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Abstract

We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling
are simple and effective at improving performance of a deployed computer vision model under
systematic domain shifts. We conduct a wide range of large-scale experiments and show
consistent improvements irrespective of the model architecture, the pre-training technique or
the type of distribution shift. At the same time, self-learning is simple to use in practice
because it does not require knowledge or access to the original training data or scheme, is
robust to hyperparameter choices, is straight-forward to implement and requires only a few
adaptation epochs. This makes self-learning techniques highly attractive for any practitioner
who applies machine learning algorithms in the real world. We present state-of-the-art
adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R
(17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-
supervised adaptation methods and propose a new classification dataset (ImageNet-D) which
is challenging even with adaptation.

1 Introduction

Deep Neural Networks (DNNs) can reach human-level performance in complex cognitive tasks (Brown et al.,
2020; He et al., 2016a; Berner et al., 2019) if the distribution of the test data is sufficiently similar to the
training data. However, DNNs are known to struggle if the distribution of the test data is shifted relatively
to the training data (Geirhos et al., 2018; Dodge & Karam, 2017).

Two largely distinct communities aim to increase the performance of models under test-time distribution
shifts: The robustness community generally considers ImageNet-scale datasets and evaluates models in an
ad-hoc scenario. Models are trained on a clean source dataset like ImageNet (Deng et al., 2009), using heavy
data augmentation (Hendrycks et al., 2020a; Rusak et al., 2020; Geirhos et al., 2019) and/or large-scale
pre-training (Xie et al., 2020a; Mahajan et al., 2018). The trained models are not adapted in any way to
test-time distribution shifts. This evaluation scenario is relevant for applications in which very different
distribution shifts are encountered in an unpredictable order, and hence misses out on the gains of adaptation
to unlabeled samples of the target distribution.

The unsupervised domain adaptation (UDA) community often considers smaller-scale datasets and assumes
that both the source and the (unlabeled) target dataset are known. Models are trained on both datasets, e.g.,
with an adversarial objective (Ganin et al., 2016; Tzeng et al., 2017; Hoffman et al., 2018), before evaluation
on the target domain data. This evaluation scenario provides optimal conditions for adaptation, but the
reliance on the source dataset makes UDA more computationally expensive, more impractical and prevents
the use of pre-trained models for which the source dataset is unknown or simply too large. We refer the
reader to Farahani et al. (2021) for a review of UDA.

In this work, we consider the source-free domain adaptation setting, a middle ground between the classical
ad-hoc robustness setting and UDA in which models can adapt to the target distribution but without
using the source dataset (Kundu et al., 2020; Kim et al., 2021; Li et al., 2020; Liang et al., 2020). This
evaluation scenario is interesting for many practitioners and applications as an extension of the ad-hoc
robustness scenario. It evaluates the possible performance of a deployed model on a systematic, unseen
distribution shift at inference time: an embedded computer vision system in an autonomous car should adapt
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Figure 1: Robustness and adaptation to new datasets has traditionally been achieved by robust pre-training (with
hand-selected/data-driven augmentation strategies, or additional data), unsupervised domain adaptation (with access
to unlabeled samples from the test set), or, more recently, self-supervised learning methods. We show that on top
of these different pre-training tasks, it is always possible (irrespective of architecture, model size or pre-training
algorithm) to further adapt models to the target domain with simple self-learning techniques.

to changes without being trained on all available training data; an image-based quality control software may
not necessarily open-source the images it has been trained on, but still has to be adapted to the lighting
conditions at the operation location; a computer vision system in a hospital should perform robustly when
tested on a scanner different from the one used for producing the training images—importantly, it might not
be known at development time which scanner the vision system will be tested on, and it might be prohibited
to share images from many hospitals to run UDA.

Can self-learning methods like pseudo-labeling and entropy-minimization also be used in this source-free
domain adaptation setting? To answer this question, we perform an extensive study of several self-learning
variants, and find consistent and substantial gains in test-time performance across several robustness and
out-of-domain benchmarks and a wide range of models and pre-training methods, including models trained
with UDA methods that do not use self-learning, see Figure 1. We also find that self-learning outperforms
state-of-the-art source-free domain adaptation methods, namely Test-Time Training which is based on a
self-supervised auxiliary objective and continual training (Sun et al., 2020), test-time entropy minimization
(Wang et al., 2021), Meta Test-Time Training (Bartler et al., 2022), and (gradient-free) BatchNorm adaptation
(Schneider et al., 2020; Nado et al., 2020). We perform a large number of ablations to study important design
choices for self-learning methods in source-free domain adaptation. Furthermore, we show that a variant of
pseudo-labeling with a robust loss function consistently outperforms entropy minimization on ImageNet-scale
datasets.

We begin by positioning our work in the existing literature (§ 2) and proceed with an overview of various
self-learning variants that have been applied over the past years, and propose a new technique for robust
pseudo-labeling (§ 3). We then outline a rigorous experimental protocol that aims to highlight the strengths
(and shortcomings) of various self-learning methods. We test various model architectures, with different
pre-training schemes covering the most important models in unsupervised domain adaptation, robustness, and
large-scale pre-training (§ 4). Using this protocol, we show the effectiveness of self-learning across architectures,
models and pre-training schemes (§ 5). We proceed with an in-depth analysis of self-learning, both empirical
(§ 6) and theoretical (§ 7). Since the outlined results on ImageNet-C (22.0% mCE), ImageNet-R (17.4% error)
and ImageNet-A (14.8%) approach clean performance (11.6% error for our baseline), we propose ImageNet-D
as a new benchmark, which we analyse in § 8. We conclude by proposing a set of best practices for evaluating
test-time adaptation techniques in the future to ensure scientific rigor and to enable fair model and method
comparisons (§ 9).

2 Related Work

Xie et al. (2020b) introduce “In-N-Out” which uses auxiliary information to boost both in- and out-of-
distribution performance. AdaMatch (Berthelot et al., 2021) builds upon FixMatch (Sohn et al., 2020) and
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can be used for the tasks of unsupervised domain adaptation, semi-supervised learning and semi-supervised
domain adaptation as a general-purpose algorithm. Prabhu et al. (2021) propose SENTRY, an algorithm based
on judging the predictive consistency of samples from the target domain under different image transformations.
Zou et al. (2019) show that different types of confidence regularization can improve the performance of
self-learning. A theoretically motivated framework for self-learning in domain adaptation based on consistency
regularization has been proposed by Wei et al. (2020) and then extended by Cai et al. (2021).

The main differences from these works to ours are that they 1) utilize both source and target data during
training (i.e., the classical UDA setup) whereas we only require access to unlabeled target data (source-free
setup), 2) train their models from scratch whereas we adapt pretrained checkpoints to the unlabeled target
data, and 3) are oftentimes more complicated (also in terms of the number of hyperparameters) than our
approach due to using more than one term in the objective function. We would like to highlight that utilizing
source data should always result in better performance compared to not using source data. Our contribution
is to show that self-learning can still be very beneficial with a small compute budget and no access to source
data. Our setup targets “deployed systems”, e.g., a self-driving car or a detection algorithm in a production
line which adapts to the distribution shift “on-the-fly” and cannot (or should not) be retrained from scratch
for every new domain shift.

Our work is conceptually most similar to virtual adversarial domain adaptation in the fine-tuning phase of
DIRT-T (Shu et al., 2018) and Test-time entropy minimization (TENT; Wang et al., 2021). In contrast to
DIRT-T, our objective is simpler and we scale the approach to considerably larger datasets on ImageNet
scale. TENT, on the other hand, only evaluated a single method (entropy minimization) on a single vanilla
model (ResNet-50) on ImageNet-C (Hendrycks & Dietterich, 2019). We substantially expand this analysis to
show that self-learning almost universally increases test-time performance under distribution shifts, regardless
of the type of distribution shift, the model architecture, the pre-training method or the self-learning loss
function.

Gulrajani & Lopez-Paz (2021) show that model selection for hyperparameter tuning is non-trivial for the
task of domain generalization, and propose model selection criteria under which models should be selected
for this task. Following their spirit, we identify a model selection criterion for test-time adaptation, and
rigorously use it in all our experiments. We outperform state-of-the-art techniques which did not disclose
their hyperparameter selection protocols.

Kumar et al. (2020) study the setting of self-learning for gradual domain adaptation. They find that self-
learning works better if the data distribution changes slowly. The gradual domain adaptation setting differs
from ours: instead of a gradual shift over time, we focus on a fixed shift at test time. Kumar et al. (2020)
tested their method on small-scale datasets; building and evaluating ImageNet-scale datasets for the task of
gradual domain adaptation is left for future work, and would not only require changes/adaptations to the
self-learning method, but also to the evaluation datasets.

Azimi et al. (2022) show performance improvements when using test-time adaptation on video data. They
show adaptation results for the popular test-time adaptation techniques of BN adaptation (Schneider et al.,
2020), Test-Time Training (Sun et al., 2020) and test-time entropy minimization (Wang et al., 2021). Meta
Test-Time Training (Bartler et al., 2022) combine meta-learning, self-supervision and test-time training to
adapt a model trained on clean CIFAR10 to CIFAR10-C.

3 Self-learning for Test-Time Adaptation

Different variants of self-learning have been used in both unsupervised domain adaptation (French et al.,
2018; Shu et al., 2018), self-supervised representation learning (Caron et al., 2021), and in semi-supervised
learning (Xie et al., 2020a). In a typical self-learning setting, a teacher network f t trained on the source
domain predicts labels on the target domain. Then, a student model f s is fine-tuned on the predicted labels.

In the following, let f t(x) denote the logits for sample x and let pt(j|x) ≡ σj(f t(x)) denote the probability for
class j obtained from a softmax function σj(·). Similarly, f s(x) and ps(j|x) denote the logits and probabilities
for the student model f s. For all techniques, one can optionally only admit samples where the probability
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maxj pt(j|x) exceeds some threshold. We consider three popular variants of self-learning: Pseudo-labeling
with hard or soft labels, as well as entropy minimization.

Hard Pseudo-Labeling (Lee, 2013; Galstyan & Cohen, 2007). We generate labels using the teacher
and train the student on pseudo-labels i using the softmax cross-entropy loss,

ℓH(x) := − log ps(i|x), i = argmaxj pt(j|x) (1)

Usually, only samples with a confidence above a certain threshold are considered for training the student. We
test several thresholds but note that thresholding means discarding a potentially large portion of the data
which leads to a performance decrease in itself. The teacher is updated after each epoch.

Soft Pseudo-Labeling (Lee, 2013; Galstyan & Cohen, 2007). In contrast to the hard pseudo-labeling
variant, we here train the student on class probabilities predicted by the teacher,

ℓS(x) := −
∑

j

pt(j|x) log ps(j|x). (2)

Soft pseudo-labeling is typically not used in conjunction with thresholding, since it already incorporates the
certainty of the model. The teacher is updated after each epoch.

Entropy Minimization (ENT; Grandvalet & Bengio, 2004; Wang et al., 2021). This variant is
similar to soft pseudo-labeling, but we no longer differentiate between a teacher and student network. It
corresponds to an “instantaneous” update of the teacher. The training objective becomes

ℓE(x) := −
∑

j

ps(j|x) log ps(j|x). (3)

Intuitively, self-learning with entropy minimization leads to a sharpening of the output distribution for each
sample, making the model more confident in its predictions.

Robust Pseudo-Labeling (RPL). Virtually all introduced self-learning variants use the softmax cross-
entropy classification objective. However, the softmax cross-entropy loss has been shown to be sensitive to
label noise (Zhang & Sabuncu, 2018; Zhang et al., 2017). In the setting of domain adaptation, inaccuracies in
the teacher predictions and, thus, the labels for the student, are inescapable, with severe repercussions for
training stability and hyperparameter sensitivity as we show in the results.

As a straight-forward solution to this problem, we propose to replace the cross-entropy loss by a robust
classification loss designed to withstand certain amounts of label noise (Ghosh et al., 2017; Song et al., 2020;
Shu et al., 2020; Zhang & Sabuncu, 2018). A popular candidate is the Generalized Cross Entropy (GCE) loss
which combines the noise-tolerant Mean Absolute Error (MAE) loss (Ghosh et al., 2017) with the CE loss.
We only consider the hard labels and use the robust GCE loss as the training loss for the student,

i = argmaxj pt(j|x), ℓGCE(x, i) := q−1(1 − ps(i|x)q), (4)

with q ∈ (0, 1]. For the limit case q → 0, the GCE loss approaches the CE loss and for q = 1, the GCE loss is
the MAE loss (Zhang & Sabuncu, 2018). We test updating the teacher both after every update step of the
student (RPL) and once per epoch (RPLep).

4 Experiment design

Datasets. ImageNet-C (IN-C; Hendrycks & Dietterich, 2019) contains corrupted versions of the 50 000
images in the ImageNet validation set. There are fifteen test and four hold-out corruptions, and there are five
severity levels for each corruption. The established metric to report model performance on IN-C is the mean
Corruption Error (mCE) where the error is normalized by the AlexNet error, and averaged over all corruptions
and severity levels, see Eq. 20, Appendix C.1. ImageNet-R (IN-R; Hendrycks et al., 2020a) contains 30 000
images with artistic renditions of 200 classes of the ImageNet dataset. ImageNet-A (IN-A; Hendrycks et al.,
2019) is composed of 7500 unmodified real-world images on which standard ImageNet-trained ResNet50
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Table 1: Self-learning decreases the error on ImageNet-scale robustness datasets. Robust pseudo-labeling
generally outperforms entropy minimization.

number of w/o adapt w/ adapt (∆) w/ adapt (∆)
mCE [%] on IN-C test (↘) parameters RPL ENT

ResNet50 vanilla (He et al., 2016b) 2.6 × 107 76.7 50.5 (-26.2) 51.6 (-25.1)
ResNet50 DAug+AM (Hendrycks et al., 2020a) 2.6 × 107 53.6 41.7 (-11.9) 42.6 (-11.0)
DenseNet161 vanilla (Huang et al., 2017) 2.8 × 107 66.4 47.0 (-19.4) 47.7 (-18.7)
ResNeXt10132×8d vanilla (Xie et al., 2017) 8.8 × 107 66.6 43.2 (-23.4) 44.3 (-22.3)
ResNeXt10132×8d DAug+AM (Hendrycks et al., 2020a) 8.8 × 107 44.5 34.8 (-9.7) 35.5 (-9.0)
ResNeXt10132×8d IG-3.5B (Mahajan et al., 2018) 8.8 × 107 51.7 40.9 (-10.8) 40.8 (-10.9)
EfficientNet-L2 Noisy Student (Xie et al., 2020a) 4.8 × 108 28.3 22.0 (-6.3) 23.0 (-5.3)

top1 error [%] on IN-R (↘)
ResNet50 vanilla (He et al., 2016b) 2.6 × 107 63.8 54.1 (-9.7) 56.1 (-7.7)
EfficientNet-L2 Noisy Student (Xie et al., 2020a) 4.8 × 108 23.5 17.4 (-6.1) 19.7 (-3.8)

top1 error [%] on ImageNet-A (↘)
EfficientNet-L2 Noisy Student (Xie et al., 2020a) 4.8 × 108 16.5 14.8 (-1.7) 15.5 (-1.0)

(He et al., 2016b) models yield chance level performance. CIFAR10 (Krizhevsky et al., 2009) and STL10
(Coates et al., 2011) are small-scale image recognition datasets with 10 classes each, and training sets of
50 000/5000 images and test sets of 10 000/8000 images, respectively. The digit datasets MNIST (Deng, 2012)
and MNIST-M (Ganin et al., 2016) both have 60 000 training and 10 000 test images.

Adaptation parameters. In most of our experiments, we only adapt the affine scale and shift parameters γ
and β following the batch normalization layers (Ioffe & Szegedy, 2015). We verify that this type of adaptation
works better than full model adaptation for large models in an ablation study in Section 6.

Hyperparameters. The different self-learning variants have a range of hyperparameters such as the learning
rate or the stopping criterion. Our goal is to give a realistic estimation on the performance to be expected
in practice. To this end, we optimize hyperparameters for each variant of pseudo-labeling on a hold-out
set of IN-C that contains four types of image corruptions (“speckle noise”, “Gaussian blur”, “saturate” and
“spatter”) with five different strengths each, following the procedure suggested in Hendrycks & Dietterich
(2019). We refer to the hold-out set of IN-C as our dev set. On the small-scale datasets, we use the hold-out
set of CIFAR10-C for hyperparameter tuning. On all other datasets, we use the hyperparameters obtained
on the hold-out sets of IN-C (for large-scale datasets) or CIFAR10-C (on small-scale datasets).

Models for ImageNet-scale datasets. We consider five popular model architectures: ResNet50 (He
et al., 2016b), DenseNet161 (Huang et al., 2017), ResNeXt101 (Xie et al., 2017), EfficientNet-L2 (Tan &
Le, 2019), and the Vision Transformer (ViT; Dosovitskiy et al., 2021) (see Appendix B.1 for details on the
used models). For ResNet50, DenseNet and ResNeXt101, we include a simple vanilla version trained on
ImageNet only. For ResNet50 and ResNeXt101, we additionally include a state-of-the-art robust version
trained with DeepAugment and Augmix (DAug+AM; Hendrycks et al., 2020a)1. For the ResNeXt model, we
also include a version that was trained on 3.5 billion weakly labeled images (IG-3.5B; Mahajan et al., 2018).
For EfficientNet-L2 we select the current state of the art on IN-C which was trained on 300 million images
from JFT-300M (Chollet, 2017; Hinton et al., 2014) using a noisy student-teacher protocol (Xie et al., 2020a).
Finally, for the ViT, we use the model pretrained with DINO (Caron et al., 2021). We validate the ImageNet
and IN-C performance of all considered models and match the originally reported scores (Schneider et al.,
2020). For EfficientNet-L2, we match ImageNet top-1 accuracy up to 0.1% points, and IN-C up to 0.6%
points mCE.

Models for CIFAR10/ MNIST-scale datasets. For CIFAR10-C experiments, we use three WideResNets
(WRN; Zagoruyko & Komodakis, 2016): the first one is trained on clean CIFAR10 and has a depth of 28
and a width of 10, the second one is trained with CIFAR10 with the AugMix protocol (Hendrycks et al.,
2020b) and has a depth of 40 and a width of 2, and the third one has a depth of 26 layers, and is pre-trained
on clean CIFAR10 using the default training code from https://github.com/kuangliu/pytorch-cifar.

1see leaderboard at github.com/hendrycks/robustness
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Table 2: Self-learning decreases the error on small-scale datasets, for models pre-trained using data augmen-
tation and unsupervised domain adaptation. Entropy minimization outperforms robust pseudo-labeling.

number of w/o adapt w/ adapt (∆) w/ adapt (∆)
top1 error [%] on CIFAR10-C (↘) parameters RPL ENT

WRN-28-10 vanilla (Zagoruyko & Komodakis, 2016) 3.6 × 107 26.5 13.7 (-12.8) 13.3 (-13.2)
WRN-40-2 AM (Hendrycks et al., 2020b) 2.2 × 106 11.2 9.0 (-2.2) 8.5 (-2.7)
WRN-26-1-GN (Bartler et al., 2022) 1.5 × 106 18.6 18.0 (-0.6) 18.4 (0.2)
WRN-26-1-BN (Zagoruyko & Komodakis, 2016) 1.5 × 106 25.8 15.1 (-10.7) 13.1 (-12.7)
WRN-26-16 UDA-SS (Sun et al., 2019) 9.3 × 107 27.7 18.2 (-9.5) 16.7 (-11.0)
WRN-26-16 DANN (Ganin et al., 2016) 9.3 × 107 29.7 28.6 (-1.1) 28.5 (-1.2)
UDA CIFAR10→STL10, top1 error on target [%](↘)

WRN-26-16 UDA-SS (Sun et al., 2019) 9.3 × 107 28.7 22.9 (-5.8) 21.8 (-6.9)
WRN-26-16 DANN (Ganin et al., 2016) 9.3 × 107 25.0 24.0 (-1.0) 23.9 (-1.1)
UDA MNIST→MNIST-M, top1 error on target [%](↘)
WRN-26-16 UDA-SS (Sun et al., 2019) 9.3 × 107 4.8 2.4 (-2.4) 2.0 (-2.8)
WRN-26-2 DANN (Ganin et al., 2016) 1.5 × 106 11.4 5.2 (-6.2) 5.1 (-6.3)

The remaining small-scale models are trained with UDA methods. We propose to regard any UDA method
which requires joint training with source and target data as a pre-training step, similar to regular pre-training
on ImageNet, and use self-learning on top of the final checkpoint. We consider two popular UDA methods:
self-supervised domain adaptation (UDA-SS; Sun et al., 2019) and Domain-Adversarial Training of Neural
Networks (DANN; Ganin et al., 2016). In UDA-SS, the authors seek to align the representations of both
domains by performing an auxiliary self-supervised task on both domains simultaneously. In all UDA-SS
experiments, we use a WideResNet with a depth of 26 and a width of 16. In DANN, the authors learn
a domain-invariant embedding by optimizing a minimax objective. For all DANN experiments except for
MNIST→MNIST-M, we use the same WRN architecture as above. For the MNIST→MNIST-M experiment,
the training with the larger model diverged and we used a smaller WideResNet version with a width of 2.
We note that DANN training involves optimizing a minimax objective and is generally harder to tune.

5 Self-learning universally improves models

Self-learning is a powerful learning scheme, and in the following section we show that it allows to perform
test-time adaptation on robustified models, models obtained with large-scale pre-training, as well as (already)
domain adapted models across a wide range of datasets and distribution shifts. Our main results on large-scale
and small-scale datasets are shown in Tables 1 and 2. These summary tables show final results, and all
experiments use the hyperparameters we determined separately on the dev set. The self-learning loss function,
i.e. soft- or hard-pseudo-labeling / entropy minimization / robust pseudo-labeling, is a hyperparameter itself,
and thus, in Tables 1 and 2, we show the overall best results. Results for the other loss functions can be
found in Section 6 and in Appendix C.

Self-learning successfully adapts ImageNet-scale models across different model architectures on
IN-C, IN-A and IN-R (Table 1). We adapt the vanilla ResNet50, ResNeXt101 and DenseNet161 models
to IN-C and decrease the mCE by over 19 percent points in all models. Further, self-learning works for
models irrespective of their size: Self-learning substantially improves the performance of the ResNet50 and the
ResNext101 trained with DAug+AM, on IN-C by 11.9 and 9.7 percent points, respectively. Finally, we further
improve the current state of the art model on IN-C—the EfficientNet-L2 Noisy Student model—and report a
new state-of-the-art result of 22% mCE (which corresponds to a top1 error of 17.1%) on this benchmark with
test-time adaptation (compared to 28% mCE without adaptation).

Self-learning is not limited to the distribution shifts in IN-C like compression artefacts or blur. On IN-R, a
dataset with renditions, self-learning improves both the vanilla ResNet50 and the EfficientNet-L2 model, the
latter of which improves from 23.5% to a new state of the art of 17.4% top-1 error. For a vanilla ResNet50, we
improve the top-1 error from 63.8% (Hendrycks et al., 2020a) to 54.1%. On IN-A, adapting the EfficientNet-L2
model using self-learning decreases the top-1 error from 16.5% (Xie et al., 2020a) to 14.8% top-1 error, again
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Table 3: Unlike batch norm adaptation, self-learning adapts large-scale models trained on external data.
mCE, test [%] (↘) w/o adapt BN adapt RPL
ResNeXt101 vanilla 66.6 56.8 43.2
ResNeXt101 IG-3.5B 51.7 51.8 40.9

Table 4: Properly tuned self-learning outperforms TENT and TTT.
mCE on IN-C test [%] (↘) w/o adapt BN adapt TENT (ours) RPL
ResNet50 vanilla 76.7 62.2 53.5 (51.6) 50.5
top1 error [%] on IN-C, sev. 5 (↘) w/o adapt BN adapt TTT RPL
ResNet18 vanilla 85.4 72.2 66.3 61.9

Table 5: Vision Transformers can be adapted with self-learning.
w/o adapt w/ adapt w/ adapt w/ adapt w/ adapt

mCE on IN-C test [%] (↘) affine layers bottleneck layers lin. layers all weights
ViT-S/16 62.3 51.8 46.8 45.2 43.5

constituting a new state of the art with test-time adaptation on this dataset. Self-learning can also be used
in an online adaptation setting, where the model continually adapts to new samples on IN-C in Fig. 7(i) or
IN-R Fig. 7(ii), Appendix C.10.

The improvements of self-learning are very stable: In Table 26, Appendix C.9, we show the averaged results
across three different seeds for a ResNet50 model adapted with ENT and RPL. The unbiased std is roughly
two orders of magnitude lower than any improvement we report in our paper, showcasing the robustness of
our results to random initialization.

Self-learning improves robustified and domain adapted models on small-scale datasets (Table
2). We test common domain adaptation techniques like DANN (Ganin et al., 2016) and UDA-SS (Sun
et al., 2019), and show that self-learning is effective at further tuning such models to the target domain.
We suggest to view unsupervised source/target domain adaptation as a step comparable to pre-training
under corruptions, rather than an adaptation technique specifically tuned to the target set—indeed, we can
achieve error rates using, e.g., DANN + target adaptation previously only possible with source/target based
pseudo-labeling, across different common domain adaptation benchmarks. Self-learning also decreases the
error on CIFAR10-C of the Wide ResNet model trained with AugMix (AM, Hendrycks et al., 2020b) and
reaches a new state of the art on CIFAR10-C of 8.5% top1 error with test-time adaptation.

Self-learning also improves large pre-trained models (Table 3). Unlike BatchNorm adaptation
(Schneider et al., 2020), we show that self-learning transfers well to models pre-trained on a large amount of
unlabeled data: self-learning decreases the mCE on IN-C of the ResNeXt101 trained on 3.5 billion weakly
labeled samples (IG-3.5B, Mahajan et al., 2018) from 51.7% to 40.9%.

Self-learning outperforms previously published test-time adaptation approaches on IN-C (Table
4). The robustness benchmark IN-C has so far mostly been regarded in the ad-hoc evaluation setting as
discussed in our introduction. Thus, there are only few published methods that report numbers for test-time
adaptation: BatchNorm adaptation (Schneider et al., 2020), Test-Time Training (TTT, Sun et al., 2020),
and TENT (Wang et al., 2021). In particular, note that TTT requires a special loss function at training
time, while our approach is agnostic to the pre-training phase. Our self-learning results outperforms all three
baselines (also after tuning TENT with our full experimental protocol). A detailed comparison to TTT is
included in Appendix C.6. We also compared our approach to Meta Test-Time Training (MT3, Bartler et al.,
2022), which combines meta-learning, self-supervision and test-time training for test-time adaptation. We
find that both ENT and RPL perform better than MT3: using the same architecture as Bartler et al. (2022),
our best error on CIFAR10-C is 18.0% compared to their best result of 24.4%. When exchanging GroupNorm
layers (Wu & He, 2018) for BN layers, the error further reduces to 13.0%. We thus find that self-learning is
more effective when adapting affine BN parameters instead of GN layers, which is consistent with the findings
in Schneider et al. (2020). We included a detailed comparison to Bartler et al. (2022) in Appendix C.7.
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Table 6: RPL (ENT) performs better on IN-C (CIFAR10-C).
mCE, IN-C dev err, C10-C

ResNet50 ResNeXt-101 EffNet-L2 WRN-40

ENT 50.0 ± 0.04 43.0 22.2 8.5
RPL 48.9 ± 0.02 42.0 21.3 9.0

Table 7: RPL performs best without a threshold.
threshold 0.0 0.5 0.9

mCE on IN-C dev [%]
no adapt 69.5
soft PL 60.1
hard PL 53.8 51.9 52.4
RPL 49.7 49.9 51.8

Table 8: RPL performs best with instantaneous updates.
Update interval (RPL) w/o adapt none epoch instant

mCE, IN-C dev [%] 69.5 54.0 49.7 49.2

Self-supervised methods based on self-learning allow out-of-the-box test-time adaptation (Table
5). The recently published DINO method (Caron et al., 2021) is another variant of self-supervised learning
that has proven to be effective for unsupervised representation learning. At the core, the method uses soft
pseudo-labeling. Here, we test whether a model trained with DINO on the source dataset can be test-time
adapted on IN-C using DINO to further improve out-of-distribution performance. We highlight that we
specifically test the self-supervised DINO objective for its practicality as a test-time adaptation method, and
did not switch the DINO objective for ENT or RPL to do test-time adaptation. Since the used model is a
vision transformer model, we test different choices of adaptation parameters and find considerable performance
improvements in all cases, yielding an mCE of 43.5% mCE at a parameter count comparable to a ResNet50
model. For adapting the affine layers, we follow Houlsby et al. (2019).

6 Understanding test-time adaptation with self-learning

In the following section, we show ablations and interesting insights of using self-learning for test-time
adaptation. If not specified otherwise, all ablations are run on the hold-out corruptions of IN-C (our dev set)
with a vanilla ResNet50.

Robust pseudo-labeling outperforms entropy minimization on large-scale datasets while the
reverse is true on small-scale datasets (Table 6). We find that robust pseudo-labeling consistently
improves over entropy minimization on IN-C, while entropy minimization performs better on smaller scale
data (CIFAR10, STL10, MNIST). The finding highlights the importance of testing both algorithms on new
datasets. The improvement is typically on the order of one percent point.

Robust pseudo-labeling allows usage of the full dataset without a threshold (Table 7). Classical
hard labeling needs a confidence threshold (T) for best performance, thereby reducing the dataset size, while
best performance for RPL is reached for full dataset training with a threshold T of 0.0. We corroborate
the results of Wang et al. (2021) who showed that TENT outperforms hard labeling with a threshold on
CIFAR10-C and CIFAR100-C.

Short update intervals are crucial for fast adaptation (Table 8). Having established that RPL gen-
erally performs better than soft- and hard-labeling, we vary the update interval for the teacher. We find that
instant updates are most effective. In entropy minimization, the update interval is instant per default.

Table 9: RPL performs best when affine BN parameters are adapted.
Mechanism w/o adapt last layer full model affine

mCE, IN-C dev [%] 69.5 60.2 51.5 48.9
adapted parameters 0 2M 22.6M 5.3k
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Table 10: Self-learning works better in models with BN layers compared to models with GN layers, although
un-adapted models with GN are more stable under distribution shift compared to models with BN layers.

number of w/o adapt w/ adapt (∆) w/ adapt (∆)
top1 error [%] on CIFAR10-C (↘) parameters RPL ENT

WRN-26-1-BN (Zagoruyko & Komodakis, 2016) 1.5 × 106 25.8 15.1 (-10.7) 13.1 (-12.7)
WRN-26-1-GN (Bartler et al., 2022) 1.5 × 106 18.6 18.4 (-0.2) 18.0 (-0.6)

mCE [%] on IN-C test (↘)
ResNet50 BigTransfer (Kolesnikov et al., 2020) 2.6 × 107 55.0 54.4 (-0.6) 56.4 (+1.4)

Adaptation of only affine layers is important in CNNs (Table 9). On IN-C, adapting only the affine
parameters after the normalization layers (i.e., the rescaling and shift parameters β and γ) works better on
a ResNet50 architecture than adapting all parameters or only the last layer. We indicate the number of
adapted parameters in brackets. Note that for Vision Transformers, full model adaptation works better than
affine adaptation (see Table 5). We also noticed that on convolutional models with a smaller parameter count
like ResNet18, full model adaptation is possible. Wang et al. (2021) also used the affine BN parameters for
test-time adaptation with TENT. Here, we validate and corroborate this hyperparameter choice.

Affine BN parameters work better for test-time adaptation compared to GN parameters.
(Table 10). Schneider et al. (2020) showed that models with batch normalization layers are less robust to
distribution shift compared to models with group normalization (Wu & He, 2018) layers. However, after
adapting BN statistics, the adapted model outperformed the non-adapted GN model. Here, we show that
these results also hold for test-time adaptation when adapting a model with GN or BN layers. We show
that a WideResNet-26-1 (WRN-26-1) vanilla model with BN layers pretrained on clean CIFAR10 has a
much higher error on CIFAR10-C than the same model with GN layers, but it has a much lower error
after adaptation. The full results for the WRN-26-1 model can be found in Appendix C.7. Further, we
test the pretrained BigTransfer (Kolesnikov et al., 2020) models which have GN layers, and find only small
improvements with RPL , and no improvements with ENT. There are no pretrained weights released for the
BigTransfer models which have BN layers, thus, a comparison similar to the WRN-26-1 model is not possible.
A more detailed discussion on our BigTransfer results as well as a hyperparameter selection study can be
found in Appendix E.2.

Hyperparameters obtained on corruption datasets transfer well to real world datasets. When
evaluating models, we select the hyperparameters discussed above (the learning rate and the epoch used for
early stopping are the most critical ones) on the dev set (full results in Appendix C.2). We note that this
technique transfers well to IN-R and -A, highlighting the practical value of corruption robustness datasets for
adapting models on real distribution shifts.

Learning rate and number of training epochs are important hyperparameters We tune the learning
rate as well as the number of training epochs for all models, except for the EfficientNet-L2 model where we
only train for one epoch due to computational constraints. In Tables 14, 15, 16, and 17 in Appendix C.2, we
show that both ENT and RPL collapse after a certain number of epochs, showing the inherent instability of
pseudo-labeling. While Wang et al. (2021) trained their model only for one epoch with one learning rate,
we rigorously perform a full hyperparameter selection on a hold-out set (our dev set), and use the optimal
hyperparameters on all tested datasets. We believe that this kind of experimental rigor is essential in order
to be able to properly compare methods.

Additional experiments and ablation studies, as well as detailed results for all models and datasets can be
found in Appendix C. We discuss additional proof-of-concept implementations on the WILDS benchmark
(Koh et al., 2021), BigTransfer (BiT; Chen et al., 2020) models and on self-learning based UDA models in
Appendix E. On WILDS, self-learning is effective for the Camelyon17 task with a systematic shift between
train, validation and test sets (each set is comprised of different hospitals), while self-learning fails to improve
on tasks with mixed domains, such as on the RxRx1 and the FMoW tasks.These results support our claim
that self-learning is effective, while showing the important limitation when applied to more diverse shifts.
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7 A simple model of stability in self-learning

We observed that different self-learning schemes are optimal for small-scale vs. large-scale datasets and
varying amount of classes. We reconsider the used loss functions, and unify them into

ℓ(x) = −
∑

j

σj

(
f t(x)

τt

)
log

(
σj

(
f s(x)

τs

))
,

f t(x) =
{

f(x), entropy minimization
sg(f(x)), pseudo-labeling.

(5)

where we introduced student and teacher temperature τs and τt as parameters in the softmax function
and the stop gradient operation sg. To study the learning dynamics, we consider a linear student network
f s = ws ∈ Rd and a linear teacher network f t = wt ∈ Rd which are trained on N data points {xi}N

i=1 with a
binary cross-entropy loss function L defined as

L = −
N∑

i=1
ℓ(xi) = −

N∑
i=1

(
σt(x⊤

i wt) log σs(x⊤
i ws) + σt(−x⊤

i wt) log σs(−x⊤
i ws)

)
,

where σt(z) = 1
1 + e−z/τt

and σs(z) = 1
1 + e−z/τs

.

(6)

With stop gradient, student and teacher evolve in time according to

ẇs = −∇wsL
(
ws, wt

)
, ẇt = α(ws − wt), (7)

where α is the learning rate of the teacher. Without stop gradient, student and teacher are set equal to each
other (following the instant updates we found to perform empirically best), and they evolve as

ẇ = −∇wL(w), where ws = wt = w. (8)

We restrict the theoretical analysis to the time evolution of the components of ws,t in direction of two data
points xk and xl, ys,t

k ≡ x⊤
k ws,t and ys,t

l ≡ x⊤
l ws,t. All other components ys,t

i with i ̸= k, l are neglected to
reduce the dimensionality of the equation system. It turns out that the resulting model captures the neural
network dynamics quite well despite the drastic simplification of taking only two data points into account (see
Figure 2 for a comparison of the model vs. self-learning on the CIFAR-C dataset). We obtain the dynamics:

with stop gradient: ẏs
k = −x⊤

k ∇ws (ℓ(xk) + ℓ(xl)) , ẏs
l = −x⊤

l ∇ws (ℓ(xk) + ℓ(xl)) ,

ẏt
k = α(yt

k − ys
k), ẏt

l = α(yt
l − ys

l ),
without stop gradient: ẏk = −x⊤

k ∇w (ℓ(xk) + ℓ(xl)) , ẏl = −x⊤
l ∇w (ℓ(xk) + ℓ(xl)) .

(9)

With this setup in place, we can derive
Proposition 7.1 (Collapse in the two-point model). The student and teacher networks ws and wt trained
with stop gradient do not collapse to the trivial representation ∀x : x⊤ws = 0, x⊤wt = 0 if τs > τt. The
network w trained without stop gradient does not collapse if τs > τt/2. Proof. see § A.1.

We validate the proposition on a simulated two datapoint toy dataset, as well as on the CIFAR-C dataset
(Figure 2). In general, the size and location of the region where collapse is observed in the simulated model also
depends on the initial conditions, the learning rate and the optimization procedure. An in depth discussion,
as well as additional simulations are given in Appendix A.

Entropy minimization with standard temperatures (τs = τt = 1) and hard pseudo-labeling (τt → 0) are hence
stable. The two-point learning dynamics vanish for soft pseudo-labeling with τs = τt, suggesting that one
would have to analyze a more complex model with more data points. While this does not directly imply
that the learning is unstable at this point, we empirically observe that both entropy minimization and hard
labeling outperform soft-labeling in practice.
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Figure 2: For the two point model, we show accuracy, and for the CIFAR10-C simulation, we show improvement
(yellow) vs. degradation (purple) over the non-adapted baseline (BAS). An important convergence criterion for
pseudo-labeling (top row) and entropy minimization (bottom row) is the ratio of student and teacher temperatures; it
lies at τs = τt for PL, and 2τs = τt for ENT. Despite the simplicity of the two-point model, the general convergence
regions transfer to CIFAR10-C.

The finding aligns with empirical work: For instance, Caron et al. (2021) fixed τs and varied τt during
training, and empirically found an upper bound for τt above which the training was no longer stable. It
also aligns with our findings suggesting that hard-labeling tends to outperform soft-labeling approaches, and
soft-labeling performs best when selecting lower teacher temperatures.

In practice, the result suggests that student temperatures should always exceed the teacher temperatures
for pseudo-labeling, and student temperatures should always exceed half the teacher temperature for entropy
minimization, which narrows the search space for hyperparameter optimization considerably.

8 Adapting models on a wider range of distribution shifts reveals limitations of
robustification and adaptation methods

Robustness datasets on ImageNet-scale have so far been limited to a few selected domains (image corruptions
in IN-C, image renditions in IN-R, difficult images for ResNet50 classifiers in IN-A). In order to test our
approach on a wider range of complex distribution shifts, we re-purpose the dataset from the Visual Domain
Adaptation Challenge 2019 (DomainNet; Saenko et al., 2019) as an additional robustness benchmark.

Table 11: Self-learning decreases the top1 error on IN-D domains with strong initial performance, but fails to
improve performance on challenging domains.

domain Real Painting Clipart Sketch Infograph Quickdraw
adapt w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
model
EffNet-L2 Noisy Student 29.2 27.9 42.7 40.9 45.0 37.9 56.4 51.5 77.9 94.3 98.4 99.4
ResNet50 DAug+AM 39.2 36.5 58.7 53.4 68.4 57.0 75.2 61.3 88.1 83.2 98.2 99.1
ResNet50 vanilla 40.1 37.3 65.1 57.8 76.0 63.6 82.0 73.0 89.6 85.1 99.2 99.8

Creation of ImageNet-D The original DomainNet dataset comes with six image styles: “Clipart”, “Real”,
“Infograph”, “Painting”, “Quickdraw” and “Sketch”, and has 345 classes in total, out of which 164 overlap
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with ImageNet. We map these 164 DomainNet classes to 463 ImageNet classes, e.g., for an image from the
“bird” class in DomainNet, we accept all 39 bird classes in ImageNet as valid predictions. ImageNet also has
ambiguous classes, e.g., it has separate classes for “cellular telephone” and “dial phone”. For these cases, we
accept both predictions as valid. In this sense, the mapping from DomainNet to ImageNet is a one-to-many
mapping. We refer to the smaller version of DomainNet that is now compatible with ImageNet-trained
models as ImageNet-D (IN-D). The benefit of IN-D over DomainNet is this re-mapping to ImageNet classes
which allows robustness researchers to easily benchmark on this dataset, without the need of re-training a
model (as is common in UDA). We show example images from IN-D in Table 11. The detailed evaluation
protocol on IN-D, our label-mapping procedure from DomainNet to ImageNet along with justifications for
our design choices and additional analysis are outlined in Appendix D.

The most similar robustness dataset to IN-D is IN-R which contains renditions of ImageNet classes, such as
art, cartoons, deviantart, graffiti, embroidery, graphics and others. The benefit of IN-D over IN-R is that in
IN-D, the images are separated according to the domain allowing for studying of systematic domain shifts,
while in IN-R, the different domains are not distinguished. ImageNet-Sketch (Wang et al., 2019) is a dataset
similar to the “Sketch” domain of IN-D.

More robust models perform better on IN-D. To test whether self-learning is helpful for more complex
distribution shifts, we adapt a vanilla ResNet50, several robust IN-C models and the EfficientNet-L2 Noisy
Student model on IN-D. We use the same hyperparameters we obtained on IN-C dev for all our IN-D
experiments2. We show our main results in Table 11. Comparing the performance of the vanilla ResNet50
model to its robust DAug+AM variant, we find that the DAug+AM model performs better on all domains,
with the most significant gains on the “Clipart”, “Painting” and “Sketch” domains. We show detailed
results for all domains and all tested models in Appendix D.3, along with results on IN-C and IN-R for
comparison. We find that the best performing models on IN-D are also the strongest ones on IN-C and
IN-R which indicates good generalization capabilities of the techniques combined for these models, given the
large differences between the three considered datasets. The Spearman’s rank correlation coefficient between
IN-C and IN-D (averaged over all domains) is 0.54, and 0.73 between IN-R and IN-D. Thus, the errors on
IN-R are strongly correlated to errors on IN-D which can be explained by the similarity of IN-D and IN-R.
We show Spearman’s rank correlation cofficients for the individual domains versus IN-C/IN-R in Fig. 9 in
Appendix D.5, and find correlation values above 0.8 between IN-R and IN-D for all domains except for the
“Real” domain where the coefficient is almost zero. Further, we find that even the best models perform 20 to
30 percentage points worse on IN-D compared to their performance on IN-C or IN-R, indicating that IN-D
might be a more challenging benchmark.

All models struggle with some domains of IN-D. The EfficientNet-L2 Noisy Student model obtains the
best results on most domains. However, we note that the overall error rates are surprisingly high compared to
the model’s strong performance on the other considered datasets (IN-A: 14.8% top-1 error, IN-R: 17.4% top-1
error, IN-C: 22.0% mCE). Even on the “Real” domain closest to clean ImageNet where the EfficientNet-L2
model has a top-1 error of 11.6%, the model only reaches a top-1 error of 29.2%. Self-learning decreases the
top-1 error on all domains except for “Infograph” and “Quickdraw”. We note that both domains have very
high error rates from the beginning and thus hypothesize that the produced pseudo-labels are of low quality.

Error analysis on IN-D. We investigate the errors a ResNet50 model makes on IN-D by analyzing the most
frequently predicted classes for different domains to reveal systematic errors indicative of the encountered
distribution shifts. We find most errors interpretable: the classifier assigns the label “comic book” to images
from the “Clipart” or “Painting” domains, “website” to images from the “Infograph” domain, and “envelope”
to images from the “Sketch” domain. Thus, the classifier predicts the domain rather than the class. We
find no systematic errors on the “Real” domain which is expected since this domain should be similar to
ImageNet. Detailed results on the most frequently predicted classes for different domains can be found in
Fig. 9, Appendix D.5.

IN-D should be used as an additional robustness benchmark. While the error rates on IN-C, -R and
-A are at a well-acceptable level for our largest EfficientNet-L2 model after adaptation, IN-D performance is

2In regards to hyperparameter selection, we performed a control experiment where we selected hyperparameters with
leave-one-out cross validation—this selection scheme actually performed worse than IN-C parameter selection (see Appendix D.2).
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consistently worse for all models. We propose to move from isolated benchmark settings like IN-R (single
domain) to benchmarks more common in domain adaptation (like DomainNet) and make IN-D publicly
available as an easy to use dataset for this purpose.

9 Best practices and evaluation in test-time adaptation

Based on our results as well as our discussion on previous work, we arrive at several proposals on how
test-time adaptation should be evaluated in future work to ensure scientific rigor:

1. Cross-validation: We propose using the hold-out set of IN-C for model selection of all relevant
hyperparameters, and then using these hyperparameters for testing on different datasets.

2. Comparison to simple baselines: With proper hyperparameter tuning, very simple baselines
can perform on par with sophisticated approaches. This insight is also discussed by Gulrajani &
Lopez-Paz (2021) for the setting of domain generalization and by Rusak et al. (2020) for robustness
to common corruptions.

3. Using more robust models: Test-time adaptation can further improve upon robust models, which
were pre-trained with more data or with UDA, or using protocols to increase robustness. A test-time
adaptation method will be much more relevant to practitioners if it can improve upon the most
robust model they can find for their task.

4. Important hyperparameters: We identify several important hyperparameters which affect the
final performance in a crucial way, and thus, should be tuned to ensure fair comparisons:

• Number of adaptation epochs and learning rate: The final performance crucially depends
on both of these parameters for all models and all methods that we have studied.

• Adaptation parameters While adaptation of affine batch normalization parameters works
best for adaptation of CNNs, full adaptation performs best for ViTs. Therefore, it is important
to benchmark test-time adaptation for different model architectures and adaptation parameters.

10 Conclusion

We evaluated and analysed how self-learning, an essential component in many unsupervised domain adaptation
and self-supervised pre-training techniques, can be applied for adaptation to both small and large-scale image
recognition problems common in robustness research. We demonstrated new state-of-the-art adaptation results
with the EfficientNet-L2 model on the benchmarks ImageNet-C, -R, and -A, and introduced a new benchmark
dataset (ImageNet-D) which remains challenging even after adaptation. Our theoretical analysis shows the
influence of the temperature parameter in the self-learning loss function on the training stability and provides
guidelines how to choose a suitable value. Based on our extensive experiments, we formulate best practices for
future research on test-time adaptation. Self-learning universally improves test-time performance under diverse,
but systematic distribution shifts irrespective of the architecture or pre-training method, thus, we hope that
our work encourages both researchers and practitioners to use self-learning if their data distribution shifts.

Reproducibility Statement We attempted to make our work as reproducible as possible: We mostly used
pre-trained models which are publicly available and we denoted the URL addresses of all used checkpoints;
for the checkpoints that were necessary to retrain, we report the Github directories with the source code and
used an official or verified reference implementation when available. We report all used hyperparameters in
the Appendix and will release our code upon acceptance of the paper.

Software and Data Code for reproducing results of this paper will be open sourced upon publication.
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