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Abstract

Instruction tuning is a crucial supervised training phase in Large Language Models (LLMs),
aiming to enhance the LLM’s ability to generalize instruction execution and adapt to
user preferences. With the increasing integration of multi-modal data into LLMs, there is
growing interest in Vision-Language Instruction Tuning (VLIT), which presents more complex
characteristics compared to pure text instruction tuning. In this paper, we systematically
review the latest VLIT settings and corresponding datasets in multi-modal LLMs and
provide insights into the intrinsic motivations behind their design. For the first time, we
offer a detailed multi-perspective categorization for existing VLIT datasets and identify
the characteristics that high-quality VLIT data should possess. By incorporating these
characteristics as guiding principles into the existing VLIT data construction process, we
conduct extensive experiments and verify their positive impact on the performance of tuned
multi-modal LLMs. Furthermore, we discuss the current challenges and future research
directions of VLIT, providing insights for the continuous development of this field. The code
and dataset related to this paper have been open-sourced at URL1.

1 Introduction

Recently, there has been growing dissatisfaction with the limited capability of Large Language Models
(LLMs) to process only discrete textual information (Brown et al., 2020; Chowdhery et al., 2022; Zhang et al.,
2023c). As a result, researchers have been exploring techniques to enhance LLMs by enabling them to process
additional modalities of information, primarily visual signals, allowing them to "see" beyond text (Huang
et al., 2023a; Liu et al., 2023c; Zhu et al., 2023a). Integrating visual encoding modules into LLMs is currently
the primary method for achieving this functionality, which improves the versatility of Multi-modal Large
Language Models (MLLMs)2 by facilitating the perception of visual data. Although the strategies employed
by these MLLMs for visual signal conversion vary, their training paradigms follow a consistent pattern
(i.e., pre-training and fine-tuning) (Liu et al., 2023c; Dai et al., 2023; Awadalla et al., 2023). Among these,
fine-tuning with vision-language instructions plays a vital role throughout the training process.

Instruction tuning is a supervised training procedure that follows the pre-training stage in LLM training,
typically encompassing a variety of tasks (Ouyang et al., 2022; Wei et al., 2021). This process offers a
twofold benefit: enhancing the ability of LLMs to generalize and execute diverse task instructions while also
bridging the gap between user preferences and model output. Vision-Language Instruction Tuning (VLIT) is
a specialized adaptation of instruction tuning in a multi-modal scenario, tailored to the overall architecture
design and training objectives of MLLMs. Compared to traditional instruction tuning, VLIT carries more
responsibilities (Liu et al., 2023c; Dai et al., 2023; Zhu et al., 2023a). Numerous state-of-the-art MLLMs now
demonstrate strong performance on zero-shot downstream visual tasks and boast exceptional user interaction
capabilities, largely attributable to their efficient VLIT.

More specifically, VLIT facilitates the efficient tuning of MLLM, primarily due to two crucial components:

1Anonymous during the review stage.
2In this paper, MLLMs specifically refer to LLMs capable of processing visual and text signals.
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• VLIT Setting refers to the decision-making of whether each module in the MLLM architecture
is tunable during the VLIT stage. Different MLLMs often integrate their unique frameworks and
diverse understandings and requirements of VLIT to establish corresponding VLIT settings, guiding
MLLMs to develop the desired capabilities.

• VLIT Data, as an element directly influencing MLLM performance, is of paramount importance in
the VLIT process. On one hand, VLIT data must continuously guide MLLM in comprehending task
instructions and user preferences. On the other hand, it also assumes the responsibility of directing
MLLM to enhance cross-modal correlations further and understand more refined information based
on instructions.

However, existing reviews of instruction tuning (Zhang et al., 2023d; Wang et al., 2023g) are typically
limited to language-only LLMs. Discussions of instruction tuning in multi-modal scenarios remain scattered
throughout various MLLM papers, lacking systematic summaries and comprehensive solutions (Zhou et al.,
2023; Wei et al., 2023; Wang et al., 2023f; Xu et al., 2023a). Therefore, in this paper, we organize and
summarize the latest MLLMs with VLIT stages and corresponding VLIT data, providing a reasonable
classification and analysis of VLIT settings and data from different perspectives. First, we explore the
underlying motivations hidden behind different VLIT settings. Simultaneously, for the first time, we analyze
and outline the main characteristics that high-quality VLIT data should possess, formalizing them into a
complete set of quantitative evaluation indicators for different perspectives. By thoroughly considering these
principles at various stages (data collection, instruction-response generation, and quality control), we propose
a pipeline capable of generating higher-quality VLIT data. To verify the effectiveness of these principles
and the entire pipeline, we use common public annotation data to construct a VLIT dataset according to
the aforementioned design and perform VLIT on three widely used MLLMs with different architectures
(LLaVA (Liu et al., 2023c), BLIP-2 (Li et al., 2023h), and OpenFlamingo (Awadalla et al., 2023)) alongside
two other classic VLIT datasets (LLaVA (Liu et al., 2023c) and MIMIC-IT (Li et al., 2023b)). Empirical
results demonstrate that the VLIT data generated using the method proposed in this paper surpasses existing
work. Moreover, the various evaluation indicators proposed in this paper exhibit a strong correlation with the
output of tuned MLLMs in downstream tasks, and the quality control module implemented through these
indicators can further enhance the performance of the tuned MLLMs. The code and VLIT data are both
open source and will be regularly updated with new VLIT data3.

In summary, the main contributions of this paper can be outlined as follows: 1) We present a systematic
review of all relevant settings and datasets of VLIT in MLLMs. For the first time, we summarize the principles
that should be considered when constructing VLIT data and highlight the challenges and directions that
still need exploration. 2) We propose a comprehensive pipeline for constructing high-quality VLIT data and
provide corresponding implementation details. 3) Based on the proposed construction pipeline and publicly
available annotated data, we construct a VLIT dataset and conduct experiments comparing it with existing
VLIT datasets on multiple MLLMs with different architectures. The results demonstrate the validity of the
summarized principles and the effectiveness of the construction pipeline.

The remainder of this paper is organized as follows: Section 2 introduces the relevant background and
preliminaries of VLIT. Section 3 organizes recent MLLMs and corresponding VLIT settings and datasets.
Section 4 summarizes the VLIT data construction principles based on the aforementioned information and
proposes a VLIT data construction pipeline and example implementation based on these principles. Section 5
primarily includes the design, implementation, and discussion of the verification experiment. Section 6
presents current challenges and future research directions.

2 Background and Preliminary

In this section, we provide a brief overview of the background and preliminaries of VLIT.

Recently, LLMs have developed the ability to perform diverse tasks based on different instruction descriptions,
similar to humans. Instruction tuning is the primary technique employed to achieve this functionality. It

3Anonymous during the review stage.
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Figure 1: Training paradigms and instruction data format examples of LLM and MLLM.

introduces pre-defined instructions during the fine-tuning stage after pre-training, guiding LLMs to complete
tasks while understanding the instructions. Compared with traditional supervised fine-tuning (Touvron
et al., 2023), which is limited to solving a single task, and prompt tuning (Lester et al., 2021; Liu et al.,
2022), which guides LLMs only to strengthen a certain type of task, instruction tuning is not restricted
to adapting to specific tasks but rather enhances its ability to solve any task. Many mature LLMs are
equipped with instruction tuning, such as InstructGPT (Ouyang et al., 2022), ChatGPT (OpenAI, 2023a),
and LLaMA (Touvron et al., 2023). They follow pre-defined instructions effectively and support unseen new
instructions, significantly improving zero-shot performance and greatly enhancing their generalization ability.
In addition, some LLMs used as chatbots incorporate instruction tuning to make the output of LLMs more
aligned with human preferences. They can adapt to real-world conversation scenarios while solving tasks and
significantly improve their performance when directly interacting with users. This makes instruction tuning a
critical training phase for enhancing the generalization and usability of LLMs.

There has been a surge in efforts to develop MLLMs due to the desire to go beyond accomplishing only discrete
text-based tasks (Liu et al., 2023c; Zhu et al., 2023a; Awadalla et al., 2023; Dai et al., 2023). The introduction
of visual signals has led to MLLMs being generally equipped with visual encoders and image-to-text adapters,
and the training paradigm has been adjusted accordingly. In the pre-training stage, MLLMs need to use a
large number of image-text pairs as training data to achieve feature alignment between modalities and convert
visual signals into representations or tokens that LLMs can understand. In the instruction tuning stage,
there is an additional requirement for understanding visual information and instructions beyond the original
responsibilities. As shown in Figure 1, the main difference between current mainstream vision-language
instructions and pure text instructions is that images are included as one of the input information sources.

Currently, as a recently emerged and rapidly evolving research area, some recent works have started to
summarize existing VLIT studies. Among them, due to the consistent training objectives of VLIT with the
pre-training stage, the differences in its settings are primarily reflected in the update strategies of various
module parameters within the MLLM framework. Comparatively, more work concentrates on the relationship
between VLIT data quality and the performance of tuned MLLMs. However, research on pure text instructions
is limited to methodological discussions, lacking both quantitative and qualitative experimental validation,
and does not provide guidance for constructing and filtering instructional tuning data (Zhang et al., 2023d;
Wang et al., 2023g; Lou et al., 2023). Furthermore, the analysis of VLIT data is only sporadically present in
some MLLM literature, without offering a comprehensive and reliable mature experience (Li et al., 2023j;b;
Du et al., 2023).

Here, we give a formal definition of VLIT. Given a vision-language instruction sample
(Instruction, Input, Response), where Instruction is the instruction sentence, Input = {< images >, < text >}
is the input images and context text, Response is the response of the given instruction and input. The MLLM
predicts the answer of the given instruction and input, i.e., Predicted = MLLM(Instruction, Input; θ), where
MLLM(·) denotes the MLLM, and θ is the parameters of MLLM. Further, in line with the autoregressive
training setting in the pre-training stage, the instruction tuning stage still needs to correctly predict the next
token in Response as the training objective.
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Table 1: MLLMs with VLIT stage. "Training Paradigm" refers to the training phase included in the MLLM,
where FA is short for feature alignment (MLLMs lacking this phase either use the pre-trained ckpt directly
or do not have this phase). "Pure Text" refers to whether the VLIT data contains pure text instructions.
"Data Source" refers to whether the data used for instruction tuning contains instruction data from other
existing VLIT data. "Self Construction" refers to whether this MLLM is tuned by VLIT data constructed
autonomously.

Name Training Paradigm Pure Data Self URL

Text Source Construction Model Data

LLaVA (Liu et al., 2023c) FA → VLIT ✗ Pure ✓ url url
Mini-GPT4 (Liu et al., 2023c) FA → VLIT ✗ Pure ✓ url url
mPLUG-Owl (Ye et al., 2023b) FA → VLIT ✓ Hybrid ✗ url -
VideoChat (Li et al., 2023i) FA → VLIT ✗ Hybrid ✓ url url
VisionLLM (Wang et al., 2023e) FA(Object Detection) → VLIT ✗ Hybrid ✗ url -
X-LLM (Chen et al., 2023c) FA(X2L) → VLIT ✗ Hybrid ✗ url url
DetGPT (Pi et al., 2023) FA → VLIT ✗ Pure ✓ url url
ChatBridge (Zhao et al., 2023e) FA → VLIT ✗ Hybrid ✓ url url
PandaGPT (Su et al., 2023) VLIT ✗ Hybrid ✗ url url
MedVInT-TE/TD (Zhang et al., 2023f) VLIT ✗ Pure ✓ url url
GPT4Tools (Yang et al., 2023) VLIT ✗ Pure ✓ url url
LLaVA-Med (Li et al., 2023e) FA → VLIT ✗ Pure ✓ url -
Ying-VLM (Li et al., 2023j) FA → VLIT ✗ Hybrid ✓ - url
Otter (Li et al., 2023b) VLIT ✗ Hybrid ✓ url url
Video-ChatGPT (Maaz et al., 2023) VLIT ✗ Pure ✓ url url
OFAmultiinstruct (Xu et al., 2022) VLIT ✗ Pure ✓ url url
Video-LLaMA (Zhang et al., 2023a) FA → VLIT ✗ Hybrid ✗ url url
VALLEY (Luo et al., 2023b) FA → VLIT ✗ Pure ✓ url url
MultiModal-GPT (Gong et al., 2023) VLIT ✓ Hybrid ✗ url url
InstructBLIP (Dai et al., 2023) VLIT ✗ Hybrid ✓ url -
LaVIN (Luo et al., 2023a) VLIT ✓ Hybrid ✗ url -
MACAW-LLM (Lyu et al., 2023) VLIT ✓ Pure ✓ url url
LAMM (Yin et al., 2023) VLIT ✗ Pure ✓ url url
OphGLM (Gao et al., 2023) VLIT ✓ Pure ✓ url -
LLaVAR (Zhang et al., 2023g) FA → VLIT ✗ Pure ✓ url url
Shikra (Chen et al., 2023e) FA → VLIT ✗ Hybrid ✓ url url
Clever Flamingo (Chen et al., 2023b) FA → VLIT ✗ Pure ✓ url url
mPLUG-DocOwl (Ye et al., 2023a) FA → VLIT ✓ Hybrid ✓ url -
GPT4RoI (Ye et al., 2023a) FA(Region Adaption) → VLIT ✗ Pure ✓ url url
SVIT (Zhao et al., 2023a) FA → VLIT ✗ Pure ✓ url url
KOSMOS-2 (Peng et al., 2023) FA → VLIT ✓ Hybrid ✓ url url
BuboGPT (Zhao et al., 2023c) FA → VLIT ✗ Hybrid ✗ url url
ChatSpot (Zhao et al., 2023b) FA → VLIT ✗ Pure ✓ - -
ImageBind-LLM (Han et al., 2023) FA(Parameter-efficient Tuning) → VLIT ✓ Hybrid ✗ url url
Lynx (Zeng et al., 2023) FA → VLIT ✓ Hybrid ✓ url url
LMEye(IPN) (Li et al., 2023l) FA(Image-Text Matching) → VLIT ✗ Hybrid ✓ url url
ASM (Wang et al., 2023d) FA → VLIT(Multi-Task Tuning) ✗ Hybrid ✓ url url
Cheetor (Li et al., 2023g) FA → VLIT ✗ Pure ✓ url url
BLIVA (Hu et al., 2023b) FA → VLIT ✗ Hybrid ✗ url -
StableLLAVA (Li et al., 2023k) FA → VLIT ✗ Pure ✓ url url
Qwen-VL (Bai et al., 2023) FA → VLIT(Multi-Task Tuning) ✓ Pure ✓ url -
VIGC (Wang et al., 2023a) VLIT ✗ Hybrid ✓ url url
PointLLM (Xu et al., 2023b) FA → VLIT ✗ Pure ✓ url url
MLLM-DataEngine (Zhao et al., 2023d) VLIT ✗ Hybrid ✓ url url
MM (Tu et al., 2023) FA → VLIT ✗ Hybrid ✗ url -
NExT-GPT (Wu et al., 2023) FA → VLIT(Modality-Switching) ✓ Pure ✓ url url
PVIT (Chen et al., 2023a) FA → VLIT ✗ Pure ✓ url url
LLaVA(MS+IR+DM) (Lu et al., 2023) FA → VLIT ✓ Hybrid ✗ - -
TextBind (Li et al., 2023f) FA → VLIT ✗ Pure ✓ url url
DreamLLM (Dong et al., 2023) FA(Interleaved Generative) → VLIT ✗ Hybrid ✓ url -
AnyMAL (Moon et al., 2023) FA → VLIT ✓ Pure ✓ - -
InternLM-XComposer (Zhang et al., 2023b) FA → VLIT(Multi-Task Tuning) ✓ Hybrid ✓ url -
SparklesChat (Huang et al., 2023b) FA → VLIT ✗ Hybrid ✓ url url
LLaVA 1.5 (Liu et al., 2023b) FA → VLIT ✓ Hybrid ✓ - -
CogVLM (Wang et al., 2023c) FA → VLIT ✗ Hybrid ✗ url -
Ferret (You et al., 2023) FA → VLIT ✗ Hybrid ✓ url -
MiniGPT-v2 (Chen et al., 2023d) FA → VLIT(Multi-Task Tuning) ✗ Hybrid ✓ url url
GLaMM (Rasheed et al., 2023) FA → VLIT ✗ Pure ✓ url url
SEED-LLaMA (Ge et al., 2023) FA → VLIT ✓ Hybrid ✗ url -
OtterHD (Li et al., 2023a) FA → VLIT ✗ Hybrid ✗ url -
mPLUG-Owl2 (Li et al., 2023a) FA → VLIT ✗ Hybrid ✗ url -

Then, the loss function of the instruction tuning stage can be written as

L(θ) = −
N∑

i=1
log p(Response[i+1]|Instruction, Input, Response[0:i]; θ). (1)

3 A Review of Vision-Language Instruction Tuning

In this section, we thoroughly sort out all VLIT-related work, analyzing the instruction tuning paradigm and
the corresponding tuning data. For relevant statistics, please refer to Table 1 and Table 2.
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Table 2: VLIT datasets. "G" (Global), "R" (Regional), and "I" (Interleaved) represent the different
compositions of the image, and "I-R" is the abbreviation of Instruction-Response. "Type" refers to the strategy
used for data construction, where "AA" indicates annotation adaption, and "SI" indicates Self-Instruct. "-"
indicates the absence or absence of clear information.

Name Model Inst Img #Imgs Vid #Vids #I-R
G R I

LLaVA-Instruct-150K (Liu et al., 2023c) LLaVA SI ✓ ✓ ✗ 80K ✗ - 158K
cc_sbu_align (Zhu et al., 2023a) Mini-GPT4 AA ✓ ✗ ✗ 3.5K ✗ - 3.5K
VideoChat (Li et al., 2023i) VideoChat SI ✓ ✓ ✗ 7K ✓ 11K 18K
X-LLM (Chen et al., 2023c) X-LLM AA ✓ ✗ ✗ 3.5K ✓ 1K 10K
DetGPT (Pi et al., 2023) DetGPT SI ✗ ✓ ✗ 5K ✗ - 30K
MULTIS (Zhao et al., 2023e) ChatBridge AA ✓ ✓ ✗ 80K ✓ 51K 4.6M
pandagpt_vid (Su et al., 2023) PandaGPT AA+SI ✓ ✓ ✗ 83.5K ✗ - 161.5K
PMC-VQA (Zhang et al., 2023f) MedVInT-TE/TD AA ✓ ✗ ✗ 149K ✗ - 227K
GPT4Tools (Yang et al., 2023) GPT4Tools SI ✓ ✓ ✗ - ✗ - 71K
M3IT (Li et al., 2023j) Ying-VLM AA ✓ ✓ ✗ - ✓ - 2.4M
MIMIC-IT (Li et al., 2023b) Otter SI ✓ ✓ ✓ 8.1M ✓ 502K 2.8M
Video-ChatGPT (Maaz et al., 2023) Video-ChatGPT SI ✓ ✗ ✗ - ✓ - 100K
MULTIINSTRUCT (Xu et al., 2022) OFAmultiinstruct AA ✓ ✓ ✗ - ✗ - 235K
Video-LLaMA (Zhang et al., 2023a) Video-LLaMA AA+SI ✓ ✓ ✗ 83.5K ✓ 11K 164K
Valley-Instruct-73k (Luo et al., 2023b) VALLEY SI ✗ ✗ ✗ - ✓ 73K 73K
MultiModal-GPT (Gong et al., 2023) MultiModal-GPT AA ✓ ✗ ✗ - ✗ - 284.5K
InstructBLIP (Dai et al., 2023) InstructBlip AA ✓ ✓ ✗ - ✓ - -
MACAW-LLM (Lyu et al., 2023) MACAW-LLM SI ✓ ✗ ✗ 10K ✓ 9.8K 119K
LAMM (Yin et al., 2023) LAMM SI ✓ ✓ ✗ - ✗ - 196K
OphGLM (Gao et al., 2023) OphGLM SI ✓ ✗ ✗ - ✗ - 20K
LLaVAR (Zhang et al., 2023g) LLaVAR SI ✓ ✓ ✗ 16K ✗ - 174K
Shikra-RD (Chen et al., 2023e) Shikra SI ✗ ✓ ✗ - ✗ - 5.9K
PF-1M (Chen et al., 2023b) Clever Flamingo AA ✓ ✓ ✗ - ✗ - 975K
GPT4RoI (Zhang et al., 2023e) GPT4RoI AA ✗ ✓ ✗ - ✗ - -
SVIT (Zhao et al., 2023a) SVIT(MMLLM) SI ✓ ✓ ✗ 108.1K ✗ - 3.2M
GRIT-20M (Peng et al., 2023) KOSMOS-2 AA ✗ ✓ ✗ - ✗ - 20.5M
BuboGPT (Zhao et al., 2023c) BuboGPT AA+SI ✓ ✓ ✗ 83.5K ✗ - 161.5K
MGVLID (Zhao et al., 2023c) ChatSpot AA+SI ✓ ✓ ✗ 1.2M ✗ - 3M
Lynx (Zeng et al., 2023) Lynx AA ✓ ✓ ✗ - ✓ - -
Multimodal_id_v1 (Li et al., 2023l) LMEye(IPN) SI ✓ ✗ ✗ - ✓ - 7.3M
AS-1B (Wang et al., 2023d) ASM AA+SI ✗ ✓ ✗ 11M ✗ - 3.3B
I4 (Li et al., 2023g) Cheetor AA+SI ✗ ✗ ✓ 1.77M ✗ - 477.7K
StableLLaVA (Li et al., 2023k) StableLLaVA AA ✓ ✓ ✗ - ✗ - 126K
M-HalDetect (Gunjal et al., 2023) - SI ✓ ✗ ✗ 4K ✗ - 16K
VIGC (Wang et al., 2023a) VIGC AA+SI ✓ ✓ ✗ - ✗ - -
PointLLM (Xu et al., 2023b) PointLLM SI ✓ ✓ ✗ - ✗ - 730K
CIEM (Hu et al., 2023a) - SI ✓ ✓ ✗ 4.9K ✗ - 72.9K
GPTVQA (Zhao et al., 2023d) MLLM-DataEngine SI ✓ ✓ ✗ - ✗ - 23K
T2M (Wu et al., 2023) NExT-GPT SI ✗ ✗ ✗ 4.9K ✓ 4.9K 14.7K
MosIT (Wu et al., 2023) NExT-GPT SI ✓ ✗ ✗ 4K ✓ 4K 5K
PVIT (Chen et al., 2023a) PVIT SI ✗ ✓ ✗ - ✗ - 146K
TextBind (Li et al., 2023f) TextBind SI ✓ ✓ ✓ 63K ✗ - 86.1K
DreamLLM (Dong et al., 2023) DreamLLM SI ✓ ✓ ✓ 120K ✗ - 120K
AnyMAL (Moon et al., 2023) AnyMAL AA ✓ ✓ ✓ - ✓ - 210K
InternLM-XComposer (Zhang et al., 2023b) InternLM-XComposer AA+SI ✗ ✗ ✓ - ✗ - -
SparklesDialogue-VG (Chen et al., 2023a) SparklesChat SI ✓ ✓ ✓ 7K ✗ - 4.4K
SparklesDialogue-CC (Chen et al., 2023a) SparklesChat SI ✓ ✓ ✓ 12.9K ✗ - 2K
Ferret (You et al., 2023) Ferret AA+SI ✗ ✓ ✗ - ✗ - 95K
MiniGPT-v2 (Chen et al., 2023d) MiniGPT-v2 AA+SI ✓ ✓ ✗ - ✗ - -
ComVint (Du et al., 2023) - SI ✓ ✓ ✗ - ✗ - 32K
GranD (Rasheed et al., 2023) GLaMM SI ✓ ✓ ✗ - ✗ - -
LVIS-INSTRUCT4V (Wang et al., 2023b) - SI ✓ ✓ ✗ 110K ✗ - 220K

3.1 Setting for Vision-Language Instruction Tuning

As illustrated in Figure 1, the current MLLM structure primarily comprises three parts. The visual encoder,
serving as the visual signal entry point for MLLM, is mainly responsible for encoding the image. LLM
processes various input information and generates response content. The adapter is tasked with connecting
the above two relatively mature modules by querying and projecting the representation of the input visual
signal, enabling the information output by the visual encoder to be processed by LLM. Given the clear
function of the adapter and the unrestricted implementation method, the adapter can be a simple linear
projection layer (Liu et al., 2023c; Pi et al., 2023) or projection matrix (Wu et al., 2023), or a more complex
structure such as a perceive resampler (Alayrac et al., 2022) or Q-former (Zhu et al., 2023a; Dai et al., 2023).

To equip the aforementioned MLLM with the capability to understand and process multi-modal data, it
undergoes approximately two training processes, similar to LLM: pre-training and fine-tuning. In contrast
to LLM pre-training, which is based on massive text, the pre-training stage of MLLM typically relies on
image-text pairs to achieve the initial projection from visual semantics to text semantics, which can be
understood as cross-modal feature alignment. In the fine-tuning stage (i.e., VLIT stage), MLLM assumes
more responsibilities than LLM. On one hand, it needs to continue guiding LLM to understand additional
visual data and instructions. On the other hand, it must further direct LLM to associate instructions with
different granularity visual data to provide support for successfully executing corresponding instructions. As
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Figure 2: Tree category diagram of existing VLIT Data (The dataset without a name is replaced by its
MLLM name).

demonstrated in Table 1, all MLLMs essentially follow the above training paradigm. Some methods have
also made fine adjustments to the training process to enhance the performance of VLIT. For instance, some
work further decomposes the tuning steps by subjectively defining the before and after relationships of tasks,
aiming to progressively endow MLLM with new capabilities (Wang et al., 2023d; Bai et al., 2023; Zhang
et al., 2023b; Chen et al., 2023d).

Additionally, it is worth noting that not all module parameters will be updated within the entire VLIT
framework. Some MLLMs (Liu et al., 2023c; Wang et al., 2023e; Li et al., 2023e; Luo et al., 2023b;
Zhao et al., 2023c;b; Bai et al., 2023; Xu et al., 2023b; Chen et al., 2023a; Li et al., 2023f; Dong et al.,
2023; Chen et al., 2023d), represented by LLaVA, typically make their adapters and LLM tunable during
VLIT to achieve the main goal of VLIT. That involves continuing to tune the adapter to further adapt to
the information conversion between modalities and opening LLM tuning to improve its understanding of
instructions, associating instructions with fine-grained visual information, and ultimately completing the
ability to execute instructions. Simultaneously, some methods employ LoRA (Hu et al., 2022) instead of full
tuning to control the scale of LLM updates, preventing the impact of VLIT on the original capabilities of
LLM (Su et al., 2023; Ye et al., 2023b; Yang et al., 2023; Li et al., 2023j; Gong et al., 2023; Yin et al., 2023;
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Figure 3: Two different construction paradigms for VLIT data.

Han et al., 2023; Zhao et al., 2023d; Tu et al., 2023; Wu et al., 2023; Moon et al., 2023). Moreover, some other
MLLMs directly freeze the LLM parameters and only update the adapter parameters (Chen et al., 2023c; Pi
et al., 2023; Zhang et al., 2023f; Maaz et al., 2023; Zhang et al., 2023a; Lyu et al., 2023; Liu et al., 2023a;
Zeng et al., 2023; Huang et al., 2023b), as the adapter possesses the ability to understand instructions (Dai
et al., 2023; Li et al., 2023g; Hu et al., 2023b; Wang et al., 2023a) or directly insert visual information into the
LLM structure through the adapter (Zhao et al., 2023e; Zhang et al., 2023b; Wang et al., 2023c; You et al.,
2023). Lastly, there are some MLLMs that aim to achieve VLIT from the visual encoder Li et al. (2023i) and
even open the tuning of all modules (Peng et al., 2023), which can also yield positive application results.

3.2 Data for Vision-Language Instruction Tuning

As the key to guiding MLLMs to enhance their ability to understand instructions and generalize instruction
execution, VLIT data has consistently been the focus of all MLLM-related work. In this section, we categorize
existing work from two independent perspectives: data construction strategies and instruction tendencies.
The overall classification of the tuning data can be observed in Figure 2.

3.2.1 Construction Strategy

The source of VLIT data generally comes from publicly annotated data, and the primary difference in its
construction strategy lies in the organization of the annotated data. Specifically, as illustrated in Figure 3, it
can be divided into two categories: Annotation Adaption and Self-Instruct.

Annotation Adaption In recent years, the rapid advancement of visual models has led to the creation of
large-scale, diverse, and high-quality annotated data (Lin et al., 2014; Patterson & Hays, 2016; Veit et al.,
2016; Antol et al., 2015). This data is suitable for a wide range of downstream tasks and can be easily
adapted for use as instructional data. As shown in Figure 3, many studies specifically tailor the annotated
data to adhere to the standard format found in instructional data. The Instruction component, which serves
as a formal statement explaining the task’s nature, is typically derived from manually written candidate
instruction pools (Zhu et al., 2023a; Wang et al., 2023e; Chen et al., 2023c; Zhang et al., 2023f; Li et al.,
2023j; Xu et al., 2022; Dai et al., 2023; Ye et al., 2023a; Zhang et al., 2023e; Peng et al., 2023; Zhao et al.,
2023b; Zeng et al., 2023; Moon et al., 2023; You et al., 2023). Some researchers use manual instructions as
seeds to guide LLMs in rewriting (Zhu et al., 2023a) or expanding (Wang et al., 2023e; Zhao et al., 2023e;
Gong et al., 2023; Zeng et al., 2023) the instruction pool and enhancing instructional diversity. The Input
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consists of images and optional context, generally obtained from the original annotation data, and forms an
integral part of the instructional data. The Response corresponds to the result found in the annotation data
and represents the output portion of the instructional data. If the original annotation data meets the user’s
needs, it is usually transferred without any alterations. However, it is crucial to recognize that for specific
downstream tasks, such as classification, judgment, and brief captions, which typically generate outputs of
only words or short sentences, the original answer may need to be expanded based on input information using
LLMs as necessary to prevent potential overfitting and other related issues (Zhu et al., 2023a; Zhang et al.,
2023f; Zeng et al., 2023). Notably, some studies consider such concise responses as a form of instruction and
thus choose to incorporate suitable limiting language in the instruction to address this concern.

Self-Instruct The scale, diversity, and creativity of instructions are often constrained by existing tasks and
corresponding annotation data, hindering the universality of MLLMs that are tuned using this data. The
standard instruction format faces challenges in adapting to evolving real-world application scenarios and
addressing user needs. Therefore, to obtain additional instructional data that is more relevant to real-world
situations, Self-Instruct is initiating the integration of a broader variety of annotation data (Wang et al., 2022).
This approach will prompt LLMs to generate a more diverse and content-rich range of instruction-following
data. Specifically, such methods leverage the powerful understanding and generation capabilities of LLMs.
As illustrated in Figure 3, they organize the annotation information (e.g., caption, bbox, label, etc.) into
a detailed description of the image based on the template, LLM, etc., and then guide the language-only
LLM to generate QA pairs or directly into multi-round conversations. Among them, to guide LLM correctly,
these methods will manually customize detailed system prompts and some examples and further improve
the quality of generated content through in-contextual learning (Liu et al., 2023c; Pi et al., 2023; Li et al.,
2023e;b; Yin et al., 2023; Liu et al., 2023a; Zhang et al., 2023g; Li et al., 2023k; Zhao et al., 2023d; Wu et al.,
2023; Chen et al., 2023a; Li et al., 2023f; You et al., 2023) (Zhao et al. believes that this will limit diversity).
Self-Instruct eliminates strict restrictions on the data, allowing for increased diversity and complexity in both
instructions and responses.

Data Mixing Of course, to expand the scale of VLIT data while ensuring that VLIT data has good
diversity and other properties, many methods use the above two methods at the same time and construct
large-scale VLIT data. Recently, some MLLMs have even merged VLIT data from multiple sources with
different origins to further improve the performance of MLLMs, as shown in Figure 2.

3.2.2 Instruction Tendency

Due to the excellent ability of MLLM to process multi-modal information, some works have begun to explore
its capacity to understand and execute more granular and domain-specific data. As shown in Figure 2, we
have conducted statistics based on the design of specific objects, forms, or domains in different VLIT datasets.

Among them, the main focus of the VLIT data related to specific objects is on different granularity or forms
of visual information. For example, for data with different granularity, some works explore the performance
of MLLM on data types such as single region, multiple regions, and image-text interleaving. Some works,
represented by (Zhang et al., 2023g), focus on images with rich text information and enhance their performance
on text-related tasks by constructing VLIT data. There is also a large number of video-related data, which
introduces the modeling of temporal information into the VLIT process.

In addition, there are corresponding VLIT data and MLLMs in fields such as medicine (Li et al., 2023e;
Zhang et al., 2023f; Gao et al., 2023), documents (Ye et al., 2023a), and point clouds (Xu et al., 2023b).
These works combine their domain-specific data and instruction characteristics to propose VLIT data that is
more suitable for their scenarios.

3.2.3 Data Quality Optimization

In general, the VLIT data constructed by the methods outlined in Sec. 3.2.1 may contain a significant number
of defects, particularly inherent issues (such as hallucination and expression ambiguity) introduced by LLM
during the construction process. These issues tend to be concentrated in the generated VLIT data. To
mitigate these problems as much as possible, enhance data quality, and further improve the performance
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of the tuned MLLM, numerous researchers have optimized the construction of VLIT data based on their
understanding.

Firstly, to ensure the accuracy of individual VLIT data samples, some methods employ manual annotation (Zhu
et al., 2023a; Li et al., 2023j; Xu et al., 2022; Wang et al., 2023d), while others utilize classification based on
the causes of correctness issues (Zhao et al., 2023d) (such as hallucination (Wang et al., 2023a), recognition
errors (Zhang et al., 2023e), external knowledge (Zhang et al., 2023f), etc.). Secondly, from a broader
perspective, some methods emphasize the diversity of VLIT data from various angles. For instance, numerous
methods enrich the types of tasks by designing additional tasks (Dai et al., 2023; Li et al., 2023j). Some
methods introduce pure text instructions (Ye et al., 2023b; Luo et al., 2023a; Lyu et al., 2023; Peng et al., 2023;
Zeng et al., 2023; Bai et al., 2023) and rewrite or expand existing instructions (as mentioned in Sec. 3.2.1) to
enhance the diversity of instructions within a single task. Other methods also control the length of the output
text to consider the diversity of responses (Gong et al., 2023; Liu et al., 2023a). Thirdly, many researchers
have started to recognize the importance of instruction complexity. Consequently, some methods attempt
to increase the complexity of VLIT data by introducing multi-round dialogues (Lyu et al., 2023), adding
negative samples (Yang et al., 2023; Liu et al., 2023a; Zhao et al., 2023c; You et al., 2023), and incorporating
more complex task formats (Xu et al., 2023b). Lastly, some studies acknowledge the significance of balance
in VLIT and introduce methods for balancing distributions within VLIT data (Zhao et al., 2023a; Zeng et al.,
2023).

However, there are two main problems in the construction of the current VLIT dataset.

• Most existing VLIT data construction methods are based on intuition and some scattered unverified
practical experience, and lack reasonable, reliable, and systematic construction principles to guide
the construction of VLIT data.

• The current instruction data filtering strategy is still very rough and cannot quantitatively and
qualitatively evaluate a single data sample and the overall data distribution. As a result, the existing
VLIT data is generally very large and noisy, which greatly affects the downstream performance and
tuning efficiency of MLLMs.

4 How to Construct High-Quality VLIT Data?

In this section, we begin by meticulously summarizing the characteristics of high-quality VLIT data. Subse-
quently, we integrate these characteristics as guiding principles into the existing construction process, thereby
forming a pipeline that generates superior-quality VLIT data. Simultaneously, we also provide a sample
implementation of this pipeline and construct a VLIT dataset.

4.1 Characteristics and Principles

Combining the discussion in Sec. 3.2.3, we describe in detail the characteristics that high-quality VLIT data
should possess and organize them into several principles as follows:

First of all, as the data input to MLLM to train MLLM, it must be correct, so that it will not have a negative
impact on MLLM. So the first principle of correctness can be summarized as:
Principle 1. Correctness: The visual information and textual content in each VLIT data (i.e., instruction-
response pair) must be perfectly matched, ensuring that there are no inaccuracies in the descriptions of visual
information or external knowledge within the generated content.

Diversity has long been a focal point in natural language generation and a crucial aspect of evaluating content
quality (Tevet & Berant, 2020; Zhang et al., 2020). In particular, diversity plays a critical role in the tuning
of LLM instructions, as it determines the LLM’s ability to generalize instructions (Zhang et al., 2023d).
Specifically, in the field of VLIT, diversity exhibits more distinct characteristics, which can be summarized
into the following three aspects:
Principle 2. Task Diversity: VLIT data should encompass an adequate variety of tasks, encompassing both
textual and visual tasks.
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Figure 4: VLIT data generation data flow diagram based on GPT-3.5.

Principle 3. Instruction Diversity: In VLIT data, it is essential for each task to comprise a sufficient variety
of distinct instruction sentences.

Principle 4. Response Diversity: In VLIT data, the response text for each task needs to maintain sufficient
distinguishability.

LLM with text instructions is the task’s complexity, which has resulted in the development of the chain of
thought tuning. In a multi-modal scenario, high-quality VLIT data with appropriate complexity can further
guide MLLMs to jointly comprehend visual and textual semantics at varying granularities. Consequently,
when constructing VLIT, two complexity-related principles must be taken into account:

Principle 5. Instruction Complexity: In VLIT data, it is essential to ensure that some instructions necessitate
a sufficiently complex logic for completion.

Principle 6. Object/Granularity Complexity: In VLIT data, the granularities of the instruction’s object
operation must exhibit a sufficient level of complexity.

Maintaining data balance is crucial for both traditional machine learning and LLMs. Research has shown
that uneven data settings may lead to forgetting phenomena in large models, seriously hindering their overall
performance (Wei et al., 2023; Zhai et al., 2023). Therefore, the following principle related to balance is
equally important.

Principle 7. In VLIT data, the distribution of tasks needs to be uniform and there is no obvious long tail.

4.2 Principle Guided VLIT Data Construction

Based on the aforementioned principles, we incorporate corresponding considerations into each step of the
classic VLIT data generation pipeline and added filtering measures that cover all principles in the final
quality control module. In the following sections, we provide a comprehensive description and an example
implementation of the VLIT data generation pipeline guided by these principles.
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4.2.1 Data Collection

Multi-modal annotation data used to generate VLIT data typically originates from various visual tasks, such
as recognition, segmentation, and classification. These tasks often serve as the source of supervision for
training traditional machine learning models, providing large-scale, high-quality data, which makes them
highly practical.

When collecting data, it is essential to thoroughly consider factors such as the type, source, scale, and quality
of the annotation data. This can ensure that the collected information generates VLIT data that meets the
requirements of correctness, diversity, and complexity. Specifically, annotation data that has been manually
reviewed and widely used has higher credibility and will not cause subsequent errors due to annotation
inaccuracies. Simultaneously, different types of annotation data can usually be extended to define various
tasks, significantly enhancing the diversity of the final VLIT data. When multi-modal data from the same
source contains different types of annotations, it can even generate more complex contexts and new task
types on top of the original simple visual tasks, ensuring complexity.

In this paper, we provide a simple implementation to quickly construct VLIT data, as shown in Figure 4.
Specifically, in data collection, we first select COCO 2014 (Lin et al., 2014) as the image source, and
{caption, object, attribute, OCR, visualQA} as the selected sources of annotation data (Antol et al., 2015;
Patterson & Hays, 2016; Veit et al., 2016).

4.2.2 Instruction-Response Generation

Currently, using LLMs (such as ChatGPT, GPT4, and LLaMA) to assist in generating VLIT data has become
mature. In contrast, annotation adaption is significantly less flexible, so we refer to self-instruct to generate
VLIT data. Specifically, when providing an image and corresponding annotation data of various types, it
is necessary to design appropriate templates for each type of annotation data to ensure that the inserted
annotation data conforms to standard language representation. By combining all annotation data sources,
a detailed and accurate description of the image can be obtained, which is an understandable visual clue
for language-only LLMs. To ensure the diversity and complexity of the generated content, it is necessary to
write sufficiently detailed prompts to guide the LLMs, and manually write a sufficient number of example
instruction-response pairs. In the system prompt design, we follow the principles proposed in Sec. 3.2.3
and guide the generator to generate more diversified and complex instruction-response pairs by flexibly
using system prompts with different additional constraints (e.g., extended knowledge, negative samples,
multi-round dialogues, etc.). At the same time, the context examples we design are sufficiently sufficient,
meet the characteristics of comprehensiveness and randomness, correspond to the boundaries involved, and
provide appropriate examples of all possible scenarios so that the generator can correctly understand the
meaning of the prompts. In addition, to ensure sufficient diversity during generation, we also redundantly set
the key points of the system prompts and context examples, that is, repeat certain key points multiple times
(such as not generating uncertain content, avoiding fuzzy answers, etc.).

In implementation, we employ GPT-3.5 (OpenAI, 2023a) as the generator for LLM, and formulate corre-
sponding system cues and in-context examples4. Specifically, based on the annotated data and different
system prompts, we introduce different granularities of tasks, add negative samples, generate multi-turn
complex dialogues, and extend external knowledge in the generation process to enhance the diversity and
complexity of the generated VLIT data. In addition, to further enhance diversity, we set the temperature
value of GPT-3.5 to 0.8 and the number of generations to 5.

4.2.3 Quality Control

Owing to the potential errors in LLM itself and the uncontrollable nature of the generated data distribution,
it is crucial to conduct quality control on the VLIT data directly output by LLM. Recently, numerous studies
have started to address this issue and have filtered the data based on established experience (Li et al., 2023b;j).
In this paper, we design appropriate data filtering strategies based on the principles proposed in Sec. 4.1, and
carry out local and global quality control on the generated VLIT data.

4See the Appendix for all system prompts used during the generation process
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Correctness. In accordance with the two aspects mentioned in Sec. 4.1, it is vital to assess the degree
of alignment between visual and textual information in the given candidate VLIT data, as well as the
overall accuracy. In this paper, we opt for the classic pre-training model, CLIP (Radford et al., 2021),
to implement the matching function. Specifically, we calculate the representations of visual and textual
information separately and evaluate the degree of alignment through similarity. For accuracy evaluation, we
introduce MLLM (i.e., LLaVA 1.5 (Liu et al., 2023b)) and manually written guiding examples to conduct
multiple accuracy assessments on the given VLIT data, taking the highest frequency as the final accuracy
score.

Diversity. To prevent the influence of the inherent correlation of original tasks themselves (e.g., detection
and classification) when evaluating task diversity, we attempt to establish new task categories for the generated
instructions. In practice, we employ a zero-shot labeler TagGPT (Li et al., 2023d) to assign category labels
to the instructions based on their content. Among them, TagGPT is a labeler that can be cold-started. It
generates labels to samples by introducing the semantic understanding capability of LLM, retains high-quality
labels based on indicators such as label coverage and redundancy, and finally assigns labels to samples. When
evaluating instruction diversity, since there is still some semantic similarity in the instruction text for tasks
with the same task type, it is not possible to directly use semantic calculations to evaluate instruction diversity.
Although some methods try to avoid this problem by counting predicate verbs, some noun information also
affects the calculation of diversity. In this paper, we use a graph-based method to calculate instruction
diversity, namely, converting instruction texts with the same task label into an element graph based on
co-occurrence relationships after removing stop words and using the overlapping community partitioning
method (i.e., Ego-Splitting (Epasto et al., 2017)) to count the number of clusters to evaluate instruction
diversity. Ego-Splitting is a generative model with overlapping clusters in which it can reconstruct most of
the clusters exactly by using the connected component algorithm as a non-overlapping partition algorithm
both in the ego-net clustering phase and in the persona graph clustering phase. When evaluating response
diversity, we directly utilize an efficient unsupervised text representation method (i.e., SimCSE (Gao et al.,
2021)) to represent response texts and employ a density-based clustering algorithm (i.e., DBScan (Schubert
et al., 2017)) to mine semantic clusters as indicator. SimCSE generates unsupervised positive samples by
randomly sampling dropout masks to improve contrastive learning performance. That is, during the training
phase, the same sample is input into the same encoder twice to obtain two different representation vectors
z, z′, z′ will be used as a positive sample, then the training target of the model is:

li = − log esim(h
zi
i

,h
z′

i
i

)/τ∑N
j=1 esim(h

zi
i

,h
z′

j
j

)/τ

. (2)

DBScan is a clustering method that treats clusters as dividing high-density areas by low-density areas in
the data space, and divides sufficiently high-density areas into clusters. It cycles through labeling candidate
samples to corresponding clusters and deleting them, and finally achieves clustering after all samples are
labeled.

Conmplexity. To evaluate complexity, we first use classical semantic dependency analysis to count the
number of elements in the instructions (Màrquez et al., 2008), and then utilize LLaMA-2 as the discriminative
model to provide a quantitative difficulty score under the guidance of the given sample. Specifically, semantic
dependency analysis refers to the task of extracting important semantic elements in a text and assigning
corresponding roles. In this paper, we use mature tools5 for semantic role extraction as a data source for
counting the number of instruction elements. When evaluating the complexity of instructions, similar to
existing work, we input given instruction-reply pairs into LLM (i.e., LLaMA-2) and rely on manually scored
examples to give all candidate pairs a complexity score of 1-10.

Balance. When assessing balance, we can utilize the obtained task labels to calculate the variance of
sample sizes across different tasks, serving as a balance indicator. Simultaneously, by randomly and uniformly
sampling from various task labels, we can acquire VLIT data with category balance.

5https://hanlp.hankcs.com/demos/sdp.html
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5 Experiments

In this section, we will thoroughly examine the correlation between the evaluation indicators proposed in
Sec 4.2.3 and the performance of tuned MLLMs. Specifically, we select two common VLIT data sets and
the generated VLIT data in Sec 4.1, amounting to a total of three types of VLIT data, which are used for
instruction tuning of MLLMs with varying architectures. Subsequently, by jointly analyzing the evaluation
indicators of the VLIT data and their performance in different tuned MLLMs, we can ascertain the validity
and applicability of these evaluation indicators.

5.1 Implementation Details

We list the relevant settings of these experiments in detail as follows.

5.1.1 Multi-Modal Large Language Model

To fairly verify the influence of instruction data on tuning results, we choose three MLLMs with different
frameworks, respectively:

LLaVA (Liu et al., 2023c), is a representative MLLM consisting of a visual encoder, an LLM, and a trainable
linear projection layer. It shows good session performance after two-stage training (i.e., pre-trained feature
alignment and end-to-end instruction tuning). In this paper, we use LLaVA library6 for implementation. We
select LLaVA-7B as MLLM, in which the visual encoder is CLIP (ViT-L-14) (Radford et al., 2021) and the
LLM is Vicuna-7B7. And we refer to the original paper setting and directly use the open-source checkpoint8

as the pre-trained MLLM.

BLIP-2 (Li et al., 2023h), a new structure Q-former is proposed to connect visual information with
textual information. After Q-former has been trained on three pre-defined image-text tasks (i.e., matching,
contrastive, and generation), visual information can be extracted by trainable queries and combined with the
fully connected layer to realize the conversion of visual features to textual features. In this paper, we use its
official library, i.e., LAVIS9 and utilize checkpoints pre-trained on the COCO-Caption as the initial MLLM.
Its visual encoder is CLIP and its language model is OPT-2.7B10 (Zhang et al., 2022).

OpenFlamingo (Awadalla et al., 2023), is an open-source version11 of Flamingo (Alayrac et al., 2022). It
includes a visual information conversion module composed of a visual encoder and perceiver resampler, which
can convert images into a few visual tokens and put them into LLM. In this paper, we use its official version:
OpenFlamingo-3B, in which the visual encoder is CLIP (ViT-L-14) and the LLM is OPT-1.312 (Zhang et al.,
2022). And we utilize the checkpoint13 of OpenFlamingo-3B, which is pre-trained on MMC4 (Zhu et al.,
2023b) and LAION (Schuhmann et al., 2022), as the initial MLLM.

These MLLMs are all trained utilizing 8 Telsa V100 (32G) GPUs with the Python environment and other
detailed settings (e.g., hyperparameters) of the three models can be found in Section A.2 in the Appendix.

5.1.2 Vision-Language Instruction Tuning Data

To validate the correlation between the quality of VLIT data and the proposed characteristics, as well as
the utility of the suggested VLIT data construction pipeline, we utilize the example VLIT data constructed
in Sec.4.1 and select LLaVA (LLaVA-Instruct-150K)(Liu et al., 2023c) and MIMIC-IT (Li et al., 2023b) as
comparative data. In the quality evaluation process, to ensure fairness, we use the smallest dataset size as

6https://github.com/haotian-liu/LLaVA.
7https://huggingface.co/lmsys/vicuna-7b-v1.1.
8https://huggingface.co/liuhaotian/llava-pretrain-vicuna-7b-v1.3.
9https://github.com/salesforce/LAVIS.

10https://huggingface.co/facebook/opt-2.7b.
11https://github.com/mlfoundations/open_flamingo.
12https://huggingface.co/facebook/opt-1.3b.
13https://huggingface.co/openflamingo/OpenFlamingo-3B-vitl-mpt1b.
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Table 3: Performance of different VLIT data in three MLLMs.

MLLM VLIT Data Overall SU II IL IA IC SR IIR VR TR

LLaVA
LLAVA 28.0 25.3 28.3 33.9 24.3 25.8 27.6 10.0 10.3 18.2
MIMIC-IT 26.3 24.4 25.4 30.7 24.3 23.1 25.7 10.0 14.8 21.5

Ours 28.3 25.0 27.0 35.0 24.3 25.8 26.3 10.0 17.2 45.5
-with quality control 28.7 26.3 29.1 36.1 26.5 26.4 26.3 20.0 18.3 47.1

BLIP-2
LLaVA 27.3 25.7 25.3 33.9 22.7 22.4 22.4 20.0 10.3 8.6
MIMIC-IT 26.5 24.1 24.4 31.2 20.1 21.7 21.8 20.0 13.8 9.1

Ours 27.5 26.3 26.5 33.9 25.2 23.6 23.7 20.0 13.8 9.1
-with quality control 28.4 27.7 27.0 35.0 25.2 25.8 25.7 20.0 19.4 17.5

OpenFlamingo
LLaVA 25.5 25.7 27.0 30.7 22.7 23.6 25.2 10.0 13.8 21.5
MIMIC-IT 25.8 23.9 24.4 33.9 22.7 24.0 24.6 20.0 10.8 20.4

Ours 28.1 28.2 26.0 33.9 21.4 25.5 22.4 20.0 17.2 27.3
-with quality control 29.1 30.5 29.6 37.9 26.5 27.5 24.6 20.0 20.6 30.7

Table 4: Quality assessment results of different VLIT data. Among them, the Matching Degree (MD) and
Correctness (C) of a single sample is the average of all samples in VLIT data; the Task (T) diversity index is
the number of tasks, the Instruction (I) diversity index is the number of clusters in the element graph, and the
response diversity index is the log value of the number of spatial semantic clusters; the Object/Granularity
(O/G) complexity index is the number of objects, the Instruction (I) complexity is the average score given by
LLM; the balance index is the variance of the number of samples in different tasks. ICC is the inter-class
correlation coefficient.

Dataset

Quality Evaluation ICC

Single Overall

Diversity Complexity
Balance ↓ SM AMMD ↑ C ↑ T ↑ I ↑ R ↑ O/G ↑ I ↑

LLaVA 30.7 91.1 9 14.5 2.2 1.6 6.5 14.6 0.7978 0.9221
MIMIC-IT 30.9 93.4 9 13.3 2.3 1.3 4.4 10.5 0.7239 0.8872

Ours 33.2 94.6 10 20.5 2.3 1.9 6.8 16.8 0.3028 0.5658
-with quality control 34.1 94.8 10 22.6 2.5 2.0 7.1 12.3 0.4398 0.7019

the scale for all the test VLIT data and randomly sample VLIT datasets larger than this scale. In addition
to incorporating insights on high-quality VLIT data during construction, we also rely on the designed quality
control strategy to filter the sample data constructed in this paper, further verifying the accuracy and validity
of the conclusions presented in this paper14.

5.1.3 Metrics

To more comprehensively evaluate the understanding and generation capabilities of MLLMs, we employ
SEED-Bench (Li et al., 2023c) as the evaluation metric for MLLMs after instruction tuning. SEED-Bench
comprises a large number of multiple-choice questions, and we have selected nine tasks related to vision-
language tasks for evaluation. Specifically, as shown in Table 4, "SU" represents Scene Understanding, "II"
denotes Instance Identity, "IL" signifies Instance Location, "IA" stands for Instance Attribute, "IC" indicates
Instance Counting, "SR" refers to Spatial Relation, "IIR" corresponds to Instance Interaction, "VR" represents
Visual Reasoning, and "TR" denotes Text Recognition.

5.1.4 Comparison of VLIT Data

The quality assessment of three different VLIT data and the performance of different MLLMs tuned with
them can be seen in Table 3 and Table 4 respectively.

14See Sec. B in the Appendix for more generated instruction-response examples
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Figure 5: Correlation analysis between the quality control indicators of VLIT data and the performance of
tuned MLLM in different downstream tasks.

Firstly, by observing the results in Table 3, we can discern that the example VLIT data constructed in
this paper significantly outperforms the other two in the majority of metrics. Simultaneously, the VLIT
data, after being filtered by the quality control strategy, exhibit better performance, demonstrating that the
characteristics of high-quality VLIT data summarized in this paper are accurate, and the quality control
scheme designed in the text is reasonable. To ensure the robustness and credibility of the experimental results,
we evaluate the consistency (i.e., the inter-class correlation coefficient (Koo & Li, 2016)) of the performance
of the same VLIT data in different MLLM frameworks, and the results are shown in Table 4. It can be
observed that the performance of the same dataset in different MLLMs is essentially or highly consistent.
This further ensures the reliability of the conclusions we derive.

Simultaneously, as shown in Table 4, we compile statistics on the performance of the mentioned VLIT
data under the evaluation indicators proposed in Sec.4.1. To further verify the rationality of the proposed
evaluation indicators, we conduct a correlation analysis between each quality control indicator and the
performance of MLLM on different tasks after utilizing its tuning. Since it has been demonstrated above
that all VLIT data exhibit good consistency across three different MLLMs, we use the performance mean of
VLIT data on three MLLMs for analysis, and the results are displayed in Figure5. Upon observation, we can
discern that the results of most quality evaluation indicators are directly proportional to the performance of
the tuned MLLM on downstream tasks (balance is inversely proportional because lower indicators indicate
better quality). Except for the spatial relationship indicator, there is only a certain correlation between
object/granularity complexity and instruction complexity. This may be attributed to the fact that spatial
positional relationships typically only have a certain correlation with the number of elements appearing in
the instruction and the related instructions.

6 Challenges and Future Directions

Despite the substantial amount of data and research available concerning vision-language instruction tuning,
the field remains in its nascent stages. Consequently, there is still much to explore and numerous challenges
to overcome. We highlight several pertinent directions for future investigation.

Mature Multi-Modal Language Model. Recently, with the disclosure of GPT-4V(ision) (OpenAI,
2023b), a large number of MLLMs have matured visual understanding capabilities, and they no longer need
to use text to describe visual signals for language-only LLMs to generate VLIT. However, we still need to
note that hallucinations, information loss, and other phenomena are more serious in MLLM than in LLM.
Therefore, how to reasonably use only MLLM to guide the generation of VLIT data and achieve quality
control is a direction worth studying.
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Difficult Sample. Existing MLLMs have demonstrated strong instruction execution and generalization
abilities in some simple tasks. However, they generally have shortcomings when dealing with some special
difficult samples, such as fine-grained content understanding, complex reasoning, and multi-modal content
editing (i.e., image/video editing). The chain-of-thought (Wei et al., 2022) and in-context learning (Dong
et al., 2022) can alleviate the occurrence of the above problems to some extent, but the cost of obtaining
high-quality annotated data is too high, and the model computation cost it brings is also unacceptable.
Therefore, how to efficiently solve such difficult samples is a problem worthy of attention.

Selective Forgetting. As pointed out by Zhai et al.., fine-tuning LLMs can easily cause them to forget their
original capabilities (e.g., the classification ability of the original CLIP) or instructions, which is catastrophic.
In fact, this phenomenon is prevalent in LLM, and abundant research has demonstrated that supervised
fine-tuning in downstream tasks frequently causes overfitting of the LLM in the corresponding downstream
tasks, leading to the loss of some or all of its original capabilities. Currently, existing studies generally
address this issue by regulating the learning rate and minimizing the overall loss, achieving certain outcomes.
The training data in instructional tuning serves as the learning object of the model. It is equipped with
appropriate settings, such as the repetition of old samples and the balancing of task ratios, to mitigate the
forgetting phenomenon to a certain extent. Nonetheless, further research is necessary to tackle this matter.

Hallucination and Bias. Similar to LLM (OpenAI, 2023a; Touvron et al., 2023), the MLLM model is
prone to hallucinations and biases. Hallucinations occur when the MLLM generates non-existent content, as
it unconsciously imitates data in its training corpus. In the multi-modal environment, this issue has resulted
in the creation of non-existent visual targets, which can significantly mislead users. The issue of bias arises
when content generated caters towards specific groups or delivers prejudiced outcomes, compromising user
experience, impartiality, and equality, among other aspects. This is typically the result of partial training
data distribution. To address the problem, this paper suggests employing additional, more detailed image-text
fully aligned samples, numerous negative samples, as well as data quality modules. However, obtaining
corresponding data on a large scale can often be difficult due to the absence of detailed annotations.

Limited Emergence. As a significant purpose of instruction tuning, instruction generalization is an
advantage that LLM (and MLLM) should possess, stemming from the emergence phenomenon. In the
multimodal scenario, emergence shows more characters, such as supporting visual objects that have not
appeared. However, recently, a large number of MLLMs have not shown good performance in either of the
above two scenarios. Therefore, deeper consideration is needed on how to design MLLMs and corresponding
instruction tuning data.

7 Conclusion

In this paper, we have compiled recent research on vision-language instruction tuning, presenting succinct
summaries and analyses, along with categorization, details, and shortcomings of existing literature. To
construct high-quality vision-language instruction data, we suggested several construction principles and a
complete set of construction processes based on the existing research summaries. Extensive experimentation
has demonstrated that MLLMs, when tuned on the instruction data constructed via our proposed method,
yield better overall performance. To conclude, we lay out the remaining issues and potential future research
directions.

A Appendix

A.1 vision-language Tasks

We summarise the visual tasks covered in all current MLLMs and datasets. Since the names used to describe
tasks are inconsistent across different tasks, we unified similar tasks as much as possible. All statistical results
are shown in Table 5.
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A.2 Experimental Details

A.2.1 Settings

In this paper, we used three different MLLMs to tune on VLIT data. Table 6, Table 7, and Table 8 respectively
list all their hyperparameter settings during instruction tuning.

A.2.2 Generation Details

System Prompts. Depending on the requirements for the generated command-response pairs, we use the
following system prompts as setting input to GPT3.5.

You are an artificial intelligence assistant. You’ll be given a text describing an image, and based on that
text you’ll be asked to generate a conversation around the object circled by a square box in the image. The
conversation context is a question-and-answer session between the visual AI assistant and the user around the
image. Specifically, the generated dialogue needs to meet the following requirements: 1. Answer confidently
to the content described in the text. 2. The conversation must be about the object in the circle. 3. The visual
artificial assistant’s tone is that it sees the picture, not the text description. 4. It is necessary to ask more
complex questions about the content in the image, appropriately combine it with external knowledge that
does not appear in the image, and expand the discussion on the people, places, brands, and other information
known to the public in the image. 5. The answers in the conversation need to be as detailed as possible, and
examples or reasoning steps need to be given when necessary to make the answer more convincing. 6. A
certain number of negative answers need to be included in the generated dialogue, such as questions about
non-occurring objects, and misdescriptions. 7. The generated conversation starts with the user asking a
question. 8. Don’t have anything like "the description", or "the given text" in the generated conversation. 9.
The format of the output dialogue must refer to {"User": "Question?", "AI": "Answer."}.

In-Context Examples. In this paper, we generally obtain about 10 generated samples through manual
writing, randomly select 2 of them as context, and input them to GPT3.5 in advance. The following is an
example:

Figure 6: Image of in-context example.

Here is an example, with the given textual description and the generated conversation. Given textual
description: This is a picture which can be described as Two women preparing food in a kitchen, one at
the sink and one at the table. A set table with silverware, glasses and a bottle of wine. A woman having
a slice of bread with jelly. A woman sitting at a table with win and bread. A women who is tearing
off a piece of bread. The image contains 2 kitchen_bottle, 1 furniture_dining table, 2 person_person, 5
kitchen_cup, 3 kitchen_fork, 4 kitchen_knife, 2 kitchen_spoon, 1 food_banana, 2 food_orange, 2 food_apple,
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2 furniture_chair. The image also contains a number of question and answer pairs: ’Q: IS there flowers on the
table? A: no.’, ’Q: How many bottles are on the table? A: 2.’, ’Q: Is he woman making sandwiches? A: yes or
no.’, ’Q: How many glasses on the table are ready to receive a liquid immediately? A: 4.’, ’Q: What type of
patterns are featured? A: stripes.’. The following characters can be recognized in the image: BARDOLING.
Generated conversation: {"User": "Are there any flowers on the table?", "AI": "No, there are no flowers on
the table.", "User": "Is one of the women making sandwiches?", "AI": "One of the two women in the picture is
actually making something, but it’s not clear if it’s a sandwich. The other person in the picture is handling
bread.", "User": "Who do you think the women are in the picture?", "AI": "Based on the image alone, I
cannot determine the identity of the women. However, it’s possible that they could be friends or family
members preparing a meal together.", "User": "What kind of fruit can you see in the picture?", "AI": "I see
some bananas, oranges, and apples in the picture.", "User": "Can you tell me more about the furniture in the
picture?", "AI": "The furniture in the picture includes a dining table and chairs."}

B Examples of Generated Instruction-Response Pair

Below, as shown in Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14, we give several examples
of instruction-response pairs generated in this paper.

C Correlation Analysis

The data in Table 15 is the detailed numerical content of the data in Figure 5.
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Table 5: Visual task statistics in VLIT data.

Name Visual-Langage Task

LLaVA (Liu et al., 2023c) conversation, detailed description, complex reasoning
Mini-GPT4 (Liu et al., 2023c) detailed description
mPLUG-Owl (Ye et al., 2023b) conversation, detailed description, complex reasoning
VideoChat (Li et al., 2023i) (video) conversation, (video) detailed description, complex reasoning
VisionLLM (Wang et al., 2023e) object detection, instance segmentation, visual grounding, image captioning, visual

question answering
X-LLM (Chen et al., 2023c) (video) detailed description, visual question answering, dialogue generation
DetGPT (Pi et al., 2023) image captioning, object detection
ChatBridge (Zhao et al., 2023e) image captioning, visual question answering, (video) conversation, (video) detail

description, (video) complex reasoning
PandaGPT (Su et al., 2023) conversation, detailed description, complex reasoning
MedVInT-TE/TD (Zhang et al., 2023f) visual question answering
GPT4Tools (Yang et al., 2023) object grounding, object segmentation, image generating, visual question answering
LLaVA-Med (Li et al., 2023e) visual question answering
Ying-VLM (Li et al., 2023j) image captioning, visual question answering, reasoning, classification, image genera-

tion
Otter (Li et al., 2023b) llava-interleaved, spot the difference, visual storytelling, dense captions, TV show

captions, indoor event planning, ego4d
Video-ChatGPT (Maaz et al., 2023) video reasoning, creation and generation, action recognition, video understanding,

video conversation, visual question answering, temporal understanding
OFAmultiinstruct (Xu et al., 2022) visual question answering, visual relationship, temporal ordering, grounded generation,

grounded matching, commonsense reasoning, miscellaneous, image understanding,
region understanding, image text matching

Video-LLaMA (Zhang et al., 2023a) (video) conversation, (video) detailed description, (video) complex reasoning
VALLEY (Luo et al., 2023b) (video) conversation, (video) detailed description, complex reasoning
MultiModal-GPT (Gong et al., 2023) conversation, detailed description, complex reasoning, image captioning, visual ques-

tion answering
InstructBLIP (Dai et al., 2023) image captioning, visual reasoning, conversation, visual question answering, image

question generation, image classification
LaVIN (Luo et al., 2023a) conversation, detailed description, complex reasoning, visual question answering
MACAW-LLM (Lyu et al., 2023) image captioning, video captioning, visual question answering
LAMM (Yin et al., 2023) conversation, complex reasoning, detailed description, visual task dialogue
OphGLM (Gao et al., 2023) medical imaging description, causes and symptoms, diagnosis and examination,

treatment and prevention, prognosis and lifestyle
LLaVAR (Zhang et al., 2023g) visual question answering (text-rich)
Shikra (Chen et al., 2023e) conversation, detailed description, complex reasoning, visual question answering,

image captioning, grounding caption
Clever Flamingo (Chen et al., 2023b) image captioning, image classification, change captioning, visual question answering
mPLUG-DocOwl (Ye et al., 2023a) visual question answering, information extraction, natural language inference, image

captioning, conversation, detailed description, complex reasoning
GPT4RoI (Ye et al., 2023a) single-region captioning, multi-region captioning, single-region reasoning, multi-region

reasoning,
SVIT (Zhao et al., 2023a) conversation, detailed description, complex reasoning
KOSMOS-2 (Peng et al., 2023) conversation, detailed description, complex reasoning
BuboGPT (Zhao et al., 2023c) conversation, detailed description, complex reasoning
ChatSpot (Zhao et al., 2023b) image captioning, visual question answering, object detection, OCR, region caption
ImageBind-LLM (Han et al., 2023) conversation, detailed description, complex reasoning
Lynx (Zeng et al., 2023) visual question answering, image captioning, video captioning, classification, conver-

sation, complex reasoning
LMEye(IPN) (Li et al., 2023l) conversation, detailed description, complex reasoning, image-text matching
ASM (Wang et al., 2023d) visual question answering, visual captioning
Cheetor (Li et al., 2023g) conversation, visual relation inference, visual storytelling, multi-modal cloze, grounded

question answering, text-rich question answering, complex reasoning
BLIVA (Hu et al., 2023b) image captioning, visual question answering, conversation, OCR, detailed description,

complex reasoning
StableLLAVA (Li et al., 2023k) visual reasoning
Qwen-VL (Bai et al., 2023) visual question answering, grounding, OCR
VIGC (Wang et al., 2023a) conversation, detailed description, complex reasoning
PointLLM (Xu et al., 2023b) brief description, conversation
MLLM-DataEngine (Zhao et al., 2023d) visual question answering
MM (Tu et al., 2023) conversation, detailed description, complex reasoning
NExT-GPT (Wu et al., 2023) conversation
PVIT (Chen et al., 2023a) small object recognition, same-category object discrimination, object relationship-

based reasoning, object attribute-based reasoning, OCR
TextBind (Li et al., 2023f) image creation, image comparison, intrinsic & extrinsic image understanding
DreamLLM (Dong et al., 2023) conversation, detailed description, complex reasoning
AnyMAL (Moon et al., 2023) visual question answering
InternLM-XComposer (Zhang et al., 2023b) image captioning, visual question answering, image question generation, conversation,

detailed description, complex reasoning
SparklesChat (Huang et al., 2023b) conceptual caption, visual genome
LLaVA 1.5 (Liu et al., 2023b) conversation, detailed description, complex reasoning
CogVLM (Wang et al., 2023c) conversation, detailed description, complex reasoning, visual question answering
Ferret (You et al., 2023) conversation, detailed description, complex reasoning
MiniGPT-v2 (Chen et al., 2023d) visual question answering, captioning, grounded captioning, referring expression

comprehension, referring expression generation, object parsing and grounding
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Table 6: Hyperparameters of LLaVA

version v1
vision_tower clip-vit-large-patch14
pretrain_mm_mlp_adapter LLaVA-7b-pretrain-projector-v1-1-LCS-558K-blip_caption.bin
mm_vision_select_layer -2
mm_use_im_start_end False
mm_use_im_patch_token False
fp16 True
num_train_epochs 1
per_device_train_batch_size 4
per_device_eval_batch_size 2
gradient_accumulation_steps 2
learning_rate 2e-5
weight_decay 0.
warmup_ratio 0.03
lr_scheduler_type cosine
tf32 False
model_max_length 2048
dataloader_num_workers 4
lazy_preprocess True

Table 7: Hyperparameters of BLIP-2

model_type caption_coco_opt2.7b
load_finetuned False
use_grad_checkpoint True
freeze_vit False
lr_sched linear_warmup_cosine_lr
init_lr 1e-5
min_lr 0
warmup_lr 1e-8
warmup_steps 1000
weight_decay 0.05
max_epoch 1
batch_size_train 4
num_workers 4
accum_grad_iters 1
max_len 50
min_len 1
num_beams 3
num_ans_candidates 128
inference_method rank
seed 42
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Table 8: Hyperparameters of OpenFlamingo

cross_attn_every_n_layers 1
dataset_resampled True
batch_size 1
train_num_samples 158000
loss_multiplier 0.2
workers 4
freeze_lm_embeddings True
run_name OpenFlamingo-3B-vitl-mpt1b-us
num_epochs 6
warmup_steps 1000
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Table 9: An example of a conversation generated from an image as a whole.

Image
User Can you tell me more about the child in the picture?
AI Assistant Certainly, the image showcases a small child, possibly a baby, who is engaging with a

toothbrush. The child appears to be inspecting or playing with the toothbrush, which is
colored green and yellow. The child seems to be feeling comfortable and cozy, and there’s
a sense of adorable curiosity about him. There’s also a hint of seriousness in his actions, as
if he’s truly trying to figure out the purpose of the toothbrush.

User How does the baby feel about the toothbrush?
AI Assistant Based on the image, the baby seems intrigued by the toothbrush. The child doesn’t show

any signs of fear or discomfort; instead, he appears curious, as if he’s trying to understand
what the toothbrush is. It’s a common behavior for children of this age to be curious about
the objects around them.

User Is the baby being fed in the photo?
AI Assistant No, the image doesn’t show any signs of the child being fed. The primary focus is on the

child’s interaction with the toothbrush. Any feeding utensils like spoons or bottles are not
visible in the picture.

User You mentioned the child looks serious. Can you elaborate on that?
AI Assistant Sure, the term ’serious’ here refers to the child’s focused attention on the toothbrush. Even

though he is just a baby, his intent gaze and the way he’s holding the toothbrush suggest a
sense of earnest exploration, as if he’s trying to understand how this object works or what
its purpose might be. It’s an adorable demonstration of a child’s natural curiosity and
learning process.

User Can you tell me about the toothbrush?
AI Assistant Yes, the child is holding a toothbrush that is green and yellow in color. Given the size and

the color combination, it seems like a typical toothbrush designed for children. It’s quite
common for children’s toothbrushes to be colorful and attractive to help make the process
of learning to brush their teeth more enjoyable.

User Does the image suggest anything about the baby’s mood?
AI Assistant Yes, based on the attributes present in the image, the baby seems to be comfortable and

curious. They look serious while inspecting the toothbrush, which suggests they are deeply
engaged in the activity. Although there’s no definitive way to tell, it’s reasonable to say
that the baby appears content and intrigued by their surroundings.

User Is there anything else of note in the photo?
AI Assistant The focus of this picture is mostly on the baby and their interaction with the toothbrush.

There’s no additional information about the surrounding environment. However, the fact
that the baby feels comfortable playing naked suggests that they are probably in a familiar
and safe space, most likely their home.
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Table 10: An example of a conversation generated from an image as a whole.

Image
User Can you tell me more about the scene in this image?
AI Assistant Absolutely! The image shows an office that is quite a bit cluttered. There is a desk

equipped with two computer monitors, all of which are displaying various data. There’s also
additional computer equipment scattered around, including a laptop, a keyboard and couple
of mice. There is a presence of other electronic devices as well, such as a TV. Interestingly,
it’s not just an office space, as I also see a sink and a refrigerator, and kitchenware like a
cup, which suggests this might be a home office or a small startup office. The workspace
seems to be quite disordered or messy.

User Are the monitors up-to-date or old?
AI Assistant The monitors in the image appear to be of an older model.
User What can you tell me about the lighting for the workspace on the left?
AI Assistant The workspace on the left seems to be using a lamp for illumination. It’s quite common in

home offices or personal workspaces to have such setup.
User Is there any music-related equipment on the desk?
AI Assistant From what I can observe, there might be a CD present on the tabletop, suggesting a

possible interest in music or use of software stored on CDs by the person working here.
User Would you describe this as an organized workspace?
AI Assistant Yes, based on the attributes present in the image, the baby seems to be comfortable and

curious. They look serious while inspecting the toothbrush, which suggests they are deeply
engaged in the activity. Although there’s no definitive way to tell, it’s reasonable to say
that the baby appears content and intrigued by their surroundings.

User Is there anything else of note in the photo?
AI Assistant Based on the scene in the image, this workspace does not appear to be organized. There

are various pieces of equipment strewn about haphazardly, which suggests that the area is
fairly messy.

User Any idea what kind of work is being done in this office?
AI Assistant Given the presence of soldering equipment and multiple computers, it could be an office

where hardware development or repair is done. This might include tasks like assembling
or fixing computer parts, or working with other electronic components. However, without
more specific details in the image, it’s difficult to say for certain.

User Can you identify any other items in the picture?
AI Assistant Sure, beyond the computer hardware, I can also see two chairs, indicating that there

might be space for another person to work or meet. There is a keyboard and two mouses,
suggesting that at least two computer systems are in use. There’s a laptop present as well,
which adds to the versatility of the workspace. Additionally, there’s a lamp offering light,
which can be particularly useful for detailed work like soldering.
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Table 11: An example of a generated conversation with negative responses.

Image
User Can you tell me what the people in the picture are doing?
AI Assistant The people in the picture, who seem to be a family, are gathered around a television. They

seem to be watching TV together in their living room.
User What time of year does this scene seem to be set in?
AI Assistant Given that there is a lit Christmas tree in the room, it strongly suggests that this scene is

set during the holiday season, most probably around Christmas time.
User Are there any books in the picture?
AI Assistant Yes, there are indeed two books in the picture.
User What’s on top of the Christmas tree?
AI Assistant The top of the Christmas tree is adorned with a bow. It’s a common tradition to place a

decorative item on the top of a Christmas tree, such as a star, angel, or in this case, a bow.
User Are there any pets in the room?
AI Assistant No, the description of the image doesn’t mention any animals or pets being present in the

room.
User What are the kids looking at?
AI Assistant The kids are looking out of a window. It’s unclear what they’re looking at specifically, as

that detail isn’t provided in the image.
User Do you know what show they are watching on the TV?
AI Assistant Unfortunately, the image doesn’t provide specific information about what’s being displayed

on the television. They could be watching any number of things, such as a holiday-themed
movie, a Christmas special of a television show, or even the news.

User Is the Christmas tree the main focus of the image?
AI Assistant While the Christmas tree is a significant element in the picture, it’s not the main focus.

The main focus appears to be the group of people, particularly the three kids looking out
of a window and the family gathered around the television.

User Are there any other significant objects in the picture?
AI Assistant Yes, besides the Christmas tree and the television, the image also contains two books and

a vase. However, it’s not clear from the image how these objects relate to the people or the
overall scene.

User Are there any adults in the picture?
AI Assistant From the information provided, it’s not clear whether there are any adults in the picture.

It mentions three people, who could be adults, children, or a combination of both.
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Table 12: An example of a generated conversation with negative responses.

Image
User What are the women doing in the picture?
AI Assistant The women in the picture are enjoying their time in a field with tall grass where they are

flying a kite that resembles a dragon.
User Can you describe the kite in more detail?
AI Assistant The kite in the picture has a design that makes it look like a dragon. Interestingly, its

wings are reported to be pink. It sounds quite vibrant and playful.
User Are the women in the image friends?
AI Assistant Based on the image, both women appear to be friendly and are enjoying their time together.

It’s quite likely they are friends, though the image doesn’t provide explicit confirmation of
their relationship.

User Does the field look like a public place?
AI Assistant Yes, based on the image, it seems that the field is a public place. The women are dressed

casually which also suggests that this is a relaxed, informal setting.
User Do the women seem to be experts at flying kites?
AI Assistant The image doesn’t provide enough information to determine if they are experts at kite

flying. However, since they seem to be enjoying themselves, it’s clear they know at least
the basics of how to fly a kite.

User Is there any sign of a crowd or other people in the image?
AI Assistant No, the available information doesn’t mention the presence of other people or a crowd. The

focus seems to be solely on the two women and their kite flying activity.
User Do you know what season it is based on the image?
AI Assistant The image doesn’t give specific information about the season, though the presence of

tall, dry grass might suggest it’s late summer or early autumn. However, this is simply a
conjecture based on the given image.

User Are they in a park or a private property?
AI Assistant The picture doesn’t provide clear information about whether the field is part of a public

park or private property.
User What is the condition of the grass in the field?
AI Assistant The grass in the field is quite tall and appears to be dry. It’s probably in need of being cut,

based on the information given.
User Is there any wildlife in the picture?
AI Assistant The image does not mention any wildlife. It primarily focuses on the two women and their

activities with the kite in the field.
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Table 13: A generation conversation for regions where the image is marked.

Image
User What is the person in the circle doing?
AI Assistant The person appears to be sitting and holding something, perhaps a utensil or one of the

food items on the table.
User Can we tell what the person is holding?
AI Assistant From the image, it’s uncertain exactly what the person is holding. It might be a spoon or

knife.
User Can you tell me something about the brand mentioned in the image?
AI Assistant Yes, the brand Tim Hortons or Timbits is mentioned in the context of the image. Tim

Hortons is a famous coffee shop chain in Canada known for its coffee and doughnut holes
called ’Timbits’. It seems that the box of doughnut holes on the table might be from this
brand.

User Is the person alone or are there other people in the picture?
AI Assistant From the given image, it appears that there’s only one person visible in the image. However,

without seeing the entire picture, it’s hard to conclusively say if there are others present
but not visible within the frame.

User Do you think the person is about to eat the food?
AI Assistant While it’s difficult to definitively confirm without more context, the fact that the person is

sitting at the table with a variety of food items in front of them, and appears to be holding
something, suggests that they might be about to eat the food. However, they could also be
in the process of setting the table or packing up leftovers.

User Can we tell who this person is?
AI Assistant As an AI, I can’t identify individuals unless they are publicly recognizable and their

information is part of my built-in knowledge. However, in this picture, the individual
appears to be just a regular person sitting and holding something.

User Are they eating healthy?
AI Assistant The meal includes a sandwich and a soup, both of which have been described as healthy.

However, they also have donut balls which are typically high in sugar and fats. So, while
parts of their meal are healthy, the overall meal could be considered a mix of healthy and
less healthy options.

User Is there any beverage visible in the picture?
AI Assistant No, there isn’t any visible beverage in the picture. The image mostly showcases the food

on the table, such as the sandwich, soup, and donuts, but doesn’t show any drinks.
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Table 14: A generation conversation for regions where the image is marked.

Image
User What is marked in the image?
AI Assistant The marked word in the image is ’PROCTOR’.
User Could ’Proctor’ denote the name of the baseball team?
AI Assistant Yes, considering the background, ’Proctor’ could indeed be the name of the baseball team

depicted in the photograph.
User Can you tell me more about the significance of ’Proctor’ in relation to baseball?
AI Assistant Unfortunately, I don’t have any specific information about a baseball team named ’Proctor’.

It could be a school team, a local community team, or even a professional team from the
past. The name could also possibly refer to a location or sponsor. Without additional
context, it’s challenging to be certain.

User Are there any well-known baseball players in the photo?
AI Assistant Based on the given description, it is not possible to determine if there are any well-known

players in this black-and-white photograph. The image features 14 individuals, presumably
members of the ’Proctor’ team, but without clear identification or further context, it’s
impossible to specify if any of them are famous.

User Are all the people in the picture players?
AI Assistant No, not everyone in the picture is a player. They may be coaches or team staff rather than

players.
User Is there any indication in the picture of the era or time period this game was played in?
AI Assistant The fact that the photograph is in black and white suggests that it could be quite old,

possibly from the early 20th century. However, without more context or specific details,
it’s hard to pinpoint an exact era.

User Are there any spectators or fans visible in the picture?
AI Assistant No, there are no spectators or fans visible in the picture. The image focuses on the baseball

team named ’PROCTOR’.
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