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Abstract001

The scarcity of high-quality anomalous data often002

poses a challenge in establishing effective automated003

fault detection schemes. This study addresses the004

issue in the context of fault detection in optical005

fibers using reflectometry data, where noise can006

obscure the detection of certain known anomalies.007

We specifically investigate whether classes contain-008

ing samples of low quality can be boosted with009

synthetically generated examples characterized by010

high signal-to-noise ratio (SNR). Specifically, we em-011

ploy a conditional Denoising Diffusion Probabilistic012

Model (cDDPM) to generate synthetic data for such013

classes. It works by learning the characteristics of014

high SNRs from anomaly classes that are less fre-015

quently affected by significant noise. The boosted016

dataset is compared with a baseline dataset (without017

the augmented data) by training an anomaly classi-018

fier and measuring the performances on a hold-out019

dataset populated only with high quality traces for020

all classes. We observe a significant improved per-021

formance (Precision, Recall, and F1 Scores) for the022

noise affected training classes proving the success of023

our methods.024

1 Introduction025

Automating fault detection faces a major challenge026

due to the limited availability of anomalous data.027

Since faults are rare events in most systems, col-028

lecting a large dataset is both time-consuming and029

costly.030

A promising solution in industrial domains is the031

use of synthetic data to represent fault samples for032

classification. Synthetic data is artificially generated033

but mimics real-world data. In this paper, we focus034

on enhancing the quantity and quality of available035

samples of fault classes. Optical fibers are vulnera-036

ble to various faults, both in the physical layer (e.g.,037

fiber cuts) and from external threats (e.g., eaves-038

dropping), which can degrade system performance.039

Manual fault detection requires specialized expertise040

and is time-intensive.041

One key method for monitoring optical fibers is042

Optical Time-Domain Reflectometry (OTDR) [1].043

OTDR works by sending pulses into the fiber and044

measuring Rayleigh backscattering to identify and045

locate faults [2]. However, OTDR trace quality can046

be affected by noise [3], [4], potentially leading to 047

incorrect fault identification. The Signal-to-Noise 048

Ratio (SNR) of the OTDR trace plays a crucial 049

role in mitigating this issue, as low SNR traces can 050

occur due to the fault’s location or type (reflective 051

vs. non-reflective). 052

We propose using a Denoising Diffusion Probabilis- 053

tic Model (DDPM) to generate high-SNR OTDR 054

traces (20-30dB) for two specific classes (”Normal” 055

and ”Bad Splice”), even though the training traces 056

for these classes have low SNR. These two classes 057

are chosen because of the sufficient number low-SNR 058

samples are available in these classes for analysis. 059

The DDPM ”learns” the high-SNR characteristics by 060

first training on four other fault classes with traces 061

spanning an SNR range of 0 to 30dB. Afterward, 062

the model’s parameters, except for those pertain- 063

ing to conditional embeddings for the signal, are 064

frozen, and the model is retrained on the ”Normal” 065

and ”Bad Splice” classes using only low-SNR traces 066

(<5dB). Then traces from these two classes with 067

high SNR values will be generated, having inferred 068

high SNR traces from the original four fault classes. 069

To evaluate the DDPM-generated traces, we em- 070

ploy a machine learning (ML) classifier. The gener- 071

ated traces for the two classes are combined to the 072

other four classes of real data, (between 20-30dB), 073

and used as training data to train the ML classi- 074

fier. The performance and veracity of the generated 075

traces is measured on a holdout test set. The hold- 076

out test set consists of all six fault classes with traces 077

with SNR values between 20-30dB. Three baselines 078

are used for comparison: a ground truth dataset 079

where all classes have training examples with SNR 080

values of 20-30dB, and a sub-optimal dataset where 081

only four classes have high-SNR samples between 082

20-30dB, while ”Normal” and ”Bad Splice” have 083

low-SNR samples (<5dB). We compare the DDPM’s 084

performance to a Deep Convolutional Autoencoder 085

(DCAE) trained for denoising and a conditional Vari- 086

ational Autoencoder (cVAE) for a generative model 087

comparison [5]. In our case the ML classifier is used 088

as a similarity metric to assess the veracity and 089

fidelity of traces generated or denoised. 090

This approach demonstrates that the DDPM 091

can generate high-quality OTDR traces for 092

the specified classes, even when trained on 093

low-SNR data, validating its effectiveness for 094

fault detection. A workflow diagram of the pro- 095
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cess can be observed in Figure 4 in the Appendix.096

097

2 Dataset Description098

The dataset used in this paper is opensource [6]099

and consists of OTDR traces, each representing100

specific fault types in fiber optic network. There are101

six classes in total, five of which represent distinct102

fault classes in the optical fibre network and the103

sixth representing ”Normal” behaviour, devoid of104

any of the characterized faults. The classes have105

approximately 16000 samples each. All classes have106

represented samples between 0dB and 30dB, however107

they are not uniformly stratified, and there can108

be greater or lesser amounts of low and high SNR109

value traces for different classes. Each observation110

is structured as follows:111

• Trace Sequences: Every OTDR trace is seg-112

mented into normalized sequences, each with113

a fixed length of 30 data points, providing de-114

tailed insight into the fault characteristics.115

• Class: The fault type and normal behaviour,116

which is one of the following six classes: ”Dirty117

Connector”, ”Normal”, ”Bad Splice”, ”Reflec-118

tor”, ”Fiber Tapping” and ”PC Connector”.119

• Signal-to-Noise Ratio (SNR): The SNR120

value of a trace range between 0 and 30 dB121

- see Figure 6 in the Appendix.122

• Maximum Amplitude (Amp): The variable123

’Maximum Amplitude’ denotes the maximum124

value observed over the trace and then divided125

by the position (event location). This ”strength”126

information is for example useful for distinguish-127

ing between traces for ”Dirty Connector” and128

”PC Connector”.129

The traces are inputted as a tensor of length 30 into130

the cDDPM, cVAE and cDCAE. The ”Class”, ”SNR”131

and ”Maximum Amplitude” values are embedded132

as vectors.133

3 Related Work134

Machine learning (ML) methods have been applied135

to classify OTDR traces in [7] and [8], using data136

with SNR levels ranging from 0 to 30 dB. While137

these methods perform well on the full dataset, their138

ability to generalize to data with SNR values below139

10 dB is limited, highlighting a lack of robustness140

when handling unseen low-SNR data.141

Generative models offer a way to create realistic142

and diverse data samples, closely replicating real-143

world scenarios, including rare fault conditions cru-144

cial for testing and refining diagnostic algorithms.145

Unlike other data augmentation methods, genera- 146

tive models not only increase data quantity but also 147

enhance data quality, helping ML models generalize 148

better to new, unseen samples [9]. 149

Diffusion models, a type of generative model, have 150

gained prominence for their ability to generate high- 151

quality samples. In recent years, diffusion models 152

have shown promise for generating time series data, 153

with applications in areas such as financial forecast- 154

ing and biomedical signal processing [10]. 155

Conditioning in generative models allows the gen- 156

eration of data based on specific attributes, making 157

them more flexible. This capability is particularly 158

useful for addressing class imbalance in datasets, 159

as it enables the generation of targeted outputs for 160

underrepresented classes [11]. 161

Denoising Diffusion Probabilistic Models 162

(DDPMs) are considered state-of-the-art in genera- 163

tive modeling [12], though their application in AI is 164

still emerging. For instance, Azqadan et al. used 165

DDPMs to generate scanning electron microscope 166

(SEM) images, producing highly realistic images 167

and significantly streamlining the microstructure 168

image generation process [13]. However, the 169

use of DDPMs for generating time series data 170

remains underexplored. Lin et al. [10] provide 171

an overview of diffusion models for time series, 172

discussing DDPMs, score-based generative models, 173

and stochastic differential equations (SDEs). While 174

DDPMs and score-based models use discrete 175

diffusion steps, SDEs employ a continuous process, 176

solving differential equations for data generation. 177

The integration of diffusion processes with other 178

generative models is explored by Li et al. [14], where 179

a variational autoencoder (VAE) is combined with 180

a diffusion process to reduce aleatoric uncertainty 181

and improve inference. This approach, applied to 182

time series forecasting, outperforms existing mod- 183

els, demonstrating the power of probabilistic model- 184

ing for accurate predictions. Additionally, Adib et 185

al. investigated synthetic time series generation for 186

Electrocardiogram (ECG) signals using DDPMs [15]. 187

They first converted the 1D ECG signals into 2D po- 188

lar coordinates to apply computer vision techniques 189

before feeding them into the DDPM. However, the 190

results showed that a Wasserstein GAN [16], which 191

processed the original 1D signals, outperformed the 192

DDPM on all metrics. The authors suggest that 193

future work should explore DDPMs directly on 1D 194

signals to improve performance. 195

In this work, we employ a conditional Denoising 196

Diffusion Probabilistic Model (cDDPM) to gener- 197

ate fault samples from rare conditions—specifically, 198

high-SNR cases in classes that typically contain only 199

low-SNR faults. Rather than focusing solely on 200

improving classification accuracy, we use the ML 201

classifier to evaluate the authenticity and integrity 202

of the generated traces. For comparison, we use a 203
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cDCAE, the previous state-of-the-art method for204

denoising OTDR traces, as proposed by Abdelli et205

al. [3]. Our goal is to demonstrate that generating206

new traces with the cDDPM, which were not part of207

its training set, yields better results for classification208

and fault detection than relying solely on denoised209

traces. We also use a cVAE, to compare the perfor-210

mance of a cDDPM for generating OTDR traces to211

another generative model. We aim to bridge a gap212

in the literature by demonstrating the potential of213

DDPMs not only for generating new samples, but214

also for producing high-quality OTDR traces that215

enhance fault detection.216

4 Method217

4.1 Preprocessing218

The three conditioning embeddings, ’Class’, ’SNR’219

and ’Maximum Amplitude’ are factorized before be-220

ing inputted into the embedding layer. The following221

datasets are created:222

• Ground Truth Dataset (GT): This dataset223

contains all of the signals in each class that224

have an SNR value over 20dB. The counts of225

traces for each class is recorded in the Table 5.226

This is included in order to determine the ideal227

scenario when classifying OTDR data as it only228

contains samples with high SNR values.229

• Sub-Optimal Dataset (SO): This dataset230

is comprised of traces from four classes; ’Dirty231

Connector’, ’PC Connector’, ’Fiber Tapping’232

and ’Reflector’, that have an SNR value of over233

20dB and two classes; ’Normal’ and ’Bad Splice’234

that have an SNR value of under 5dB. This235

dataset is tested in order to emphasize the im-236

portance of SNR values classifying OTDR data.237

The counts of each class are recorded in Table238

5 in the Appendix.239

It can be observed from Table 5 that for the240

classes ”Fiber Tapping”, ”Dirty Connector”,241

”PC Connector” and ”Reflector”, the number242

of samples in the GT dataset and SO dataset243

are the same. This is because for these four244

classes the same data is used, and only for the245

two analyzed classes the traces are alternated.246

• cDDPM, cVAE and cDCAE: These three247

datasets is comprised of both the real traces248

from four classes ”Fiber Tapping”, ”Dirty Con-249

nector”, ”PC Connector” and ”Reflector, as250

well as synthetic traces generated by the cD-251

DPM and cVAE for the ”Normal” and ”Bad252

Splice” classes. For both generative models,253

1600 samples each are generated per class. For254

the cDCAE, the real, noisy traces are denoised255

and used as training samples in the ML clas- 256

sifier. Therefore, for the ”Normal” and ”Bad 257

Splice” classes, the number of samples are 2760 258

and 2545 respectively. 259

• Holdout Test Set: A holdout test set is cre- 260

ated that all the training datasets will be tested 261

against. This contains approximately 450 sam- 262

ples for each class and is comprised of traces 263

from all six classes between 20dB and 30dB. 264

4.2 ML Classifier 265

We design an ML classifier to distinguish between 266

the signals for each class. The architecture of the 267

classifier is heavily influenced by that of the BiGRU 268

AE, originally presented by Abdelli et. al in [2]. The 269

structure is comprised of the autoencoder consisting 270

of GRU layers [17], followed by one fully connected 271

layer. The GRU layers of the encoder and decoder 272

consist of 30 and 15 neurons respectively. The fully 273

connected layer has 16 neurons and outputs an inte- 274

ger between 0 and 5, depending on whatever class 275

it classifies the fault as. The input to the classifier 276

is a 32-length sequence; the length of the OTDR 277

trace, the ’SNR’ value, and the ’Maximum Ampli- 278

tude’ value of the trace. The architecture of the 279

ML classifier can be seen in Figure 7 in the Appendix. 280

281

4.3 Conditioning Denoising Diffusion 282

Model 283

4.3.1 cDDPM Process 284

The Conditional Denoising Diffusion Probabilistic 285

Model (cDDPM) operates by consistently adding 286

Gaussian noise to the data in a forward process, 287

learning the structure of the data, and then gradually 288

removing the noise in discrete steps to regenerate the 289

original sample and produce new data. Training the 290

cDDPM involves minimizing the variational upper 291

bound on the negative log likelihood of the reverse 292

process, aligning with a loss function that penalizes 293

errors between the predicted and actual noise. A 294

linear noise schedule is used for denoising, with βmin 295

set to 0.0001, βmax set to 0.02, and 3000 denoising 296

steps. The cDDPM is trained for 200 epochs. The 297

process of training the cDDPM can be observed in 298

Figure 5 in the Appendix. 299

4.3.2 Score Model 300

The noise predicted to be removed at each timestep 301

using a neural network which we call Score Model. 302

The architecture of Score Model involves a combina- 303

tion of linear and GRU layers to concentrate on the 304

short length of the signals. Score model consists of 305

an input linear layer, followed by two unidirectional 306

GRU layers and culminating in an output linear 307
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layer. The initial linear layer has a leaky ReLU [18]308

activation function and there is a Dropout layer be-309

tween the two GRU layers to prevent overfitting [19].310

The input is size 120 (the length of the sequence311

plus embeddings) and the first linear layer outputs312

256. The first GRU layer takes 256 and increases it313

to 512. The second GRU layer takes an input of size314

512 and decreases it to 256. The final linear layer315

has an output of 30. The architecture of the model316

can be observed in Figure 1.317

Figure 1. Graphic of Score Model Architecture

4.3.3 Conditional Embeddings318

We create conditional embeddings for the param-319

eters ”Class,” ”SNR,” and ”Max Amplitude” to320

fully represent each OTDR trace sample under vary-321

ing conditions. These embeddings provide a learn-322

able representation for each parameter, initialized323

as random noise and optimized during training via324

backpropagation. This allows the model to learn325

relationships between different conditions.326

The embedding sizes—3, 6, and 5 for ”Class,”327

”SNR,” and ”Max Amplitude,” respectively—are328

chosen based on the relative complexity and number329

of categories within each condition. For instance,330

”Class” has 6 categories, so a size of 3 efficiently331

captures its variability. In contrast, ”SNR,” with332

31 categories, requires a larger embedding size of333

6 to account for its finer granularity. This propor-334

tional strategy ensures that each embedding size is335

sufficient to represent the complexity of the corre-336

sponding parameter without overfitting.337

4.3.4 Loss Function 338

The loss function in cDDPM targets the difference 339

between the noise predicted to be removed by the 340

Score Model and the actual noise used in the forward 341

process. The Huber loss function, which balances the 342

properties of mean squared error and mean absolute 343

error, is used to calculate this difference. The loss 344

function of a cDDPM is defined in Equation 1: 345

L = E[Lδ(ϵ− ϵθ(xt, t, y))] (1) 346

where xt: represents the data at diffusion time t; ϵ: 347

is the noise vector; ϵθ(xt, t, y) is the noise predicted 348

by Score Model, conditioned by the contextual infor- 349

mation y and timestep t; E is the expectation over 350

the distribution of the data and the forward process. 351

4.4 Conditioning Denoising Convolu- 352

tional Autoencoder (cDCAE) 353

In order to prove the efficacy of the cDDPM for 354

generating traces with high SNR values, we also 355

use a cDCAE to denoise traces and compare results. 356

The method was previously used in the work of [3] 357

and obtained effective results denoising segmented 358

OTDR traces. The architecture of the model can be 359

observed in Figure 8 in the Appendix. It is similar 360

to the architecture used by Abdelli et. al [3], with 361

added conditional embeddings. 362

The cDCAE is not inherently a generative model; 363

it is a model designed for denoising tasks. Con- 364

ditioning in DCAE is used to provide additional 365

information that can help the model better under- 366

stand the context of the noise. The embeddings are 367

inputted into both the encoder and decoder of the 368

cDCAE. Unlike the cDDPM, it is not possible to 369

request specific traces to be generated, instead the 370

noisy traces are denoised and a new SNR value is 371

computed. 372

4.5 Conditional Variational Autoen- 373

coder (cVAE) 374

To compare the performance of the cDDPM with 375

the cVAE, the architecture of the cVAE is described 376

as follows: The encoder consists of two bidirectional 377

GRU layers with 128 and 256 neurons, respectively, 378

followed by two fully connected layers, with a Leaky 379

ReLU activation function between them. The fully 380

connected layers have 256 and 128 neurons. 381

The decoder is composed of two unidirectional 382

GRU layers with 256 and 128 neurons, followed by 383

two fully connected layers, separated by a Leaky 384

ReLU activation function, and concluding with a 385

Sigmoid activation function [20]. The fully con- 386

nected layers in the decoder contain 128 and 64 387

neurons, respectively. The detailed architectures of 388

the encoder and decoder can be seen in Figures 9 389

and 10 in the Appendix. 390
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5 Results391

All the datasets are used to train the same baseline392

ML classifier with all of the same tuned hyperparam-393

eters, in order to compare the quality of the signals394

in each dataset. We evaluate the classification of395

four datasets using the metrics Accuracy, Precision,396

Recall and F1-score.397

5.1 Global Metrics398

5.1.1 Accuracy399

Table 1. Accuracy of three training datasets

Training Set Accuracy (%)

Ground Truth 99.3007
Sub-Optimal 63.3304
cDDPM 94.4056
cDCAE 72.9458
cVAE 78.4528

It can be seen that the Ground Truth dataset obvi-400

ously achieves the highest global accuracy with with401

99.3%, as it is comprised of real traces with high SNR402

values. The cDDPM dataset records an accuracy403

94.41%, demonstrating that the traces generated404

for the ”Normal” and ”Bad Spice” classes have a405

high fidelity to the real traces in GT dataset. The406

cDDPM dataset achieves a vastly superior perfor-407

mance to the cVAE demonstrating that the cDDPM408

is better at generating traces with high SNR values.409

The cDCAE dataset only marginally achieves more410

accuracy than the Sub-Optimal dataset, comprised411

of noisy traces, with 72.95% and 63.33% respectively.412

This illustrates that the cDCAE has failed to denoise413

the traces sufficiently in order to classify the test414

set.415

5.2 Per-Class Metrics for GT Dataset416

The metrics for all classes for the Ground Truth417

dataset are recorded in table 2.418

Class Label Precision Recall F1
Normal 0.9966 0.9966 0.9966
Fiber Tapping 0.9849 0.9975 0.9912
Bad Splice 0.9905 0.9858 0.9882
Dirty Connector 0.9869 1.0000 0.9934
PC Connector 1.0000 0.9806 0.9902
Reflector 1.0000 1.0000 1.0000

Table 2. Performance Metrics by Class Label

We can observe the high precision, recall and F1419

scores for all classes in the Ground Truth dataset420

achieve a good performance. This illustrates that421

none of the classes are inherently difficult or prob- 422

lematic to classify, provided the optimal samples are 423

available. 424

5.3 Comparison of Datasets 425

The performance of each dataset is measured using 426

precision, recall and F1 score to determine how well 427

each class in the training set can be matched to 428

the real traces in the test set. We also provide the 429

Precision Recall Curve for both synthesized classes, 430

to acquire a threshold independent estimate of the 431

models ability to identify the real traces correctly. 432

5.3.1 Normal 433

The performance metrics for Ground Truth dataset 434

and Sub Optimal dataset as well as for the cDDPM, 435

cVAE and cDCAE are recorded in Table 3. 436

Table 3. Performance metrics for Normal

Class Precision Recall F1 Score
Ground Truth 0.9966 0.9966 0.9966
Sub-Optimal 1.0000 0.0000 0.0000
cDDPM 1.0000 0.9024 0.9487
cDCAE 0.6750 0.2727 0.3885
cVAE 0.9801 0.9933 0.9866

It can be observed that the Ground Truth achieves 437

the highest scores for this class, however, this is 438

closely followed by the cDDPM. Ground Truth and 439

Sub-Optimal as well as the cDDPM all achieve a 440

precision of 1.0000, meaning that this class is always 441

correctly predicted in each of these datasets. In the 442

case of Sub-Optimal this result is achieved because 443

the class is never predicted incorrectly. The recall 444

and F1 scores of Ground Truth, cDDPM and cVAE 445

are both extremely high achieving over 90% in all 446

three. The cVAE achieves higher recall than the 447

cDDPM for this class meaning that the ML classifier 448

is misclassifying fewer instances of generated cVAE 449

traces. The Sub-Optimal dataset of noisy traces 450

fails to predict any traces in this class correctly. 451

The cDCAE achieves inadequate results with an F1 452

Score of 0.3885, and is vastly outperformed by the 453

cDDPM and cVAE, recording an F1 Score 0.9487 454

and 0.9866 respectively. The performance of each 455

dataset for classifying the ”Normal” class against 456

the other classes is plotted in the PR curve in 2. The 457

PR curve for the ”Normal” class indicates that the 458

cVAE model performs very well, nearly matching 459

the performance of Ground Truth dataset. The cD- 460

DPM model has a slightly steeper drop-off compared 461

to cVAE and GT, indicating that it classifies more 462

false positives than GT and cVAE. GT, cVAE and 463

cDDPM significantly outperform both SO and the 464

cDCAE model, indicating that the model misclassi- 465

fies instances in the test set as ”Normal” far more 466

often. 467

5



NLDL
#8

NLDL
#8

NLDL 2025 Full Paper Submission #8. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Precision Recall Plot for Normal class

5.4 Bad Splice468

Table 4. Performance metrics for Bad Splice

Class Precision Recall F1 Score
Ground Truth 0.9905 0.9858 0.9882
Sub-Optimal 1.0000 0.0000 0.0000
cDDPM 0.9867 0.8771 0.9287
cDCAE 0.9661 0.1348 0.2365
cVAE 0.4498 0.2435 0.3160

It can be observed that again Ground Truth achieves469

the highest results, and the cDDPM generates the470

traces closes to the real traces most successfully. The471

cVAE here struggles to generate realistic traces for472

this class, achieving an F1 Score of only 0.3160. The473

cDCAE achieves poor results with an F1 Score of474

0.2365. Both generative methods and the denoising475

method again prove more effective than training476

with noisy traces, however the cDDPM significantly477

outperforms the cVAE and cDCAE for this class478

with an F1 Score of 0.9287. The PR curve in 3 in-

Figure 3. Precision Recall Plot for Bad Splice Class

479

dicates that the cDDPM model performs very well,480

nearly matching the performance of Ground Truth, 481

and significantly outperforms Sub-Optimal, cVAE 482

and the cDCAE model. This visualization supports 483

the use of cDDPM for generating high-SNR traces 484

from low-SNR training data, demonstrating its effec- 485

tiveness in preserving the quality of the generated 486

data. 487

5.5 Generated Traces 488

A visualization of the Mean Absolute Distance from 489

the Ground Truth can be observed Figure 11 in the 490

Appendix. This is calculated by using the mean of 491

Ground Truth traces of the ”Normal” Class, where 492

the SNR value is 30, and finding the mean difference 493

between traces from each dataset of the same class 494

and SNR value. 495

6 Conclusion 496

The cDDPM is capable of generating high quality 497

denoised traces of fault classes despite not being 498

trained on these samples. It records an F1 Score 499

of higher than 0.9 for both classes, suggesting that 500

the traces produced by the cDDPM are indistin- 501

guishable from the original traces contained in the 502

test data. The conditional parameters enabled the 503

model to infer what the samples would look like 504

with a high SNR value. It is worth noting that due 505

to the significant variability in the real world data 506

used in this research both between and within the 507

classes, observing the quality of the traces was diffi- 508

cult. This made it necessary measure the fidelity of 509

the generated traces against the holdout dataset. 510

Traces generated by the cDDPM show a clear 511

classification improvement over the noisy traces, the 512

generative abilities of the cVAE and the traces de- 513

noised by the cDCAE on the same classes when all 514

datasets were tested against the holdout test set. 515

This proves the efficacy of the cDDPM to extrapo- 516

late samples which have not been seen by the model, 517

or included in the training data. This work also 518

highlights the efficacy of a cDDPM in generating 519

1-dimensional fault signals, which, as highlighted 520

previously in Section 3, provides a significant contri- 521

bution to the domain. 522
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7 Appendix665

Figure 4. Workflow Diagram of Process

Figure 5. Training Process of cDDPM
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Figure 6. Signals from the Normal Class with different
values of SNR. It can be seen that as value of the SNR
increases the traces are smoother an of higher quality.

Figure 7. The ML Classifier Architecture.
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Table 5. Number of samples in Ground Truth and
Sub-Optimal Datasets

Fault Type # in GT # in SO

Normal 1142 2760
Bad Splice 1577 2545
Fiber Tapping 1606 1606
Dirty Connector 1622 1622
PC Connector 1587 1587
Reflector 1617 1617

Figure 8. cDCAE Architecture
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Figure 9. The cVAE Encoder.

Figure 10. The cVAE Decoder.

Figure 11. Mean Absolute Difference of All Datasets compared to Ground Truth
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