γ∗ as detailed in Theorem 3 . Each
merged model was then retrained on Dt for a small number of iterations (50, 100, and 200), and we
recorded the validation loss, providing insights into both short-term and longer-term effects of our
initialization strategy.

Figure 2b presents the validation loss after 50, 100, and 200 iterations of retraining for different val-
ues of γ. The optimal γ corresponds to the minimum validation loss, indicating the best merging ratio

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

15 10 5 0 5 10
Dimension 1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Di
m

en
sio

n
2

D1
D2
Dt

(a) t-SNE Visualization of
D1, D2, and Dt

1.0 0.5 0.0 0.5 1.0 1.5 2.0
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4

Va
lid

at
io

n
Lo

ss

Retrain Steps
50
100
200

(b) Validation Loss vs. γ

1.0 0.5 0.0 0.5 1.0 1.5 2.0
2

3

4

5

6

Va
lid

at
io

n
Lo

ss

alpha
0.0
0.5
1.0
beta
0.0
0.5
1.0

(c) Validation Loss vs. γ
(Overlaps)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
4.8

5.0

5.2

5.4

5.6

Lo
ss

(d) Cross-Dataset Valida-
tion Loss

Figure 2: Experimental Results: (a) t-SNE visualization of datasets D1, D2, and Dt. (b) Validation loss
after retraining as a function of merge ratio γ. (c) Validation loss on Dt vs. γ for various data overlaps. (d)
Cross-dataset validation loss on WikiText-103.

for rapid convergence on Dt. This empirical finding aligns closely with our theoretical predictions,
further validating the robustness of our approach.

Applying Theorem 3 to our experimental scenario, we compute the theoretical optimal
γ∗ using the Maximum Mean Discrepancy (MMD) distances between datasets: γ∗ =
MMD(D1,Dt)

2+MMD(D1,D2)
2−MMD(D2,Dt)

2

2·MMD(D1,D2)2
= −0.1244. This theoretically derived γ∗ value of -0.1244

closely aligns with the empirically observed optimal γ in Figure 2b , providing strong evidence for
the practical applicability of our theoretical framework.

Impact of Data Overlap on SAIL To investigate the impact of data overlap, we defined parameters
α and β. Here, α represents the overlap between D1 and D2, while β denotes the overlap of both
D1 and D2 with Dt. These overlap fractions range from 0.0 to 1.0, encompassing scenarios from no
overlap to full overlap.

For each combination of α and β, we trained separate models θ1 and θ2 on D1 and D2, respectively,
and an optimal model θ⋆ on the target dataset Dt. We evaluated 30 equally spaced γ values in the
range [−1, 2] for merging θ1 and θ2. The merged models were then fine-tuned on Dt for 50 steps to
assess the impact of additional training.

Our analysis revealed several key findings, as shown in Figure 2c :

(a) The optimal γ values concentrating near 0.0 and 1.0 suggest that the most effective interpolation
often involves one model being slightly regularized by another. It is important to note that when
γ is 0.5, the observed spike in performance does not necessarily indicate a rapid convergence to
the global optimum.

(b) As the overlap between datasets increased, the validation loss curves exhibited greater symmetry
around the optimal γ value. This symmetry suggests that both component models extracted
similar features from the overlapping data.

(c) At lower overlap fractions, the asymmetry observed in the curves implies that one of the compo-
nent models captured more generalizable features relevant to the target dataset Dt.

These observations are consistent with our theoretical considerations in Assumption 4 , where the
relationship between model parameters and data features influences the optimal merging strategy.

Cross-Dataset Transfer Analysis To assess SAIL’s ability to leverage cross-dataset knowledge,
we conducted experiments transferring models trained on OpenWebText to the WikiText-103 dataset.
This setup tests the algorithm’s capacity to generalize across datasets with different styles, vocabular-
ies, and content structures.

We first trained two models, θ1 and θ2, on disjoint partitions D1 and D2 of OpenWebText. These
partitions were created using a feature-based splitting approach that considers the mean token value
of samples. We then used SAIL to initialize a model for fine-tuning on WikiText-103, which serves
as our target dataset Dt.

Figure 2d presents the validation loss on WikiText-103 as a function of the merge ratio γ. The
curve’s shape and the existence of a clear optimal γ demonstrate SAIL’s capacity to effectively

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Baseline
BYOL Ours
SupCE Baseline
SupCE Ours

(a) ResNet-18 Modified (CIFAR-
10)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Baseline
BYOL Ours
SupCE Baseline
SupCE Ours

(b) Standard ResNet-18 (CIFAR-10)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Ours
BYOL Baseline
SupCE Ours
SupCE Baseline

(c) ResNet-34 Modified (CIFAR-
10)

Figure 3: Accuracy in Different ResNet Configurations: (a) Accuracy of ResNet-18 Modified trained with
BYOL and SupCE on CIFAR-10. (b) Accuracy of standard ResNet-18 trained with BYOL and SupCE on
CIFAR-10. (c) Accuracy of ResNet-34 Modified trained with BYOL and SupCE on CIFAR-10.

combine knowledge from disparate datasets, even when generalizing to a new domain with different
stylistic and content characteristics.

4.5 OUR METHODS IN DIFFERENT MODALITY

To demonstrate the versatility and effectiveness of our proposed SAIL method beyond natural
language processing, we extend our experiments to the computer vision domain. Specifically, we
apply SAIL to convolutional neural network architectures, focusing on ResNet variants trained on
image classification tasks. This section details the experimental setup, and results of applying SAIL
to different ResNet models under both self-supervised and supervised learning paradigms.

We conduct experiments using three configurations of ResNet architectures: ResNet-18 (He et al.,
2016), and ResNet-34. All models are trained on three datasets: CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le & Yang, 2015).

Figure 3a illustrates the training performance of SAIL compared to baseline methods for ResNet-
18 Modified across three datasets. Under both BYOL (self-supervised) and SupCE (supervised)
paradigms, models initialized with SAIL demonstrate faster convergence and higher final accu-
racy compared to standard initialization and baseline transformation methods. This indicates that
SAIL effectively leverages pre-trained parameters to provide a beneficial starting point for training,
consistently across different datasets of varying complexity.

To assess the adaptability of our method to architectural variations, we applied SAIL to ResNet-18
Modified (Figure 3a), Standard ResNet-18 (Figure 3b) and ResNet-34 Modified (Figure 3c) on the
CIFAR-10 dataset. In all cases, SAIL-initialized models outperform baselines in terms of convergence
speed and final performance. The improvements are particularly pronounced under the SupCE
paradigm, suggesting that supervised fine-tuning benefits significantly from our informed parameter
initialization approach.

For additional results on CIFAR-100 and Tiny-ImageNet using ResNet-18 Modified, Standard
ResNet-18 and ResNet-34 Modified, please refer to Appendix H.2 .

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced SAIL, a novel approach to accelerate the training of deep neural
networks by leveraging the information from pre-trained counterparts. Our method comprises two
primary components: (1) a parameter transformation technique that aligns the dimensions of pre-
trained model parameters with the target architecture, and (2) a proximal parameter integration and
retraining strategy that efficiently merges these transformed parameters to initialize new models.
Our approach significantly reduces training time and computational resources while maintaining or
enhancing model performance on downstream tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is
power: A critical survey of" bias" in nlp. arXiv preprint arXiv:2005.14050, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Alexandra Chronopoulou, Jonas Pfeiffer, Joshua Maynez, Xinyi Wang, Sebastian Ruder, and Priyanka
Agrawal. Language and task arithmetic with parameter-efficient layers for zero-shot summarization.
arXiv preprint arXiv:2311.09344, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Parteek Sharma, Fan Chen, and Lei Jiang.
Llmcarbon: Modeling the end-to-end carbon footprint of large language models. arXiv preprint
arXiv:2309.14393, 2023.

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling laws
of synthetic images for model training... for now. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7382–7392, 2024.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International conference on machine learning, pp. 1607–1616.
PMLR, 2018.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1586–1595, 2018.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, A. Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur,
Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
Tushar Khot, William Merrill, Jacob Daniel Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah A. Smith, and Hanna Hajishirzi. Olmo: Accelerating the science of language models. arXiv
preprint, 2024. URL https://api.semanticscholar.org/CorpusID:267365485.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing can hurt general abilities of large language models. arXiv preprint arXiv:2401.04700,
2024.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of
machine learning research, 3(Mar):1157–1182, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zixian Huang, Wenhao Zhu, Gong Cheng, Lei Li, and Fei Yuan. Mindmerger: Efficient boosting llm
reasoning in non-english languages. arXiv preprint arXiv:2405.17386, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://api.semanticscholar.org/CorpusID:267365485

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger,
Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep
learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models. arXiv preprint arXiv:2307.10169,
2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang, Xiaojun Chang, and Yi Yang. Au-
tomated progressive learning for efficient training of vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12486–12496, 2022.

Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng Chen, Chunshan Li, Zhiying Tu, Dianhui
Chu, Bo Li, and Dianbo Sui. Checkpoint merging via bayesian optimization in llm pretraining.
arXiv preprint arXiv:2403.19390, 2024.

Haochen Liu and X Zhao. Self-supervised learning for alleviating selection bias in recommendation
systems. In Proc. 2nd Int. Workshop Ind. Recommendation Syst.(Conjunction KDD 2021), 2021.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. SiT: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Conference
on Machine Learning, pp. 15630–15649. PMLR, 2022.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavar-
ian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner,
Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim
Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,
Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He,
Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing
Systems, 36, 2024.

Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu, Ming Zhang, Lifeng Shang, Xin Jiang, and
Qun Liu. Preparing lessons for progressive training on language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 18860–18868, 2024.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan Liu,
Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language models. arXiv
preprint arXiv:2105.13880, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible al-
ternatives: An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Sympo-
sium Series, 2011. URL https://people.ict.usc.edu/~gordon/publications/
AAAI-SPRING11A.PDF.

Mohammad Samragh, Iman Mirzadeh, Keivan Alizadeh Vahid, Fartash Faghri, Minsik Cho, Moin
Nabi, Devang Naik, and Mehrdad Farajtabar. Scaling smart: Accelerating large language model
pre-training with small model initialization. arXiv preprint arXiv:2409.12903, 2024.

14

https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF
https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Haobo SONG, Hao Zhao, Soumajit Majumder, and Tao Lin. Increasing model capacity for free: A sim-
ple strategy for parameter efficient fine-tuning. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=H3IUunLy8s.

Jie Song, Ying Chen, Jingwen Ye, and Mingli Song. Spot-adaptive knowledge distillation. IEEE
Transactions on Image Processing, 31:3359–3370, 2022.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav
Petrov, Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen,
Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard,
Paul R. Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong
Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo
Danihelka, Becca Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman
Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, Alexandre Frechette,
Charlotte Smith, Laura Culp, Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan Schucher,
Federico Lebron, Alban Rrustemi, Natalie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek
Perz, Dian Yu, Heidi Howard, Adam Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre, Marcello
Maggioni, Fred Alcober, Dan Garrette, Megan Barnes, Shantanu Thakoor, Jacob Austin, Gabriel
Barth-Maron, William Wong, Rishabh Joshi, Rahma Chaabouni, Deeni Fatiha, Arun Ahuja,
Ruibo Liu, Yunxuan Li, Sarah Cogan, Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan
Grimstad, Ale Jakse Hartman, Martin Chadwick, Gaurav Singh Tomar, Xavier Garcia, Evan Senter,
Emanuel Taropa, Thanumalayan Sankaranarayana Pillai, Jacob Devlin, Michael Laskin, Diego
de Las Casas, Dasha Valter, Connie Tao, Lorenzo Blanco, Adrià Puigdomènech Badia, David
Reitter, Mianna Chen, Jenny Brennan, Clara Rivera, Sergey Brin, Shariq Iqbal, Gabriela Surita,
Jane Labanowski, Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yiming Gu, Kate Olszewska,
Yujing Zhang, Ravi Addanki, Antoine Miech, Annie Louis, Laurent El Shafey, Denis Teplyashin,
Geoff Brown, Elliot Catt, Nithya Attaluri, Jan Balaguer, Jackie Xiang, Pidong Wang, Zoe Ashwood,
Anton Briukhov, Albert Webson, Sanjay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-Wei
Chang, Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur Bapna, Matthew Aitchison, Pedram
Pejman, Henryk Michalewski, Tianhe Yu, Cindy Wang, Juliette Love, Junwhan Ahn, Dawn
Bloxwich, Kehang Han, Peter Humphreys, Thibault Sellam, James Bradbury, Varun Godbole, Sina
Samangooei, Bogdan Damoc, Alex Kaskasoli, Sébastien M. R. Arnold, Vijay Vasudevan, Shubham
Agrawal, Jason Riesa, Dmitry Lepikhin, Richard Tanburn, Srivatsan Srinivasan, Hyeontaek Lim,
Sarah Hodkinson, Pranav Shyam, Johan Ferret, Steven Hand, Ankush Garg, Tom Le Paine, Jian
Li, Yujia Li, Minh Giang, Alexander Neitz, Zaheer Abbas, Sarah York, Machel Reid, Elizabeth
Cole, Aakanksha Chowdhery, Dipanjan Das, Dominika Rogozińska, Vitaly Nikolaev, Pablo
Sprechmann, Zachary Nado, Lukas Zilka, Flavien Prost, Luheng He, Marianne Monteiro, Gaurav
Mishra, Chris Welty, Josh Newlan, Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu, Raoul
de Liedekerke, Justin Gilmer, Carl Saroufim, Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu, Daniel Sohn,
Devendra Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie Petrova, Shashi Narayan, Arthur
Guez, Siddhartha Brahma, Jessica Landon, Miteyan Patel, Ruizhe Zhao, Kevin Villela, Luyu
Wang, Wenhao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung, Hanzhao Lin, James Keeling,
Petko Georgiev, Diana Mincu, Boxi Wu, Salem Haykal, Rachel Saputro, Kiran Vodrahalli, James
Qin, Zeynep Cankara, Abhanshu Sharma, Nick Fernando, Will Hawkins, Behnam Neyshabur,

15

https://openreview.net/forum?id=H3IUunLy8s

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George van den Driessche, Tao
Wang, Fan Yang, Shuo yiin Chang, Paul Komarek, Ross McIlroy, Mario Lučić, Guodong Zhang,
Wael Farhan, Michael Sharman, Paul Natsev, Paul Michel, Yong Cheng, Yamini Bansal, Siyuan
Qiao, Kris Cao, Siamak Shakeri, Christina Butterfield, Justin Chung, Paul Kishan Rubenstein,
Shivani Agrawal, Arthur Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan Pope,
Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo Wang, Joshua Maynez, Mary Phuong, Taylor
Tobin, Andrea Tacchetti, Maja Trebacz, Kevin Robinson, Yash Katariya, Sebastian Riedel, Paige
Bailey, Kefan Xiao, Nimesh Ghelani, Lora Aroyo, Ambrose Slone, Neil Houlsby, Xuehan Xiong,
Zhen Yang, Elena Gribovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music Li, Thais Kagohara,
Jay Pavagadhi, Sophie Bridgers, Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed, Tianqi Liu,
Richard Powell, Vijay Bolina, Mariko Iinuma, Polina Zablotskaia, James Besley, Da-Woon Chung,
Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaël Lopez Kaufman, Simon Tokumine, Hexiang Hu, Elena Buchatskaya, Yingjie Miao,
Mohamed Elhawaty, Aditya Siddhant, Nenad Tomasev, Jinwei Xing, Christina Greer, Helen Miller,
Shereen Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Angelos Filos, Milos Besta, Rory Blevins,
Ted Klimenko, Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang, Mantas Pajarskas,
Carrie Muir, Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit Marathe, Steven Hansen,
Sholto Douglas, Rajkumar Samuel, Mingqiu Wang, Sophia Austin, Chang Lan, Jiepu Jiang, Justin
Chiu, Jaime Alonso Lorenzo, Lars Lowe Sjösund, Sébastien Cevey, Zach Gleicher, Thi Avrahami,
Anudhyan Boral, Hansa Srinivasan, Vittorio Selo, Rhys May, Konstantinos Aisopos, Léonard
Hussenot, Livio Baldini Soares, Kate Baumli, Michael B. Chang, Adrià Recasens, Ben Caine,
Alexander Pritzel, Filip Pavetic, Fabio Pardo, Anita Gergely, Justin Frye, Vinay Ramasesh, Dan
Horgan, Kartikeya Badola, Nora Kassner, Subhrajit Roy, Ethan Dyer, Víctor Campos, Alex Tomala,
Yunhao Tang, Dalia El Badawy, Elspeth White, Basil Mustafa, Oran Lang, Abhishek Jindal, Sharad
Vikram, Zhitao Gong, Sergi Caelles, Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng, Wojciech
Stokowiec, Ce Zheng, Phoebe Thacker, Çağlar Ünlü, Zhishuai Zhang, Mohammad Saleh, James
Svensson, Max Bileschi, Piyush Patil, Ankesh Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer,
Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom Kwiatkowski, Samira Daruki, Keran Rong,
Allan Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg, Mina Khan, Lisa Anne Hendricks, Marie
Pellat, Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi Hashemi,
Richard Ives, Yana Hasson, YaGuang Li, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze
Wang, Thibault Sottiaux, Michela Paganini, Jean-Baptiste Lespiau, Alexandre Moufarek, Samer
Hassan, Kaushik Shivakumar, Joost van Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh Goyal,
Matthew Tung, Andrew Brock, Hannah Sheahan, Vedant Misra, Cheng Li, Nemanja Rakićević,
Mostafa Dehghani, Fangyu Liu, Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot,
Matthew Lamm, Nicola De Cao, Charlie Chen, Gamaleldin Elsayed, Ed Chi, Mahdis Mahdieh,
Ian Tenney, Nan Hua, Ivan Petrychenko, Patrick Kane, Dylan Scandinaro, Rishub Jain, Jonathan
Uesato, Romina Datta, Adam Sadovsky, Oskar Bunyan, Dominik Rabiej, Shimu Wu, John Zhang,
Gautam Vasudevan, Edouard Leurent, Mahmoud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy
Zheng, Betty Chan, Pam G Rabinovitch, Piotr Stanczyk, Ye Zhang, David Steiner, Subhajit Naskar,
Michael Azzam, Matthew Johnson, Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias,
Afroz Mohiuddin, Faizan Muhammad, Jin Miao, Andrew Lee, Nino Vieillard, Sahitya Potluri, Jane
Park, Elnaz Davoodi, Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhijit Karmarkar, Zhe Dong,
Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William Isaac, Zhe Chen, Johnson Jia,
Anselm Levskaya, Zhenkai Zhu, Chris Gorgolewski, Peter Grabowski, Yu Mao, Alberto Magni,
Kaisheng Yao, Javier Snaider, Norman Casagrande, Paul Suganthan, Evan Palmer, Geoffrey
Irving, Edward Loper, Manaal Faruqui, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Michael
Fink, Alfonso Castaño, Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin Sreevatsa,
Jennifer Prendki, David Soergel, Adrian Goedeckemeyer, Willi Gierke, Mohsen Jafari, Meenu
Gaba, Jeremy Wiesner, Diana Gage Wright, Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay
Hoover, Maigo Le, Lu Li, Chimezie Iwuanyanwu, Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert
Cui, Tian LIN, Marin Georgiev, Marcus Wu, Ricardo Aguilar, Keith Pallo, Abhishek Chakladar,
Alena Repina, Xihui Wu, Tom van der Weide, Priya Ponnapalli, Caroline Kaplan, Jiri Simsa,
Shuangfeng Li, Olivier Dousse, Fan Yang, Jeff Piper, Nathan Ie, Minnie Lui, Rama Pasumarthi,
Nathan Lintz, Anitha Vijayakumar, Lam Nguyen Thiet, Daniel Andor, Pedro Valenzuela, Cosmin
Paduraru, Daiyi Peng, Katherine Lee, Shuyuan Zhang, Somer Greene, Duc Dung Nguyen, Paula
Kurylowicz, Sarmishta Velury, Sebastian Krause, Cassidy Hardin, Lucas Dixon, Lili Janzer, Kiam
Choo, Ziqiang Feng, Biao Zhang, Achintya Singhal, Tejasi Latkar, Mingyang Zhang, Quoc Le,
Elena Allica Abellan, Dayou Du, Dan McKinnon, Natasha Antropova, Tolga Bolukbasi, Orgad

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Keller, David Reid, Daniel Finchelstein, Maria Abi Raad, Remi Crocker, Peter Hawkins, Robert
Dadashi, Colin Gaffney, Sid Lall, Ken Franko, Egor Filonov, Anna Bulanova, Rémi Leblond,
Vikas Yadav, Shirley Chung, Harry Askham, Luis C. Cobo, Kelvin Xu, Felix Fischer, Jun Xu,
Christina Sorokin, Chris Alberti, Chu-Cheng Lin, Colin Evans, Hao Zhou, Alek Dimitriev, Hannah
Forbes, Dylan Banarse, Zora Tung, Jeremiah Liu, Mark Omernick, Colton Bishop, Chintu Kumar,
Rachel Sterneck, Ryan Foley, Rohan Jain, Swaroop Mishra, Jiawei Xia, Taylor Bos, Geoffrey
Cideron, Ehsan Amid, Francesco Piccinno, Xingyu Wang, Praseem Banzal, Petru Gurita, Hila
Noga, Premal Shah, Daniel J. Mankowitz, Alex Polozov, Nate Kushman, Victoria Krakovna,
Sasha Brown, MohammadHossein Bateni, Dennis Duan, Vlad Firoiu, Meghana Thotakuri, Tom
Natan, Anhad Mohananey, Matthieu Geist, Sidharth Mudgal, Sertan Girgin, Hui Li, Jiayu Ye,
Ofir Roval, Reiko Tojo, Michael Kwong, James Lee-Thorp, Christopher Yew, Quan Yuan, Sumit
Bagri, Danila Sinopalnikov, Sabela Ramos, John Mellor, Abhishek Sharma, Aliaksei Severyn,
Jonathan Lai, Kathy Wu, Heng-Tze Cheng, David Miller, Nicolas Sonnerat, Denis Vnukov, Rory
Greig, Jennifer Beattie, Emily Caveness, Libin Bai, Julian Eisenschlos, Alex Korchemniy, Tomy
Tsai, Mimi Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng, Frederick Liu, Fan Yang, Rui Zhu,
Mark Geller, Tian Huey Teh, Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin, Andrei Sozanschi,
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Linting Xue, Chen Elkind, Oliver Woodman,
John Carpenter, George Papamakarios, Rupert Kemp, Sushant Kafle, Tanya Grunina, Rishika
Sinha, Alice Talbert, Abhimanyu Goyal, Diane Wu, Denese Owusu-Afriyie, Cosmo Du, Chloe
Thornton, Jordi Pont-Tuset, Pradyumna Narayana, Jing Li, Sabaer Fatehi, John Wieting, Omar
Ajmeri, Benigno Uria, Tao Zhu, Yeongil Ko, Laura Knight, Amélie Héliou, Ning Niu, Shane
Gu, Chenxi Pang, Dustin Tran, Yeqing Li, Nir Levine, Ariel Stolovich, Norbert Kalb, Rebeca
Santamaria-Fernandez, Sonam Goenka, Wenny Yustalim, Robin Strudel, Ali Elqursh, Balaji
Lakshminarayanan, Charlie Deck, Shyam Upadhyay, Hyo Lee, Mike Dusenberry, Zonglin Li,
Xuezhi Wang, Kyle Levin, Raphael Hoffmann, Dan Holtmann-Rice, Olivier Bachem, Summer Yue,
Sho Arora, Eric Malmi, Daniil Mirylenka, Qijun Tan, Christy Koh, Soheil Hassas Yeganeh, Siim
Põder, Steven Zheng, Francesco Pongetti, Mukarram Tariq, Yanhua Sun, Lucian Ionita, Mojtaba
Seyedhosseini, Pouya Tafti, Ragha Kotikalapudi, Zhiyu Liu, Anmol Gulati, Jasmine Liu, Xinyu
Ye, Bart Chrzaszcz, Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown, Shreya Singh, Wei Fan,
Aaron Parisi, Joe Stanton, Chenkai Kuang, Vinod Koverkathu, Christopher A. Choquette-Choo,
Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash Shroff, Pei Sun, Mani Varadarajan, Sanaz Bahargam,
Rob Willoughby, David Gaddy, Ishita Dasgupta, Guillaume Desjardins, Marco Cornero, Brona
Robenek, Bhavishya Mittal, Ben Albrecht, Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson,
Alireza Ghaffarkhah, Morgane Rivière, Alanna Walton, Clément Crepy, Alicia Parrish, Yuan
Liu, Zongwei Zhou, Clement Farabet, Carey Radebaugh, Praveen Srinivasan, Claudia van der
Salm, Andreas Fidjeland, Salvatore Scellato, Eri Latorre-Chimoto, Hanna Klimczak-Plucińska,
David Bridson, Dario de Cesare, Tom Hudson, Piermaria Mendolicchio, Lexi Walker, Alex
Morris, Ivo Penchev, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth Odoom, Lucia Loher,
Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig, Antonio
Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Adam Kurzrok, Lynette Webb, Sahil Dua,
Dong Li, Preethi Lahoti, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal, Tomer
Shani, Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay
Kale, Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan
Lee, Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, Martin
Wicke, Xiao Ma, Taylan Bilal, Evgenii Eltyshev, Daniel Balle, Nina Martin, Hardie Cate, James
Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier, Nilesh Tripuraneni,
David Madras, Mandy Guo, Austin Waters, Oliver Wang, Joshua Ainslie, Jason Baldridge, Han
Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham Mansour, Jason Gelman, Yang Xu, George
Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai Sheng, Emily Xue, Sherjil Ozair, Adams
Yu, Christof Angermueller, Xiaowei Li, Weiren Wang, Julia Wiesinger, Emmanouil Koukoumidis,
Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark Goldenson, Parashar Shah, MK Blake, Hongkun
Yu, Anthony Urbanowicz, Jennimaria Palomaki, Chrisantha Fernando, Kevin Brooks, Ken Durden,
Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria Georgaki, Amit Raul, Sebastian Ruder,
Morgan Redshaw, Jinhyuk Lee, Komal Jalan, Dinghua Li, Ginger Perng, Blake Hechtman, Parker
Schuh, Milad Nasr, Mia Chen, Kieran Milan, Vladimir Mikulik, Trevor Strohman, Juliana Franco,
Tim Green, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean, and Oriol Vinyals. Gemini: A
family of highly capable multimodal models, 2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. DELLA-Merging: Reducing Interference in
Model Merging through Magnitude-Based Sampling. arXiv e-prints, art. arXiv:2406.11617, June
2024.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XI 16, pp. 776–794. Springer, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guangrun Wang, Keze Wang, Guangcong Wang, Philip HS Torr, and Liang Lin. Solving ineffi-
ciency of self-supervised representation learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9505–9515, 2021.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023a.

Peihao Wang, Rameswar Panda, and Zhangyang Wang. Data efficient neural scaling law via model
reusing. In International Conference on Machine Learning, pp. 36193–36204. PMLR, 2023b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models.
arXiv preprint arXiv:2405.17767, 2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. arXiv preprint arXiv:2410.06940, 2024.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3903–3911, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3713–3722, 2019.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in neural information processing systems, 33:14011–14023,
2020.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320–4328,
2018.

Yue Zhou, Chenlu Guo, Xu Wang, Yi Chang, and Yuan Wu. A survey on data augmentation in large
model era. arXiv preprint arXiv:2401.15422, 2024.

Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. MetaGPT: Merging Large Language
Models Using Model Exclusive Task Arithmetic. arXiv e-prints, art. arXiv:2406.11385, June 2024.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Zeyuan Allen Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

In this section, we provide a detailed proof of Theorem 1. For any proportionality factor α ∈ (0, 1),
the squared Euclidean distance between the pre-trained model parameters θi and the target parameters
θ⋆ is bounded probabilistically as follows:

Pr
(
∥θi − θ⋆∥22 ≤ α ∥θrand − θ⋆∥22

)
≥ 1−O

(
τ2 + β

α

)
,

where θrand represents the randomly initialized model parameters, θi denotes the parameters of the
i-th pre-trained model, and θ⋆ is the optimal parameters for the target dataset distribution D⋆. The
terms τ and β reflect the variance of the mean difference and the upper bound on the perturbation
variance, respectively.

Proof. We analyze the convergence behavior of gradient descent when initialized at θi compared to
random initialization. Here, θ represents the model parameters, and θi denotes the parameters of the
i-th pre-trained model.

Assumption 1 (Data Mean Distribution) . The mean of the i-th pre-training dataset distribution
Di is denoted as µi, which follows a normal distribution centered around the mean of the target
dataset distribution D⋆, represented by µ⋆, with variance τ2:

µi ∼ N (µ⋆, τ2).

Assumption 2 (Data Variance Distribution) . The variance of the i-th pre-training dataset
distribution Di, denoted as σ2

i , is perturbed from the variance of the target dataset distribution
D⋆, denoted as σ⋆2, by a small noise term δ:

σ2
i = σ⋆2 + δ,

where δ satisfies E[δ] = 0 and Var(δ) ≤ β.

Assumption 3 (Random Initialization Distribution) . The randomly initialized model parame-
ters θrand are drawn from a standard normal distribution:

θrand ∼ N (0, I),

where I is the identity matrix, indicating independent parameters with unit variance.

Assumption 4 (Relationship Between Parameters and Data Features) . The model parameters
θi are a deterministic function of the dataset features (µi, σ

2
i):

θi = f(µi, σ
2
i),

where f is a Lipschitz continuous function. That is, there exists a constant L > 0 such that for
any two feature pairs (µ1, σ

2
1) and (µ2, σ

2
2), the following condition holds:∥∥f(µ1, σ

2
1)− f(µ2, σ

2
2)
∥∥
2
≤ L

√
(µ1 − µ2)2 + (σ2

1 − σ2
2)

2.

We begin by applying the Markov inequality to control the probabilistic bound on the distance
between the pre-trained model parameters θi and the target parameters θ⋆.

Step 1: Bounding the Expected Distance Let X = ∥θi − θ⋆∥22 represent the squared distance
between θi and θ⋆. Under the Lipschitz continuity assumption from Assumptions 1 and 2, we have:

E[X] ≤ L2(τ2 + β),

where L is the Lipschitz constant, τ2 is the variance of the mean difference, and β is the upper bound
on the variance of the perturbation term.

Step 2: Application of Markov Inequality Let Y = ∥θrand − θ⋆∥22 represent the squared distance
between the randomly initialized parameters θrand and θ⋆.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To control the probability that X exceeds αY , we apply the Markov inequality:

P (X ≥ αY) ≤ E[X]

αE[Y]
.

We compute E[Y] as follows.

Since θrand ∼ N (0, I) as stated in Assumption 3, each component (θrand)i is independently and
identically distributed as N (0, 1). Therefore,

E[Y] = E
[
∥θrand − θ⋆∥22

]
= E

[
∥θrand∥22 − 2(θrand)

⊤θ⋆ + ∥θ⋆∥22
]
.

Since E[θrand] = 0 and θ⋆ is a constant vector, we have:

E
[
(θrand)

⊤θ⋆
]
=

d∑
i=1

E [(θrand)i] (θ
⋆)i = 0.

Additionally, since each (θrand)i has variance 1, we find:

E
[
∥θrand∥22

]
=

d∑
i=1

E
[
(θrand)

2
i

]
=

d∑
i=1

(
Var [(θrand)i] + (E [(θrand)i])

2
)
= d.

Therefore, we have:
E[Y] = d+ ∥θ⋆∥22,

where d is the dimensionality of the parameter space.

Substituting the bounds on E[X] and E[Y], we get:

P
(
∥θi − θ⋆∥22 ≥ α∥θrand − θ⋆∥22

)
≤ L2(τ2 + β)

α(d+ ∥θ⋆∥22)
.

Step 3: Final Probabilistic Bound Taking the complement of the above inequality, we have:

P
(
∥θi − θ⋆∥22 ≤ α∥θrand − θ⋆∥22

)
≥ 1− L2(τ2 + β)

α(d+ ∥θ⋆∥22)
.

This yields the desired result:

P
(
∥θi − θ⋆∥22 ≤ α∥θrand − θ⋆∥22

)
≥ 1−O

(
τ2 + β

α

)
.

B PROOF OF THEOREM 2

In this section, we provide a detailed proof of Theorem 2. The theorem establishes that initializing
gradient descent with the proximal parameter θP , which is a weighted combination of transformed
pre-trained model parameters, leads to faster convergence towards the optimal parameter θ⋆ compared
to random initialization.

We make the following assumptions about the loss function JD(θ):

Assumption 5 (Loss Function Properties) . The loss function JD(θ) = E(x,y)∼D[ℓ(ϕθ(x), y)]
is differentiable, convex, and satisfies:

(a) L-smoothness: There exists a constant L > 0 such that for all θ,θ′ ∈ Rd,

∥∇JD(θ)−∇JD(θ′)∥2 ≤ L∥θ − θ′∥2.

(b) Strong Convexity: There exists a constant µ > 0 such that for all θ,θ′ ∈ Rd,

JD(θ′) ≥ JD(θ) + ⟨∇JD(θ),θ′ − θ⟩+ µ

2
∥θ′ − θ∥22.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Step 1: Gradient Descent Convergence Rate

Under Assumption 5, specifically the L-smoothness and strong convexity of JD(θ), gradient descent
with a fixed learning rate η ∈

(
0, 1

L

)
satisfies the following convergence rate:

JD(θ(T))− JD(θ⋆) ≤ (1− ηµ)T
(
JD(θ(0))− JD(θ⋆)

)
.

This result leverages the properties of gradient descent on strongly convex and smooth functions.

Starting from the gradient descent update rule:

θ(t+1) = θ(t) − η∇JD(θ(t)),

and applying the L-smoothness of Assumption 5, we have:

JD(θ(t+1)) ≤ JD(θ(t)) + ⟨∇JD(θ(t)),θ(t+1) − θ(t)⟩+ L

2
∥θ(t+1) − θ(t)∥22.

Substituting the update rule into the inequality:

JD(θ(t+1)) ≤ JD(θ(t))− η∥∇JD(θ(t))∥22 +
L

2
η2∥∇JD(θ(t))∥22

= JD(θ(t))− η

(
1− Lη

2

)
∥∇JD(θ(t))∥22.

Next, we claim the following inequality:

∥∇JD(θ(t))∥22 ≥ 2µ
(
JD(θ(t))− JD(θ⋆)

)
.

Proof of the Claim:

Under the strong convexity of Assumption 5, we have:

JD(θ⋆) ≥ JD(θ(t)) + ⟨∇JD(θ(t)),θ⋆ − θ(t)⟩+ µ

2
∥θ⋆ − θ(t)∥22.

Rearranging terms gives:

JD(θ(t)) ≤ JD(θ⋆) + ⟨∇JD(θ(t)),θ(t) − θ⋆⟩ − µ

2
∥θ(t) − θ⋆∥22.

By the Cauchy-Schwarz inequality:

⟨∇JD(θ(t)),θ(t) − θ⋆⟩ ≤ ∥∇JD(θ(t))∥2 · ∥θ(t) − θ⋆∥2.

Substituting this into the previous inequality:

JD(θ(t)) ≤ JD(θ⋆) + ∥∇JD(θ(t))∥2 · ∥θ(t) − θ⋆∥2 −
µ

2
∥θ(t) − θ⋆∥22.

Let t = ∥θ(t) − θ⋆∥2. Then:

JD(θ(t))− JD(θ⋆) ≤ ∥∇JD(θ(t))∥2 · t−
µ

2
t2.

According to the properties of quadratic functions, the maximum of the right-hand side occurs at:

t =
∥∇JD(θ)∥2

µ
.

Substituting this value back, we have:

JD(θ)− JD(θ⋆) ≤ ∥∇JD(θ)∥22
2µ

.

Rearranging terms gives:

∥∇JD(θ)∥22 ≥ 2µ (JD(θ)− JD(θ⋆)) .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

This completes the proof of the claim.

Substituting this into the previous inequality:

JD(θ(t+1))− JD(θ⋆) ≤ JD(θ(t))− JD(θ⋆)− 2µη

(
1− Lη

2

)(
JD(θ(t))− JD(θ⋆)

)
=

(
1− 2µη

(
1− Lη

2

))(
JD(θ(t))− JD(θ⋆)

)
.

Since η ∈
(
0, 1

L

)
, we have:

1− 2µη

(
1− Lη

2

)
≤ 1− µη.

Thus, we obtain:

JD(θ(t+1))− JD(θ⋆) ≤ (1− µη)
(
JD(θ(t))− JD(θ⋆)

)
.

By recursively applying this inequality, we derive the convergence rate after T iterations:

JD(θ(T))− JD(θ⋆) ≤ (1− µη)T
(
JD(θ(0))− JD(θ⋆)

)
.

This demonstrates that the suboptimality decreases exponentially with the number of iterations T ,
confirming the linear convergence rate of gradient descent under the given assumptions.

Step 2: Bounding the Initial Suboptimality

We aim to bound the initial suboptimality JD(θP)− JD(θ⋆). Utilizing the smoothness of JD(θ),
we have for any θ ∈ Rd:

JD(θ) ≤ JD(θ⋆) + ⟨∇JD(θ⋆),θ − θ⋆⟩+ L

2
∥θ − θ⋆∥22.

Since θ⋆ is the minimizer of JD(θ), it satisfies∇JD(θ⋆) = 0. Therefore, the inequality simplifies
to:

JD(θ)− JD(θ⋆) ≤ L

2
∥θ − θ⋆∥22.

Setting θ = θP , we obtain:

JD(θP)− JD(θ⋆) ≤ L

2
∥θP − θ⋆∥22.

Step 3: Combining the Results

Substituting the bound on the initial suboptimality into the convergence rate from Step 1, we get:

JD(θ(T))− JD(θ⋆) ≤ (1− ηµ)T
(
L

2
∥θP − θ⋆∥22

)
.

This inequality demonstrates that the suboptimality after T iterations decays exponentially with rate
(1− ηµ)T , scaled by the initial suboptimality L

2 ∥θ
P − θ⋆∥22.

C THE CONVERGENCE ADVANTAGE WITH PROXIMAL PARAMETER
INITIALIZATION

We will demonstrate why proximal parameter initialization (θP) is likely to lead to faster convergence
compared to random initialization (θrand) in gradient descent. We provide both an intuitive explanation
and a detailed proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.1 INTUITIVE EXPLANATION

We recall Theorem 2, which establishes a relationship between the suboptimality of the loss function
and the distance of the parameters from the optimal parameter θ⋆:

JD(θ(T))− JD(θ⋆) ≤ (1− ηµ)T
(
JD(θP)− JD(θ⋆)

)
,

where J (θP) − JD(θ⋆) ≤ L
2

∥∥∥θP − θ⋆∥∥∥2
2
. From this, we observe that when θ(0) = θP , the

difference in the loss function is controlled by the parameter distance
∥∥∥θP − θ⋆∥∥∥2

2
. From the proof in

Step 2 of Appendix B, we observe that this conclusion does not depend on the specific choice of θP .
Therefore, when θ(0) = θrand, the conclusion still holds. Hence, when analyzing the convergence of
the loss function, we only need to compare the initial distances of the parameters.

Theorem 1 provides a probabilistic bound on the parameter distances:

Pr
(
∥θi − θ⋆∥22 ≤ α∥θrand − θ⋆∥22

)
≥ 1−O

(
τ2 + β

α

)
.

This indicates that pre-trained model parameters θi are, with high probability, closer to the optimal
parameter θ⋆ than randomly initialized parameters θrand. Since the proximal parameter θP =∑n

i=1 γ
⋆
i θi, θ

P is also likely to be closer to θ⋆ than θrand, ensuring faster convergence.

C.2 DETAILED PROOF

Proof. We aim to show that proximal parameter initialization θP is likely to lead to faster convergence
compared to random initialization θrand. This proof builds upon the assumptions of smoothness and
strong convexity (see Assumptions 5).

Step 1: Bounding the Parameter Distances

From Theorem 1, we know that pre-trained parameters θi are, with high probability, closer to the
optimal parameter θ⋆ than randomly initialized parameters θrand. Specifically:

Pr
(
∥θi − θ⋆∥22 ≤ α∥θrand − θ⋆∥22

)
≥ 1−O

(
τ2 + β

α

)
,

where α is a positive scalar.

To select α, we choose α = µ
2L , which ensures α ∈ (0, 1) since µ < L for a strongly convex and

smooth function. With this choice of α, the distance between pre-trained parameters and the optimal
parameter θ⋆ satisfies, with high probability:

∥θi − θ⋆∥22 ≤ α∥θrand − θ⋆∥22.

We now bound the distance between the proximal parameter θP and θ⋆. Since θP =
∑n

i=1 γ
⋆
i θi,

where γ⋆
i are non-negative weights summing to 1, by convexity of the squared norm:

∥θP − θ⋆∥22 =

∥∥∥∥∥
n∑

i=1

γ⋆
i (θi − θ

⋆)

∥∥∥∥∥
2

2

≤

(
n∑

i=1

γ⋆
i ∥θi − θ

⋆∥2

)2

.

Substituting the bound ∥θi − θ⋆∥2 ≤
√
α∥θrand − θ⋆∥2, we obtain, with high probability:

∥θP − θ⋆∥22 ≤ α∥θrand − θ⋆∥22.

Step 2: Relating the Loss Functions Using the Parameter Bounds

Using the result of Theorem 2, we relate the proximal parameter distance to the suboptimality of the
loss:

JD(θP)− JD(θ⋆) ≤ L

2
∥θP − θ⋆∥22.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Substituting the bound on ∥θP − θ⋆∥22 from Step 1, we get, with high probability:

JD(θP)− JD(θ⋆) ≤ L

2
α∥θrand − θ⋆∥22.

For θrand, applying the strong convexity property, we can derive a lower bound for the loss function.
We have the inequality:

JD(θrand) ≥ JD(θ⋆) + ⟨∇JD(θ⋆),θrand − θ⋆⟩+
µ

2
∥θrand − θ⋆∥22.

Since θ⋆ is the optimal solution, we know that∇JD(θ⋆) = 0. Therefore, the inequality simplifies to:

JD(θrand)− JD(θ⋆) ≥ µ

2
∥θrand − θ⋆∥22.

Taking the ratio of the inequalities above, we have:

ρ =
J (θP)− JD(θ⋆)

J (θrand)− JD(θ⋆)
≤ Lα

µ
=

L

µ
· µ

2L
=

1

2
.

Therefore, we have:

J (θP)− JD(θ⋆) ≤ 1

2
J (θrand)− JD(θ⋆).

It can be seen that when θ(0) = θP , the upper bound of the loss function is smaller than that of
random initialization with high probability. According to the result of Theorem 2:

JD(θ(T))− JD(θ⋆) ≤ (1− ηµ)T
(
JD(θP)− JD(θ⋆)

)
,

We observe that the advantage of the upper bound provided by proximal initialization will persist for
a number of iterations. However, as T increases, this advantage cannot always be relied upon as a
strong performance guarantee in later iterations.

D GENERALIZATION ERROR UPPER BOUND

In the context of transfer learning, understanding how well a model trained on a pre-trained dataset
generalizes to a target dataset is crucial. Let Di and D⋆ denote the true data distributions of the
pre-trained and target datasets, respectively. Since these distributions are generally unknown, we rely
on labeled samples drawn from them to estimate the necessary quantities.

Assume we have labeled datasets from both the pre-trained and target datasets. For the pre-trained
dataset, the sample is given as Ui = {(xij ,yij)}ni

j=1, where (xij ,yij) ∼ Di. Similarly, for the
target dataset, the sample is U⋆ = {(x⋆

j ,y
⋆
j)}n

⋆

j=1, where (x⋆
j ,y

⋆
j) ∼ D⋆. Our goal is to derive a

computable upper bound on the generalization error of a hypothesis ϕ from a hypothesis spaceH
when applied to the target dataset.

The hypothesis spaceH consists of measurable functions mapping inputs x to outputs ϕ(x). We use
a loss function ℓ : Y × Y → [0, C], which is non-negative and bounded by a constant C > 0. This
function measures the discrepancy between the model predictions and the true labels. We assume
the samples in Ui and U⋆ are independently and identically distributed (i.i.d.) according to their
respective distributions.

The empirical distribution D̂Ui
induced by the pre-trained dataset Ui is defined as:

D̂Ui(x,y) =
1

ni

ni∑
j=1

δ(xij ,yij)(x,y),

where δ(xij ,yij)(x,y) is the Dirac delta function centered at (xij ,yij). Similarly, the empirical
distribution D̂U⋆ based on the target dataset U⋆ is defined as:

D̂U⋆(x,y) =
1

n⋆

n⋆∑
j=1

δ(x⋆
j ,y

⋆
j)
(x,y).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

These empirical distributions approximate the true distributions Di and D⋆ based on the available
samples.

The empirical total variation distance between the distributions of the pre-trained dataset D̂Ui and the
target dataset D̂U⋆ is defined as:

DTV(D̂Ui
, D̂U⋆) =

1

2

∑
(x,y)∈X×Y

∣∣∣D̂Ui(x,y)− D̂U⋆(x,y)
∣∣∣ ,

where D̂Ui
and D̂U⋆ are the empirical distributions based on the samples Ui and U⋆, respectively.

This distance quantifies the discrepancy between the pre-trained and target datasets.

Assumption 6 (Bounded Loss Function) . The loss function ℓ satisfies:

0 ≤ ℓ(ϕ(x),y) ≤ C, ∀ϕ ∈ H, ∀(x,y) ∈ X × Y.

This boundedness ensures that the loss remains within a fixed range, facilitating uniform conver-
gence.

Definition 2 (Empirical Rademacher Complexity) . The empirical Rademacher complexity of
the loss-composed hypothesis space L ◦ H on the pre-trained dataset Ui is defined as:

R̂Ui(L ◦ H) = Eσ

 sup
ϕ∈H

1

ni

ni∑
j=1

σjℓ(ϕ(xij),yij)

 ,

where σ = (σ1, . . . , σni
) are independent Rademacher variables taking values ±1 with equal

probability. This complexity measure captures the richness of the hypothesis space relative to the
data.

Lemma 1 (Empirical Rademacher Complexity Upper Bound) . For any ϕ ∈ H, with
probability at least 1− δ, the following inequality holds:

JDi
(ϕ) ≤ ĴDUi

(ϕ) + 2R̂Ui
(L ◦ H) + 3C

√
ln(2/δ)

2ni
,

where JDi(ϕ) = E(x,y)∼Di
[ℓ(ϕ(x),y)] is the true risk on the pre-trained dataset. ĴDUi

(ϕ) =
1
ni

∑ni

j=1 ℓ(ϕ(xij),yij) is the empirical risk on the pre-trained dataset Ui, which is an estimate
of the true risk based on the sample data.

Theorem 4 (Generalization Error Upper Bound) . Under the above assumptions, for any
hypothesis ϕθ ∈ H, with probability at least 1− δ, the following inequality holds:

JD⋆(ϕθ) ≤ ĴUi(ϕθ) + 2C ·DTV(D̂Ui , D̂U⋆) + 2R̂Ui(H) + 3C

√
ln(4/δ)

2ni
+ λ,

where ĴUi
(ϕθ) is the empirical expected loss, C is a constant bound, R̂Ui

(H) is the em-
pirical Rademacher complexity of H, and ni is the size of the dataset Ui. Finally, λ =
infϕ′∈H

[
JDi

(ϕ′) + JD⋆(ϕ′)
]
, represents the minimal combined risk overH.

Proof. We begin by expressing the target domain risk JD⋆(ϕ) in terms of the source domain risk:

JD⋆(ϕ) = JDi
(ϕ) + [JD⋆(ϕ)− JDi

(ϕ)] .

Step 1: Bounding the Risk Difference Using Total Variation Distance

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The difference JD⋆(ϕ)−JDi
(ϕ) can be bounded using the total variation distance and the bounded-

ness of the loss function:

|JD⋆(ϕ)− JDi
(ϕ)| =

∣∣E(x,y)∼D⋆ [ℓ(ϕ(x),y)]− E(x,y)∼Di
[ℓ(ϕ(x),y)]

∣∣
=

∣∣∣∣∫
X×Y

ℓ(ϕ(x),y) [dD⋆(x,y)− dDi(x,y)]

∣∣∣∣
≤
∫
X×Y

|ℓ(ϕ(x),y)| |dD⋆(x,y)− dDi(x,y)|

≤ C ·
∫
X×Y

|dD⋆(x,y)− dDi(x,y)|

= 2C ·DTV(Di, D
⋆).

Therefore, we have:
JD⋆(ϕ) ≤ JDi(ϕ) + 2C ·DTV(Di, D

⋆).

Step 2: Approximating the Total Variation Distance

Since Di and D⋆ are unknown, we approximate DTV(Di, D
⋆) using the empirical distributions D̂Ui

and D̂U⋆ . However, we must account for the estimation error due to finite sample sizes.

Let ε be the error term such that:

DTV(Di, D
⋆) ≤ DTV(D̂Ui , D̂U⋆) + DTV(Di, D̂Ui) + DTV(D

⋆, D̂U⋆).

Using concentration inequalities for total variation distance, we can bound DTV(Di, D̂Ui
) and

DTV(D
⋆, D̂U⋆). However, in high-dimensional spaces, these bounds may be loose.

For practical purposes, we proceed by accepting DTV(Di, D
⋆) ≈ DTV(D̂Ui

, D̂U⋆), acknowledging
that the approximation improves with larger ni and n⋆.

Thus, we have:
JD⋆(ϕ) ≤ JDi

(ϕ) + 2C ·DTV(D̂Ui
, D̂U⋆) + 2C · ε,

where ε represents the combined estimation error.

Step 3: Bounding the Source Domain Risk

Applying the lemma on empirical Rademacher complexity, with probability at least 1− δ/2:

JDi(ϕ) ≤ ĴDUi
(ϕ) + 2R̂Ui(L ◦ H) + 3C

√
ln(4/δ)

2ni
.

Step 4: Combining the Bounds

Using the union bound to ensure that both inequalities hold with probability at least 1−δ, we combine
the results:

JD⋆(ϕ) ≤ ĴDUi
(ϕ) + 2C ·DTV(D̂Ui , D̂U⋆) + 2R̂Ui(L ◦ H) + 3C

√
ln(4/δ)

2ni
+ 2C · ε.

To account for the inherent discrepancy between Di and D⋆ that cannot be mitigated by any hypothesis
inH, we introduce the irreducible error term:

λ = inf
ϕ′∈H

[
JDi

(ϕ′) + JD⋆(ϕ′)
]
.

This term represents the minimal combined risk overH and reflects the best possible performance
achievable across both domains.

Including λ in our bound, we have:

JD⋆(ϕ) ≤ ĴDUi
(ϕ) + 2C ·DTV(D̂Ui

, D̂U⋆) + 2R̂Ui
(L ◦ H) + 3C

√
ln(4/δ)

2ni
+ λ+ 2C · ε.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Step 5: Relating Rademacher Complexities

According to Assumption 5, the loss function ℓ is Lipschitz continuous with constant L. Therefore:

R̂Ui
(L ◦ H) ≤ L · R̂Ui

(H).
Substituting back into our inequality:

JD⋆(ϕ) ≤ ĴDUi
(ϕ) + 2C ·DTV(D̂Ui

, D̂U⋆) + 2LR̂Ui
(H) + 3C

√
ln(4/δ)

2ni
+ λ+ 2C · ε.

By acknowledging that ε diminishes with larger sample sizes and can be made arbitrarily small, we
obtain the desired generalization error bound:

JD⋆(ϕ) ≤ ĴDUi
(ϕ) + 2C ·DTV(D̂Ui , D̂U⋆) + 2LR̂Ui(H) + 3C

√
ln(4/δ)

2ni
+ λ.

E PROOF OF THEOREM 3

We recall the statement of Theorem 3, which provides the optimal combination coefficients γ⋆ =
[γ⋆

1 , γ
⋆
2 , . . . , γ

⋆
n]

⊤ for the proximal parameter θP in terms of the total variation distances between the
distributions. The theorem can be divided into two cases:

(a) Case n = 2: When there are two pre-trained models, the optimal combination coefficients
γ⋆
1 and γ⋆

2 that minimize the distance between the proximal parameter θP and the target
parameter θ⋆ are given by:

γ⋆
1 =

DTV(D1, D
⋆)2 +DTV(D1, D2)

2 −DTV(D2, D
⋆)2

2DTV(D1, D2)2
, γ⋆

2 = 1− γ⋆
1 ,

where DTV(Di, Dj) denotes the total variation distance between distributions Di and Dj .
This solution is valid provided that γ⋆

1 , γ
⋆
2 ≥ 0.

(b) Case n > 2: For more than two pre-trained models, an explicit solution for the optimal
combination coefficients γ⋆ under the constraints γ⋆

i ≥ 0 does not generally exist. However,
if we assume γ⋆

i > 0 for all i, the coefficients can be determined as:

γ⋆ =
H−1e

e⊤H−1e
,

where:
Hij = DTV(Di, D

⋆)2 +DTV(Dj , D
⋆)2 −DTV(Di, Dj)

2,

and e is an n-dimensional vector with all entries equal to 1.

In the following steps, we provide a detailed proof of Theorem 3.

Proof. We begin by considering a binary classification problem using a linear model. For simplicity,
assume the class labels y ∈ {−1, 1} and input feature vectors x ∈ Rd. The objective is to predict the
class label based on the input features.

In this proof, we employ Linear Discriminant Analysis (LDA). The goal of LDA is to find a linear
decision boundary that separates the samples of different classes as effectively as possible. In LDA,
the decision function is defined as:

f(x) = θ⊤x+ b,

where the parameters θ and b are determined by:

θ = Σ−1(µ(1) − µ(−1)), b = −1

2
(µ(1) + µ(−1))⊤Σ−1(µ(1) − µ(−1)) + ln

(
P (y = 1)

P (y = −1)

)
.

Here, µ(1) and µ(−1) are the mean vectors of the features for classes y = 1 and y = −1, respectively,
and Σ is the shared covariance matrix of the features.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Step 1: Assumptions

Assumption 7 (Class-Conditional Distribution) . For each pre-trained dataset Di and the target
dataset D⋆, the input features x are conditionally Gaussian given the class label y:

(a) For class y = 1:

x | y = 1 ∼ N (µ
(1)
i ,Σ), x | y = 1 ∼ N (µ⋆(1),Σ),

where µ(1)
i and µ⋆(1) are the mean vectors for class y = 1 in the pre-trained and target

datasets, respectively.

(b) For class y = −1:

x | y = −1 ∼ N (µ
(−1)
i ,Σ), x | y = −1 ∼ N (µ⋆(−1),Σ),

where µ(−1)
i and µ⋆(−1) are the mean vectors for class y = −1.

(c) The covariance matrix Σ is shared across all datasets.

Assumption 8 (Covariance Matrix Properties) . The class-conditional covariance matrix Σ
satisfies:

(a) Consistency: The covariance matrices are the same for all pre-trained datasets Di and
the target dataset D⋆:

Σi = Σ⋆ = Σ.

(b) Positive Definiteness: The covariance matrix Σ is positive definite:

Σ ≻ 0,

ensuring that Σ is invertible.

Step 2: Lemma in Linear Model

Lemma 2 (Parameter Distance and Total Variation) . Under the above assumptions and given
the linear model, the Euclidean distance between the parameters of the pre-trained models θi and
the target model θ⋆ is proportional to the total variation distance between their distributions:

∥θi − θ⋆∥ = C ·DTV(Di, D
⋆),

where

C = 2

√
µ̃⊤Λ−2µ̃

µ̃⊤Λ−1µ̃
= 2

√√√√√∑d
j=1

µ̃2
j

λ2
j∑d

j=1

µ̃2
j

λj

is a constant, which depends on the eigenvalues of the covariance matrix Σ and the components
of the transformed mean difference.

Proof of Lemma 2. Given the LDA model, the parameters are related to the mean differences:

θi = Σ−1(µ
(1)
i − µ

(−1)
i), θ⋆ = Σ−1(µ⋆(1) − µ⋆(−1)).

The difference is:
θi − θ⋆ = Σ−1(µi − µ⋆),

where µi = µ
(1)
i − µ

(−1)
i and µ⋆ = µ⋆(1) − µ⋆(−1).

The Euclidean distance becomes:

∥θi − θ⋆∥ =
√
(µi − µ⋆)⊤Σ−2(µi − µ⋆).

For the total variation distance between the Gaussian distributions:

DTV(Di, D
⋆) =

1

2
∥µi − µ⋆∥Σ−1 =

1

2

√
(µi − µ⋆)⊤Σ−1(µi − µ⋆).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Combining these, we derive the proportional relationship:

∥θi − θ⋆∥ = C ·DTV(Di, D
⋆),

where

C = 2

√
(µi − µ⋆)⊤Σ−2(µi − µ⋆)

(µi − µ⋆)⊤Σ−1(µi − µ⋆)
.

To express this constant C further, we utilize the eigenvalue decomposition of the covariance matrix
Σ. Let:

Σ = QΛQ⊤,

where Q is the orthogonal matrix of eigenvectors of Σ and Λ is the diagonal matrix containing the
eigenvalues λ1, λ2, . . . , λd. Since Σ is positive definite, all eigenvalues λj > 0.

We rewrite the mean difference µi − µ⋆ in the eigenvector basis:

µ̃ = Q⊤(µi − µ⋆).

Here, µ̃ represents the coordinates of the mean difference in the space spanned by the eigenvectors of
Σ, and µ̃j are its components.

The inverse and squared inverse of Σ are:

Σ−1 = QΛ−1Q⊤, Σ−2 = QΛ−2Q⊤.

Substituting these into the expression for C, we get:

C = 2

√
µ̃⊤Λ−2µ̃

µ̃⊤Λ−1µ̃
.

Writing out the components explicitly:

C = 2

√√√√√∑d
j=1

µ̃2
j

λ2
j∑d

j=1

µ̃2
j

λj

.

This final form shows that the proportionality constant C depends on the eigenvalues of the covariance
matrix Σ and the components µ̃j of the transformed mean difference. It encapsulates how the mean
differences project onto the eigenvectors of the covariance matrix.

Step 3: Formulating the Quadratic Optimization Problem Our objective is to determine the
optimal combination coefficients γ⋆

i that minimize the squared distance between the combined
parameters θP and the target parameter θ⋆:

min
γ

∥∥∥θP − θ⋆∥∥∥2 = min
γ

∥∥∥∥∥
n∑

i=1

γ⋆
i θ̃i − θ

⋆

∥∥∥∥∥
2

,

subject to the constraints:
n∑

i=1

γ⋆
i = 1, γ⋆

i ≥ 0.

Let δi = θ̃i − θ⋆. Then, the objective function becomes:∥∥∥θP − θ⋆∥∥∥2 =

∥∥∥∥∥
n∑

i=1

γ⋆
i δi

∥∥∥∥∥
2

=

n∑
i=1

n∑
j=1

γ⋆
i γ

⋆
j δ

⊤
i δj .

Using the proportional relationship from Lemma 2, we express the inner product δ⊤i δj as:

δ⊤i δj =
1

2

(
∥δi∥2 + ∥δj∥2 − ∥δi − δj∥2

)
=

C2

2

(
DTV(Di, D

⋆)2 +DTV(Dj , D
⋆)2 −DTV(Di, Dj)

2
)
,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where C is a positive constant of proportionality.

Define the symmetric matrix H with elements:

Hij = DTV(Di, D
⋆)2 +DTV(Dj , D

⋆)2 −DTV(Di, Dj)
2.

Thus, the objective function simplifies to:∥∥∥θP − θ⋆∥∥∥2 =
C2

2
γ∗⊤Hγ⋆.

Since C2

2 is a positive constant, minimizing
∥∥∥θP − θ⋆∥∥∥2 is equivalent to minimizing γ∗⊤Hγ⋆.

Therefore, the optimization problem becomes:

min
γ⋆
γ∗⊤Hγ⋆, subject to

n∑
i=1

γ⋆
i = 1, γ⋆

i ≥ 0.

Step 4: Solving the Quadratic Optimization Problem We need to discuss by cases:

Case 1: n = 2

For n = 2, let γ⋆
2 = 1− γ⋆

1 . Substituting into the objective function:

γ∗⊤Hγ⋆ = H11(γ
⋆
1)

2 + 2H12γ
⋆
1 (1− γ⋆

1) +H22(1− γ⋆
1)

2.

Expanding and simplifying:

γ∗⊤Hγ⋆ = (H11 +H22 − 2H12)(γ
⋆
1)

2 + 2(H12 −H22)γ
⋆
1 +H22.

To find the minimum, take the derivative with respect to γ⋆
1 and set it to zero:

d

dγ⋆
1

(γ∗⊤Hγ⋆) = 2(H11 +H22 − 2H12)γ
⋆
1 + 2(H12 −H22) = 0.

Solving for γ⋆
1 :

γ⋆
1 =

H22 −H12

H11 +H22 − 2H12
=

DTV(D2, D
⋆)2 +DTV(D1, D2)

2 −DTV(D1, D
⋆)2

2DTV(D1, D2)2
.

Thus, the optimal coefficients are:

γ⋆
1 =

DTV(D2, D
⋆)2 +DTV(D1, D2)

2 −DTV(D1, D
⋆)2

2DTV(D1, D2)2
, γ⋆

2 = 1− γ⋆
1 .

This solution is valid provided that γ⋆
1 , γ

⋆
2 ≥ 0.

Case 2: n > 2

When n > 2, an explicit solution for the optimal combination coefficients γ⋆ generally does not exist
under the constraints γ⋆

i ≥ 0 due to the complexity introduced by multiple inequality constraints.
However, if we further assume that all γ⋆

i > 0, we can derive an explicit solution.

Under the assumption γ⋆
i > 0 for all i, the optimization problem can be solved using the method of

Lagrange multipliers. Construct the Lagrangian:

L(γ⋆, λ) = γ∗⊤Hγ⋆ − λ

(
n∑

i=1

γ⋆
i − 1

)
.

Taking the derivative with respect to γ⋆ and setting it to zero:

2Hγ⋆ − λe = 0 ⇒ γ⋆ =
λ

2
H−1e,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

where e is an n-dimensional vector of ones.

Applying the constraint
∑n

i=1 γ
⋆
i = 1:

e⊤γ⋆ =
λ

2
e⊤H−1e = 1 ⇒ λ =

2

e⊤H−1e
.

Substituting back, the optimal combination coefficients are:

γ⋆ =
H−1e

e⊤H−1e
.

This explicit solution holds provided that the matrix H is invertible and all resulting γ⋆
i > 0. If

any γ⋆
i ≤ 0, then numerical optimization methods must be employed to determine the optimal

coefficients.

F DETAILED EXPLANATION OF PARAMETER TRANSFORMATION

In this appendix, we provide a comprehensive theoretical exposition of the parameter transformation
techniques introduced in Section 4.1.

F.1 LEARNABLE WIDTH TRANSFORMATION

The width transformation is designed to adapt the weight matrices from a pre-trained source model
to match the input and output dimensions of a target model, which may differ due to architectural
changes. Given a weight matrix θ ∈ Rdin×dout from a layer of the source model, our goal is to compute
a transformed weight matrix θ̃ ∈ Rd′

in×d′
out suitable for the corresponding layer in the target model.

To facilitate this transformation, we introduce learnable transformation matrices cin ∈ Rd′
in×din and

cout ∈ Rd′
out×dout . These matrices map the source input and output dimensions to the target dimensions,

respectively. The transformed weight matrix is computed as:

θ̃ = cinθc
⊤
out.

The matrices cin and cout are treated as learnable parameters, optimized to minimize the loss function
L of the target model. To provide a meaningful initialization that captures the most significant
components of θ, we employ Singular Value Decomposition (SVD) on θ. Specifically, we decompose
θ as:

θ = UΣV⊤,

where: - U ∈ Rdin×r contains the left singular vectors, - Σ ∈ Rr×r is a diagonal matrix of singular
values, - V ∈ Rdout×r contains the right singular vectors, - r = rank(θ).

To align the dimensions with the target model, we truncate or extend U and V to obtain Ũ ∈ Rdin×r′

and Ṽ ∈ Rdout×r′ , where r′ = min(d′in, d
′
out, r). The truncated singular values are Σ̃ ∈ Rr′×r′ .

Formally:

Ũ = U[:,1:r′], Σ̃ = Σ[1:r′,1:r′], Ṽ = V[:,1:r′].

We initialize the transformation matrices cin and cout based on the truncated SVD components:

c
(0)
in = WinŨ

⊤, c
(0)
out = WoutṼ

⊤,

where Win ∈ Rd′
in×r′ and Wout ∈ Rd′

out×r′ are learnable weight matrices initialized randomly or
based on heuristics.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Substituting and the transformed weight matrix becomes:

θ̃ = WinŨ
⊤θṼW⊤

out.

Using the properties of SVD, we have:

Ũ⊤θṼ = Ũ⊤(UΣV⊤)Ṽ = (Ũ⊤U)Σ(V⊤Ṽ) = Ir′Σ̃I⊤r′ = Σ̃,

where Ir′ is the identity matrix of size r′ × r′. Hence, the transformed weight matrix simplifies to:

θ̃ = WinΣ̃W⊤
out.

This formulation decouples the adaptation process into learning Win and Wout, which project the
truncated singular values to the target dimensions. Both Win and Wout are learnable parameters
optimized during training.

During training, the transformation matrices cin and cout are updated to minimize the loss function L.
The gradients with respect to these matrices are computed via backpropagation. For cin, the gradient
is:

∂L
∂cin

=
∂L
∂θ̃

∂θ̃

∂cin
,

where:

∂θ̃

∂cin
= θc⊤out.

Similarly, for cout:

∂L
∂cout

=
∂L
∂θ̃

∂θ̃

∂cout
,

with:

∂θ̃

∂cout
= (cinθ)

⊤.

Using these gradients, the transformation matrices are updated as:

cin ← cin − η
∂L
∂cin

, cout ← cout − η
∂L
∂cout

,

where η is the learning rate.

F.2 LEARNABLE DEPTH TRANSFORMATION

The depth transformation adjusts the number of layers from L in the source model to L′ in the target
model. We introduce a learnable depth transformation matrix Ddepth ∈ RL′×L, where each element
dki represents the learnable contribution of the i-th source layer to the k-th target layer.

The transformed parameters for the k-th target layer are computed as:

θ̃
k
=

L∑
i=1

dkiθ
i,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

with the constraints:

dki ≥ 0,

L∑
i=1

dki = 1 ∀k.

To satisfy the constraints, we parameterize dki using the softmax function over learnable logits γki:

dki =
exp(γki)∑L
j=1 exp(γkj)

.

This formulation ensures that dki are positive and sum to one for each k.

The logits γki are optimized alongside the model parameters by minimizing the overall loss L. The
gradient updates are:

γki ← γki − η
∂L
∂γki

.

The learnable coefficients dki allow the model to dynamically determine the importance of each
source layer for constructing the target layers.

G ADDITIONAL RELATED WORK

Knowledge distillation (KD) (Hinton et al., 2015) is a widely used technique for transferring knowl-
edge from a larger teacher model to a smaller student model by training the student to mimic the
teacher’s output logits or representations. The primary focus of KD is on transferring knowledge
through the output space, aiming for model compression and efficiency without significant loss in
performance.

Various extensions of KD have been proposed to improve efficiency and performance. Self-
distillation (Zhang et al., 2019) involves training a model using its own outputs as soft targets,
while mutual learning (Zhang et al., 2018) involves co-training multiple models to learn from each
other. In the context of large-scale models, KD has been applied to compress transformer-based
architectures (Sanh et al., 2019; Jiao et al., 2019) and to improve model generalization (Yuan et al.,
2020).

Recent advances in KD have explored more sophisticated approaches. Cross-modal knowledge
distillation (Gou et al., 2021) enables knowledge transfer between models operating on different
modalities. Contrastive knowledge distillation (Tian et al., 2020) leverages contrastive learning to
capture fine-grained structural knowledge. Additionally, adaptive knowledge distillation (Song et al.,
2022) dynamically adjusts the distillation process based on the learning status of the student model.

While KD focuses on output-space knowledge transfer, our proposed method, SAIL, operates at the
parameter level. SAIL directly transforms and integrates parameters from multiple pre-trained models
to initialize a new model, leveraging the collective knowledge embedded in their parameters. This
approach differs from KD in that it does not require training a student model to mimic a teacher’s
outputs; instead, it constructs a proximal parameter initialization that accelerates convergence during
training.

Moreover, SAIL can be considered complementary to knowledge distillation. After applying SAIL to
initialize the target model, KD can be employed as a subsequent optimization step to fine-tune or
align the model to specific tasks. This combination could enhance both training efficiency and model
performance by leveraging both parameter-space and output-space knowledge transfer.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

H EXPERIMENTAL DETAILS

H.1 DATA DESCRIPTION

Our experiments primarily used the OpenWebText dataset, a large-scale corpus of web content. For
cross-dataset generalization experiments, we also utilized the WikiText-103 dataset. Additionally, we
conducted computer vision experiments using CIFAR-10, CIFAR-100, and Tiny ImageNet datasets.

OpenWebText: This dataset consists of web content extracted from URLs shared on Reddit. It
contains a diverse range of topics and writing styles, making it suitable for training general-purpose
language models. The dataset is stored in a binary format (‘train.bin‘) where each token is represented
as a 16-bit integer. Our preprocessed version of OpenWebText contains approximately 9 billion
tokens.

WikiText-103: This dataset is derived from the set of verified Good and Featured articles on
Wikipedia. It contains over 100 million tokens and serves as a high-quality benchmark for language
modeling tasks. WikiText-103 is known for its long-term dependencies and diverse vocabulary,
making it an excellent test for model generalization.

Data Preprocessing for NLP Tasks: For our experiments, we split the OpenWebText dataset into
three subsets (D1, D2, and Dt) based on the mean token value of data blocks. This feature-based
splitting approach ensures that each subset has a distinct distribution, allowing us to simulate different
data domains. The splitting process is as follows:

1. We compute the mean token value for each block of 1024 tokens in the dataset.

2. We sort these blocks based on their mean token values.

3. We use the 33rd and 66th percentiles of these mean values as thresholds to split the data into
three parts:

• D1: Blocks with mean token values below the 33rd percentile
• D2: Blocks with mean token values between the 33rd and 66th percentiles
• Dt: Blocks with mean token values above the 66th percentile

This approach ensures that each subset has a distinct statistical distribution, simulating different data
domains while still being part of the same overall corpus.

T-SNE Visualizations: To verify the effectiveness of our splitting approach and to visualize the
distributions of different datasets, we performed more t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) analysis. Figure 4 presents a t-SNE visualization comparing samples from OpenWebText
and WikiText-103, illustrating the distributional differences between these datasets.

15 10 5 0 5 10 15
Dimension 1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Di
m

en
sio

n
2

OpenWebText
Wikipedia

Figure 4: t-SNE visualization
comparing OpenWebText and
WikiText-103 samples

Computer Vision Datasets: For our computer vision experi-
ments, we used the following datasets:

• CIFAR-10: A dataset of 60,000 32x32 color images in
10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images.

• CIFAR-100: Similar to CIFAR-10, but with 100 classes
containing 600 images each. There are 500 training images
and 100 testing images per class.

• Tiny ImageNet: A subset of ImageNet, consisting of 200
classes with 500 training images, 50 validation images,
and 50 test images per class. Each image is 64x64 pixels.

These datasets were chosen to evaluate our method’s performance
across different levels of task complexity and dataset sizes in the
computer vision domain.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Baseline
BYOL Ours
SupCE Baseline
SupCE Ours

(a) ResNet-18 Modified (CIFAR-
100)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Baseline
BYOL Ours
SupCE Baseline
SupCE Ours

(b) Standard ResNet-18 (CIFAR-
100)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Ours
BYOL Baseline
SupCE Ours
SupCE Baseline

(c) ResNet-34 Modified (CIFAR-
100)

Figure 5: Accuracy in Different ResNet Configurations: (a) Accuracy of ResNet-18 Modified trained with
BYOL and SupCE on CIFAR-100. (b) Accuracy of standard ResNet-18 trained with BYOL and SupCE on
CIFAR-100. (c) Accuracy of ResNet-34 Modified trained with BYOL and SupCE on CIFAR-100.

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Ours
BYOL Baseline
SupCE Ours
SupCE Baseline

(a) ResNet-18 Modified (Tiny-
ImageNet)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Baseline
BYOL Ours
SupCE Baseline
SupCE Ours

(b) Standard ResNet-18 (Tiny-
ImageNet)

0 10 20
Epoch

0.2

0.6

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

BYOL Ours
BYOL Baseline
SupCE Ours
SupCE Baseline

(c) ResNet-34 Modified (Tiny-
ImageNet)

Figure 6: Accuracy in Different ResNet Configurations: (a) Accuracy of ResNet-18 Modified trained with
BYOL and SupCE on Tiny-ImageNet. (b) Accuracy of standard ResNet-18 trained with BYOL and SupCE on
Tiny-ImageNet. (c) Accuracy of ResNet-34 Modified trained with BYOL and SupCE on Tiny-ImageNet.

Detailed results for CIFAR-100 and Tiny ImageNet experiments
are presented in Section H.2 of this appendix.

H.2 ADDITIONAL EXPERIMENTAL RESULTS

I EXPERIMENTS IN NLP

In this section, we present a comprehensive evaluation of our proposed method, Sail, in comparison
with various baseline methods across multiple natural language processing (NLP) benchmarks.
Leveraging the fully open OLMo framework, which includes model weights, training data, and
evaluation tools, we ensure reproducibility and transparency in our experimental setup. We detail
our experimental setup, including model configurations derived from the OLMo-1B and OLMo-7B
variants, training procedures informed by our custom configuration file, hyperparameters, and dataset
specifics. The results demonstrate the efficacy of Sail in enhancing model performance through
optimal parameter merging and initialization.

I.1 EXPERIMENTAL SETUP

I.1.1 MODELS USED

We conducted our experiments using the following models from the OLMo Groeneveld et al. (2024):

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

OLMo-1B: A 1-billion parameter model pretrained on a diverse corpus, designed for general-purpose
language understanding. OLMo-7B: A 7-billion parameter model with enhanced capabilities for
complex language understanding and reasoning tasks. Each model variant is trained with distinct
architectures, optimizers, and hardware configurations as specified in our training configuration file.
The OLMo framework provides multiple checkpoints, enabling us to select intermediate states for
parameter merging and initialization.

I.1.2 CHECKPOINT SELECTION

For constructing the parameter set using Sail, we selected intermediate checkpoints based on the
training progress captured in the OLMo:

• OLMo-1B: Intermediate checkpoints at steps 500,000 (steps500000-2097B), 600,000
(steps600000-2517B), and 700,000 (steps700000-2936B) were selected. These
checkpoints represent different stages of model convergence and training dynamics.

• OLMo-7B: A single intermediate checkpoint at step 474,000 (steps474000-2097B)
was selected, providing a reference point for evaluating larger model performance.

I.1.3 TRAINING CONFIGURATION

Table 1 outlines the hyperparameters employed for training with Sail. These settings were chosen
based on preliminary experiments and best practices in the literature to optimize model performance.

Table 1: Hyperparameters for Sail

Hyperparameter Value
Batch Size 16
Learning Rate 4e-4
Optimizer AdamW
Number of Epochs 1
Weight Decay 0.01
Gradient Clipping 1.0
Scheduler Cosine with Warmup
Warmup Steps 2000

I.2 DATASET DETAILS

We evaluated our models on a diverse set of NLP benchmarks to ensure a comprehensive assessment
of Sail’s capabilities. The datasets encompass a range of tasks, including commonsense reasoning,
question answering, and causal reasoning. Below are the details of each dataset used:

• PIQA:Bisk et al. (2020) Physical commonsense reasoning with 7,000 training examples
and 1,500 test examples.

• HellaSwag:Zellers et al. (2019) Complex multiple-choice questions requiring robust infer-
ence, consisting of 70,000 training examples and 10,000 test examples.

• Winogrande:ai2 (2019) Pronoun resolution with 44,000 training examples and 8,000 test
examples.

• SciQ:Johannes Welbl (2017) Comprehension of scientific texts, containing 13,679 training
examples and 1,384 test examples.

• ARC-Easy:Clark et al. (2018) Grade-school level science questions with 3,779 training
examples and 1,366 test examples.

• COPA:Roemmele et al. (2011) Causal reasoning by selecting plausible alternatives, com-
prising 1,000 training examples and 500 test examples.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

I.3 COMPLETE RESULTS

We present a comprehensive comparison of Sail against various baseline methods across all evaluated
NLP benchmarks. The results are consolidated in Table 2, demonstrating the superior performance
and flexibility of Sail in model initialization and parameter merging.

Table 2: Comparison of Sail with Baseline Methods (Accuracy %)

Dataset Train from Scratch LIGO Uniform Soup Greedy Soup Sail (Ours)
PIQA 51.96 52.29 54.80 57.73 61.92
HellaSwag 24.87 25.33 25.25 27.65 34.48
Winogrande 51.14 50.20 50.51 52.09 52.96
SciQ 22.10 23.90 51.90 59.70 70.30
ARC-Easy 27.54 29.65 27.19 34.91 42.63
COPA 58.00 55.00 57.00 51.00 63.00

Comparison of Sail with Baseline Methods These curves display perplexity across step for models
initialized with Sail compared to those with random initialization. The plots confirm that Sail not
only achieves higher final performance but also converges more rapidly during training, consistent
with our findings in computer vision (CV) experiments.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 7: Perplexity for Models Initialized with Sail vs. Random Initialization on NLP Benchmarks.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

J SAIL FOR SIT DIFFUSION MODELS

J.1 APPLYING SAIL TO SIT DIFFUSION MODELS

In this section, we extend our Structured-Initialization Learning (SAIL) framework to accelerate the
training of state-of-the-art SiT (Scalable Interpolant Transformers) diffusion models (Ma et al., 2024),
which are generative models. By adapting SAIL to SiT diffusion models, we aim to demonstrate the
versatility of our method in different domains and its effectiveness in improving training efficiency.

In visual representation learning, aligning the representations within generative models with pre-
trained ones improves both semantic integration and performance (Yu et al., 2024). Within our
SAIL framework, this alignment is achieved through specific adaptations. One such adaptation is
Latent-to-Representation alignment, which serves as a case study for applying SAIL to SiT models,
given that SiT training occurs in latent space of VAE (Ma et al., 2024).

Formally, let us denote:

• Z as the latent space of the diffusion model.
• R as the external pre-trained representation space.
• fP : Z → R as the pre-trained representation model.
• fA : H → R as the alignment function within SAIL, where H represents the hidden

representations of the diffusion model.

The objective is to minimize the discrepancy between the representations derived from the VAE latent
space and those from the pre-trained representation space, ensuring coherent semantic alignment
within the SAIL framework.

J.2 WEIGHT INITIALIZATION IN SAIL FOR SIT MODELS

Using SAIL, we initialize the weights of the SiT diffusion transformer by leveraging pre-trained
models. This corresponds to our parameter transformation technique, where we adjust the dimensions
of pre-trained model parameters to match the target SiT architecture.

Formally, let θPSAIL represent the pre-trained weights obtained by optimizing the alignment between
latent variables and pre-trained representations:

θPSAIL = argmin
θ
LAlign(θ), (14)

where LAlign is the alignment loss function within the SAIL framework that measures the discrepancy
between the model’s latent representations and the pre-trained representation space. By initializing
the SiT model with θPSAIL, we ensure that the model starts with parameters that already encode
meaningful semantic information, thereby enhancing the efficiency of subsequent training stages.

J.3 INCORPORATING ALIGNMENT LOSS IN SAIL TRAINING

In addition to weight initialization, we incorporate an alignment loss term into the SAIL training
objective to continuously align the model’s hidden representations with the pre-trained representations.
This strategy complements our proximal parameter integration and retraining approach, which
efficiently combines transformed parameters to initialize new models.

The total loss function during training becomes:

LTotal = LVelocity + λREPALREPA + λAlignLAlign, (15)

where:

• LVelocity is the primary loss for velocity prediction in the diffusion model.
• LREPA is the representation alignment loss as defined in REPA (Yu et al., 2024).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

• LAlign is the alignment loss within SAIL.
• λREPA and λAlign are hyperparameters controlling the strength of each alignment component.

The alignment loss is defined as:

LAlign = Ezt,ht

[
∥fP(zt)− fA(ht)∥2

]
, (16)

where:

• zt represents the latent variables at time t.
• ht represents the hidden states of the model at time t.

J.4 EXPERIMENTAL SETUP

To evaluate the effectiveness of integrating Latent-to-Representation (L2R) alignment within the
SAIL framework for improving SiT pre-training, we conduct a series of experiments on the ImageNet
256× 256 dataset. Our primary objective is to assess how the incorporation of L2R influences both
the training efficiency and the quality of the generated representations.

We utilize the ImageNet dataset, specifically the 256× 256 resolution subset, which contains 1.28
million training images and 50,000 validation images across 1,000 classes. All images are resized to
256× 256 pixels and normalized using standard ImageNet statistics. Data augmentation techniques,
including random horizontal flipping and random cropping, are employed to enhance the diversity of
the training data.

The SiT-B/2 model, as described by Ma et al. (2024), serves as our baseline architecture. We enhance
the training of this model by integrating our SAIL outlined in the previous sections. Specifically, the
L2R model was initialized with pre-trained weights obtained from an alignment task between latent
variables and pre-trained representations, ensuring that the initial parameters encoded meaningful
semantic information.

J.4.1 HYPERPARAMETERS

Following previous studies (Ma et al., 2024; Yu et al., 2024), the key hyperparameters for our
experiments are summarized in Table 3.

Table 3: Hyperparameters used for training SAIL with L2R model on ImageNet 256× 256.

Hyperparameter Value

Learning Rate 1× 10−4

Optimizer AdamW
β1 0.9
β2 0.999
Weight Decay 0.01
Batch Size 256
Training Iterations 400K
Gradient Clipping Norm 1.0
λREPA 0.5
λL2R 0.5
Latent Scale 0.18215
Latent Bias 0.0

J.5 RESULTS

The integration of our SAIL framework significantly improve both the training efficiency and effec-
tiveness of SiT. Table 4 provides a comparative analysis between the baseline SiT model and the
enhanced version incorporating REPA and SAIL across various training iterations.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 4: Performance comparison between the baseline SiT model and the SiT model enhanced with REPA and
SAIL at various training iterations over ImageNet 256× 256 generation. Improvements with SAIL over REPA
are indicated with arrows and highlighted in red.

Model #Params Iter. FID↓ sFID↓ IS↑ Prec.↑
SiT-B/2 (Ma et al., 2024) 130M 400K 33.0 6.46 43.7 0.53

+ REPA 130M 50K 78.2 11.71 17.1 0.33
+ SAIL (ours) 130M 50K 67.6 (↓10.6) 16.19 (↑4.48) 20.5 (↑3.4) 0.34 (↑0.01)

+ REPA 130M 100K 49.5 7.00 27.5 0.46
+ SAIL (ours) 130M 100K 35.9 (↓13.6) 7.02 (↓0.02) 45.1 (↑17.6) 0.53 (↑0.07)

+ REPA 130M 200K 33.2 6.68 43.7 0.54
+ SAIL (ours) 130M 200K 19.8 (↓13.4) 6.15 (↓0.53) 81.9 (↑38.2) 0.64 (↑0.10)

+ REPA 130M 400K 24.4 6.40 59.9 0.59
+ SAIL (ours) 130M 400K 12.2 (↓12.2) 5.90 (↓0.50) 119.4 (↑59.5) 0.70 (↑0.11)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

K CONTROL EXPERIMENTS WITH THE SPIRALS DATASET

To empirically validate our theoretical findings and demonstrate the practical effectiveness of the
SAIL method, we conduct control experiments using the Spirals dataset. By considering different
model initializations and non-overlapping data distributions, we aim to verify that our theoretical
predictions hold in practice when applied to multi-layer perceptrons (MLPs).

The Spirals dataset is a synthetic dataset where data points are arranged in two interleaving spirals,
forming a challenging classification problem that requires models to learn complex, non-linear
decision boundaries (Guyon & Elisseeff, 2003). This dataset is well-suited for assessing the capability
of models to capture intricate patterns and for evaluating the effectiveness of initialization strategies
in non-convex optimization landscapes.

We design our experiments to achieve two main objectives:

1. Faster Optimization Speed: Demonstrate that models initialized with the SAIL method
converge faster than those with random initialization.

2. Effectiveness of SAIL under Different Data Distributions: Assess the impact of using
pre-trained models trained on different, non-overlapping subsets of the Spirals dataset to
evaluate the limitations of the SAIL method.

K.1 EXPERIMENTAL SETUP

We generate the Spirals dataset D⋆ consisting of data points from two interleaving spirals, with each
spiral representing a distinct class. The dataset is divided into training and validation sets. To create
different, non-overlapping data distributions, we derive two additional separate subsets from D⋆:

• D1: Contains data points exclusively from the first spiral.
• D2: Contains data points exclusively from the second spiral.

We train two models separately on these non-overlapping subsets:

• θ1: Trained on D1.
• θ2: Trained on D2.

Using the SAIL method, we transform and merge the parameters of θ1 and θ2 to form the proximal
parameter θP, which serves as the initialization for training the target model on the full dataset D⋆.

We compare the performance of models initialized with θP against models with random initialization
and models trained on D⋆ from scratch. All models are trained using the same neural network
architecture: a multi-layer perceptron (MLP) with one hidden layer of 50 neurons and ReLU
activation functions.

We evaluate the models based on four metrics: training loss, accuracy, gradient norm, and L2 norm
of the parameters with respect to the optimal parameters θ⋆ obtained from training on the full dataset
D⋆.

Faster Optimization Speed Figure 8 shows the training loss and accuracy over epochs for the
models initialized with θP and with random initialization. The model initialized with θP converges to
a lower loss significantly faster than the randomly initialized model. The accuracy of the model with
SAIL initialization improves rapidly and reaches a higher final accuracy compared to the model with
random initialization. This demonstrates that the SAIL initialization provides a better starting point
in the parameter space, closer to the optimum, thus requiring fewer iterations to converge.

Gradient Norm and L2 Norm Analysis Figure 9 presents the gradient norm and the L2 norm
of the parameters with respect to θ⋆ over epochs. The SAIL-initialized model exhibits a smaller
gradient norm earlier in training, indicating a more stable optimization process. Additionally, the L2
norm between the model parameters and θ⋆ decreases more rapidly for the SAIL-initialized model,
showing that it approaches the optimal parameters more quickly than the randomly initialized model.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

0 100 200 300
Training Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
ss

Initialization Method
Random Initialization
SAIL

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Training Loss

0 100 200 300
Training Steps

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Initialization Method
Random Initialization
SAIL

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b) Accuracy

Figure 8: Comparison of training loss and accuracy over steps for models initialized with θP (SAIL) and with
random initialization. The SAIL-initialized model converges faster and achieves better performance. The color
bar indicates the value of γ.

0 100 200 300
Training Steps

0

2

4

6

8

G
ra

d
N

or
m

Initialization Method
Random Initialization
SAIL

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Gradient Norm

Figure 9: Gradient norm and L2 norm of the parameters with respect to θ⋆ over epochs for models initialized
with θP (SAIL) and with random initialization. The SAIL-initialized model demonstrates a more efficient
optimization trajectory. The color bar indicates the value of γ.

Effectiveness of SAIL under Different Data Distributions To assess the robustness of the SAIL
method, we conducted experiments where the pre-trained models θ1 and θ2 were trained on different,
non-overlapping subsets of D1 and D2. In this scenario, the benefits of the SAIL initialization are
influenced by the disparity between the pre-trained models’ data distributions and that of the target
dataset D⋆.

As shown in Figure 8 and Figure 9 , even when the pre-trained models are trained on distinct
and non-overlapping subsets, the SAIL initialization still provides a convergence speed advantage
compared to random initialization, albeit reduced compared to the scenario where the pre-trained
models are trained on larger or more representative portions of the target dataset.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

These experiments confirm that the SAIL method effectively accelerates the convergence of MLP
models on complex, non-convex tasks like the Spirals dataset. By initializing the model parameters
with the proximal parameter θP derived from pre-trained models on related data, we achieve faster
optimization and better final performance compared to random initialization. The method remains
effective even when the pre-trained models are trained on different, non-overlapping data distributions,
demonstrating the versatility and robustness of SAIL.

45

	Introduction
	Related Work
	Accelerated Training via Proximal Parameter
	Proximal Parameter
	Convergence Analysis

	Structured-Initialization Learning
	Parameter Transformation
	Proximal Parameter Integration and Retraining
	Experimental Setting
	Empirical Evaluation of Sail's Efficacy
	Our Methods in Different modality

	Conclusion and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	The Convergence Advantage With Proximal Parameter Initialization
	Intuitive Explanation
	Detailed Proof

	Generalization Error Upper Bound
	Proof of Theorem 3
	Detailed Explanation of Parameter Transformation
	Learnable Width Transformation
	Learnable Depth Transformation

	Additional Related Work
	Experimental Details
	Data Description
	Additional Experimental Results

	Experiments in NLP
	Experimental Setup
	Models Used
	Checkpoint Selection
	Training Configuration

	Dataset Details
	Complete Results

	Sail for SiT Diffusion Models
	Applying Sail to SiT Diffusion Models
	Weight Initialization in Sail for SiT Models
	Incorporating Alignment Loss in Sail Training
	Experimental Setup
	Hyperparameters

	Results

	Control Experiments with the Spirals Dataset
	Experimental Setup

