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Abstract

Multi-source unsupervised domain adaptation (MUDA) is a recently explored learning
framework within UDA, with the goal of addressing the challenge of annotated data scarcity
in a target domain via transferring knowledge from multiple annotated source domains.
When the source domains are distributed, data privacy and security can become significant
concerns and protocols may limit data sharing, yet existing MUDA methods overlook these
constraints. We develop an algorithm to address MUDA when source domain data cannot
be shared with the target or across the source domains. Our method is based on aligning the
distributions of source and target domains indirectly via Gaussian Mixture Models designed
to estimate the source feature embeddings. Inference is done over a confidence based combi-
nation of domain specific model predictions. We provide theoretical analysis to support our
approach and conduct empirical experiments to demonstrate that our algorithm is effective.

1 Introduction

Advances in deep learning have led to significant increase in the performance of machine learning (ML)
algorithms in a wide range of applications (Russakovsky et al| (2015))). However, deep learning relies on
access to large quantities of labeled data for end-to-end blind training. Even if a neural model is trained using
annotated data, in settings where domain-shift (Torralba & Efros (2011)), i.e., distributional differences in
the input space, exists between the training domain and deployment domain, neural models have been shown
to suffer from sub-optimal performance. In such scenarios, the naive solution is to retrain the models on each
domain where the input data distribution differs from that of the original training dataset. This operation
however necessitates annotating large databases persistently, which has proven to be a time-consuming and
expensive process. Unsupervised Domain Adaptation (UDA) (Long et al.| (2016)) is a learning framework
developed to address the challenge of domain-shift and permit model generalization between a source domain
which has access to labeled data and a related target domain in which only unannotated data is accessible.

Another recent line of research considers Invariant Risk Minimization (IRM) (Arjovsky et al.| (2019)), where
model generalization on multiple domains is desirable (Ahuja et al.[(2020))). The key difference compared to
the UDA framework is that in UDA minimizing target error is preferred to maintaining joint high performance
on both source and target. Thus, UDA methods operate in a more relaxed environment compared to IRM,
and allow for better target generalization (Krueger et al.| (2020)); [Kamath et al.| (2021))).

UDA has been explored using various approaches. An effective technique to address UDA is to map data
points from a source and a target domain into a shared latent embedding space at which distributions for both
domains are aligned. Since domain-shift is mitigated in the latent space, a source-trained classifier receiving
latent features as input would successfully generalize on the target domain. The latent embedding space is
often modeled as the output-space of a deep encoder network, trained to produce a shared representation
for both domains. This outcome can be achieved using adversarial learning (Hoffman et al.| (2018]); [Dou
et al.| (2019)); 'Tzeng et al.| (2017)); Bousmalis et al. (2017))), where the distributions are matched indirectly
through generator and discriminator networks that are trained to compete against each other to learn a
domain-agnostic embedding. Alternatively, a probability metric can be selected and then minimized to align
the distributions directly in the embedding space(Chen et al.| (2019)); |Sun et al| (2017); |Lee et al.| (2019))).

Most existing UDA algorithms consider a single source domain for knowledge transfer. Recently, single-
source unsupervised domain adaptation (SUDA) has been extended to multi-source unsupervised domain
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adaptation (MUDA), where several distinct sources of knowledge are available for model training (Xu et al.
(2018)); |Guo et al.[(2018); Peng et al.| (2019al); [Redko et al.| (2019);|Zhao et al.| (2020)); Wen et al.| (2020b)); [Lin
et al| (2020); |Guo et al.| (2020)); [Tasar et al.| (2020)); [Venkat et al.| (2020al)). The goal in MUDA is to benefit
from the collective information encoded in several distinct annotated source domains to improve model
generalization on an unannotated target domain. Compared to SUDA, MUDA algorithms require leveraging
data distribution discrepancies between pairs of source domains, as well as between the sources and the
target. Thus, an assumption in most MUDA algorithms is that the annotated source datasets are centrally
accessible. Such a premise however ignores privacy/security regulations, or limitations in bandwidth, that
may constrain or outright remove the possibility of joint data access between source domains.

In practice, it is natural to assume source datasets are distributed amongst independent entities, and sharing
data between them may constitute a privacy violation. For example, improving mobile keyboard predictions
is performed by securely training models on independent computing nodes without centrally collecting user
data (Yang et al| (2018)). Similarly, in medical image processing applications, data is often distributed
amongst different medical institutions. Due to privacy regulations (Yan et al. (2021)) sharing data can be
prohibited, and hence central access to data for all the source domains simultaneously becomes infeasible.
MUDA algorithms can offer privacy between the sources and target by operating in a source-free regime
(Ahmed et al(2021)), i.e., during the adaptation process source samples are considered to be unavailable,
and only the source trained model or source data statistics are assumed to be accessible. However, approaches
operating under this premise require retraining if new source domains become available, or if a set of source
domains becomes inaccessible. This downside leads to increased time and computational resource cost.

We relax the need for centralized processing of source data in MUDA while maintaining cross-domain privacy.
Our approach is robust to accessibility changes for different source domains, allowing for relearning the target
decision function without end-to-end retraining. We relax the need for direct access to source domain samples
for adaptation by approximating the distribution of source embeddings. We perform source-free adaptation
with respect to each source domain, and propose a confidence based pooling mechanism for target inference.
In the present work, we: (i) Address the challenge of data privacy for MUDA by maintaining full privacy
between pairs of source domains, and between the sources and the target. (ii) Propose an efficient distributed
optimization process for MUDA to process each dataset locally while encoding high-level learned knowledge
in a shared latent embedding space. (ii) Provide theoretical justification for our method by proving that
our algorithm minimizes an upper-bound of the target error. We conduct extensive empirical experimental
results on five standard MUDA benchmark datasets to demonstrate the effectiveness of our approach.

2 Related work

Single-Source UDA: Single source UDA aims to improve model generalization for an unlabeled target
domain using only a single source domain with annotated data. SUDA has been studied extensively. A
primary workflow employed in recent UDA works consists of training a deep neural network jointly on the
labeled source domain and the unlabeled target domain to achieve distribution alignment between both
domains in a latent embedding space. This goal has been achieved by employing generative adversarial
networks (Goodfellow et al.| (2014])) to encourage domain alignment (Hoffman et al.| (2018); Dhouib et al.
(2020); [Luc et al.|(2016)); |Tzeng et al.| (2017)); [Sankaranarayanan et al.|(2018)) as well as directly minimizing
an appropriate distributional distance between the source and target embeddings (Long et al.| (2015} [2017b));
Morerio et al.|(2018])). SUDA algorithms do not leverage inter-domain statistics in the presence of several
source domains, and thus extending single-source UDA algorithms to a multi-source setting is nontrivial.

Multi-Source UDA: The MUDA setting is a recent extension of SUDA, where multiple streams of data are
concomitantly leveraged for improved target domain generalization. Xu et al.| (2018)) minimize discrepancy
between source and target domains by optimizing an adversarial loss. [Peng et al.| (2019a) adapt on multiple
domains by aligning inter-domain statistics of the source domains in an embedding space. |Guo et al.| (2018)
learn to combine domain specific predictions via meta-learning. [Venkat et al.[ (2020a)) use pseudo-labels to
improve domain alignment. The increased amount of source data in MUDA is not necessarily an advantage
over SUDA, as negative transfer between domains needs to be controlled during adaptation. |Li et al.|(2018)
exploit domain similarity to avoid negative transfer by leveraging model statistics in a shared embedding
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space. |Zhu et al.| (2019)) achieve domain alignment by adapting deep networks at various levels of abstraction.
Zhao et al.| (2020)) align target features against source trained features via optimal transport, then combine
source domains proportionally to Wasserstein distance. [Wen et al. (2020a) use a discriminator to exclude
data samples with negative generalization impact. Such approaches admit joint access to source domains
during the training process, making them infeasible in settings where data privacy and security are of concern.

Privacy in Domain Adaptation: The importance of inter-domain privacy has been recognized and
explored for single-source UDA, specifically in source-free adaptation. Note this framework is relevant in
many important practical settings even for SUDA, where privacy regulations limit the possibility of sharing
data (Peng et al.[(2019b); Li et al.| (2020); Liang et al.| (2020a;[2021))). [Kurmi et al.[(2021))) benefit from GANs
to generate source-domain like samples during the adaptation phase. |Yeh et al.| (2021)) align distributions
via minimizing the KL-divergence in addition to a variational autoencoder reconstruction loss. Similar to
our approach, |Yang et al. (2022) model the source distribution and use clustering of target samples to
assign the correct class is done by minimizing an VAE reconstruction error. Similarly, [Tian et al. (2022)
approximate the latent source space during and use adversarial learning domain for adaptation. |Ding et al.
(2022)also estimate the source distribution and chose specific anchors to guide the distribution learning
process. Adaptation is done by optimizing class conditional maximum mean discrepancy between samples
from the learnt approximation distributions and the target samples. These above work consider only a
single source. |Peng et al. (2019b) perform collaborative adaptation under privacy restrictions between
source domains under the framework of federated learning. |Ahmed et al.| (2021) approach privacy-preserving
MUDA via information maximization and pseudo-labeling. Unlike our approach, |/Ahmed et al.[(2021) require
simultaneous access to all source trained models during adaptation, which may lead to privacy violations.
We address a more constrained yet practical setting, where privacy should be preserved both between pairs
of source domains and with respect to the target. This assumption is more practical because if privacy is
a concern, it should be preserved irrespective of a domain being a source or a target domain. Additionally,
our approach allows for efficient distributed optimization, not requiring end-to-end retraining if different
source domains become inaccessible due to privacy obligations, or more source domains become available
after initial training has finished, allowing for accumulative learning from several domains. [Dong et al.
(2021)) choose high confidence target samples as class anchors and pseudo-labels are then assigned according
to the closest anchors. Compared to this approach, our method’s main adaptation tool is represented by the
optimal transport based optimization, making the adaptation process considerably more lightweight.

Our approach builds on extending the idea of probability metric minimization, explored in UDA (Morerio
et al| (2018); Bhushan Damodaran et al.| (2018); |Chen et al. (2019)); |Sun et al.| (2017)); |Lee et al.| (2019);
Redko et al.| (2019))) to MUDA. The latent source and target features are represented via the output space of
a neural encoder. Domain alignment implies a shared embedding space for these representations. To achieve
this, a suitable distributional distance metric is chosen between these two sets of embeddings and minimized.
In this work, we used the Sliced Wasserstein Distance (SWD) (Rabin et al.| (2011); Bonneel et al.| (2015)))
for this purpose. SWD is a metric for approximating the optimal transport metric (Redko et al. (2019)).
It is a suitable choice for UDA because: (i) it possesses non-vanishing gradients for two high-dimensional
distributions with non-overlapping supports. As a result, it is a suitable objective function for deep learning
optimization using gradient-based techniques. (ii) It can be computed efficiently based on a closed-form
solution using only empirical samples, drawn from the two probability distributions.

3 Problem formulation

Let S§1,8>...8,, be the data distributions of n annotated source domains and 7 be the data distribution
of an unannotated target domain. Assume the source and target domains share the same feature space
RWxHXC where W, H, C' describe an image by width, height and number of channels respectively. We con-
sider all domains having a common label-space ), but not necessarily sharing the same label distribution.
For each source domain k, we observe the labeled samples {(} 1, Yx,1),-- -, (wink7yknk)}7 where xj, ~ Sj.
We only observe unlabeled samples {@,..., ! .} from the target domain 7. The goal is to train a model
fo : RWXHXC _ RIVI capable of inferring target labels, where |)| is the number of inference classes. The
first step in our approach is to independently train decision models for each source domain via empirical risk
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Figure 1: Block-diagram of our proposed approach: (a) source specific model training is done independently
for each source domain (b) the distribution of latent embeddings of each source domain is estimated via
a mixture of Gaussians, (c) for each source trained model, adaptation is performed by minimizing the
distributional discrepancy between the learnt GMM distribution and the target encodings (d) the final
target domain predictions are obtained via a learnt convex combinations of logits for each adapted model

minimization (ERM) by minimizing the cross-entropy loss L..: 0 =

nr s 4 Lee(fol@3,), Yni)-

Since under our considered setting the target and source domains share a common input and label space,
these models can be directly used on the target to derive a naive solution. However, given the distributional
discrepancy between source domains and target, e.g., real world images versus clip art, generalization perfor-
mance will be poor. The goal of our MUDA approach is to benefit from the unannotated target dataset and
the source-trained models in order to improve upon model generalization while avoiding negative transfer.

To this end, we decompose the model fy into a feature extractor g, (-) : RV*#*¢ — Rz and a classifier
subnetwork h,(-) : R? — RIY| with learnable parameters u and v, such that f(-) = (ho g)(-). We assume
input data points are images of size W x H x C' and the latent embedding shape is of size dz. In a
SUDA setting, we can improve generalization of each source-specific model on the target domain by aligning
the distributions of the source and the target domain in the latent embedding space. Specifically, we can
minimize a distributional discrepancy metric D(-,-) across both domains, e.g., SWD loss, to update the
learnable parameters: wuj = argming D(g.(Sk), gu(T)). By aligning the distributions the source trained
classifier hy will generalize well on the target domain 7. In the MUDA setting, the goal is improving upon
SUDA by benefiting from the collective knowledge of the source domains to make predictions on the target.
This can be done via a weighted average of predictions made by each of the domain-specific models, i.e.,
models with learnable parameters 07 = (ui,v;). For a sample 2! in the target domain, the model prediction
will be Y~7_, wy fa}?( 1), where wy, denotes a set of learnable weights associated with the source domains.

We note the above general approach requires simultaneous access to source and target data during adaptation.
We relax this constraint and consider the more challenging setting of source-free adaptation, where we lose
access to the source domains once source training finishes. To account for applications with sensitive data,
e.g. medical domains, we also forbid interaction between source models during adaptation. Hence, the source
distributions Sy and their representations in the embedding space, i.e., g(Sk), will become inaccessible. To
circumvent this challenge, we rely on intermediate distributional estimates of the source latent embeddings.

4 Proposed algorithm

Our proposed approach for MUDA with private data is visualized in Figure[l] We base our algorithm on two
levels of hierarchies. First, we adapt each source-trained model while preserving privacy (left and middle
subfigures). We then combine predictions of the source-specific models on the target domain according to
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their reliability (right subfigure). To tackle the challenge of data privacy, we approximate the distributions
of the source domains in the embedding space as a multi-modal distribution and use these distributional
estimates for domain alignment (Figure [1} left). We can benefit from these estimates because once source
training is completed, the input embedding distribution should be mapped into a |)|—modal distribution to
enable the classifier subnetwork to separate the classes. Note, each separated distributional mode encodes
one of the classes (see Figure |1} left). To approximate these internal distributions we employ Gaussian
Mixture Models (GMM), with learnable mean and covariance parameters ug, Y. Since we have access to
labeled source data points, we can learn u; and Xy in a supervised fashion. Let 1.(z) denotes the indicator
function for x = ¢, then the maximum likelihood estimates for the GMM parameters would be:

2ot Le(yn,i)guy (27.4) S = i Le(Yh i) (Guy (25,0) — ik .e) (G () — o)

(1)
Zi:kl 1e(yr,s) Zz:kl Le(yr,)

Hk,c =

Learning uj and X for each domain k enables us to sample class conditionally from the GMM distributional
estimates and approximate the distribution ¢(Sy) in the absence of the source dataset.

We adapt the source-trained model by aligning the target distribution 7 and the GMM distribution in
the embedding space. To preserve privacy, for each source domain k we generate intermediate pseudo-
domains Ay with pseudo-samples {zg,p ceey Zg,n;} by drawing random samples from the estimated GMM
distribution. The pseudo-domain is used as an approximation of the corresponding source embeddings. To
align the two distribution, a suitable distance metric D(-,-) needs to be used. We rely on the SWD due to its
mentioned appealing properties. The SWD acts as an estimate for the Wasserstein Distance (WD) between
two distributions (Rabin et al.|(2011)), by aggregating the tractable 1—dimensional WD over L projections
onto the unit hypersphere. In the context of our algorithm, the SWD discrepancy measure becomes:

D(g(T), Ak) =7 3 gl ), 80) — {2k o) 2)

=1

where ¢; is a projection direction, and 7;, j; are indices corresponding to the sorted projections. While the
source and target domains share the same label space ) they do not necessarily share the same distribution
of labels. Since the prior probabilities on classes are not known in the target domain, minimizing the SWD
at the batch level may lead to incorrectly clustering samples from different classes together, depending on the
discrepancy between the label distributions. To address this challenge, we take advantage of the conditional
entropy loss (Grandvalet & Bengio| (2004])) as a regularization term based on information maximization. The
conditional entropy acts as a soft clustering objective that ensures aligning target samples to the wrong class
via SWD will be penalized. We follow the approximation presented in Eq. 6 in|Grandvalet & Bengio| (2004):

nt

Lonlo(T) = = 3 Leelfolad), fole)) g

=1

To guarantee this added loss term influences the latent representations produced by the feature extractor,
the classifier is frozen during model adaptation. Our final combined adaptation loss is descrbied as:

D(g(T), A) + vLent(fo(T)) (4)

for a regularizer y. Once the source-specific adaptation is completed across all domains, the final model
predictions on the target domain are obtained by combining probabilistic predictions returned by each of the
n domain-specific models. The mixing weights are chosen as a convex vector w = (w; ...ws,), i.e., w; > 0 and
>; w; = 1, with final predictions taking the form Zle w; fo,. The choice of w is critical, as assigning large
weights to a model which does not generalize well will harm inference power. We utilize the source model
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prediction confidence on the target domain as a proxy for generalization performance. We have provided
empirical evidence for this choice in Section [f] We thus set a confidence threshold A and assign wyg:
TLt
B~ > L(max fo, (20) > N),  wp =/ Y i, (5)
=1
where f () denotes the model ouput just prior to the final SoftMax layer which correspond to a probability.
Note the only cross-domain information transfer in

our framework is communicating the latent means
and covariance matrices of the estimated GMMs

Algorithm 1 Secure Multi-source Unsupervised Do-
main Adaptation (SMUDA)

plus the domain-specific model weights which pro- procedure SMUDA(S;...S,,T,L,v)
vide a warm start for adaptation. Data samples for k< 1ton do

are never shared between any two domains during Wiy 2k, O = Train(Sy)
pretraining and adaptation. As a result, our ap- Generate Ay based on g, Xk
proach preserves data privacy for scenarios at which Compute wy, (Eq.

the source datasets are distributed across several 02 = Adapt(0x, A, T, L,7)
entities. Additionally, the adaptation process for return wy ... wy,, 08 ... 02

each source domain is performed independently. As
a result, our approach can be used to incorporate
new source domains as they become available over
time without requiring end-to-end retraining from
scratch. We will only require to update the nor-
malized mixing weights via Equation [5} which takes T ; ’
negligible runtime compared to model training. Our IIthallze net\.zvork with weights 0

proposed privacy preserving approach, named Se- 0. = argming D(gu(T), Ak) + vLent(fo(T))

cure MUDA (SMUDA), is presented in Algorithm (Eq. oA
return 6

procedure TRAIN(S;)
Learn 6y, = (ug, vx) by min. Leg(fo, (Sk),-)
Learn parameters pug, X (Eq.
return pg, X, Ok

procedure ADAPT (0, Ay, T, L,7)

5 Theoretical analysis

We provide an analysis to demonstrate that our algorithm minimizes an upper bound for the target domain
error. We adopt the framework developed by |Redko & Sebban! (2017 for single source UDA using Wasser-
stein distance to provide a theoretical justification for the algorithm we proposed. Our analysis is performed
in the latent embedding space. Let H represent the hypothesis space of all classifier subnetworks. Let hy()
denote the model learnt by each domain-specific model. We also set ep(:), where D € {S;...S,, T}, to
be the true expected error returned by some model h(-) € H in the hypothesis space on the domain D.

Additionally, let fis, = nik S (9(x3 ), fip, = é o x} ;, and fi7 = L S f(g(xh)) denote the em-
pirical distributions that are built using the samples for the source domain, the intermediate pseudo-domain,
and the target domain in the latent space. Then the following theorem holds for the MUDA setting;:

Theorem 1. Consider Algorithm[1] for MUDA under the explained conditions, then the following holds

er(h) < 3 wiles, (he) + DUy jim,) + Dliim,. is) + 1/ (210a(3)/€) (y 77 + \/E) b)) ()

k=1

where Cy, is the combined error loss with respect to domain k, and hj, is the optimal model with respect to
this loss when a shared model is trained jointly on annotated datasets from all domains simultaneously.

Proof: the complete proof is included in the Appendix.

We note the target domain error is upper bounded by the convex combination of the domain-specific adap-
tation errors. Algorithm [I] minimizes the right-hand side of Equation [f] as follows: for each source domain,
the source expected error is minimized by training the models using ERM. The second term is minimized
by closing the distributional gap between the intermediate pseudo-domain and the target domain in the
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latent space. The third term corresponds to how well the GMM distribution approximates the latent source
samples. Our algorithm does not directly minimize this term, however if the model forms a multi-modal
distribution in the source embedding space, necessary for good performance, this term will be small. The
second to last term is dependent on the number of available samples in the adaptation problem, and becomes
negligible when sufficient samples are accessible. The final term measures the difficulty of the optimization,
and is dependent only on the structure of the data. For related domains, this term will also be negligible.

6 Experimental validation

Datasets We validate on five datasets: Office-31, Office-Home, Office-Caltech, Image-Clef and DomainNet.

Office-31 (Saenko et al.| (2010)) is a dataset with 31 classes consisting of 4110 images from an office en-
vironment pertaining to three domains: Amazon, Webcam and DSLR. Domains differ in image quality,
background, number of samples and class distributions. Office-Caltech (Gong et al|(2012))) contains 2533
from 10 classes of office related images from four domains: Amazon, Webcam, DSLR, Caltech. Office-
Home (Venkateswara et al.| (2017))) contains 65 classes and 30475 from four different domains: Art (stylized
images), Clipart (clip art sketches), Product (images with no background) and Real-World (realistic images),
making it more challenging that Office datasets. Image-Clef (Long et al. (2017a))) contains 1800 images
under 12 generic categories sourced from three domains: Caltech, Imagenet and Pascal. DomainNet (Peng
et al.| (2019al)) is a larger, more recent dataset containing 586,575 images from 345 general classes, with
different class distributions for each of its domains: Quickdraw, Clipart, Painting, Infograph, Sketch, Real.

Preprocessing & Network structure: we follow the literature for fair comparison. For each domain
we re-scale images to a standard size of (224,224,3). We use a ResNet50 (He et al.| (2016))) network as a
backbone for the feature extractor, followed by four fully connected layers. The network classification head
consists of a linear layer, and source-training is performed using cross-entropy loss. The ResNet layers of the
feature extractor are frozen during adaptation. We report classification accuracy, averaged across five runs.
Our code is provided as part of the supplementary material, and was run on a NVIDIA Titan Xp GPU.

To test the effectiveness of our privacy preserving approach for MUDA, we compare our method against
state-of-the art SUDA and MUDA approaches. Benchmarks for single best (SB), source combined (SC) and
multi source (MS) performance are reported based on DAN (Long et al. (2015))), D-CORAL (Sun & Saenko
(2016)), RevGrad (Ganin & Lempitsky| (2015)). We include most existing MUDA algorithms: DCTN (Xu
et al.| (2018))), FADA (Peng et al. (2019Db)), MFSAN (Zhu et al|(2019)), MDDA (Zhao et al.| (2020)), SimpAl
(Venkat et al.| (2020b)), JAN (Long et al.| (2017b)), MEDA (Wang et al. (2018])), MCD (Saito et al.| (2018)),
M3SDA (Peng et al.| (2019a)), MDAN (Zhao et al|(2018)), MDMN (Li et al.| (2018])), DARN (Wen et al.
(20202) ), DECISION (Ahmed et al.|(2021)). Note that we maintain full domain privacy throughout training
and adaptation. Hence, most of the above works should be considered as upperbounds in performance,
as they address a more relaxed problem, by allowing joint and persistent access to source data. While
Ahmed et al| (2021) also performs source-free adaptation, they benefit from jointly accessing the source
trained models during adaptation, while our method only assumes joint access when pooling predictions.
Despite this additional constraint, results prove our algorithm is competitive and at times outperforming the
aforementioned methods. We next present quantitative and qualitative analysis of our work.

6.1 Performance Results

Table |1| presents our main results. For Office-31, we observe state-of-the-art performance (SOTA) on
the — D, — A tasks and near SOTA performance on the remaining task. Note that the domains DSLR
and Webcam share similar distributions, as exemplified through the Source-Only results, and for these
domains obtaining a good adaptation performance involves minimizing negative transfer, which our method
successfully achieves. In the case of Image-clef, we obtain SOTA performance on all tasks, even though
the methods we compare against are not source-free. On the Office-caltech dataset, we obtain SOTA
performance on the — A task, with close to SOTA performance on the three other tasks. The domains
of the Office-home dataset have larger domain gaps with more classes compared to the three previous
datasets. Our approach obtains near SOTA performance on the — P and — R tasks and competitive
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performance on the remaining tasks. Finally, the DomainNet dataset contains a much larger number of
classes and variation in class distributions compared to the other datasets, making it the most challenging
considered task in our experiments. Even so, we are able to obtain SOTA performance on three of the
six tasks with competitive results on the other three. We reiterate most other MUDA algorithms serve as
upper-bounds to our work, as they either access source data directly, simultaneously use models from all
sources for adaptation, or both. Results across all tasks demonstrate that not only are we able to compare
favorably against these methods while preserving data privacy, but we also set new SOTA on several tasks.

Method —-D W —A | Avg. Method —-P —-C I | Avg. Method —-W =D —C — A| Avg.
Source Only | 99.3 96.7 62.5 | 86.2 Source Only | 74.8 91.5  83.9 83.4 Source Only | 99.0 98.3 87.8 86.1 92.8
s b é)(/)&?{lAL gg; ggg 2?.; g;; m DAN 75.0 93.3 86.2 84.8 Eﬁ DAN 99.3 982 89.7 948 | 955
-COl 3 X 5. . wn D-CORAL 76.9 93.6 885 86.3 JAN 994 994 91.2 91.8 95.5
RevGrad | 99.1 969 66.2 | 87.5 . = : . DAN 995 991 89.2 91.6 | 94.8
DAN 996 978 676 | 883 RevGrad 75.0 96.2 87.0 | 86.1 DOTN 004 900 909 016 | 948
Q| D-CORAL | 993 980 67.1 | 88.1 DAN 776933 922 ) 8T.7 MEDA | 993 092 914 929 | 957
RevGrad | 997 981 676 | 885 | | | D-CORAL | 77.1 9036 OLT | 87.5 2| MCD | 995 991 915 921 | 956
MDDA 992 97.1 56.2 | 84.2 RevGrad 77.9  93.7 91.‘8 87.8 = MB3SDA 994 992 915 941 | 96.1
“ 1\?55&1 222 ggz %3 23; DCTN 75.0 9547 90.3 | 87.0 ShmpAl | 99.3 99.8 922 953 | 96.7
- SIn;pAl 992 974 706 | 890 ) MFSAN 791 9?"% 93.6 89}4 FADA™ 88.1 87.L 887 842 871
DECISION® 99:6 98:4 75'.4 91:] S SImpAl 77.5 93.3 91.0 87.3 DECISION* | 99.6 100 95.9 95.9 | 98.0
SMUDA** | 99.8 98.5 75.4 | 91.2 SMUDA*T [ 79.4 96.9 93.9 | 90.1 SMUDA** | 99.3 976 939 95.9 | 96.6
(a) Office-31 (b) Image-clef (c) Office-caltech

Method —-A —-C P — R | Avg. Method -Q —-C —-P —-I —-S —R|Avg

Source Only | 65.3 49.6 79.7 75.4 67.5 Source Only | 11.8 39.6 339 8.2 23.1 416 26.4

m DAN 68.2 56.5 80.3 75.9 70.2 DAN 16.2 39.1 33.3 114 29.7 42.1 28.6

»n D-CORAL 67.0 53.6 80.3 76.3 69.3 m JAN 14.3 353 325 9.1 25.7  43.1 26.7

RevGrad 679 559 804 75.8 70.0 @ ADDA 14.9 395 291 145 307 419 28.4

DAN 68.5 594 79.0 825 72.4 MCD 3.8 42.6 426 19.6 33.8 50.5 32.2

8 D-CORAL 68.1 586 795 82.7 72.2 Source Only | 13.3 476 38.1 13.0 33.7 519 32.9

RevGrad 68.4 59.1 795 82.7 72.4 DAN 15.3 454 36.2 12.8 34.0 486 32.1

MFSAN 72.1  62.0 80.3 81.8 74.1 &) JAN 12.1 40.9 35.4 11.1 323 45.8 29.6

M3SDA 64.1 62.8 76.2 78.6 70.4 «w ADDA 147 475 36.7 114 335 49.1 32.2

‘é’ SImpAl 70.8 56.3 80.2 815 72.2 MCD 7.6 54.3  45.7 221 43,5 584 38.5

MDAN 68.1 67.0 81.0 828 | 74.8 DCTN 72 48.6 488 235 473 535 | 382

MDMN 68.7 67.6 814 833 | 75.3 M3SDA-f3 6.3 586 523 260 495 62.7 | 42.6

DARN 70.0 684 828 839 | 76.26 FADA*F 7.9 453 389 16.3 26.8 46.7 | 30.3

DECISION® | 74.5 59.4 84.4 83.6 | 755 £ | DECISION* | 18.9 615 54.6 216 51 675 | 45.9

SMUDA** | 69.1 61.5 83.5 834 | 744 SMUDA*" | 146 62.4 53.6 24.4 499 68.3 | 455

(d) Office-home (e) DomainNet

Table 1: Results on five benchmark datasets. Single best (SB) represents the best performance with respect to
any source, source combined (SC) represents performance obtained by pooling the source data together from
different domains, and multi source (MS) represents methods performing multi source adaptation. * indicates
source-free adaptation, guaranteeing privacy between sources and the target. T indicates privacy between
source models. Results in bold correspond to the highest accuracy amongst the source-free approaches.

6.2 Ablative Experiments and Empirical Analysis

We perform ablative experiments by investigating the effect of each loss term in Eq. [d] on performance,
and present results in Table 2] We observe combining the two terms yields improved performance for all
datasets besides Office-caltech, where the difference is negligible. On the other hand, minimizing the SWD
is more impactful on the Image-clef and Office-home datasets. The conditional entropy contributes more
for Office-caltech and some Office-81 tasks. Our insight is conditional entropy is more impactful when the
source trained models have higher initial performance on the target (e.g., — D, — W on Office-31), while the
SWD term is more beneficial when there is a larger discrepancy between the source domains and the target
domain (e.g., — A on Office-31). Experiments conclude using both terms further improves performance.

To study the effect of preserving privacy on UDA performance, we perform experiments on the Office-31
dataset, assuming source domain samples are accessible. We consider three primary scenarios for sharing
source data: (i) SWD loss is computed using the source domain latent features (SW); (ii) Source domains’
data is Combined into a single source (SC); Supervised Source loss is computed for joint UDA (SS). We
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Method | =D —W —A | Avg. Method | =W —-D —C — A | Avg.
SWD only | 92.2 941 73.1 | 86.4 SWD only | 98.1 978 92.1 955 | 959
Lent only | 99.8 981  66.2 | 88.1 Lent only | 994 97.7 94 96 96.8
SMUDA | 99.8 985 754 | 91.2 SMUDA | 993 97.6 939 959 | 96.6
(a) Office-31 (b) Office-caltech
Method | =P —C —I | Avg. Method | A —-C —>P — R | Avg.
SWD only | 79.3 96.5 942 | 90 SWD only | 66.6 59.1 80.9 822 | 72.2
Lenyonly | 785 96 91.7 | 88.7 Lene only | 645 494 77.8 722 66
SMUDA | 79.4 96.9 93.9 | 90.1 SMUDA | 69.1 61.5 835 834 | 744
(c) Image-clef (d) Office-home

Table 2: Results when only the SWD objective, the entropy objective or both (SMUDA) are used.

have report results for four natural combination of these approaches on the Office-31 dataset in Table
We observe SMUDA performs similarly to SW and close to SW+SS, which demonstrates that preserving
privacy has not led to significant performance reduction. We also note combining sources leads to a decreased
performance compared to SW and SS+SW due to negative knowledge transfer between source domains,
which cannot be eliminated when the source domains are combined. In sum, we conclude that SMUDA
helps mitigate negative transfer preserves privacy without significant performance reduction.

Method —-D —->W —A | Avg.
SW 99.5 985 755 | 91.2
SC 98.1 96.8 76 90.3

SS 4+ SW 99.8 98.6 75.7 | 91.3
SC+SS+SW | 99.0 97.7 76.1 | 90.9
SMUDA 99.8 985 754 | 91.2

Table 3: UDA with accessing to the source domain data using the Office-31 dataset.

To compare our method against ensemble models of existing single-source source-free UDA (SFUDA) meth-
ods, we performed experiments on the Office-31 dataset. We compare against five recent SFUDA approaches
in Table[d] and the ensemble of these methods in Table[5] We observe that although in the SFUDA setting,
despite being competitive, our method trails some of the methods, it outperforms the methods in MUDA.
We conclude that our method alleviates the effect of negative transfer successfully and indeed can boost
performance of a weaker single-source performance. We also note that we likely can improve the SFUDA
performance for our method if we benefit from better probability metrics or model regularization.

Method A—-D W=D A-W D->W D—-A WA | Avg.

USFDA [Kundu et al.[(2020] 64.5 96 71 93.3 62.8 63.6 75.2
SHOT |Liang et al.|(2020b) 94.0 99.9 90.1 98.4 74.7 74.3 88.6
AFN [Xu et al.|(2019) 90.7 99.8 90.1 98.6 73.0 70.2 87.1
MDD |Zhang et al.|(2019) 93.5 100 94.5 98.4 74.6 72.2 88.9
GVB-GD |Cui et al.|(2020) 95.0 100 94.8 98.7 73.4 73.7 89.3
SMUDA (ours) 92.7 99.8 87.9 98.5 72.1 75.4 87.7

Table 4: Single source results

We study the effect of hyperparameters on SMUDA performance. We first empirically validate our approach
for computing the mixing parameters wg. We consider four scenarios for combining model predictions: (i)
Eq. |5} (ii) setting weights proportional to SWD between the intermediate and the target domains (a cross-
domain measure of distributional similarity), (iii) using a uniform average, and (iv) assigning all mixing
weight to the model with best target performance. Average performance for tasks from four of the datasets
are reported in Table [}] We observe our choice leads to maximum performance. Single best performance
is able to slightly outperform on one dataset, however suffers on tasks where significant pairwise domain
gap exists. This is expected, as using several domains is beneficial when they complement each other in
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Method —-D —-W —A | Avg.

USFDA [Kundu et al.|(2020) 96.0 931 655 | 84.9
SHOT-ens |Ahmed et al.|(2021) | 97.8 94.9 75.0 | 89.3

AFN [Xu et al.| (2019) 984 964 T71.3 | 88.7
MDD [Zhang et al.| (2019) 95.4  99.3 741 | 89.6
GVB-GD [Cui et al.|(2020) 97.2 956 74.9 | 89.2

SMUDA-Uniform 942 748 754 | 86.4

SMUDA (ours) 99.8 98.5 75.4 | 91.2

Table 5: Uniformly combined predictions

terms of available information. Assigning weights proportional to D(g(7T), Ax) may seem intuitive, given
that similarity between pseudo-datasets and target latent features indicates better classifier generalization.
However, this method performs better only compared to uniform averaging. We conclude model reliability
is a superior criterion of combining predictions. Uniform averaging leads to decreased generalization on the
target domain as it treats all domains equally. As a result, models with the least generalization ability on
the target domain harm collective performance.

Dataset High confidence W2 Uniform Single Best
Office-31 91.2 88.6 85.1 91.2
Image-clef 90.1 89.6 89.8 89.6
Office-caltech 96.6 96.6 96.6 97
Office-home 74.4 74.2 74.2 72.8
Total avg. 88.1 87.2 86.4 87.6

Table 6: Analytic experiments to study four strategies for combining the individual model predictions.
Mixing based on model reliability proves superior to other popular approaches.

Office ->W Office ->D Office ->A

97.75 99.7 76
§97.50 §99.6 E 75
5 97.25 5995 574
[} o 8
g 97.00 g 99.4 & 73
£ 96.75 % © 72
© 96.50 5993 &
S 2 99.2 g 71

96.25 991 70

1 10 50 100 200 350 500 . 1 10 50 100 200 350 500 1 10 50 100 200 350 500
Num. Projections Num. Projections Num. Projections

Figure 2: Performance for different numbers of latent projections used in the SWD on Office-31.

We additionally study the effect of the SWD projection hyper-parameter. SWD utilizes L random projections,
as detailed in Equation 2] While a large L leads to a tighter approximation of the optimal transport metric,
it also incurs a computational resource penalty. We investigate whether there is a range of L values offering
sufficient adaptation performance, and analyze the impact of this parameter using the Office-31 dataset. In
Figure [2| we reported performance results for L € {1, 10,50, 100, 200, 350,500}. The SWD approximation
becomes tighter with an increased number of projections, which we see translating on all three tasks. We also
note that above a certain threshold, i.e. L = 200, the gains in performance from increasing L are minimal.

In Figure [3] we explore the behavior of our adaptation strategy with respect to a Office-home task. For each
of the three source domains, we observe an increase in target accuracy once adaptation starts, which is in
line with our previous results. Note this increase in target accuracy also correlates with the minimization
of the SWD and entropy losses. We additionally note that the combined multi-source performance using all
three source domains outperforms the three SUDA performances. The biggest difference is observed for the
Clipart trained model, which exhibits the highest discrepancy from the target domain Real World.

The confidence threshold A controls the assignment of mixing weights wy. For each source domain, the
number of target samples with confidence greater than A is recorded, and these normalized values produce
wg. In order to determine whether a certain value of A leads to a satisfactory choice of mixing weights,
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Figure 3: Effect of the adaptation process on the Office-home dataset: from left to right, we consider Art,
Clipart and Product as the source domains, and Real World as the target domain.
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Figure 4: Prediction accuracy on Office-home target domain tasks under different levels of source model
confidence, and our choice of A\. Target predictions above this threshold attain high accuracy.

it is important to determine whether the high confidence samples are indeed correctly predicted. Figure [4]
provides the prediction accuracy on target domain samples on the Office-home dataset for different confidence
ranges. We consider 5 different confidence probability ranges: [0 — 20, 20 — 40, 40 — 60, 60 — 80, 80 — 100]. We
observe low-confidence predictions offer poor accuracy for the target domain. For example, in cases when the
confidence is less than 0.2, prediction accuracy is below 40%. Conversely, for target samples with a predicted
confidence greater than .6, we observe accuracy of more than 90% on all the three tasks of Office-home.
This experiments supports our intuition that the amount of high confidence target samples can be used as a
proxy for the domain mixing weights wy. We also note the amount of high confidence samples is calculated
using the source only models, as adaptation artificially increase confidence across the whole dataset.

Office-31 Accuracy Image-clef Accuracy
94 | 94 |
1 1
- | - |
9] o ]
I o !
5 90 ! 5 90 !

v i g —_—
< 88 ! < 88 !
] 1
86 i 86 i
1 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Confidence Threshold Confidence Threshold

Figure 5: Results on the Office-31 and Image-clef datasets for different values of the confidence parameter
A. The dotted line corresponds to A = .5 used for reporting results in Table

We further investigate performance with regard to the parameter A. While in Figure |[5| we observe a target
accuracy increase correlated to higher levels of classifier confidence, the amount of high confidence samples
proportional to dataset size is equally important for an appropriate choice of confidence threshold. Setting
the A parameter too high may lead to mixing weights that do not capture model behavior on the whole
target distribution, just on a small subset of samples, leading to degraded performance. Conversely, a low
value of A will lead to results that are equivalent to uniformly combining predictions. Figure [5| portrays both
these behaviors on the Office-31 and Image-clef datasets. We observe our choice of A = .5 is able to obtain
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best performance on the Office-31 dataset, and close to best performance on the Image-clef dataset. We
also note the choice of ) is relatively robust, as values in the interval [.2,.7] offer similar performance.
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Figure 6: UMAP latent space visualization for Office-caltech with Amazon as the target. Sources in order:
Caltech, DSLR, and Webcam. Adaptation shifts target embeddings towards the GMM distribution.
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Figure 7: Source and GMM embeddings for the Image-clef dataset with Pascal and Caltech as sources. For
both datasets, the GMM samples closely approximate the source embeddings.

Our approach attempts to minimize the distributional distance between target embeddings and GMM esti-
mations of source embeddings. We provide insight into this process in Figure [6 where we reduce the data
representation dimension to two using UMAP (Mclnnes et al| (2018)). We display GMM samples, target la-
tent embeddings before adaptation, and target latent embeddings post-adaptation. For each source domain,
the adaptation process reduces the distance between target domain embeddings (yellow points) and the
GMM samples (red points). This empirically validates the theoretical justification for our algorithm. Given
classifiers trained on the source domains are able to generalize on the GMM samples as a result of pretraining,
we conclude that source-specific domain alignment translates to an improved collective performance.

Finally, we investigate the representation quality of the GMM distribution as a surrogate for the source
distribution. Note that having GMMs that are good approximation of the source latent features is crucial
for our approach. In Figure[7] we present visualized data representations for the estimated GMMs and the
source domain distributions for the Image-clef dataset. We note that for both source domains, their latent
space distributions after pretraining are multi-modal distributions with 12 modes, each corresponding to
one class. This observation confirms that we can approximate the source domain distribution with a GMM
with 12 modes. We also note that for both source domains the estimated GMM distribution offers a close
approximation of the original source distribution. This experiment empirically validates that the third term
in Eq. 4 is small in practice and we can use these as intermediate cross-domain distributions.

7 Conclusion

We develop a privacy-preserving MUDA algorithm based on the assumption that an input distribution is
mapped into a multi-modal distribution in an embedding space. We maintain cross-domain privacy by
minimizing the SWD loss between an intermediate GMM distribution and the target domain distribution in
the latent embedding. We then combine the source-specific models according to their reliability. We provide
theoretical analysis to justify our algorithm. Owur experiments demonstrate that our algorithm performs
favorably against SOTA MUDA algorithms using five UDA benchmarks while preserving privacy. Future
direction includes considering setting where the target domain shares different classes with each of sources.
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A Appendix

A.1 Proof of Theorem 5.1

We offer a proof for Theorem 5.1 from the main paper. Consider the following results.

Theorem 2. Theorem 2 from |Redko €& Sebban (2017)

Let h be the hypothesis learnt by our model, and h* the hypothesis that minimizes es + er. Under the
assumptions described in our framework, consider the existence of N source samples and M target samples,
with empirical source and target distributions jis and fir in R®. Then, for any d' > d and ¢ < /2, there
exists a constant number Ny depending on d’ such that for any & > 0 and min(N, M) > Ny max({f(d'”), 1)
with probability at least 1 — &, the following holds:

er(h) <es(h) + W(ir, fis)+

1/210g )/¢) ( \/> \/>+ec ) ™

The above theorem provides an upper bound on the target error with respect to the source error, the distance
between source and target domains, a term that is minimized based on the number of samples, and a constant
ec = es(h*) + e (h*) describing the performance of an optimal hypothesis on the present set of samples.

We adapt the result in Theorem [2| to provide an upper bound in our multi-source setting. Consider the
following two results.

Lemma 1. Under the definitions of Theorem[3
W(is, i) < Wiis, ip) + W (ip, iiT) (8)

where fip is the GMM distribution learnt for source domain S.

Proof. As W is a distance metric, the proof is an immediate application of the triangle inequality. O

Lemma 2. Let h be the hypothesis describing the multi-source model, and let hy be the hypothesis learnt for
a source domain k. If er(h) is the error function for hypothesis h on domain T, then

Z Wi 67— hk (9)
k=1

Proof. Let p(X) = Y p_, wifr(X) with > wy = 1w, > 0 be the probabilistic estimate returned by our
model for some input X, and let y be the label associated with this input. The proof for the Lemma proceeds
as follows
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eT(h) = E(X7y)~T‘Cce(p(X)7 1y)
= E(x,y)~7 — log p(X)[y]

EXyNT log Zwkfk:
k=1

< Ex gt 3 wi(—log fi(X)[y]) Jensen’s Ineq.
k=1

= Z wkE(X,y)NTﬁce(fk(I)a 1y)
1

3
3

= ) wier(hg)
k=1
O
We now extend Theorem ] as follows
Theorem 3. Multi-Source unsupervised error bound (Theorem 5.1 from the main paper)
Under the assumptions of our framework and using the definitions from Theorem [
Z eSk hk + W(/J’Ta /’ka) + W(NPMM&C)‘*‘
(10)

oD (- + V) + e i)

where Py, is the sample GMM distribution learnt for source domain k, Nk is the sample size of domain k,
Cy, is the combined error loss with respect to domain k, and hj, is the optimal model with respect to this loss.

Proof.

h) < Z wger(hg) From Lemma [2]
k=1

<> wiles, (hi) + W (i, fis, )+

\J(2 log(%)/C) (\/NTk+ \/E) + ec,, (h})) by Theorem 2]

< Z wk(esk (hk) + W(ﬂTa ﬂpk) + W(ﬂpk ) ,[L&c)+

1/ (210g(%)/§) (\/NTk+ \/E) + ec,, (hi)) by Lemmal[I]

A.2 Experimental parameters

We use the Adam optimizer with source learning rate of le — 5 for each source domain for all datasets.
Target learning rates are chosen between le — 5 and le — 7 for adaptation. The number of training iterations
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and adaptation iterations differs per dataset: Office-31 (12k, 48k), Domain-net (80k, 160k), Image-clef (4k,
3k), Office-home (40k, 10k), Office-CalTech (4k, 6k). The training batch size is either 16 or 32, with little
difference observed between the two. The adaptation batch size is usually chosen around 10x the number
of classes for each dataset, to ensure a good class representation when minimizing the SWD distance. The
network size is the same across all datasets, with the SWD minimization space being 256 dimensional. The
above mentioned parameters are also provided in the config.py file in the codebase.

A.3 Additional Results

We extend the runtime results from Section 6.8 of the main paper to the Domain-Net dataset. As seen
in Figure [3] the result in Figure [§] share a similar trend. After the start of the adaptation process target
accuracy improves for each source trained model. Additionally, pooling information from each of the five
source domains leads to improved overall predictive quality of the model.
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Figure 8: Effect of the adaptation process on the Domain-Net dataset, where sketch is the target. Sources
are in order Clipart, Infograph, Painting, Quickdraw, Real.

In table [7] we report results for different choices of the v parameter on the Office-31 dataset. In our
manuscript, we report results for v = .02. We test a wider range of v values to identify how robust this
parameter needs to be. We observe large values of v put too much emphasis on the entropy loss, harming
the optimal transport based distribution matching. Small values of v share a similar problem, as we lose
the soft-clustering benefit provided by the entropy loss. Overall we notice different tasks have different high
performing v ranges . For example, on the — D task, any choice of the parameter greater than 0.02 leads to
best performance, while on the — A task « less than 0.04 offer a competitive range of values. While setting
task specific v values may lead to improved performance, we show that the more robust setting where we
choose the same v per dataset still works reasonably well in practice.

We give justification for the beneficial effect of using all the available source domains for inference. In Table
[l we present results obtained from successively adding source domains to our ensemble, for the Office-home
dataset. We also include single best performance as a baseline, representing the highest target accuracy
obtained across source domains. The rows of the table correspond to the four MUDA problems considered
for Office-home, while the columns correspond to the number of source domains considered in ensembling.
For example, the ACP — R task with 2 sources considers the problem AC' — R. Similar to Figures [3] and
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Method | =D —W —A | Avg.
v=1 99.8 976 64.8 | 87.4
v=.04 99.8 98.7 728 | 90.4
~v=.03 99.8 984 742 | 90.8
~v=.02 99.8 985 754 | 91.2
~v=.01 98.8 97.8 76.3 91

y=1e-3 | 89.3 924 744 | 854

y=le-4 | 874 90.7 742 | 84.1

Table 7: Performance analysis for different values of

we observe that ensembling is superior to single best performance on all tasks. Additionally, our mixing
strategy proves to be robust with respect to negative transfer, as adding new domains is always beneficial
to the reported performance.

Method | Single best | First src. domain  First 2 src. domains  All 3 src. domains
ACP — R 81.1 81.2 82.3 83.7
ACR— P 83.1 77.1 77.9 83.3
APR — C 59.2 58.3 60.1 60.9
PCR — A 67.2 67.3 67.6 68.2

Table 8: Performance analysis when source domains are introduced sequentially.
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