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ABSTRACT

Algorithmic fairness in clustering aims to balance the proportions of instances
assigned to each cluster with respect to a given sensitive attribute. Recently, nu-
merous algorithms have been developed for Fair Clustering (FC), most of which
optimize a clustering objective under specifically designed fairness constraints.
However, the inherent complexity or approximation of constrained optimization
problems makes it challenging to achieve the optimal trade-off between fairness
level and clustering utility in practice. For example, the obtained clustering utility
by an existing FC algorithm might be suboptimal, or achieving a certain fairness
level could be numerically unstable. To resolve these limitations, we propose a
new FC algorithm based on a novel decomposition of the fair K -means clustering
objective function. The proposed algorithm, called Fair Clustering via Alignment
(FCA), operates by (i) finding a joint probability distribution to align the data from
different protected groups, and (ii) optimizing cluster centers in the aligned space.
A key advantage of FCA is that it guarantees (local) optimal clustering utility for
any given fairness level while avoiding the need to solve complex constrained
optimization problems, thereby obtaining (local) optimal fair clustering in practice.
Experiments show that FCA offers several empirical benefits over existing methods
such as (i) attaining the optimal trade-off between fairness level and clustering
utility, and (ii) achieving near-perfect fairness level without numerical instability.

1 INTRODUCTION

As artificial intelligence (AI) technology has advanced and been successfully applied to diverse
domains and tasks, the requirement for Al systems to make fair decisions (i.e., algorithmic fairness)
has emerged as an important issue. This requirement is particularly necessary when observed data
possess historical biases with respect to specific sensitive attributes, leading to unfair outcomes of
learned models based on such biased data (Angwin et al., 2016} [Ingold & Soper, 20165 Damodaran
et al.L[2018} Mehrabi et al.,[2019). Specifically, group fairness is a category within algorithmic fairness
that ensures models do not discriminate against certain protected groups, which are defined by specific
sensitive attributes (e.g., men vs. women, white vs. black). In response, a large amount of researches
have been conducted to develop algorithms for mitigating such biases in various supervised learning
tasks such as classification (Zafar et al.,[2017;|Donini et al.l 2018} |Agarwal et al., |2018; |Quadrianto
et al.,[2019; Jiang et al.| [2020) and regression (Agarwal et al., [2019} |Chzhen et al., 2020).

Along with supervised learning, algorithmic fairness for unsupervised learning tasks including cluster-
ing has also received much attention. Clustering algorithms have long been employed as fundamental
unsupervised learning methods in various fields of machine learning, such as recommendation sys-
tems (Ahuja et al.l 2019; Widiyaningtyas et al.,[2021)), image processing (Lel 2013;|Guo et al., [2020;
Mittal et al.} 2022)), and language modeling (Butnaru & Ionescul 2017} Zhang et al., 2023).

Related works for Fair Clustering (FC) Combining algorithmic fairness and clustering, the notion
of Fair Clustering (FC) has been initially introduced in|Chierichetti et al.| (2017). FC operates under
the setting that each data point is assigned a color (i.e., a sensitive attribute), with the goal that the
proportion of each color within each cluster should be similar to that in the population. To achieve
this goal, various algorithms have been developed to minimize a given clustering objective under
pre-specified fairness constraints (Bera et al.,2019; Kleindessner et al., 2019; |Backurs et al., 2019; |L1
et al.}2020; |[Esmaeili et al., [2021}; Ziko et al.} 2021; | Zeng et al.,|2023)), to name a few. Section @of
Appendix covers other fairness notions, including proportional fairness and individual fairness.
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We can roughly categorize the existing FC algorithms into three: (i) pre-processing, (ii) in-processing,
and (iii) post-processing. Pre-processing methods (Chierichetti et al., 2017; [Backurs et al., [2019)
involve transforming instances into a fair space based on the concept of fairlets. Fairlets are small
subsets that satisfy (perfect) fairness, and thus performing standard clustering on the fairlet space
yields a fair clustering (see Section[A.T|of Appendix for details). In-processing methods (Kleindessner
et al.;, 2019; |Ziko et al., 2021} L1 et al., 2020} Zeng et al., 2023) aim to simultaneously find both
the cluster centers and assignments of the optimal fair clustering by solving certain constrained
optimization problems. Post-processing methods (Bera et al., 2019; |[Harb & Lam) [2020) focus on
finding fair assignments given fixed cluster centers. The fixed cluster centers are typically determined
by a standard clustering algorithm.

Our contributions In this paper, we focus on the optimal trade-off between fairness level and
clustering utility, which aims to maximize clustering utility under a given fairness level. While the
trade-off between fairness level and clustering utility is inevitable (Bertsimas et al.,2011;|Chhabra
et al.}2021), achieving the optimal trade-off with existing FC algorithms remains challenging. For
instance, pre- or post-processing algorithms usually result in suboptimal clustering utility due to
indirect maximization of clustering utility (e.g., Backurs et al.|(2019); Esmaeili et al.|(2021))). Even
when designed for achieving the optimal trade-off, in-processing algorithms may have trouble due to
numerical instability, particularly when a given fairness level is high (e.g., Ziko et al.|(2021)).

This paper aims to address these challenges by developing a new in-processing algorithm that
can achieve the optimal trade-off between fairness level and clustering utility without numerical
instability. The primary idea of our proposed algorithm is to align data from two protected groups
by transforming them into a common space (called the aligned space) and then applying a standard
clustering algorithm in the aligned space. We prove that the optimal fair clustering, i.e., the clustering
with minimal clustering cost under a given fairness constraint, is equivalent to the optimal clustering
in the aligned space.

Based on the theoretical result, we devise a new FC algorithm, called Fair Clustering via Alignment
(FCA). FCA alternately finds the aligned space and the optimal clustering in the aligned space until
convergence. To find the aligned space, we develop a modified version of an algorithm for finding the
optimal transport map (Kantorovich, |[2006)), while a standard clustering algorithm can be used to find
the optimal clustering in the aligned space.

It is worth noting that our proposed algorithm, FCA, can be compared with the fairlet-based methods
(e.g.,Backurs et al.[(2019)). While existing fairlet-based methods find fairlets and perform clustering
sequentially (separately), FCA finds the aligned space and performs clustering simultaneously to
obtain the (local) optimal fair clustering. A detailed comparison is provided in Remark

The main contributions of this paper can be summarized as follows.

e We provide a novel decomposition of the fair clustering cost into two components: (i) the
transport cost with respect to a joint distribution between two protected groups, and (ii) the
clustering cost with respect to cluster centers in the aligned space.

e Based on the decomposition, we develop a novel FC algorithm called FCA (Fair Clustering
via Alignment), which is transparent, stable, and guarantees convergence.

e Theoretically, we prove that FCA achieves the optimal trade-off between fairness level and
clustering utility.

e Experimentally, we show that FCA (i) outperforms existing baseline FC algorithms in terms
of both the trade-off and numerical stability, and (ii) optimally controls the trade-off across
various fairness levels.

2 PRELIMINARIES

Notations Let D = {(x;,s;)}"; be a given dataset, where x; € R? and s5; € {0,1} are d-
dimensional vector of data and binary variable for the sensitive attribute, respectively. Denote (X, .S)
as the random vector whose joint distribution denoted as P is the empirical distribution on D. Let P
represents the conditional distribution of X given .S = s. We specifically define these distributions to
discuss the (probabilistic) matching between two protected groups of different sizes, and subsequent
probabilistic assignments for fair clustering. We denote [E and [E as the expectation operators of P
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and Py, respectively. Let X = {x; : i = 1,...,n}, X; = {x; : s; = s}, and n,; := |X,|. Denote
|| - |? as the Ly norm.

We assume that the number of clusters, represented by K € N, is given a priori. The K-many
cluster centers are denoted as g := {p1, ..., ux } where yj, € R4 VEk € [K] = {1,...,K}. Let
A X x {0,1} — S¥ be an assignment function that receives (x,s) € X x {0,1} as input and
returns the probabilities of the data point belonging to each cluster, where S¥ is the K -dimensional
simplex (i.e., for all v = [vy,...,vg]" € 8K, v, > 0 forall k € [K] and Zszl vy = 1). We
consider this probabilistic assignment function to guarantee the existence of the optimal clustering.

Problem setting We present the mathematical formulation of the fair clustering objective. The
original objective of the standard (i.e., fair-unaware) K -means clustering is to minimize the clustering

cost C(pu, A) :==E Zszl A(X, )1 ||X — px]|?> with respect to g and A. Note that the optimal
assignment function is deterministic, i.e., A(x, s); = L(argming ¢ [[x — pp, ||? = k) for given
(x,5) € X5 x {0,1}, where u5, are the centers of the optimal clustering. Thus, C'(ut, A) becomes
Eminy, || X — px/|?, and the optimal clustering is found by finding g minimizing E miny, || X — pu||%.

An assignment function A4 is said to be fair if it satisfies E (A(X, s)g|S = s) = E (A(X, S)),Vk €
[K],Vs € {0,1}. This constraint ensures the probability of data belonging to a cluster be (nearly)
independent with the sensitive attribute, resulting in fair clustering. That is, we find the cluster center
 and the assignment function A that minimize C(u, A) among g € RX and all fair assignment
functions A satisfying E (A(X, s)x|S = s) = E (A(X, S)k) ,Vk € [K],Vs € {0,1}.

Fairness measure To assess the fairness level (i.e., how similar E(A(X, s),|S = s) are to
E(A(X, S)x)) in clustering, Balance is a popularly used measure (Chierichetti et al.l 2017; Bera
et al.} 2019; |Backurs et al., 2019; |[Esmaeili et al., |2021; Ziko et al., 2021} |[Zeng et al., |2023)), which is
defined in Definition [2.1|below. Note that we slightly modify the original definition from [Chierichetti
et al[(2017) by multiplying it by a constant to normalize the value to lie within [0, 1].

Definition 2.1 (Balance). For a given assignment function A, Balance (of A) is defined by
E(AX, s)lS=s) _ R L, Al 8)k

Balance(A) := min min = min min
(A4) ke[lK] se{0,1}  E(A(X, S)k) ke[lK] s€{0,1} %Z(xi,si)GD A(%4, 8k

€0,1]. (1)

For a small « > 0, the objective of FC is to minimize C'(u, .A) with respect to u € R¥ and A,
under the constraint that Balance(.A) > 1 — . The lower Balance is, the less fair the clustering
is. Furthermore, any perfectly fair clustering satisfies Balance(.A) = 1. In Section [3| we prove
that this FC objective can be decomposed into the sum of (i) the cost of transporting data from
different protected groups to a common space (called the aligned space), and (ii) the clustering cost
in the aligned space built by the transported data. In what follows, we write A(-, s) = A;(-) and
C(p, A) = C(p, Ao, A1) whenever their meanings are clear.

3 REFORMULATION OF THE FAIR CLUSTERING OBJECTIVE

This section presents our main theoretical contribution: a novel decomposition of the perfectly fair
(i.e., Balance = 1) clustering objective, which motivates our proposed FCA algorithm. The case of
Balance < 1 is considered in Section [ after introducing FCA algorithm for perfect fairness.

In Section[3.1] we introduce our idea through discussing the simplest case where the two protected
groups are of equal size (ng = nq). Then, in Section we generalize to the unequal case (ng # ny)
by introducing the notions of the alignment map and aligned space, constructed by a given joint
distribution on & x X’;. We prove that there exists a joint distribution such that the objective function
of perfectly fair clustering can be decomposed into the sum of the transport cost with respect to
the joint distribution and the clustering cost on the aligned space. Full proofs of all the theoretical
findings in this section are given in Section [B]of Appendix.

3.1 CASE OF EQUAL SAMPLE SIZES: ng = nq

Assume that the sizes of two protected groups are equal (i.e., ng = n1). For simplicity, we only
consider deterministic assignment functions, meaning A, (x)x € {0, 1}. The case of probabilistic
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assignment functions with ng # n; is discussed in the next subsection, where it is proven in Remark
[3.4]that the optimal assignment function is deterministic when ng = n;.

The core idea of FCA is to match two instances from different protected groups and assign them
to a same cluster. By doing so — matching all instances from &} to X; in a one-to-one fashion and
assigning each pair to a same cluster — the resulting clustering becomes perfectly fair.

Conversely, suppose we are given a perfectly fair clustering constructed by a deterministic assignment
function A. Since ng = n; and A is deterministic, there exists a one-to-one matching between X
and A; such that two matched instances belong to a same cluster. Thus, we can decompose the
clustering cost in terms of the one-to-one matching, as presented in Theorem [3.1]

Theorem 3.1. For any given perfectly fair deterministic assignment function A and cluster centers
W, there exists a one-to-one matching map T : Xy — Xy such that, for any s € {0, 1},

K 2 2
X -T(X X+ T(X
i Ao, A2) = 2. 3 A0 ( =T +H LT ). o)
k=1
Clustering cost w.r.t. g and T

——

Transport cost w.r.t T

The assignment function .4 that minimizes eq. (2) given g and T assigns both x and T'(x) to cluster
k, where k = arg miny, ¢ || (x +T(x))/2 — s ||*. Hence, the optimal perfectly fair clustering can

by found by minimizing E (||X — T(X)]|?/4 + ming, [|(X + T(X))/2 — uk||2) with respect to
and T, instead of finding the optimal g and A minimizing C'(, Ao, A1 ). We update  for a given T

by applying a standard clustering algorithm to {%(x), x € X}, which is called the aligned space.
To update T, any algorithm for finding the optimal matching can be used, where the cost between
two instances xg € Xy and x; € X is given by ||xo — x1|?/4 + ming ||(xo + x1)/2 — px||* (see
Section[d.T] for the specific algorithm we use). Note that there are no complex constraints in updating
p and T. Finally, we define A corresponding to T, which assigns both x and T'(x) to a same cluster

on the aligned space {%0‘), x € X, }. See Section of Appendix for a similar decomposition
result to any L, norm (p > 1), e.g., L1 norm for K-median clustering.

Remark 3.2 (Comparison to the fairlet-based methods). Although our idea of matching data from
different protected groups may seem similar to the fairlet-based methods (e.g., \Chierichetti et al.
(2017), see Section of Appendix for details about fairlets), it fundamentally differs in a key way:

Our method is an in-processing approach that directly minimizes the clustering cost with respect to
both the matching map and cluster centers simultaneously. In contrast, the fairlet-based method is a
two-step pre-processing approach, which does not directly minimize the clustering cost; instead, it
first searches for fairlets and then finds the optimal cluster centers on the set of representatives for
each fairlet. As a result, in the fairlet-based method, the matchings and cluster centers are not jointly
optimized, which may lead to a suboptimal clustering utility.
Method (Cost & Balance)
Standard (8.50 & 0.5) Fairlet-based (10.22 & 1.0) Ours (9.82 & 1.0) v

[¢) e o x0
p 5 i : e x1
¥ Cluster center 3
1 1 ) Cluster center
/," ————— Matched
0 o ¢}

-1

Figure 1: Comparison between the fairlet-based method and our approach with ng = n; = 4 and
K = 2. For a fair comparison, the representative of each fairlet is set as the mean vector of the data
within that fairlet. The standard K -means algorithm is then applied to this set of representatives. The
resulting clusterings are visualized using contours. While both methods achieve Balance = 1, our
approach yields a lower cost (9.82 < 10.22), due to different matchings.

Figure(lillustrates how the fairlet-based method can produce suboptimal clustering, when compared
to our approach. Specifically, more efficient matchings exist that yield higher clustering utility than
the matchings of fairlets, and our approach is designed to find these efficient matchings. We confirm
this claim more comprehensively using real benchmark datasets in Section[5.2}
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3.2 CASE OF UNEQUAL SAMPLE SIZES: ng # n

The main approach for ng # n4 is similar to ng = n1, but instead of the matching map T, we find
the optimal joint distribution Q of (X, X1) minimizing the clustering cost. That is, we reformulate
the perfectly fair clustering cost in terms of cluster centers p and joint distribution Q whose marginal
distributions are Py, s € {0, 1}. Note that Q serves as a smooth and stochastic version of T.

Let Q = {all joint distributions Q on Xy x X; with @, = Py, s € {0,1}}. Theorem [3.3) below,
which is the main result of this paper and motivation of our proposed algorithm, proves that the
optimal perfectly fair clustering can be found by finding the joint distribution Q@ and cluster centers gt
optimally. Let 73 = ns/(ns + ny) for s £ s’ € {0,1}.

Theorem 3.3. Let p* and Q* be the cluster centers and joint distribution solving

n,QeQ
where TA(xg,%1) = moXo + m1X1, which is called the alignment map.
Then, (p*, Ay, A}) is the solution of the perfectly fair K-means clustering, where Aj(X)y =
Q* (argminy, | TA(x,X1) — uir||? = k|Xo = x) and A; (x)y, is defined similarly.

min Ex, x,)~q (27TO7T1||X0 - Xq|* + min | T*(Xo,Xy) — ,Uk||2> , 3)

This result implies that, by simultaneously minimizing the transport cost || Xo — X1|? and finding
the cluster centers in the aligned space {T*(Xg, X1) : (Xo,X;) ~ Q}, we obtain the optimal
perfectly fair clustering. A notable observation is that there is no explicit constraint in eq. (3). In fact,
the constraint for perfect fairness (i.e., EqA5(X); = EAg(X)y, for all k, s) is implicitly satisfied
through the use of the alignment map T4 (xg, x1). In conclus10n solving (3) with respect to p and Q
yields the optimal perfectly fair clustering. The algorithm for solving (3)) is detailed in Section ]

Remark 3.4 (A* is deterministic when ng = ny). When ng = nq, the optimal assignment function
A* in Theorem 3.3 becomes deterministic. This is because Q corresponds to the one-to-one matching
map T in eq. [2). The detailed proof is provided at the end of the proof of Theorem

4 PROPOSED ALGORITHMS

4.1 FCA: FAIR CLUSTERING VIA ALIGNMENT

Based on Theorem we propose an algorithm for finding the optimal perfectly fair clustering,
called Fair Clustering via Alignment (FCA). FCA consists of two phases. Phase 1 finds the joint
distribution Q with the cluster centers p being fixed. Phase 2 updates the cluster centers p with the
joint distribution Q being fixed. Then, FCA iterates these two phases until cluster centers converge.

Phase 1: Finding the joint distribution Phase 1 finds the optimal joint distribution QQ that minimizes
the cost in eq. @) given p. For this goal, we recall the Kantorovich problem (Kantorovichl 2006

Villani, 2008), which finds the optimal coupling between two measures for a given cost matrix. For

ni
j=1»

xgl) |. Then, the Kantorovich

two given empirical distributions on Xy = {XEO) 20 and Xy = {xgl)} the cost matrix between
the two is given by C := [¢; ;] € R} where ¢; ; = ||x§0)
problem is to find the optimal joint distribution defined by the matrix I' = [v; ;] € R}°™*"" that
solves the following objective: minp [COT ||y = min,, ; ¢ j%i; st D% Yij = 7o E;“ Vi =

no ,Yi; = 0. See Sect1on of Appendix for more details regarding the Kantorovich problem.

We modify this Kantorovich problem to solve eq. (3). The transport cost matrix between the two (the

first term of eq. ) is defined by C := [¢; ;] € R}°™™ where ¢; j = 2mom; x{ (1 |. The
clustenng cost matrix between the aligned data and their assigned centers (the second term of eq.

) is defined by D := [d; ;] € R}°*"* where d; ; = minyc(x] H7T0XZ(- ey x; ) pk|?. Then,
we find the optimal coupling I' = [; ;] € R} *™ that solves the following objective:

no ni
min [(C + D) © Tl = min(ei; + dij)yig st % = Zm — 20 @
i=1

Clearly, this problem becomes the original Kantorovich problem when D = 0. In other words,
the difference between our problem and the original Kantorovich problem is the existence of the
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matrix D, which represents the clustering cost on the aligned space. Hence, this objective can be also
efficiently solved using linear programming, similar to the Kantorovich problem (Villani, 2008)).

Based on the optimal coupling I' that solves eq. (@), we define the joint distribution as
Q({XEO), X;l)}) = 7,5 That is, we have the measures (weights) of {; ; }ic[no],je[n,] for the aligned

points in {TA(x Z(.O) (1))}ie [no].j€[n,]- Finally, we define the corresponding aligned space as the

(0 )

no X ni many pairs of the weight and the aligned instances: {(7;,j, T(x; ;‘1))}i€[no],j €ln]-

Phase 2: Optimizing cluster centers Then, we optimize the cluster centers p on the aligned

space obtained in Phase 1, by solving min,, > Z] 1 Vi,j ming | TA(x; o ( ) — pux]|?. Standard
clustering algorithms, such as the K -means++ algorlthm (Arthur & Vassﬂv1tsk11 2007) or a gradient
descent-based algorithm, can be used to update . Note that in Section [5.4] we empirically compare
these two algorithms to show that FCA is stable regardless of the algorithm used to optimize .

FCA algorithm We alternately update the joint distribution (Phase 1) and the cluster centers
(Phase 2). At each iteration, we (i) find QQ that minimizes the sum of the transport and clustering
costs to build the aligned space, and then (ii) update the cluster centers by minimizing the clustering
cost on the aligned space. This procedure continues until the cluster centers converge.

Then, define the assignment function as A, (x; ) e =2 e, nsvi,; 1(arg ming, ||7ex; (=) 1

Tox) — |2 = k), k € [K] for x*) € X,. Whenever needed, we can deterministically assign

J
ng) to the k™ cluster where k is the maximum argument of A, (xl(.s) ).

4.2 FCA-C: CONTROL OF BALANCE

In addition to perfect fairness, it is also important to find optimal fair clusterings with Balance < 1.
For this purpose, we introduce a feasible relaxation of FCA called FCA-Control (FCA-C), a variant
of FCA specifically designed for controlling Balance.

Let W C &) x &) be a given subset. The idea of our relaxation is to apply FCA algorithm only to
instances in W*° = Xy x X1 \ W and to apply the standard K -means algorithm to those in WW. Note
that W = () becomes FCA, while W = X x X results in standard (fair-unaware) clustering. Denote
€ > 0 as a hyper-parameter that controls Balance. For a given ¢, FCA-C algorithm minimizes

By xim (2007 X0 = Xl + min [T (Xo. Xa) ) 1 (Ko X) € W) )

FCA cost

(5)
+ Ex,, X1~Q<mm (mol|Xo — pxll®) + min (m]1Xy = pl|?) 1 (X0, X1) € W))

K -means cost

with respect to p,Q and W satisfying Q((Xo,X1) € W) < e. See Figure [2| for an example
visualizing W and Q. Then, we construct the assignment function Ay by

Ao(x0)r = Pl(argkrlnin ||TA(X0, Xi) — uk/||2 =k, (x0,X1) € W)
. (6)
+ ]1(al”gk{mn %0 — puar[|> = k) - P1((x0, X1) € W).

The assignment function .A4; is defined similarly. A practical algorithm for FCA-C is described below.

FCA-C algorithm We alternately update Q, & and WV as the following.
o (Update Q) First, calculate the costs: ¢; ; for (x; (0) S )) € Wandg, ; +d, ; for (x (0),

We. Then, find T = [yi.;]:, (i.e. ({X(O)’ (1)} 7i,j)) Minimizing
e (Update p) Minimize with respect to p: ming, >, Z Yi,j [mlnk 1T (x;

(1)
x;) €

© D)

(1 . 1 0 (1
pel106% 5" € W) (o ) — gl 4 i o )10 X ew)).
o (Update W) Let n(x go) ()) = 2momy ||x (1)||2+m1n | TA(x; ) (1)) e ||? and 7,

be the eth upper quantile. Update W = {(x; ) (1)) € Xy x Xyt n(x; (O) (1)) > e}
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o o o @O ,0m
&y & & 4 5

X, X,

D € W€: FCA cost applied

x(10) Y11 | V12| V13| Y14 | V15

(0)
&

|:| € W: K-means cost applied
Y21 | Y22 | V23| Y24 | V25

Figure 2: Example illustration of W and I when (ng,n1) = (2,5) and € = v1.4 + 72,2 + 72,5

Notably, this FCA-C algorithm has an interesting theoretical property in terms of achieving the
optimal trade-off between fairness level and clustering utility, for any given fairness level to be
satisfied. First, in Theorem (4.1 we show that FCA-C provides the optimal clustering among all
clusterings that satisfy a given fairness level. Then, in Corollary we further show that Balance
can be controlled by controlling € in FCA-C. The proofs are deferred to Section [B]of Appendix.

For technical simplicity, we assume that the densities of Py and IP; exist. That is, we consider the
population version of FCA-C. See Remark [B.1]in Section [B]of Appendix when the densities do not

exist. Let A := {(Ao, A1) : Zkl,(:l |Eo(Ag(X)k) —E1(A1(X)1)| < €} for a given € > 0, represent

a set of fair assignment functions. Let C'(Q, W, u) denotes the objective of FCA-C in eq. .

Theorem 4.1 (FCA-C achieves the optimal trade-off). Minimizing the FCA-C objective C QW, )
with the corresponding assignment function defined in eq. (0) is equivalent to minimizing
C(p, Ag, A1) subject to (Ao, A1) € A..

Corollary 4.2. The assignment functions in A, satisfies |Balance — 1| < Ce, where C =
maxs j 7}E(A;T(Sx)k)'

To empirically validate Theorem .1} we conduct supporting experiments for FCA-C in Section 5]
showing that the trade-off is effectively controlled by controlling e. In addition, Table[9]in Section
of Appendix compares the computation times of FCA-C and FCA.

4.3 REDUCING COMPUTATIONAL COMPLEXITY

As discussed in Section[4.1] finding the joint distribution Q (i.e., the optimal coupling I") is technically
equivalent to solving the Kantorovich problem, which involves linear programming (Villani, [2008).
Its computational complexity is approximately O(n®) when ng = n; = n (Bonneel et al., 2011),
indicating a high computational cost when n is large. To address this issue in practice, we randomly
split each group into L partitions of (approximately) same sizes. That is, we have L partitions for

each group: {XO(Z)}ZL=1 of Xy and {/"(1(1)}{‘:1 of X;. We then calculate the optimal coupling T'(")
between Xél) and Xl(l), using eq. . The (full) optimal coupling between Xy and A is estimated
by [ := diag(1T™), ..., LTW)). Let m = | A" | + A" be the partition size. This technique can
theoretically reduce computational complexity by O(n/m) x O(m?3) = O(nm?). In our experiments,

we apply this technique with m = 1024 for all datasets, which we find to be significantly faster than
using full datasets, while yielding similar performance (see Section [5.4]for the results).

5 EXPERIMENTS

5.1 SETTINGS

Datasets and performance measures We use three benchmark tabular datasets, ADULT (Becker
& Kohavi, [1996), BANK (Moro et al., [2012), and CENSUS (Meek et al.), from the UCI Machine
Learning RepositoryE] (Dua & Graff, 2017). The sensitive attribute is defined by gender (male/female),
marital status (married/not married), and gender (male/female) for ADULT, BANK, and CENSUS,
respectively. The number of clusters K is set to 10 for ADULT and BANK, and 20 for CENSUS,
following Ziko et al.[(2021). The data (input features) are scaled to have zero mean and unit variance.
We then optionally apply Lo normalization, as used in |Ziko et al.| (2021)), and results are provided
both with and without Ly normalization. Further details are given in Section of Appendix.

We consider two performance measures, Cost and Balance. The former assesses clustering
utility, while the latter measures fairness level. For a given assignment function A4, let A4 (x)y :=

'https://archive.ics.uci.edu/datasets
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1(arg max;, As(x)r = k) be a deterministic version of .A. Then, for given cluster centers p =
{m1,- -, }, the Cost and Balance on D are defined as Cost = 1 37, o cp 1% — a1

and Balance = minge|x) Mingeo,1} (# er/’\fs As(x)k/% Z(x,s)eD /ls(x)k> , respectively,

where k(x, s) is the index k satisfying A (x);, = 1. Note that we use A instead of A itself for fair
comparison since existing algorithms use deterministic assignment functions.

Baseline algorithms For the baseline algorithms compared with FCA, we consider four methods: a
pre-processing (fairlet-based) method SFC from |Backurs et al.|(2019), two post-processing methods
FCBC from |[Esmaeili et al.|(2021) and FRAC from Gupta et al.| (2023)), and an in-processing
method VFC from Ziko et al.[ (2021)), which differs from the other baselines as it is specifically
designed to control the trade-off between fairness level Balance and clustering utility Cost. For
implementation details of these baselines, refer to Section[C.2]of Appendix.

Implementation details When solving the linear program (i.e., finding the coupling matrix I'), we
use the POT library (Flamary et al.,2021)). For finding cluster centers, we adopt the scikit-learn
library (Pedregosa et al., 2011) to run /K-means algorithm. We specifically choose the K-means++
(Arthur & Vassilvitskii, |2007)) for K-means algorithm. An ablation study comparing the K -means++
and a gradient descent-based algorithm (i.e., Adam (Kingma & Ba, [2014)) for finding cluster centers
is provided in Section The computations are performed on several Intel Xeon Silver CPU cores
and an additional RTX 4090 GPU processor. The maximum number of iterations is set to 100 for all
cases, and we select the best iteration when Cost is minimized.

5.2 PERFORMANCE COMPARISON RESULTS

Trade-off: fairness level vs. clustering utility First, we compare FC algorithms in terms of their
ability to achieve the optimal trade-off between fairness level (Balance) and clustering utility
(Cost). Specifically, we compare FCA with three baselines: SFC, FCBC, and FRAC, all of which
are designed to achieve perfect fairness. Table[I] presents the Balance and Cost values of the four
methods, where FCA consistently attains the lowest Cost (i.e., the highest clustering utility).

Table 1: Comparison of the trade-off between Balance and Cost on ADULT, BANK, and CENSUS
datasets. We underline the Balance values for the cases of near-perfect fairness (i.e., Balance
> 0.95) and use bold face for the lowest Cost value among those cases.

C=Cost,B=Balance || ADULT | BANK | CENSUS
With Lo normalization || ¢ () | B | c® [ BM | cd) | BD
Standard (fair-unaware) 0.295 | 0.451 | 0.208 | 0.500 | 0.403 | 0.025

FCBC (Esmaeili et al.}[2021) || 0.314 | 0.938 | 0.685 | 0.947 | 1.006 | 0.956
SFC (Backurs et al.,2019) 0.534 | 0.989 | 0.410 | 0.974 | 1.015 | 0.967
FRAC (Gupta et al.| 2023) 0.340 | 0.998 | 0.307 | 0.995 | 0.537 | 0.997

FCA v 0.328 | 0.997 | 0.264 | 0.998 | 0.477 | 0.993

Without Ly normalization || ¢(}) | B | cd) | BMD | ¢ | BM

Standard (fair-unaware) 1.620 | 0.418 | 1.510 | 0.602 | 28.809 | 0.031
FCBC (Esmaeili et al., 2021) || 1.851 | 0.931 | 2.013 | 0.945 | 59.988 | 0.955
SFC (Backurs et al.|,[2019) 3.399 | 0.954 | 3.236 | 0.957 | 69.437 | 0.973
FRAC (Gupta et al., 2023) 2900 | 0.998 | 2.716 | 0.995 | 38.430 | 0.997
FCA v 1.875 | 0.997 | 1.859 | 0.998 | 33.472 | 0.990

Notably, FCA outperforms SFC by achieving higher Balance and lower Cost, highlighting the
effectiveness of finding optimal matchings via in-processing. FCA is also superior to SFC for K-
median clustering (Table [I2]in Section[C.3.8]of Appendix). Moreover, while FCA requires slightly
more time (Table[I0]in Section [C.3.7]of Appendix), it still outperforms SFC even when the number of
iteration is set to be comparable to SFC (Table[[T]in Section [C.3.7]of Appendix). FCBC and FRAC
offer lower Balance and higher Cost in most cases (although FCBC shows slightly lower Cost
on ADULT dataset, it fails to attain satisfactorily high Balance, remaining below 0.95). These
results suggest that FCA is the most effective at maximizing utility under near-perfect fairness.
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Numerical stability Second, we compare the two in-processing algorithms, FCA and VFC, in
terms of their ability to achieve a high given fairness level (i.e., Balance = 1) without numerical
instability. To do so, we obtain the maximum achievable Balance for each algorithm. We also
evaluate the robustness to data pre-processing: the impact of Ly normalization on numerical stability.

Table 2: Comparison of the two in-processing algorithms, FCA and VFC, in terms of numerical
stability when achieving the maximum Balance, on ADULT, BANK, and CENSUS datasets. Bold-
faced results indicate the highest values of Balance.

| ADULT | BANK | CENSUS

With L, normalization Balance (Cost)

I
VEC (Ziko et al.| [2021) H 0.889 (0.310) | 0.875(0.221) | 0.773 (0.432)

FCA v 0.997 (0.328) | 0.998 (0.264) | 0.993 (0.477)
Without Ly normalization || Balance (Cost)
VEC (Ziko et al., [2021) 0.629 (1.688) | 0.849 (1.549) Failed
FCA v 0.997 (1.875) | 0.998 (1.859) | 0.990 (33.472)

The results presented in Table [2] show that VFC achieves Balance values no higher than 0.9. While
FCA is explicitly designed to achieve perfect fairness, VFC is designed to control Balance using
a hyper-parameter. However, even with large hyper-parameter values, VFC fails to achieve perfect
fairness (i.e., Balance remains significantly below 1). Moreover, the performance gap between
FCA and VFC becomes greater without Lo normalization than with it, and further fails on CENSUS
dataset due to an overflow (see Section of Appendix for details on this failure). For an additional
comparison on a larger dataset (n = 10°), see Sectionof Appendix, which highlights FCA’s
superior scalability and outperformance over VFC.

Control of Balance In addition to the previous analysis of the scenario where Balance ~ 1, we
also compare FCA-C and VFC in terms of controlling Balance across various levels lower than 1.
To this end, we assess the ability to achieve reasonable Cost while controlling Balance. Figure
displays the performance of FCA-C and VFC across various fairness levels. It shows that FCA-C
effectively manages this trade-off across the wide range of Balance (by controlling €), with Cost
similar to that of VFC. The orange dashed vertical line is the maximum achievable Balance by
VFC, and FCA-C achieves Balance beyond this point well. Refer to Section[C.2]of Appendix for
details on selecting e for FCA and the hyper-parameters used in VFC.
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Figure 3: Balance vs. Cost trade-offs for (left) ADULT, (center) BANK, and (right) CENSUS
datasets. Black squares (W) are from the standard clustering, orange circles (o) are from VFC, green
stars (x) are from FCA-C, and orange dashed lines (- -) are the maximums of Balance that VFC
can achieve. For similar results without Lo normalization, see Figure[d]in Section|C.3.T|of Appendix.

5.3 APPLICABILITY TO VISUAL CLUSTERING

We further evaluate FCA’s applicability to visual clustering using two image datasets: (i) REVERSE
MNIST, a mixture of the original MNIST and a color-reversed version (in which black and white are
swapped), and (ii) OFFICE-31, consisting of images from two domains (amazon and webcam) with
31 classes, commonly used in visual FC methods (Li et al., 2020; Zeng et al., [2023)).

We compare FCA with SFC, VFC and two visual FC baselines: DFC (Li et al., [2020) and FCMI
(Zeng et al.,|2023)). Note that DFC and FCMI are end-to-end algorithms that simultaneously perform
clustering and learn latent space using autoencoder with fairness constraints. In contrast, FCA, SFC,
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and VFC are applied to a latent space pre-trained by autoencoder without any fairness constraints. The
clustering utility is evaluated using ACC (accuracy calculated based on assigned cluster indices and
ground-truth labels) and NMI (normalized mutual information between ground-truth label distribution
and assigned cluster distribution), as in|Zeng et al.| (2023).

Table 3: Comparison of clustering utility (ACC and NMI) and fairness level (Balance) on two image
datasets. ‘Standard (fair-unaware)’ indicates autoencoder + K -means. First-place values are bold,
and second-place values are underlined. The performances of baselines reflect the best results from
our re-implementations or those from[Zeng et al.[(2023).

Dataset | REVERSE MNIST || OFFICE-31
A=ACC,N=NMI,B=Balance || A(}) [ N(D) | B [[AM | NM) | B
Standard (fair-unaware) 41.0 | 52.8 | 0.000 63.8 | 66.8 | 0.701
SFC (Backurs et al.,[2019) 51.3 49.1 | 1.000 61.6 61.2 | 0.932
VEC (Ziko et al.} 2021) 38.1 42.7 | 0.000 64.8 704 | 0.826
DEFC (L1 et al., [2020) 49.9 68.9 | 0.800 69.0 | 709 | 0.584
FCMI (Zeng et al.| [2023) 88.4 | 86.4 | 0.998 70.0 | 71.2 | 0.926
FCA v 89.0 | 79.0 | 0.999 67.6 | 70.5 | 0.967

Table [3] presents the comparison results, showing that FCA performs similarly to the state-of-the-
art method FCMI, while mostly outperforming the other three baselines — SFC, VFC, and DFC.
Although DFC achieves slightly higher ACC and NMI values on OFFICE-31 dataset, its Balance is
significantly lower (0.584), while FCA achieves the highest (0.967). These results are notable because
FCA operates as a two-step approach (i.e., pre-training the latent space and then performing FCA on
the pre-trained latent space) for visual clustering, whereas DFC and FCMI are end-to-end methods.

Moreover, FCA offers practical advantages: (i) it requires fewer hyper-parameters than the end-to-end
methods, which would face challenges in tuning hyper-parameters based on ACC or NMI in practice,
due to the absence of ground-truth labels during training; and (ii) it can leverage any pre-trained latent
space, enhancing adaptability. Further details are provided in Section[C.3.2] of Appendix, including
Table [5]comparing the fairlet-based method and FCA in visual clustering.

5.4 ABLATION STUDIES

(1) Selection of the partition size m: We empirically validate the efficacy of the partitioning
technique in Section[4.3] by investigating the convergence of Balance and Cost with respect to the
partition size m, by varying m € {256,512, 1024, 2048, 4096, Full}. In Section [C.3.3|of Appendix,
Figure[5]suggests that m = 1024 yields reasonable results, while Table[6]shows a significant reduction
in computation time. Moreover, Figure @:onﬁrms that computation time increases linearly in m?,
as discussed in Section[4.3] (2) Optimization algorithm and initialization of cluster centers: We
also conduct additional ablation studies on the stability with respect to (i) the choice of optimization
algorithm for finding cluster centers, and (ii) the initialization of cluster centers. Refer to Sections
and of Appendix, which confirm that FCA is robust to both factors. (3) Varying K
We further confirm the uniform effectiveness of FCA with respect to K. As shown in Figure[/|in
Sectionof Appendix, FCA outperforms the baseline methods across all K € {5, 10, 20,40},
on ADULT dataset.

6 CONCLUSION AND DISCUSSION

This paper has proposed FCA, an in-processing algorithm for fair clustering. FCA is motivated by the
theoretical result that finding the optimal perfectly fair clustering is equivalent to finding centers in the
aligned space. FCA algorithm is based on two well-known algorithms, the K -means++ algorithm and
linear programming, making it transparent and stable. We have empirically demonstrated that FCA
achieves near-perfect fairness and superior clustering utility, when compared to existing methods.
Moreover, FCA is robust to the choice of data pre-processing method, optimization algorithm, and
initialization. Additionally, we developed FCA-C, a variant of FCA, to control Balance.

Possible directions for future work are extending FCA for multiple protected groups (see Section
[A3]of Appendix for a feasible approach), or applying FCA to other clustering algorithms such as
Gaussian mixture, which we will pursue in the near future.
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REPRODUCIBILITY STATEMENT

The full proofs of the theoretical results are rigorously presented in Section [BJof Appendix. Key details
regarding the experimental implementation, including the datasets, libraries, and hyper-parameters
used, are outlined in Section[5.1} Further information on the datasets and algorithm implementations
can be found in Sections[C.1|and[C.2] for the three tabular datasets, and in Section [C.3.2]for the two
image datasets, of Appendix. The source code will be made publicly available after acceptance.
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A  SUPPLEMENTARY DISCUSSION

A.1 FAIRLET-BASED METHODS

Fairlet decomposition was first introduced in |Chierichetti et al.|(2017), providing a pre-processing
method for fair clustering. A fairlet is defined as a subset (as small as possible) of data in which the
proportion of the sensitive attribute is balanced within all subsets. It is important to note that the
fairlets are not built arbitrarily; instead, the sum of distances among instances within each fairlet
is minimized (i.e., each fairlet consists of similar instances). Finding such fairlets can be done by
solving the minimum cost flow problem.

Notably, when ny = ni, building fairlets is equivalent to finding the optimal coupling I' in the
Kantorovich problem, which can be understood as a special case of minimum cost problem (Peyré &
Cuturi, |2020; |Chen et al.||2022). Hence, we can say that the fairlet-based methods find the coupling
only once, then apply the standard clustering algorithm. On the contrary, our proposed approach
jointly optimizes both the coupling (i.e., the matching map T') and the cluster centers, to ensure that
they correspond to each other optimally.

After building the fairlets, each fairlet is then deterministically assigned to a cluster. Since fairness
is implicitly guaranteed within each fairlet, the resulting clustering directly becomes also fair. The
representatives of each fairlet can be arbitrarily chosen when ng = nj, or chosen by the medoids (or
possibly the centroids) when ng # n1, as suggested in |Chierichetti et al.|(2017). Then, a standard
clustering algorithm is applied to the set of these chosen representatives. However, these choices of
representatives result in approximation and suboptimality in view of clustering utility.

On the other hand, the computational cost is high, with most of the time spent finding the fairlets due
to the quadratic complexity of the minimum cost flow problem. To address this issue, SFC (Backurs
et al.L[2019) has proposed a scalable algorithm for fairlet decomposition by using a reduction approach
using metric embedding and trees. See Section [C.2.2|for details on the SFC algorithm.

A.2 OPTIMAL TRANSPORT PROBLEM

The notion of Optimal Transport (OT) provides a geometric view of the discrepancy between two
probability measures. For two given probability measures P; and P2, a map T : Supp(P1) —
Supp(P2) is defined as ‘transport map’ if T xP; = P2, where TP (A) = P1(T71(4)),VA, is
the push-forward measure. The OT map is the minimizer of transport cost among all transport maps.
That is, the OT map from P; to P is the solution of mint.t,p,—p, Ex~p, (c(X, T(X))) for a
pre-specified cost function c (e.g., Lo distance), which is so-called the Monge problem.

Kantorovich relaxed the Monge problem by seeking the optimal coupling (joint distribu-
tion) between two distributions. The Kantorovich problem is mathematically formulated as
infremp, ) Ex yor (¢(X,Y)) where II(Py, P2) is the set of all joint measures of P; and Ps. For
two empirical measures, this problem can be solved by the use of linear programming as follows. For

™ the cost matrix between

given two empirical distributions on Xy = {XEO)}?:OI and X = {x§.1) oy

the two is defined by C := [¢; ;] € R}°*"* where ¢; ; = %9 — x§1) |%. Then, the optimal joint

%

distribution is defined by the matrix I" = [v; ;] € R’°*"" that solves the following objective:

i=1 1 ji=

no ni
min [|[CO T, = min ci ;%5 St > g = %7 Zl%j = nio’%’j > 0. @)

=
This problem can be solved by the use of linear programming. For the case of large n with ng # nq,
various feasible estimators have been developed (Cuturi, 2013} |Genevay et al.,2016), e.g., Sinkhorn
algorithm (Cuturi, 2013)). Note only practical implementations, but theoretical aspects such as
minimax estimation have also discussed deeply (Deb et al., 2021} Hiitter & Rigollet, 2021} |[Seguy
et al.|[2018; [Yang & Uhler, |2019). Recently, the OT map is utilized in diverse domains, for example,
economics (Galichon, 2016; |Chiappori et al., [2010), domain adaptation (Damodaran et al.| 2018
Forrow et al.,[2019)), and computer vision (Su et al., 2015} |Salimans et al., [2018])). Several studies,
including Jiang et al.|(2020); |IChzhen et al.|(2020)); \Gordaliza et al.|(2019), have also employed the

OT theory in the field of algorithmic fairness for supervised learning.
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A.3 EXTENSION TO MULTIPLE PROTECTED GROUPS

In this paper, we mainly focus on the case of two protected groups, for ease of discussion. However, it
is possible to extend FCA to handle multiple (more than two) protected groups. The idea is equivalent
to the case of two protected groups: matching multiple individuals from different protected groups.

The case of equal sample sizes Let G be the number of protected groups, and denote s* &€
{0,...,G — 1} as a fixed (reference) sensitive attribute. For the case of ng = ... = ng_1, we
can similarly decompose the objective function in terms of matching map, as follows. First, we
decompose the clustering objective similar to the proof of Theorem 3.1}

K
C(H,AO, s aAGfl) = EZAS(X)”X — ,LLk||2
k=1
®)

K
1
=GB S AKX =l + D0 T (X) = l? |
k=1 sl#s*
where T/ is the one-to-one matching map from X+ to Xy forall s’ € {0,...,G — 1}. Note that

T, then becomes the identity map from X« to X« for s’ = s*. Then for any given x and p,, we
can decompose [|x — pu || by

P grser (X = T () ||* 1%+ Xz Tor(x) ’
— Mk
G G ©)
o Dwzer (X =Ty (x)) x+3 . To(x) o
G ) G HE ) -
We similarly decompose || Ty (x) — pu||* by
2
ZS”#S’,S”E{OV..,Gfl}(TS/ (X) — Ts// (X)) X + Zs/#s* TS’ (X) 2
(10)
ES”#S’,S”E{O,.“,Gfl}(Tsl (X) — TSN(X)) X + ZS/#S* TS/ (X)
+2 G ’ G — MK ) -

By summing up the above GG many terms, we have the final result that

C(IJ’vA(h .o 7AG71)

K G-1 - , 2 Ty 2
N S H (Z Zs/#(Ts(?é) T (X)) +HX+ZSZS X )
k=1 s=0

(1)
Note that this result holds for any s* € {0,...,G — 1}.
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The case of unequal sample sizes For the case of unequal sample sizes, we also derive a similar
decomposition (i.e., eq. (12)). We first define the alignment map as: T*(xq, ..., Xg_1) := ToXg +
...+ mTG—1Xg—1. Then, we find the joint distribution and cluster centers by minimizing the following
objective:

G—-1 2
E(XO,‘.WXGfl)NQ Z Gﬂ-G Z (XS _XS’) +mkin||TA(X07"'7XG—1) _Mkl|2 , (12)
s=0 s'#s
where ¢ 1= Hf;ol Ts.

The proof idea is similar to the case of two protected groups, in Theorem [3.3] We first re-
call the original K-means objective: C(u, Ao, ..., Ag_1) = Eszzl As(X)p|IX — px]|> =

Zf;ol mslEg Z;{:l As(X)x||Xs — prl|?. Consider a set of joint distributions of X, ..., Xg_1
given p as Q := {Q({xq,...,xg_1}p) : x5 € Xs,5 € {0,...,G — 1}}. Then, we can show that
there exists a Q = Q({xo, ..., xg-1}|p) € Q satisfying

G-1 K
Clp, Ao, Ac1) = > mBe Y AKXkl X — e
s=0 k=1 (13)

G—-1
= Exo,....Xg-1)~0 (Z s [| X — Mk”Q) )

s=0
by using the same logic in the proof of Theorem [3.3] Furthermore, we can reformulate it as

G—-1 2
Ex,,.. X ~a | 2 G D (X, = Xy) +mkin||TA(X0,...,XG,1)—,uk||2 . (14)
s=0 s'#s

with the assignment functions for fair clustering given as

As(x5)k = Q | argmin |[7sxs + Z Ty Xgr — ,uk/||2 = k‘Xs =x5|,vs€{0,...,G —1}.
K s'#s
(15)

Furthermore, since finding the joint distribution for multiple protected groups is technically similar to

the case of two protected groups, the optimization of the objective (I2) can be solved using a linear
program.
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A.4 EXTENSION TO K-CLUSTERING WITH THE L, NORM (p > 1)

For a given K -clustering with the L, norm (p > 1), we can derive a decomposition result similar to
the K -means clustering problem, which is mainly discussed in this paper.

The objective of K -clustering for the L,, norm (p > 1) is given by E 22{:1 Ag(X)[|X — k|| For
the simple case where ng = nq, using the triangle inequality, we can derive an upper bound for the
objective similar to Theorem 3.1}

P)

K K
X — T(X)
E ];Asoc)kux — uilly < Es ; As(X)s (H >
Hence, we can minimize this upper bound of the fair K -clustering objective for the L,, norm. Note
that using the L.; norm corresponds to the K -median clustering.

9 - Mk

HX—I—T(X)

See Section [C.3.8]for experiments based on this approach, showing the outperformance FCA over
SFC in view of the K -median clustering.

A.5 OTHER FAIRNESS NOTIONS IN CLUSTERING

Apart from the group fairness discussed in this paper, several other fairness notions have been
explored in clustering problems.

Proportional fairness Proportional fairness, initially introduced by [Chen et al| (2019), is a fairness
notion that ensures that cluster sizes are proportionally balanced. It aims to find a clustering, where
any group of at least n/ K data points should not be able to form a new cluster center that improves
the clustering cost for all points in the group. The primary focus in proportionally fair clustering is to
study the approximation errors. For example, [Micha & Shah provided a better approximation
error than that of the algorithm from [Chen et al.| (2019)), while [Aziz et al| (2024)) showed that there

exists a proportionally fair clustering that achieves a (1 + \@)—approximation.

Individual fairness Individual fairness, which was initially introduced by (2019), is a
fairness notion that ensures that every data point has an assigned cluster center within the radius of
the smallest ball around the data point containing at least n/ K points. Initial studies by
focused on approximation guarantees for individually fair clustering. More recently,
(2020) studied more general approximation errors, while (2022) considered a

specific scenario where outliers exist in given data.

Notably, there have been several efforts to explore the relationships between different fairness notions
in clustering. For example, [Kellerhals & Peters|(2024)) demonstrated that algorithms for individual
fairness and proportional fairness can be compatible for some sense. We believe that investigating
further connections among various fairness notions including group, proportional, and individual
fairness would be a promising direction for future research.
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B PROOFS OF THE THEOREMS

B.1 PROOF OF THEOREM[3.1]

Theorem [3.1] For any given perfectly fair deterministic assignment function .4 and cluster centers p,
there exists a one-to-one matching map T : X; — X, such that, for any s € {0, 1},

IX - TX)[* || X+T(X) > 16

K
C (1, Ao, A1) —Es;As(x)k< I +‘ 5
Proof of Theorem@] Without loss of generality, let s = 0. First, it is clear that we can construct a
one-to-one map T that maps each x € X% := {x € Ay : Ag(x)r = 1} to a unique x’ € X*! :=
{x' € X : Ai(x)r = 1} forall k € [K]. Thatis, {T(x) : x € X*%} = x%! vk € [K] and
{T(X)Z X € Ab} =X.

Then, for the given T, we can rewrite the clustering cost as

K K
1
C(p, Ao, A1) =E E As(X)i||X — px|* = iEO E Ao(X)k (I|X — pel]? 4 IT(X) — ,uk||2) V)]
k=1 k=1

For any given x and y,, we decompose [|x — puy||? as:
T T
o XET0) x4 T

2+2<X_X+T(x) x + T(x) _Mk>.

2
I* =

% — 3

x|
4

x + T(x)
2

— Mk D) ) 2

We similarly decompose ||T(x) — pu||? as:
2

x+T(x) +X+T(X)

D) 9 - Mk

1760 - el = T

2

x — T(x)|? x + T(x x+T(x) x+T(x
Adding the two terms, we have
x — T(x)|? x + T(x 2

Finally, we conclude that

K

1

2E0 > Ao (IX = el + [T = )
k=1

K
1 X — T(X)|]? X + T(X)
=2Eo;«40(x)k'2< 1 + 5 —

(13)

)
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B.2  PROOF OF THEOREM[3.3]
Theorem 3.3 Let p* and Q* be the cluster centers and joint distribution solving
min_ Bx, x,)~0 <27T0W1||X0 = X4* + min | T*(Xo, X1) — Hk||2> : (19)
n,QeQ k

where T4 (xg,X1) = ToXg + 71X1, which is called the alignment map.
Then, (pu*, Ay, A7) is the solution of the perfectly fair K-means clustering, where A§(x)x =
Q* (arg miny, | T4(x,X1) — pwr||? = k|Xo = x) and A} (x)y, is defined similarly.

Proof of Theorem[3.3] Let X, = X|S = s,s € {0,1}. For given (u, Ao, A1), recall the original
K -means objective: C(p, Ao, A1) == E Y1 As (X)X — x| = moEo Yy Ao(Xo) ]| Xo —
el 4 miBa 3y An(XKa)xl X — 2.

Consider a set of joint distributions of X, X; given p as Q := {Q({xo,x1}|pt) : xo € Xp,x1 €
X1 }. We show that there exists a Q = Q({xo, X1 }|pt) € Q satisfying

K K
O, Ao, Av) = moBo 3 Ao(Xo)elXo = jurl* + mEL 3 A KulXo =gl 0
k=1 k=1
= E(xy,x,)~0 (M0l Xo — k|| + 1| X — pr %)
Let p

A A
Q({x0,x1}|p) = Z %MPO({XO})R({M}), (1)

k=1 '

where Ck = ]E.As(X)k = Evo(Xo)k = ]ElAl (Xl)k Then,
Exo. %)~ (70l Xo = pu||* + 71 X1 — pre]|?)

K
> (Z Ao (x0)kmollx0 = ual[PPo({x0}) + Y Ar(xa)mi[lx1 — uk-HQHDl({Xl})) )

k=1

X0 X1

] >

=) (EomoAo(Xo)k[Xo — pel® + By A (X)) k| X1 — pl|?) = C(p, Ao, A1),
k
which concludes eq. (20). Our original aim is to find (p, Ao, A1) minimizing C(p, Ao, A;). Let

u(x) = pg~, where k* = arg min, Hx—uﬂ? Let fi(xg,X1) := py, where k' = arg min,, ||moxo+

Il
-

m1x1 — pg||?. For given Q defined in eq. (21)), similar to Theorem [3.1] we can reformulate
E(xo,x,)~0 (m0[Xo — u(Xo) [|* + 1| X1 — pu(X1)[|?) 23)
= E(x.x1)~0 (2m0m1 [ Xo — Xu[|* + [0 X0 + m1 X1 — i(Xo, X1)[|?) -
In turn, the assignment functions are given as
Ao(x0)r :=Q (argkrlnin | moxo + m Xy — pupr||® = k"XO = xo) (24)
and
Ai(x1)r :=Q (argkrlnin |moXo + m1x1 — ,uk/||2 = kz’Xl = x1> . (25)

Hence, C(H,Ao,Al) = ]E(X07X1)~Q (27TQ7T1||X0 — }(1”2 + mink ||7T0X0 + 7T1X1 — ﬂkHQ) .

(About Remark [3.4) As discussed in Section [3.1]and Remark [3.4] we additionally show that the
optimal perfectly fair assignment function is deterministic when ny = n;. For a given x; € Xp,
note that ; ; > 0 for a unique j € [n1], meaning that Q corresponds to the one-to-one matching
map T in Theorem (.- finding @ becomes equivalent to finding the optimal permutation when
ng = nq, see Remark 2.4 in |Peyré & Cuturi| (2020) for the theoretical evidence). Also, note that
Ty = m = 1/2. Then, we have Af(x;)r := Q* (argminy, T4 (x;,X1) — pu ||* = k| Xo = x;) =
1(arg min, H%(xl) — p||? = k), which is deterministic.

O
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B.3 PROOF OF THEOREM [4.1]

Theorem 4.1| Minimizing the FCA-C objective C'(Q, W, ) with the corresponding assignment
function defined in eq. (6) is equivalent to minimizing C(p, Ao, A1) subject to (Ag, A1) € A..

Proof of Theorem[_1] 1t suffices to show the followings: A and B.

A. For given Q, W, p, let Ap and A; be the constructed assignment functions, defined in eq.
@. Then, we have C(Q, W, u) = C(p, Ag, A1) and (Ap, A1) € A..

B. (i) For given p and (A, A1) € A, there exist Q and W s.t. C‘(Q, W, n) < C(p, Ao, Ar).

e Proof of A.
For given Q, W, u, we construct the assignment functions as in eq. (). In other words, we define
Ao(x0)r = Pl({argmink, |TA (x0, X1) — par||? = k, (%0, X1) € Wc})
+1 (arg miny, [|xo — pwr||? = k) - P1({(x0, X1) € W}),

and the assignment function A, is defined similarly. Then, we have C(Q, W, ) = C(p, Ao, A1)
by its definition.

Furthermore,
K

D [EoAo(X)x — ErAr(X)x|
k=1
2

k=1

EoQx, (argmin [TA(Xo, X1) — p ||* = k, (Xo,X1) € WC)
kl

—E1Qx, (argmin [TA(Xo, X1) — p ||* = k, (Xo,X1) € WC)
k/

+ EOQxl ((X07X1) S W) ]l(argmin ||X0 — /.l/k/HQ = k;)
k:/

— E1Qx, ((X0,X1) € W) IL(argmin | X; — ,uk/HQ = k)‘
k:/

I
M=

EoQx, ((Xo,X1) € W) 1(arg min || Xo — e ||* = k)
kl

B
Il

1

— ElQXO ((Xo,Xl) c W) Jl(argmin ||X1 — ,u,k/Hz = ki)‘
k/

K
=3 [ 200 X0) € W) - (Blargamin X ~ e = F) = Largamin X~ ] =) ) ]

k:l k/ k/

K
<3, ([1(argmin %o — = ) = LGangmin %) — o = )] 1060, %) € W)

k 1 k/ k/

Pxy,x, | 1((Xo,X1) € W)‘

<e¢,

(26)
which implies (Ag, A;) € A..

e Proof of B.

For each k € [K], let 6, = min{Eq(Ao(X))x, E1(A1(X))x }. We decompose A (-)x = A( g+
AS( )k, where As()e = 5 As () /Es(As (X)) k- Then, Eo.Ao(X) = E1 A1 (X)), forall k € [K].
Define A, (X)g41 := Zszl A%(X). Note that Eg A, (X) g1 < €.
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Now, for given p, we define a probability measure on Xy x X} by

K 7 ~
Q(dxo, dxy|p) = > %?mxl)k

k=1

AO(XO)KJ,-lAl (Xl)K+1
OK+1

Po(%0)p1(x1) + Po(xo0)p1(x1),

where dr 11 =1 — Zle 01, and pg, p1 are the densities of Py, P1, respectively.

Note that g1 = ESAS(X)KH and thus 011 < e. In addition, for given (xg,x1) € Xy x X1, we
define a binary random variable R(x¢, x;) such that
Pr(R( ) =1) AO(XO)K:Sr;ff(XI)KHPO(Xo)pl(X1)
r(fi(xg,x1) = 1) =
Q(dxo, dx1|p)

For given x € X, let ju(x) = puy+, where k* = argmin, ||x — || For given (xo,x1) € Xp x &4,

let ji(x0,X1) = s, where k' = arg min,, | moxo + m1x1 — pux||%. Then, it holds that C(Q, R, i) <
C(H: A07 Al)a where

C’(Q7 R, p) = E@,R[{ZWOTUHXO - XlH2 + ||moXo + m X1 — ﬂ(XO,X1)||2}(1 - R(X(),Xl))}
+ Eq.r [{mo]|Xo — u(Xo)||* 4+ m1 X1 — u(X1)||*} R(Xo0, X1)] -

The final mission is to find W C Xy x A} such that R(x¢,x1) = 1((x0,x1) € W). For this, define
n(x0,%x1) = 2mom||xo — x1||* + ming | TA(x0,%1) — ux||?. Let 7. be the eth upper quantile of
U(Xo, Xl) and let ~

W = {(x0,X1) : n(X0,X1) > 7} (27)

Then, we can find W > W such that C(Q, W, u) < C’(Q, R, i) and QW) = € (see Remark
below), which completes the proof.

O

Remark B.1 (The case when the densities do not exist). When the distribution of n(Xg, X1) is strictly
increasing, we have Q(W) = e. If not, we can find W such that W D {(x¢,%1) : 7(X0,X1) > €}
with QW) = e when Q has its density.

When Q is discrete, the situation is tricky. When ng = ny, the measure Q minimizing C’(Q, W, )
has masses 1/ng on ng many pairs of (Xo,x1) among Xo x Xi. In this case, whenever nge is an
integer, we can find W such that Q(W) = e.

Otherwise, we could consider a random assignment. Let F, be the distribution of 1(Xo,X1).
Suppose that F,, has a jump at 1. In that case, QW) < e. Let (x§,x}) be the element such
that n(x$,X5) = ne. Then, we can let R(x{,x3) = 1 with probability (e — QOW))/Q({x§, X7 }),
R(x9,%1) = 1 for (x9,x1) € W and R(xq,x1) = 0 for (xg,x1) € (W U {x},x;})°. The current
FCA-C algorithm can be modified easily for this random assignment.
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B.4 PROOF OF COROLLARY

Corollary The assignment functions in A, satisfies [Balance — 1| < Ce¢, where C =
MaXesk FTA (K70

Proof of Corollary@.2] By the fact that for all £ € [K], E(As(X)r) = moEo(Ao(X)x) +

m1E1(A1(X)g), we have

Eo(Ao(X)x) — E1(A1(X)k)
E(A (X) ) E(As(X)k)
E(AX))
E(As(X)r)

Combining and the definition A, = {(Ao, A7) : Zszl [Eo(Ag(X)k) — E1(A1(X)i)| < €},

we have

‘ES(AS(X)k) 1 (1 . ]Es(As(X)k>>’
E(As(X)k) 7 " E(As(X)k) (28)

1
,Vs € {0,1}.

Es(As(X)g) ‘ T Tyl
SRR g T IR (Ae(X)) — B (A (X)) < = e Vs e {0,1).
B | = o B0 B XIN gyt e € 01
(29)
Since this bound holds for any s € {0,1} and & € [K], we conclude that |Balance -1 =1-
Balance = 1 — ming¢ (g minge 0,1} % < Ce, where C' = max; j, m O
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C EXPERIMENTS

C.1 DATASETS

ADULT dataset (Becker & Kohavi, [1996) can be downloaded from https://archive.is.
uci/ml/datasets/adult., We use 5 continuous variables (age, fnlwgt, education,
capital-gain, capital-loss, hours—-per-week). The total sample size is 32,561. The
sample size for S = 0 and S = 1 (resp. female and male) are 10,771 and 21,790, respectively.

BANK dataset (Moro et al., [2012) can be downloaded from https://archive.ics.uci.
edu/ml/datasets/Bank+Marketing. We use 6 continuous variables (age, duration,
euribor3m, nr.employed, cons.price.idx, campaign). The total sample size is 41,108.
The sample size for S = 0 and S = 1 (resp. not married and married) are 16,180 and 24,928,
respectively.

CENSUS dataset (Meek et al.) can be downloaded from https://archive.ics.uci.edu/
ml/datasets/US+Census+Data+ (1990). We use 66 continuous variables (dAncstryl,
dAncstry2,iAvail, iCitizen, iClass, dDepart, iDisabll, iDisabl2, iEnglish,
iFeb55, iFertil, dHispanic, dHour89, dHours, iImmigr, dIncomel, dIncome2,
dIncome3, dIncomed4, dIncomeb, dIncome6, dIncome7, dIncome8, dIndustry,
iKorean, iLangl, iLooking, iMarital, 1iMay75880, iMeans, iMilitary,
iMobility, iMobillim, dOccup, iOthrserv, iPerscare, dPOB, dPoverty, dPwgtl,
iRagechld, dRearning, iRelatl, iRelat2, iRemplpar, iRiders, iRlabor,
iRownchld, dRpincome, iRPOB, iRrelchld, iRspouse, iRvetserv, iSchool,
iSept80, iSubfaml, iSubfam2, iTmpabsnt, dTravtime, iVietnam, dWeek89,
iWork89, iWorklwk, iWWII, iYearsch, iYearwrk, dYrsserv). We subsample 20,000-
many data, as done in |Chierichetti et al.|(2017); Bera et al.|(2019); [Esmaeili et al.| (2021)). The sample
size for S = 0 and S = 1 (resp. not married and married) are 9,844 and 10,156 respectively.

For each dataset, we use only the numerical variables as introduced above, consistent with previous
studies, e.g., Bera et al.| (2019)); Ziko et al.| (2021), to name a few. The variables of all datasets are
scaled with zero mean and unit variance.

C.2 IMPLEMENTATION DETAILS

C.2.1 PROPOSED ALGORITHMS

FCA We use the POT library (Flamary et al.[2021)) to find the optimal joint distribution Q (i.e.,
I"). For updating cluster centers, we adopt the K -means++ algorithm (Arthur & Vassilvitskiil, 2007)
from the implementation of scikit—-learn package Pedregosa et al. (2011). The iterative process
of updating cluster centers and the joint distribution is run for 100 iterations, with the result where
Cost is minimized being selected.

FCA-C To control Balance, we vary €, which is the size of WW. The value of ¢ is adjusted in
increments of 0.05, ranging from 0.1 to 0.9. We also use a similar partitioning technique in Section
[.3| for FCA-C with m = 2048. For stability, at the first iteration step, we find WV based on fixed
cluster centers p, initialized using the K -means++ algorithm.

The source code for our proposed algorithms will be made publicly available after acceptance.

C.2.2 BASELINE ALGORITHMS

Scalable Fair Clustering (SFC) (Backurs et al.,[2019) We directly use the official source code
of SFC, available on the authors’ GitHu SFC provides a fast and scalable algorithm for fairlet
decomposition, which builds the fairlets in nearly linear time. The given data are first embedded
to a tree structure (hierarchically well-separated tree; HST) using probabilistic metric embedding,
where we seek for optimal edges (as well as their nodes) to be activated that satisfy Balance ~ 1.
Then, the linked nodes are then aggregated as a fairlet. This process can build fairlets in nearly linear
time while minimizing the cost of building them. After building these fairlets using SFC, we apply

https://github.com/talwagner/fair_clustering
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the standard K-means algorithm on the fairlet space (i.e., the set of representatives of the obtained
fairlets).

Fair Clustering under a Bounded Cost (FCBC) (Esmaeili et al., 2021) We use the official
source code of FCBC, available on the authors’ GitHu FCBC maximizes Balance under a cost
constraint, where the cost constraint is defined by the Price of Fairness (PoF) - ‘cost of fair clustering
(the solution) / cost of standard clustering’. However, since the authors mentioned the constrained
optimization problem is NP-hard, they reduced the problem to a post-processing approach (i.e., fairly
assigning data under the cost constraint, with pre-specified centers opened by a standard clustering
algorithm). We set the value of PoF to 1.2 to achieve Balance ~ 1.

Fair Round-Robin Algorithm for Clustering (FRAC) (Gupta et al., 2023) We directly follow
the official source code of FRAC, available on the authors’ GitHu FRAC provides an in-loop
post-processing approach to fairly assign data from each protected group to given cluster centers
found by a standard clustering algorithm. In other words, the fair assignment problem is solved at
each iteration of standard clustering algorithm.

Variational Fair Clustering (VFC) (Ziko et al., 2021) We use the official source code of
VFC, available on the authors’ GitHu The overall objective of VFC is Eming || X — pul* +

A YK KL ([7‘(077'(1]” [”?E]%jﬁ%gi)k, ”ﬁ{ﬁg&?k}) , where \ is a hyper-parameter to control

Balance. A higher A results in higher Balance, with KL = 0 <= Balance = 1. We
run the code with multiple trials, by varying the values of \. For Table 2] we select the best A that
achieves the highest Balance and report the corresponding performance for the chosen hyper-
parameter, as the authors have done. For Figure[3] we present all the results obtained using the various
values of \. Table 4| below provides the values of VFC’s hyper-parameters used in our experiments.

Table 4: The hyper-parameters used in VFC for searching a clustering with maximum achievable
Balance for each dataset. The bold faces are the recommended ones by the authors. The underlined
values are the ones we use for maximum achievable Balance.

Dataset | Lo normalization || Hyper-parameters
ADULT (6] {5000, 7000, 9000, 10000, 11000, 12000, 13000, 13600, 14200}
X {5000, 7000, 9000, 10000, 11000, 12000, 13000, 15000, 20000, 22000, 23000}
BANK 0 {5000, 6000, 7000, 9000, 10000, 11000, 12000, 12300}
X {10000, 12000, 13000, 15000, 17000, 19000, 25200, 26000}
CENSUS o {100,200, 500, 700, 1000, 1500, 2000}
X Failed

Note that VFC’s superior performance over other two well-known FC algorithms from Bera et al.
(2019); [Kleindessner et al.| (2019) has already been shown in|Ziko et al.| (2021), which is why we
omit these two methods as baselines in our experiments.

*https://github.com/Seyed2357/Fair-Clustering-Under-Bounded-Cost
‘nttps://github.com/shivi98g/Fair-k-means—Clustering-via-Algorithmic-Fairness
Shttps://github.com/imtiazziko/Variational-Fair-Clustering
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C.3 OMITTED EXPERIMENTAL RESULTS

C.3.1 PERFORMANCE COMPARISON RESULTS - CONTROL OF BALANCE (SECTION[5.2))

We here provide the trade-off for various fairness levels, when the data are not Le-normalized. Similar

to Figure[3] FCA and VFC show similar trade-offs, while VFC cannot achieve certain high values of
Balance.

Adult (without L2) Bank (without L2) Censusll (without L2)
175
1 m  Standard * * x> * 31 m Standard *
1904 o VFC 170 * ] * VFC(failed)
15{ * FCAC * * * * FCA-C
= 165 * e * *
g * g * g o ®E*
O 175 * O 100 * O a * *
* o m Standard *‘y*
e oot Kok Kk sl %X o VFC 0] kK
165 pes o * FCA-C 2
150 L] L]
04 05 os ) ) 0G0 o085 070 075 080 085 090 095 Lo ) ) Y] ) ) To
Balance Balance Balance

Figure 4: Balance vs. Cost trade-offs for (left) ADULT, (center) BANK, and (right) CENSUS
datasets. Black squares (W) are from the standard clustering, orange circles (o) are from VFC, green
stars (x) are from FCA-C, and orange dashed lines (- -) are the maximums of Balance that VFC
can achieve. The data are not Ly-normalized.

In specific, on CENSUS dataset without Lo normalization, VFC fails, i.e., it does not achieve higher
Balance than the standard clustering for any A. We find that the failure of VFC on CENSUS dataset
(without Ly normalization) is due to explosion of an exponential term calculated in its algorithm.
There exists an exponential term with respect to the clustering cost in the calculation of the optimal
assignment vector in the VFC algorithm, and thus when the clustering cost becomes too large, VFC
fails due to an overflow. Note that the input dimension of CENSUS dataset is 66, while those of
ADULT and BANK are 5 and 6, respectively. While the clustering cost with Lo normalization is
bounded regardless of the dimension, the clustering cost without L, normalization is proportional to
the input dimension. This is why VFC fails only for CENSUS dataset without Lo normalization. In
contrast, as FCA does not fail at all regardless of the L, normalization because there is no exponential
term in the algorithm, meaning that it is numerically more stable than VFC.
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C.3.2 APPLICABILITY TO VISUAL CLUSTERING (SECTION [5.3])

Settings: datasets, baselines, and measures REVERSE MNIST is a mixture of two image digit
datasets: the original MNIST and a color-reversed version (where black and white are swapped).
OFFICE-31 is a mixture of two datasets from two domains (amazon and webcam) with 31 classes.
Both datasets are used in state-of-the-art visual FC methods (Li et al., [2020; |[Zeng et al., 2023).

For the baseline, we consider a state-of-the-art FC method in vision domain called FCMI from Zeng
et al.|(2023). FCMI learns a fair autoencoder with two additional loss terms: (i) clustering loss on
the latent space and (ii) mutual information between latent vector and color. While FCMI is an
end-to-end method that learns the fair latent vector and perform clustering on the fair latent space
simultaneously, FCA is applied to a pre-trained latent space obtained by learning an autoencoder with
the reconstruction loss only. We also report the performances of DFC (Li et al., [2020) which was the
main baseline in the FCMI paper, along with SFC (Backurs et al.,|2019) and VFC (Ziko et al.| [2021),
even though these two methods are not specifically designed for the vision domain.

The clustering performance for the two image datasets is evaluated by two classification measures ACC
(accuracy calculated based on assigned cluster indices and ground-truth labels) and NMI (Normalized
Mutual Information between ground-truth label distribution and assigned cluster distribution), which
are consistently used in|Li et al.|(2020); [Zeng et al.| (2023), as datasets involve ground-truth labels
(e.g.,0,1,...,9 for REVERSE MNIST and the 31 classes for OFFICE-31). The fairness performance
is evaluated by Balance.

Results Table3|in the main body shows that FCA performs similar to FCMI, which is the state-of-
the-art, while outperforming the other baselines with large margins in terms of Balance. Note that
SFC, VFC, and FCA are two-step methods, i.e., find fair clustering on the pre-trained (fair-unaware)
latent space, and FCA is the best among those. Furthermore, on the other hand, DFC and FCMI are
end-to-end methods so it is surprising that FCA outperforms DFC and performs similarly to FCMI.

Further comparison between the fairlet-based method and FCA in visual clustering We
compare the fairlet-based method and FCA using OFFICE-31 dataset, considering (i) not only the
overall clustering utility, (ii) but also the similarity of matched features. For a clear comparison,
we sample a balanced subset (w.r.t. the label and sensitive attribute) from the original (imbalanced)
dataset. Specifically, we ensure that the number of samples with the same label is equal across the
two protected groups (i.e., the two domains). As a result, we have 795 images from both the amazon
and webcam domains. We then find fairlets or apply FCA on this balanced dataset. Note that finding
fairlets when ny = n; is equivalent to finding the optimal transport map (Peyré & Cuturi, 2020).

Table [5] below presents the comparison results using various measures, including performance
measures with respect to matching (the matching cost and how much images with the same label
are matched) and clustering (Cost, ACC, and NMI). While the fairlets tend to match more similar
features (i.e., the matching cost is lower) as expected by the definition of fairlets, FCA exhibits a
better ability to collect images with same labels into clusters (i.e., lower Cost, higher ACC, and
higher NMT). Moreover, in visual clustering, matching similar features in the pre-trained latent space
does not always guarantee that images with the same label are matched (FCA achieves a higher
proportion of matchings where images share the same label compared to fairlets). These results
suggest that while fairlets provide optimal matchings in terms of feature similarity, however, they
may be suboptimal in terms of label similarity and overall clustering utility.

Table 5: Comparison of the fairlet-based method and FCA. ‘Matching cost’ is defined by the average
distance between two matched features. ‘Matching = Label’ is defined by the average ratio of images
with the same label being matched. Bold-faced values indicate the best performance.

. Matching performance Clustering performance
Matching method H Matching cost (1) | Matching = Label (1) H Cost ({) | ACC (1) | NMI (1)
Fairlet-based 0.211 0.595 0.278 65.8 71.0

FCA v 0.241 0.631 0.269 69.3 72.2
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C.3.3 ABLATION STUDY: SELECTION OF THE PARTITION SIZE m (SECTION|[5.4))

Figure[5]indicates that using a partition size of around 1000 yields reasonable results. Specifically,
using m values greater than 1000 shows similar performance compared to those obtained with
m = 1024.
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Figure 5: Variations of Cost and Balance with respect to the partition size. (Left, Center, Right) =
(ADULT, BANK, CENSUS). (Top, Bottom) = (with L, normalization, without L, normalization).

We further provide the elapsed computation time for various partition sizes, up to using the full
dataset. Using m = 1024 as the baseline, we calculate the relative computation time (%) for other
partition sizes. The comparison, presented in Table[6|below, shows that using m = 1024 leads to a
significant reduction in computation time.

Table 6: Comparison of computation time with different partition sizes up to using the full dataset. For
each partition size and dataset, we provide the averaged relative elapsed time per a single iteration,
when compared to computation time spent for m = 1024.

Partition size m

(Relative) elapsed time per iteration ‘ 256 | 512 | 1024 v | 2048 | 4096 | Full

BANK (n = 41108, d = 6) 14% | 43% 100% 161% | 288% | 3,308%

ADULT (n = 32561,d = 5) 17% | 58% 100% 140% | 344% | 3,184%
CENSUS (n = 20000, d = 66) 23% | 52% 100% 176% | 375% | 1,064%

Additionally, we observe that computation time is linear in m?2, as shown in Figure |§|below.
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Figure 6: Squared partition size m? vs. Relative computation time. (Left, Center, Right) = (ADULT,
BANK, CENSUS).
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C.3.4 ABLATION STUDY: OPTIMIZATION ALGORITHM OF CLUSTER CENTERS (SECTION[5.4))

We analyze how the FCA’s performance varies depending on the optimization algorithm for finding
cluster centers. For K-means algorithm, we use the K -means++ initialization (Arthur & Vassilvitskiil
from the implementation of scikit-learn package Pedregosa et al|(2011). Note that
we use the algorithm of for K-means algorithm. We consider not only K -means++
initialization but additionally consider the random initialization of centers in this ablation study.
For the gradient-based algorithm, we use Adam optimizer (Kingma & Ba, [2014). We set a learning
rate of 0.005 for CENSUS dataset with L, normalization, and 0.05 for all other cases. To accelerate
convergence, 20 gradient steps of updating the centers are performed per iteration.

Table [7] presents the results comparing these three approaches, showing that FCA is robust to the
choice of the optimization algorithm for finding cluster centers. While the gradient-based algorithm
is also effective and accurate, it requires additional practical considerations such as selections of the
learning rate and optimizer.

Table 7: Comparison of performance with respect to optimization algorithms for finding cluster
centers with Lo normalization (top) and without Ly normalization (bottom). ‘K-means random’
indicates that the initial centers are set randomly at the first iteration, then apply the algorithm from
(1982). ‘K -means++’ indicates that the initial centers are set according to the K-means++
initialization in the first iteration, then apply the algorithm from (1982). ‘Gradient-based’
indicates that the initial centers are set randomly, and the centers are subsequently updated using the
Adam optimizer.

ADULT BANK CENSUS

With L, normalization
2 z Cost | Balance | Cost | Balance | Cost | Balance

FCA (K-means random) || 0.331 0.997 0.265 0.998 0.477 0.992

FCA (K-means++) 0.328 0.997 0.264 0.998 0.477 0.993

FCA (Gradient-based) 0.339 0.993 0.254 0.986 0.478 0.979
ADULT BANK CENSUS

Without Lo normalizatio
tthout L2 atzation | -5 | Balance | Cost | Balance | Cost | Balance

FCA (K-means random) 1.882 0.997 1.864 0.997 32.913 0.989
FCA (K-means++) 1.875 0.997 1.859 0.998 33.472 0.990
FCA (Gradient-based) 1.943 0.993 1.967 0.991 34.121 0.976
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C.3.5 ABLATION STUDY: INITIALIZATION OF CLUSTER CENTERS (SECTION [5.4)

Moreover, we empirically assess the robustness of FCA and FCA-C to the initialization of centers,
and compare them with the standard /K -means++ algorithm. For FCA and the standard K-means++
algorithm, we run each algorithm five times with five different random initial centers. For FCA-
C, we use five random initial centers for each ¢ € {0.1,0.15,...,0.85,0.9}, and calculate the
averages as well as standard deviations. Then, we divide the standard deviation by average 17 times
(corresponding to 17 es), and take average.

Table [§|below reports the coefficient of variation (= standard deviation divided by average) of Cost
and Balance. The results show that the variations of all the three algorithms are similar, indicating
that FCA and FCA-C are as stable as the standard K -means++ with respect to the choice of initial
cluster centers. That is, aligning data to build fair clustering does not affect the stability of the overall
algorithm at all.

Table 8: Standard deviations divided by averages (i.e., coefficient of variation) with respect to five
random different choices of initial centers.

FCA ADULT BANK CENSUS
Cost | Balance | Cost | Balance | Cost | Balance

with Lo 0.012 0.001 0.093 0.006 0.004 0.001
without Lz || 0.010 0.001 0.081 0.003 0.006 0.003

FCA-C ADULT BANK CENSUS
Cost ‘ Balance ‘ Cost ‘ Balance ‘ Cost ‘ Balance

with Lo 0.015 ‘ 0.001 ‘ 0.083 ‘ 0.007 ‘ 0.011 ‘ 0.004

without Lo 0.011 0.001 0.088 0.002 0.010 0.002
K -meanst+ ADULT BANK CENSUS
i Cost ‘ Balance ‘ Cost ‘ Balance ‘ Cost ‘ Balance
with Lo 0.009 0.001 0.078 0.005 0.008 0.002
without Lo 0.011 0.000 0.090 0.004 0.010 0.002
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C.3.6 ABLATION STUDY: VARYING THE NUMBER OF CLUSTERS K (SECTION[3.4)

We analyze the impact of K to the performance of FC algorithms. On ADULT dataset, we evaluate
the FC algorithms with K € {5, 10, 20, 40}. The results are presented in Figureﬂbelow, which show
that FCA outperforms existing FC algorithms across all values of K. In specific, FCA achieves lower
values of Cost than baselines for most values of K, while maintaining the highest fairness level of
Balance =~ 1.

With L, normalization
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Figure 7: Performance of FC algorithms in terms of Cost and Balance for K € {5, 10, 20, 40}.
(Top, Bottom) = (With L, normalization, Without Ly normalization). (Left, Right) = (K vs. Cost,
K vs. Balance).
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C.3.7 COMPARISON OF COMPUTATIONAL COST

FCA versus FCA-C We compare the computation times of FCA and FCA-C, as FCA-C technically
involves an additional step of optimizing WV. TableQ]below shows that while FCA-C requires slightly
more computation time than FCA, the increase is not substantial (a maximum of 3.8%). For this
analysis, the data are Lo-normalized and the batch size is fixed as 1024.

Table 9: Comparison of computation times (seconds) of FCA and FCA-C per each iteration. The
reported results are averages and standard deviations taken over five runs.

Average (Standard deviation) || ADULT | BANK | CENSUS
FCA 5.67 (0.39) 7.31(0.78) 16.10 (2.70)
FCA-C 5.72 (0.47) 7.58 (0.32) 16.46 (1.23)

FCA versus SFC We consider two scenarios to compare FCA and SFC as follows. For this analysis,
the data are L-normalized and the batch size is fixed as 1024 for FCA. Note that FCA consists of an
outer iteration (updating cluster centers and joint distribution alternately), and an inner iteration when
using K -means algorithm.

1. We compare the number of iterations until convergence. For SFC, we calculate the number
of iterations in the /-means algorithm (after finding fairlets). For FCA, we calculate the sum
of the number of iterations (inner iteration) in /-means algorithm for each outer iteration
(updating cluster centers and joint distribution). In this analysis, note that we report the
elapsed time for FCA with 10 iterations of the outer iteration, because the performance of
FCA with 10 iterations of the outer iteration is not significantly different from FCA with
100 iterations of the outer iteration.

As a result, SFC requires smaller number of iterations, compared to FCA (see Table ,
primarily because FCA involves the outer iterations. On the other hand, FCA is almost linear
with respect to the number of K-means algorithm iterations until convergence.

2. To further analyze whether using early-stopping in FCA can maintain reasonable perfor-
mance, we conduct an additional analysis: we fix the number of K -means iterations to 1
per outer iteration of FCA, then perform a total of 10 outer iterations. With this setup, the
total number of iterations for FCA becomes 10, which is comparable to or smaller than that
of SFC (15 for Adult, 10 for Bank, and 32 for Census dataset, as shown in TablelE[). We
observe that the performance of FCA with this early-stopping is slightly worse than the
original FCA (where K-means algorithm runs until convergence), but it still outperforms
SEC (see Table[TT). However, note that this early-stopping approach would be not recom-
mended, at least, for the datasets used in our experiments. This is because running K -means
algorithm takes less than a second or a few seconds, while the computation time of finding
joint distribution dominates the time of running K -means algorithm until convergence.

Table 10: Comparison of computational costs between FCA and SFC: Total number of iterations in
the K-means algorithm.

Total number of iterations || ADULT | BANK | CENSUS
SFC (Backurs et al] 2019) H 15 ‘ 10 ‘ 32
A 57 110 93

Table 11: Performance comparison of SFC, FCA with a total of 10 iterations, and the original FCA
(updating until convergence).

Dataset Il ADULT | BANK | CENSUS

C=cCost,B=Balance || c() | B(H | c) | B | c®) | BXD

SFC 2019) || 3399 | 0.954 | 3236 | 0.957 | 69.437 | 0973
FCA (fotal 10 iterations 1923 | 0.996 | 1.992 | 0.995 | 33.967 | 0.990
FCA (original) 1.875 | 0997 | 1.859 | 0.998 | 33.472 | 0.990
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C.3.8 COMPARISON OF FCA AND SFC BASED ON K -MEDIAN CLUSTERING COST

As SFC is originally designed based on the /-median clustering objective, for a more fair comparison,
we compare FCA and SFC based on the K -median clustering cost (i.e., L1 cost). In specific, FCA for
K -median clustering cost is modified as follows: (i) The Ly norm in eq. (@) is replaced by the L,
norm. (i) The cluster centers and found by minimizing the L, distance, as we discuss in Section[A-4]
of Appendix.

The results are presented in Table[T2] which show that FCA still outperforms SFC. It implies that the
fairlet-based method still may not always find the optimal matching, even when a clustering objective
more suited to fairlet-based approaches (e.g., L1 norm) is considered.

Let Costy = 1 2 (x,5)eD |IX = Hi(x,5) |1 be the K-median clustering cost.

Table 12: Comparison of Cost; and Balance of FCA and SFC. The data are not Ly-normalized.

Dataset | ApuLr | BANK |  CENsus
C1 =Costy,B=Balance [ Ci() | B |1 [ BM [ D) | BAD
Standard (fair-unaware) 1.788 | 0.418 | 1.989 | 0.620 | 21.402 | 0.043
SFC (Backurs et al.} 2019) 2.979 | 0.950 | 3.056 | 0.827 | 29.597 | 0.913
FCA vV 2.032 | 0993 | 2.383 | 0.993 | 22.927 | 0.978
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C.3.9 PERFORMANCE COMPARISON ON A LARGE DATASET

In this section, we evaluate FCA’s scalability for larger datasets, while the main experiments in
Section ] are conducted on real datasets with sample sizes of around 20, 000 to 40, 000. In specific,
we apply FCA on a synthetic dataset with an extremely large sample size (around a million).

Dataset generation We generate a large (n = 10°) synthetic dataset in R? using a .J-component
Gaussian mixture, as follows:

1. (Mean vectors) We sample J many d-dimensional vectors m;,j € {1,...,J} from a
uniform distribution Unif(—20, 20). To ensure diversity, the distance between any two
vectors is at least 1. These vectors are used as the mean vectors for the Gaussian components.

2. (Covariance matrix) Each jth Gaussian component is assigned a covariance matrix >J; =
071, where o; ~ Unif(1, 3).

3. (Weights) Component weights, denoted as ¢;,j € {1,..., J}, are sampled from a Dirichlet
distribution Diri(ay, . .., oy ) for given parameters o, . . ., a.;.

4. (Completion) The Gaussian mixture model is now completed as Z}]:1 ¢;N(mj, ;). We

set J as an even number, and sample data for S = 0 from J/2 components and for S = 1
from the remaining .J/2 components.

Using this procedure, we construct a dataset with n = 105, d = 2,J = 20, and o = 1,V5 €
{1,...,J}. The resulting dataset contains 320,988 samples for S = 0 and 679,012 samples for
S = 1. All features are scaled to have zero mean and unit variance. Figure [§] provides a visualization
of this synthetic dataset.

n=10°

Feature 2

2 -1 1 2

Featfjrel
Figure 8: The large synthetic dataset withn = 105, d = 2, J = 20, and o; = 1,Vj € {1,...,J}.

Results We fix the number of clusters to K = 10. We compare FCA and VFC in this analysis,
as other baselines incur extremely high computational costs for this dataset. Table[T3]presents the
results, showing that FCA can be scaled-up and is still a favorable FC algorithm for large datasets. In
contrast, VFC still fails to achieve near-perfect fairness, while FCA-C also outperforms VFC at the
maximum achievable Balance for VFC.

Table 13: Comparison of Cost and Balance between FCA (or FCA-C) and VFC on the large
synthetic dataset in Figure [§]

C = Cost,B = Balance | c | B
Standard (fair-unaware) 0.058 | 0.000

VEC 1, 2021) (A = 51000) || 0.111 | 0.154
"A-C (e = 0.65) v 0.107 | 0.155

FCA v 0.669 | 0.997
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