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ABSTRACT

Mamba (Gu & Dao, 2024a; Dao & Gu, 2024) state-space models (SSMs) were
recently shown to outperform state-of-the-art (SOTA) Transformer large language
models (LLMs) across various tasks. Despite subsequent widespread adaptation,
little work has focused on Mamba LLMs’ amenability for fine-tuning frameworks
ubiquitously used for Transformer-based LLMs, e.g., mixed-precision fine-tuning
(MPFT) and parameter-efficient fine-tuning (PEFT). For the former, it currently
remains an open question whether Mamba’s recurrent dynamics are robust to
small input changes, such as those encountered during MPFT. Using dynamical
systems theory (in particular, Lyapunov exponents), we answer this question in
the affirmative. We empirically validate this result through several experiments,
showing that Mamba SSMs are significantly more stable to changes introduced
by mixed-precision than comparable Transformers, even when both MPFT and
PEFT are combined. For PEFT, we show how targeting specific memory buffers
in Mamba’s customized CUDA kernels for low-rank adaptation regularizes SSM
parameters, thus providing both parameter efficient learning and computational
savings. Finally, with both MPFT and PEFT enabled, we explore the impact of
instruction tuning Mamba SSMs for in-context learning (ICL) on natural language
tasks. While pretrained Mamba and Mamba-2 models only achieve 38% and 82%
(respectively) of the ICL improvements of comparable Transformer-based LLMs,
we show that instruction tuning allows Mamba models to narrow this gap to 81%
and Mamba-2 models to skyrocket over this gap to 132%.

1 INTRODUCTION

Innovating on previous state-space models (SSMs) (Gu et al., 2022; Dao et al., 2023), Mamba (Gu &
Dao, 2024a; Dao & Gu, 2024) has been recently proposed as an accurate, sub-quadratic alternative
to Transformer large language models (LLMs). Upon their introduction in Gu & Dao (2024a),
Mamba SSMs were shown to greatly outperform comparable attention-based LLMs (Biderman et al.,
2023) across a large number of standard natural language benchmarks. Subsequently, pretrained
Mamba models have been widely adapted across a large number of data modalities (Liu et al.,
2024; Li & Chen, 2024; Quan & Li, 2024; Li et al., 2024), tasks (Xie et al., 2024; Wang et al.,
2024a), and architectures (Anthony et al., 2024; Park et al., 2024; Lieber et al., 2024). Despite such
widespread adaptation and subsequent research threads (Dao & Gu, 2024; Park et al., 2024; Wang
et al., 2024b), little work has been done to understand the amenability of Mamba SSMs for widely
used fine-tuning frameworks, such as mixed-precision fine-tuning (MPFT) (Micikevicius et al., 2018)
and parameter-efficient fine-tuning (PEFT) (He et al., 2021; Hu et al., 2021).

MPFT and PEFT are arguably two of the most widely utilized techniques for LLM alignment (Tunstall
et al., 2023) and customization (VM et al., 2024), and are typically combined to drastically decrease
hardware demands needed to fine-tune modern LLMs (Dettmers et al., 2024). However, direct
application of MPFT for Mamba SSMs is made difficult due to potential sensitivities of Mamba’s
state-space dynamics, a common concern for recurrent-based deep models (Pascanu et al., 2013). To
combat this, both Huggingface (2024) and Gu & Dao (2024b) suggest full precision (FP32) may
be required to perform stable training for Mamba models. Thus, it is currently an open question
whether Mamba’s recurrent dynamics are stable in the presence of small input deviations, such as
those introduced in MPFT.
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To answer this question, we leverage theory from dynamical systems. Deriving and bounding the
Lyapunov exponents for both Mamba and Mamba-2 models, we show that small input changes
within the SSM layer of either model do not lead to exponentially deviating outputs. Empirically,
we validate this theoretical result; compared to full-precision, deviations due to mixed-precision for
Mamba inference are on par with those demonstrated by Transformer LLMs, while deviations due to
MPFT are significantly more stable than those of comparable Transformers (Section 4). Furthermore,
this trend continues when MPFT and PEFT are combined, where Mamba SSMs again produce
significantly smaller deviations compared to comparable Transformer LLMs.

For PEFT, we show that by targeting the large memory buffers exploited by Mamba’s highly cus-
tomized CUDA kernels, LoRA may be used for extremely efficient fine-tuning, while simultaneously
regularizing the majority of Mamba’s SSM parameters via weight tying. We show that this leads to
extremely efficient PEFT, resulting in up to 2.15 times faster training and 65.5% reduced memory
compared to the largest evaluated Mamba model without MPFT or PEFT. Furthermore, this allows
even the largest (2.8 billion parameter) Mamba LLMs to be fine-tuned on a single GPU with as little
as 24GB of onboard memory.

Finally, using both MPFT and PEFT, we complement existing studies (Park et al., 2024; Lee et al.,
2024) by exploring the ICL capabilities of instruction-tuned Mamba and Mamba-2 models on natural
language tasks. In particular, the ICL capabilities of both pretrained Mamba and Mamba-2 models
lag behind those of comparable Transformer models from the Pythia suite (Biderman et al., 2023);
averaged across five standard natural language benchmarks and foundation model sizes, Mamba
and Mamba-2 models only achieve 38% and 82%, respectively, of the performance improvements
(relative to zero-shot) of Pythia models. However, after instruction-tuning, Mamba models are able
to achieve as much as 81.5% of the average few-shot learning improvement (relative to zero-shot)
of comparable Transformers, while Mamba-2 models push this to 132% of the ICL improvements
achieved by Pythia models. We note that, similar to Transformer foundation models (Wei et al.,
2022), (post) instruction tuning ICL appears as an emergent abilities for Mamba and Mamba-2 SSMs,
manifesting for models of size 370 million parameters and greater, while failing to manifest for
Mamba and Mamba-2 models of fewer parameter counts.

Summary of contributions. Our major contributions are as follows:

• We derive bounds on the Lyapunov exponents of both Mamba and Mamba-2 models’ SSM
equations. Using these bounds, we theoretically show that small input changes within the
SSM layer do not lead to exponentially deviating outputs.

• Empirically, we extensively demonstrate the above theoretical result; across two fine-tuning
datasets, two widely used natural language benchmarks, several model sizes, and a large
number of MPFT/PEFT configurations, we show that training Mamba LLMs is significantly
more stable than comparable Transformer-based LLMs.

• For PEFT, we theoretically show that targeting specific weights for LoRA within Mamba
and Mamba-2 SSM layers necessarily leads to weight tying the majority of time-varying
parameters. We empirically demonstrate such regularization can improve generalization.

• We complement recent studies by using MPFT and PEFT to understand the ICL capabilities
of Mamba/Mamba-2 models evaluated on natural language tasks. We show that ICL is an
emergent ability of instruction tuned Mamba/Mamba-2 models, and that instruction tuning
allows SSMs to perform ICL competitively with comparable Transformer LLMs on natural
language tasks.

Terminology. We note that herein, when describing a particular foundation model or result, we
use the term “Mamba model” to refer to one of the original models released in Gu & Dao (2024a)
and “Mamba-2 model” to refer to models released in Gu & Dao (2024a). While there are subtle
architectural differences between these two SSMs, they share important similarities which allow our
theoretical results to extend to both sets of models. In particular, Mamba and Mamba-2 models share
the same state-space equations, support for SSM matrices, and design scheme of storing the majority
of SSM parameters in a large memory buffer. Thus, we synonymously use the term MambaBlock
to refer to the SSM layer of both Mamba and Mamba-2 models.
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2 MAMBA STATE-SPACE MODELS

For latent-variable dimension d and maximum input sequence length T , the MambaBlock defines
state-space parameters A,Bt,Ct,∆t P Rdˆd for t P t1, . . . , T u. The matrix ∆t controls the
discrete step-size. Given an input sequence u1, . . . ,uT P Rd, the following linear mapping through
latent states x1, . . . ,xT P Rd is used to produce the output y1, . . . ,yT P Rd:

xt “ Ātxt´1 ` B̄tut (1)

yt “ C̄txt, (2)

where ∆̄t “ softpluspLinearp∆tqq P Rdˆd, Āt “ exp p∆̄tAq and B̄t “ A´1pĀ ´ IqBt. In
practice, A,Bt,Ct and ∆t are diagonal matrices.

2.1 STABLE DYNAMICS IN THE MAMBABLOCK

The Mamba foundation models were pretrained in full FP32 precision. Consequently, official
Mamba implementations have cautioned against fine-tuning or training in reduced precision (Gu &
Dao, 2024b; Huggingface, 2024), with potential sensitivities of MambaBlock recurrent dynamics
remaining an open question. We answer the latter using theory from dynamical systems. For Mamba’s
discrete dynamic system in Equations 1 and 2, define

xt “ Fθpxt´1,utq, (3)

where θ denotes the time-varying parameters described in Section 2. For input sequence u1, . . . ,uT

and initial latent state vector x0, we thus write

xT “ FθpFθp. . . Fθpx0,u1qqq – FT´1
θ px0,u1q.

The rate of divergence between two scalar ε-close inputs to a discrete dynamical system is bounded
by the system’s maximal Lyapunov exponent λmax (Mikhaeil et al., 2022). Given λmax and two
initial values px0,u1q and px0 ` ε,u1 ` εq, the maximum deviation between these points grows
as (Laffargue et al., 2013; Sayama, 2015):

max |FN
θ px0,u1q ´ FN

θ px0 ` ε,u1 ` εq| P Opε exp pNλmaxqq.

Thus, when λmax ą 0, nearby trajectories exponentially separate and, when λmax ď 0, nearby
trajectories ultimately converge to the same fixed point or periodic cycles.

The maximal Lyapunov exponent is defined as

λmax – lim
TÑ8

1

T
log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

,

where ∥∥2 denotes the spectral norm for matrices. For an arbitrary MambaBlock, we prove the
following:
Theorem 1. Let pxt´1,utq be the latent state and input at an arbitrary time t P t1, . . . , T u within
a MambaBlock. Then small changes pxt´1 ` ε,ut ` εq produce deviations which are exponen-
tially non-increasing over discrete-time. That is, max |FN

θ pxt´1,utq ´ FN
θ pxt´1 ` ε,ut ` εq| P

Opε exp pNζqq, for some scalar ζ ď 0.

The proof of Theorem 1 is available in Appendix C, where the maximal Lyapunov exponent for an
arbitrary MambaBlock is first proven to be non-positive. The main result subsequently follows.

Thus, the latent states of Mamba and Mamba-2 models are stable under small input changes. However,
variables y1, . . . ,yT are the primary outputs for such models, particularly for LLM applications. We
next show that, given Theorem 1, Mamba and Mamba-2 output variables are also stable.
Theorem 2. Assume pxt´1 ` ε,ut ` εq produce deviations which are exponentially non-increasing
over discrete-time. Then small changes to the output yt are also exponentially non-increasing over
discrete time.

The proof of Theorem 2 is available in Appendix D. Thus, by Theorems 1 and 2, the latent and output
states of both Mamba and Mamba-2 models are stable to changes encountered during recurrency.
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2.1.1 CONSEQUENCES FOR AUTOMATIC MIXED-PRECISION

During a forward pass, automatic mixed-precision (AMP) saves time and memory by computing
forward activations in half-precision (FP16 or BF16). During a backward pass, AMP computes
gradients in half-precision and up-casts to full-precision prior to updating. In contrast to full-precision
fine-tuning, MPFT within the MambaBlock thus results in small differences to the inputs u1, . . . ,uT

(which are passed through a Swish), ∆̄t (which is passed through a softplus), and the gradients
calculated during training.

For a discrete dynamical system with λmax ą 0, changes due to AMP compound after repeated
expansion of the recurrent state, thus leading to exponential deviations between quantities calculated
using mixed- versus full-precision. We note that Transformers are not recurrent, and thus not
susceptible to such issues. Yet, just as differences introduced by quantization/mixed-precision produce
output differences in Transformer results, differences are expected in Mamba results using different
precision strategies. However, by Theorem 1, such differences do not exponentially compound over
discrete-time within the MambaBlock.

2.2 HARDWARE-AWARE OPTIMIZATIONS AND PEFT

As matrices Bt,Ct and ∆t are time-varying, S4 optimizations via the SSM convolution kernel (Dao
et al., 2023) are no longer applicable. However, by diagonality, each dimension may be computed
in parallel. Furthermore, the recurrence along every dimension is a prefix sum (also called a scan),
which is highly parallelizable (Blelloch, 1990). Gu & Dao (2024a) thus capitalizes on this through
extensively customized CUDA kernels wherein the majority of temporal variables are carefully laid
out in a large buffer of GPU memory and manipulated. Instantiated as a PyTorch linear layer’s
weight matrix, this memory buffer W P RTˆ3d is used to store and access the diagonal elements of
Bt,Ct and ∆t for all t P t1, . . . , T u, such that

Wrt ´ 1, : ds “ diagp∆tq,Wrt ´ 1, d : 2ds “ diagpBtq,Wrt ´ 1, 2d : 3ds “ diagpCtq,
(4)

where Wr0, : ds “ diagp∆1q,Wrn ´ 1, d : 2ds “ diagpBT q, and so on. The customized
Mamba prefix scan kernel heavily relies on this memory layout to optimize the access pattern of W
in Equations 1 and 2.

Similarly, Mamba-2 stores diagonal elements of Bt,Ct and ∆t in a large memory buffer W.
However, rather than utilizing the underlying recurrence to directly compute the hidden state and
output at each time-step, Dao & Gu (2024) consider the matrix resulting from unrolling Equation 2
across all t. Mamba-2 models thus leverage the structure of the ensuing semiseparable matrix
to calculate x1, . . . ,xT and y1, . . . ,yT using tensor contractions, which are highly optimized on
modern hardware accelerators.

When fine-tuning using LoRA, low-rank matrices are used to adapt the frozen weight matrices of
targeted linear layers. The importance of W for both Mamba and Mamba-2 models makes it a
primary candidate for LoRA adaptation. In such cases, selecting W for LoRA adaptation results in
the following:

Theorem 3. Consider the weight matrix W of a MambaBlock from Equation 4. Targeting W for
LoRA during fine-tuning ties adaptation weights across Bt,Ct and ∆t.

The proof of Theorem 3 is available in Appendix B. The specific affects of both targeting W for
fine-tuning and Theorem 3’s impact on generalization are ablated in Section 4.2.

3 RELATED WORK

Recent work has sought to understand how to efficiently increase Mamba’s hidden-state dimension
by restructuring SSM operations using tensor contractions (Dao & Gu, 2024), leading to Mamba-2
models. A separate line of work has sought to understand the in-context learning (ICL) capabilities
of Mamba LLMs when trained from scratch for specific tasks (Park et al., 2024; Lee et al., 2024).
Another line of recent work has sought to understand how hybrid Mamba-Transformer models may
be directly distilled from Transformer models (Wang et al., 2024b). However, to the best of our
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knowledge, no existing works have either theoretically explored the effects small input changes
(e.g., due to mixed-precision) have on Mamba’s recurrent dynamics, empirically explored such
effects downstream impact on fine-tuning and inference, or sought to understand the effects of LoRA
adaptation on modules within the MambaBlock.

Lyapunov exponents have previously been considered for classic RNN structures (e.g., vanilla RNNs,
LSTMs, GRUs, PLRNNs, etc.) (Mikhaeil et al., 2022; Vogt et al., 2022), to determine when such
models exhibit chaotic dynamics and the impact on the exploding/vanishing gradient phenomena1.
For more recent S4 neural models, (Goel et al., 2022) used Hurwitz matrices to characterize the
numerical stability of linear time-invariant (LTI) S4 models. However, such analysis is not applicable
to time-varying models, such as Mamba, nor does it characterize the effects of sensitive dependence
on initial conditions (e.g., divergence of two ε close inputs). To the best of our knowledge, no
previous works have used Lyapunov exponents to explore the effects of mixed-precision on recurrent
neural models or Mamba architectures.

As previously noted, recent works (Park et al., 2024; Lee et al., 2024) have studied Mamba’s ability
to perform ICL by training Mamba models for specific tasks. Such tasks include logistic regression,
decision trees, and learning other simple function classes, following the work of Garg et al. (2022). We
emphasize that, in this set up, relatively small Mamba models–33 million and 90 million parameters
for Lee et al. (2024) and Park et al. (2024), respectively–are trained from scratch for every evaluated
task. Indeed, Park et al. (2024) notes that subsequent work is necessary to understand Mamba’s
ICL capabilities for language modeling using standard natural language benchmarks, as well as for
larger model sizes. Thus, our study of both the pretrained and instruction tuned ICL capabilities of
Mamba/Mamba-2 LLMs for natural language tasks are complimentary to previous works.

4 EXPERIMENTS

To demonstrate the implications of Theorem 2, we explore the performance difference between
running inference with full-precision pretrained weights and using mixed-precision (FP16 and
BF16) weights. Model performance is measured as percent accuracy using the MMLU
dataset (Hendrycks et al., 2020). The difference in model performance is reported as the mean diver-
gence (i.e., absolute difference) between the original full-precision and respective mixed-precision
model, averaged over {0, 1, 3, 5}-shot percent accuracy. Thus, a divergence greater than one
denotes an average difference greater than one entire percentage of accuracy.

Mamba pretrained checkpoints are compared to pretrained Transformer models of similar param-
eter counts and no more than „300B total pretraining tokens (Pythia (Biderman et al., 2023),
OLMo (Groeneveld et al., 2024) 336B-token checkpoint, and Phi 1.5 (Li et al., 2023)). We note
that Pythia and Mamba models were both pretrained using the same corpus (Gao et al., 2020),
allowing the fairest comparison between SSMs and Transformers. To limit extraneous numerical
effects within experiments (e.g., due to parameter aggregation across multiple GPUs), all models
were run using a single GPU (Nvidia A10G, 24 GB total memory). All models were evaluated using
the LM evaluation harness from Eleuther AI (Gao et al., 2023). Further experimental details are
available in Appendix E. The results are available in Table 1.

Table 1: Mean full-precision (FP32) divergence in MMLU performance for mixed-precision infer-
ence. Divergence is averaged over {0, 1, 3, 5}-shot performance. Pretrained checkpoints are used for
Mamba (M), Pythia (P), OLMo (Groeneveld et al., 2024), and Phi-1.5 (Li et al., 2023) (Phi) models.
Model M P M P M P OLMo M P Phi M P

Size 130M 160M 370M 410M 790M 1B 1.4B 1.5B 2.8B

FP16 µ 0.03 0.35 0.05 0.06 0.21 0.05 0.04 0.04 0.07 0.03 0.15 0.12
BF16 µ 0.05 1.45 0.20 0.20 0.66 0.16 0.13 0.31 0.13 1.05 1.17 0.11

1We note that this continues a long line of research exploring RNNs sensitivity to initial conditions and their
subsequent ability to produce chaotic output (Ribeiro et al., 2020; Laurent & von Brecht, 2017; Bertschinger &
Natschläger, 2004; Bertschinger et al., 2004), although previous work did not leverage Lyapunov exponents.
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Figure 1: Mean full-precision (FP32) divergence in MMLU performance for Mamba, Pythia, and
OpenELM models. Models are fine-tuned over the Alpaca dataset using different combinations of
MPFT and PEFT. Full fine-tuning (i.e., no PEFT adapters) is denoted as Full.

From Table 1, inferencing in Pythia using FP16 and BF16 result in an average 0.13 and 0.41 full-
precision divergence, respectively. Mamba displays similar averages in comparison: inferencing
in Mamba using FP16 and BF16 result in an average 0.10 and 0.48 divergence, respectively.
Interestingly, both SSM and Transformer architectures exhibit large divergence spikes–i.e., mean
divergence greater than a percentage point–when using BF16, which occurs once for Mamba and
Phi 1.5 models and twice for Pythia models. Due to space constraints, Mamba-2 results for the
same experiment are included in Appendix Table F. We note that, for comparable model sizes and
mixed-precision, Mamba-2 models follow identical divergence trends as respective Mamba models.

In the following, we show that the observed large divergence spikes may be mitigated for Mamba
SSMs by combining mixed-precision with parameter-efficient adapters during fine-tuning.

Non-divergent Mamba fine-tuning. We next explore the implications of Theorem 1 on fine-tuning,
wherein mixed-precision is especially critical; MPFT combined with PEFT adapters have been shown
to drastically reduce Transformer fine-tuning times (Dettmers et al., 2024). We are thus interested
in the divergence between Mamba models fully fine-tuned (i.e., no adapters, all model weights are
trained) in full-precision and models fine-tuned using mixed-precision and/or PEFT adapters. We
focus on utilizing LoRA (Hu et al., 2021), which is arguably the most widely used PEFT framework
for LLMs.

Using the Alpaca dataset (Taori et al., 2023), Mamba 160M, 410M, and 790M models are fine-
tuned for three epochs with a maximum sequence length of 512. We denote the targeting of all linear
layers (ALL) for LoRA as ALL LoRA, the targeting of a subset of linear layers (SLL) for LoRA as
SLL LoRA, and no adapters as Full (i.e., full fine-tuning). Both ALL and SLL LoRA adapt the large
memory buffer described in Theorem 3.

Each fine-tuning run occurred on a single A10G GPU. To further limit extraneous numerical effects,
the same batch size is used for all FP32, FP16, and BF16 experiments for a given model size.
While this leads to hardware underutilization (i.e., non-saturated GPU memory for mixed-precision
and LoRA experiments), this is necessary to guarantee no divergence is due to differences in
parameter update schedules. For comparison, two Transformer-based LLM families of similar
parameter counts are fine-tuned using the same experimental setup: Pythia (sizes 160M, 410M,
and 1B) and OpenELM (Mehta et al., 2024) (sizes 270M and 450M). The training recipe for all
models was adapted from (Tunstall et al., 2023), with the AdamW_torch optimizer and a cosine
annealing schedule. Further experimental details are available in Appendix E.

For each Mamba, Pythia, and OpenELM model, Figure 4 shows the mean divergence calculated be-
tween the respective FP32 Full and mixed-precision ALL/SLL LoRA fine-tuned models, averaged
over {0, 1, 3, 5}-shot MMLU accuracy.

Across mixed-precisions and adapter settings, Mamba displays smaller divergences than both Pythia
and OpenELM models. E.g., for FP16, Mamba demonstrates an average divergence of 0.1,
compared to 0.14 for Pythia and 0.54 for OpenELM. Similarly, for BF16, Mamba demonstrates
an average divergence of 0.18, compared to 0.28 for Pythia and 0.33 for OpenELM. Importantly,
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Mamba models do not exhibit large deviation spikes after fine-tuning, in contrast to both Pythia
and OpenELM models. Further experiments with additional fine-tuning and benchmark datasets are
available in Appendix I.
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Figure 2: Timing and memory usage calculated Mamba model-sizes and PEFT combinations. Each
model was trained using the Alpaca dataset dataset for three epochs and maximum sequence length
512. For each PEFT combination, the batch size was tuned to maximize GPU occupancy. Full
fine-tuning exceeds available GPU memory (24 GB) for models greater than 790 million parameters.

Hardware throughput and memory-utilization improvements. With stable dynamics and observed
divergences smaller than comparable Transformers, we show that MPFT and PEFT may be used to
significantly increase GPU-training throughput for Mamba SSMs. To demonstrate such improvements,
we utilize the previous fine-tuning settings for the Alpaca dataset. However, we now adjust the batch
size to maximize throughput per MPFT and PEFT configuration.

For each MPFT and PEFT configuration, the average tokens-per-second (ATPS) is calculated as the
total tokens used for fine-tuning divided by total training time, and the maximum memory-per-token
(MMPT) is calculated as the maximum GPU memory utilization incurred (over the entire fine-tuning
run) divided by the total number of tokens in each mini-batch. Results are plotted in Figure 4.

Both throughput and memory utilization improve as the number of Mamba parameters increases
in Figure 4. Compared to the full-precision full fine-tuning of Mamba 790M (the largest model
supported by an A10G’s memory capacity), evaluated MPFT and PEFT combinations result
in an average 2.15 times more training tokens-per-second while reducing per-token memory
utilization by an average 62.7%. Across all model sizes, evaluated MPFT and PEFT combinations
result in an average 1.74 times more training tokens-per-second while reducing per-token memory
utilization by an average 47.2% compared to respective full-precision fine-tuned runs. Furthermore,
while full fine-tuning is no longer possible on a single A10G for Mamba models greater than 790
million parameters, MPFT and PEFT allow training Mamba models up to 2.8 billion parameters on
GPUs with as little as 24 GB onboard memory.

4.1 INSTRUCTION TUNING IMPACT ON MAMBA ICL FOR NATURAL LANGUAGE TASKS

Using both MPFT and PEFT, we next explore how instruction tuning affects Mamba and Mamba-
2 ICL performance on natural language tasks. All Mamba and Mamba-2 pretrained models are
instruction fine-tuned using ALL LoRA and the OpenHermes dataset (Teknium, 2024) (which consists
of 242,000 supervised samples). We use the training recipe of (Tunstall et al., 2023), which includes
BF16 utilization.

Zero and few-shot performance is evaluated using five standard natural language benchmarks:
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Arc-E (Clark et al., 2018), Arc-C (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2021). ICL performance is reported as the average
improvement percentage of {1, 3, 5}-shot versus 0-shot (AIPSS). For comparison, Pythia pretrained
models are instruction fine-tuned using the same training recipe and ALL LoRA (i.e., all Pythia linear
layers are adapted).

Figure 3 displays AIPSS for pretrained and instruction fine-tuned Mamba and Pythia models. As
previously noted, pretrained Mamba models do not display similar ICL ability as comparable
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Figure 3: Instruction tuning narrows the ICL gap between Mamba and Pythia, and creates a gap from
Pythia to Mamba-2 models. ALL LoRAmodels were instruction tuned on the OpenHermes (Teknium,
2024) dataset for one epoch. Performance is reported as the average improvement percentage of {1,
3, 5}-shot versus 0-shot over five standard natural language benchmarks.

Pythia models on the evaluated standard NLP benchmarks. In particular, Mamba 2.8B, the largest
pretrained Mamba model, displays inconsistent zero-shot improvements as the number of shots
increase. While pretrained Mamba-2 models display significantly better ICL ability than Mamba
models, Mamba-2 models smaller than 780 million parameters struggle.

However, after instruction tuning, all Mamba models larger than Mamba 130M consistently improve
in ICL performance as the number of shots increase. Similarly, the majority of Mamba-2 models
larger than Mamba 130M greatly improve in ICL performance. Thus, while pretrained Mamba and
Mamba-2 models are only capable of 38% and 82% (respectively) of the AIPSS compared to similar
pretrained Pythia models, instruction tuned Mamba and Mamba-2 models are capable of 81.5%
and 133% of the AIPSS relative to similarly fine-tuned Pythia models. We note that a significant
difference between Mamba and Mamba-2 models is the larger (by a factor of four) latent dimension.

ICL as an emergent ability of Mamba SSMs. We next study the emergent behavior (as a function
of model size) of Mamba/Mamba-2 SSMs’ ICL abilities on natural language tasks by comparing to
a larger number of Transformer-based LLMs of varying sizes. We compare to OpenELM (Mehta
et al., 2024) (sizes 270M, 450M, and 1.1B), TinyLlama 1.1B (Zhang et al., 2024), and OLMo
1.2B (Groeneveld et al., 2024). To limit the emergent effects on both parameter size and pretraining
token counts, we did not evaluate models greater than 2.8 billion parameters and chose open-source
checkpoints as close as possible to the 300 billion total pretraining tokens used for Mamba, Mamba-2,
and Pythia models. Thus, pretraining token counts for OpenELM, TinyLlama, and OLMo models
were 429 billion, 503 billion, and 336 billion, respectively. We note this potentially biases ICL
performance in favor of the newly evaluated Transformer-based LLMs, and that direct comparisons
between Mamba, Mamba-2, and Pythia are the most fair (as these three classes of models were all
pretrained on the same dataset for the same number of total pretraining tokens).

We repeat the experiments from Figure 3, where we evaluate the pretrained and instruction tuned ICL
capabilities of all models. To understand the critical role of parameter counts, we group all models
into two classes: LLMs containing 450 million parameters or less, and LLMs containing greater than
450 million parameters. ICL performance measured by AIPSS is displayed in Figure 4.

From Figure 4, it is clear that pretrained SSMs and Transformers of parameter counts 270 million and
less display slight or detrimental ICL abilities (i.e., few-shot performance is worse than zero-shot).
For models of greater than 450 million parameters, the majority of SSMs and Transformers display
positive ICL abilities, with Mamba 1.4B being an outlier in terms of poor performance. With the
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Figure 4: Instruction tuning improves Mamba-2 ICL performance past Transformer LLMs. ALL
LoRA models were instruction fine-tuned on the OpenHermes dataset for one epoch. Performance is
reported as the average improvement percentage of {1, 3, 5}-shot versus 0-shot over five standard
natural language benchmarks: HellaSwag, PIQA, Arc-E, Arc-C, and WinoGrande.

exception of TinyLlama at 1-shot performance and Mamba-2 2.7B for 3- and 5-shot performance,
the majority of other pretrained models cluster together.

Instruction tuning greatly smooths ICL performance across both parameter classes. While instruction
tuned SSMs and Transformers of 160 million parameters or fewer continue to display slight or
detrimental ICL abilities, all parameters of 270 million and greater show positive ICL abilities. The
instruction tuned OpenELM 450M model displays particularly impressive ICL abilities, but it is
difficult to determine whether it is strictly due to architecture and/or pretraining recipe, or partially
due to 143% more total pretraining tokens than Mamba/Mamba-2 and Pythia models. For instruction
tuned models of greater than 450 million parameters, all SSMs and Transformers show positive ICL
abilities, with Mamba-2 2.7B greatly outperforming all other models (both SSM and Transformer)
in this class.

Thus, in terms of ICL as a function of SSM model size, while no clear trend presents itself for
pretrained models, ICL appears to emerge for instruction tuned Mamba and Mamba-2 SSMs of size
370 million and greater.

4.2 PEFT-LAYER EFFECTS ON MAMBA-2 ZERO-SHOT PERFORMANCE

As described in Section 2.2, both Mamba and Mamba-2 store the majority of time-varying SSM
parameters in a large memory buffer, denoted as W. For PEFT via LoRA, we ablate the impact of
targetting W and, thus, demonstrate the impact of Theorem 3, where time-varying variables accessed
through W were shown to be regularized through weight tying.

Firstly, using the dataset and settings from Section 4.1, we instruction tune Mamba-2 models using
LoRA by both adapting W and adapting all linear layers other than W. Mamba-2 MambaBlocks
contain two linear layers, thus the former targets only the W linear layer whereas the latter targets
the other linear layer in each block. As shown in Table 2, PEFT with only W targetted within the
MambaBlock near uniformly results in better performance than only targeting other layers, with the
former outperforming the latter on 32 out of 35 natural language tasks. This makes intuitive sense
since W represents the majority of Mamba’s time-varying parameters (as previously mentioned).
Thus, while previous works Gu & Dao (2024a); Dao & Gu (2024) have displayed the importance
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of Mamba’s time-varying parameters for pretraining performance, this verifies the importance of
Mamba’s time-varying parameters for instruction tuning performance.

Table 2: Zero-shot performance for instruction tuned Mamba-2 models where: ✓ denotes the large
memory buffer W containing the majority of temporal variables (described in Section 2.2) is targeted
for LoRA adaptation, and ✗ denotes W is not adapted. The top-performance for each task per model
is highlighted in bold .

Model W targeted? LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò

Mamba-2
130M

✓ 15.37 45.16 35.41 65.02 47.94 24.91 52.17
✗ 16.95 43.30 35.24 64.85 47.47 24.06 52.17

Mamba-2
370M

✓ 8.03 54.16 46.87 69.53 53.49 27.73 57.14
✗ 8.50 53.74 46.59 70.67 54.80 26.79 55.64

Mamba-2
780M

✓ 5.79 61.61 55.14 71.98 61.11 29.18 60.09
✗ 5.86 61.63 54.94 72.03 60.98 28.41 60.22

Mamba-2
1.3B

✓ 4.54 65.73 60.88 73.67 66.16 34.56 61.80
✗ 5.05 65.44 59.84 73.39 64.10 33.11 61.09

Mamba-2
2.7B

✓ 4.05 69.63 66.73 76.50 69.95 36.77 64.56
✗ 4.10 69.61 66.60 76.39 69.53 36.26 63.93

Next, we present a counterintuitive experiment to demonstrate the impact of Theorem 3. As before,
we instruction tune Mamba-2 models using LoRA, focusing on the two largest model sizes. This
time, however, we target all linear layers within Mamba-2’s MambaBlock and contrast this with
targeting only W within the MambaBlock. Displayed in Appendix G Table 7, we can see that
adapting more SSM parameters does not necessarily lead to improved performance across the board.
Rather, adapting only W for Mamba-2 outperforms adapting all linear layers on eight of the 14
natural language tasks.

The result in Table 7 thus presents two cases: (a) regularization: only adapting parameters which lead
to weight tying (by Theorem 3) and (b) increased learning capacity: adapting more parameters, at
the cost of learning unregularized parameters. Through regularization via weight tying (Press & Wolf,
2017), (a) leads to good generalization. In contrast, while adapting more parameters, (b) includes
unregularized variables, leading to positive improvements on only a minority of tasks when compared
to the fine-tuning of fewer, but regularized, parameters. We note that adapting all linear layers is
often performed when fine-tuning attention-based LLMs using LoRA Dettmers et al. (2024). Thus, a
similar regularization-vs-capacity tradeoff for Transformers LLMs may present itself by carefully
studying LoRA’s affects when targeting specific linear layers in attention-based architectures.

5 DISCUSSION AND FUTURE DIRECTIONS

Using dynamical systems theory, we’ve shown that the recurrent dynamics of Mamba SSMs are
robust to small input perturbations. We’ve extensively confirmed this result, showing that: a) Mamba
inference differences due to mixed-precision align with Transformers, (b) Mamba fine-tuning is
significantly more robust to changes due to mixed-precision and PEFT than Transformers, and (c)
combining MPFT and PEFT can more than halve training time and nearly triple memory efficiency
for Mamba models. Using both MPFT and PEFT, we’ve shown that instruction tuning Mamba
and Mamba-2 SSMs greatly narrows the pretraining ICL gap on natural language tasks relative to
comparable Transformer LLMs. In particular, this allows Mamba-2 SSMs to greatly outperform
the ICL abilities of a large number of instruction tuned, attention-based LLMs. Furthermore,
complimentary to recent studies, we’ve shown that ICL for natural language tasks can be characterized
as an emergent ability of Mamba and Mamba-2 models of 370 millions parameters or greater.

There are several avenues for future work. In particular, adapting Mamba’s CUDA kernels to support
more aggressive low-precision PEFT methods (Dettmers et al., 2024) would further decrease the
hardware needed to train Mamba models, while providing additional speedups and testing the limits
of the derived stability results. Furthermore, our theoretical contributions open the door for follow
up studies, both in terms of extending our stability results to more general error (and adversarial)
robustness results, as well as deriving new SSM-specific LoRA schemes for regularized learning.
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A BACKGROUND

Mixed-precision and parameter-efficient fine-tuning. In the current era of extremely large foun-
dation models, both MPFT and PEFT have become ubiquitous tools for the rapid adaptation of
Transformer-based LLMs towards specific applications. PEFT using adapters (He et al., 2021) allows
a large pretrained model to be efficiently adapted for a particular downstream task by freezing the full
model and training only a small number of extra parameters. Arguably the most widely used such
PEFT method is LoRA (Hu et al., 2021), which injects trainable low-rank matrices into Transformer
layers to approximate weight updates.

To further decrease the computational demands necessary for LLM fine-tuning and inference, MPFT
via mixed-precision (i.e., FP16 or BF16) (Kalamkar et al., 2019; Micikevicius et al., 2018) and
quantized low-precision (Dettmers et al., 2024) have proven effective strategies to reduce GPU
memory and runtime requirements without deleterious effects on downstream performance (Dettmers
et al., 2024; Wu et al., 2020). Additionally, mixed-precision approaches have paved the way for
hardware-aware optimizations within the self-attention module (Dao et al., 2022), greatly mitigat-
ing the quadratic complexity of Transformer LLMs. Together, PEFT and MPFT have created a
rich ecosystem with which varying combinations of these approaches may be used to meet the
computational constraints of a given training system. We note that post-fine-tuning quantization
approaches (Frantar et al., 2023) may be further used to decrease Transformer LLM computational
demands, but such approaches are not considered in this work.

State-space Models. Structured state-space sequence (S4) models (Gu et al., 2022; Fu et al.,
2023) are SSMs which leverage linear time-invariant (LTI) systems to combine the computational
advantages of Transformers–i.e., highly parallelizable training–and recurrent neural networks (RNNs)–
i.e., subquadratic autoregressive inference using recurrency. Within the S4 layer, an input signal is
discretized and LTI parameters representing the input’s latent dynamics are learned. Owing to the
S4 block’s latent dynamics being LTI, the S4 block’s output may be thus compactly represented as
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a single convolution between the input and an SSM convolution kernel (a matrix whose entries are
products of LTI learnable parameters resulting from unrolling the state-space equations). However,
despite hardware efficiency and long-dependency-modeling improvements, LTI-based S4 models
remained inferior to Transformers of comparable parameter-sizes for natural language tasks, even
when augmenting S4 layers with attention-layers for hybrid architectures (Gu & Dao, 2024a).

Innovating on these previous S4 approaches, Mamba utilizes time-varying parameters to model
latent dynamics, thus broadening the ability to capture nuanced changes evolving in discrete-time.
Without LTI dynamics, however, the input-output representation via the SSM convolution kernel is
no longer applicable, thus voiding previous hardware-aware S4 optimizations (Fu et al., 2023). To
enable hardware efficiency with time-varying SSM parameters, (Gu & Dao, 2024a) thus introduced
extensively customized CUDA kernels which implement highly parallelized prefix sums to compute
recurrent states. Subsequently, Dao & Gu (2024) considered the unrolled state-space equations and
leveraged tensor contractions (i.e., einsum notation (Rogozhnikov, 2022)) to efficiently calculate
Mamba variables. The resulting Mamba-2 foundation models contained significantly larger latent-
variable dimensions than the Mamba models of (Gu & Dao, 2024a), while maintaining efficiency on
modern GPU accelerators.

In-context learning. ICL provides an adaptable alternative to fine-tuning. Rather than fine-tune the
LLM directly, ICL augments a prompt with n relevant examples (called shots) preceding the query of
interest. Given sufficiently large models and pretraining data (Brown et al., 2020; Wei et al., 2022),
Transformer LLMs have proven adept at learning new concepts on the fly provided such few-shot
prompting. However, it is worth noting that ICL inference time increases dramatically as the number
of shots grows (due to self-attention’s quadratic complexity) and PEFT (when possible) is known to
produce more accurate downstream learning results (Brown et al., 2020; Liu et al., 2022).

B PROOF OF WEIGHT-TYING USING LORA IN THE MAMBABLOCK

Due to the low-level nature of Mamba’s prefix scan optimizations (discussed in Section 2), standard
use of LoRA adapters is made difficult within Mamba’s SSM-layer. E.g., while Bt, Ct and ∆t are
conceptually PyTorch linear layers, their bundling in a contiguous memory block and careful manip-
ulation makes appending a LoRA adapter on any of these individual matrices non-trivial (particularly,
while respecting the highly specialized layout of each LoRA adapters targeted layer). However, we
note that the overall design of the MambaBlock’s hardware optimizations may be leveraged to both
efficiently learn the parameter-space for the majority of time-varying parameters (thus achieving
PEFT) and regularize parameters during training (thus improving fine-tuning generalization).
Theorem 1. Consider the weight matrix W of a MambaBlock from Equation 4. Targeting W for
LoRA during fine-tuning ties adaptation weights across Bt,Ct and ∆t.

Proof. Let r be the specified LoRA dimension. Targeting this matrix for LoRA results in the adapter

W̃ “W ` W1

“W ` UV,

where U P Rnˆr, V P Rrˆ3d, and W is frozen during fine-tuning. Thus, for index ri, js,

W1ri, js “

r´1
ÿ

k“0

Uri, ksVrk, js.

Recall the form of W:

Wrt ´ 1, : ds “ diagp∆tq,Wrt ´ 1, d : 2ds “ diagpBtq,Wrt ´ 1, 2d : 3ds “ diagpCtq,

where Wr0, : ds “ diagp∆1q,Wrn´ 1, d : 2ds “ diagpBT q, and so on. For index rt´ 1, js, we
thus have

W̃rt ´ 1, js “Wrt ´ 1, js ` W1rt ´ 1, js

“Wrt ´ 1, js `

r´1
ÿ

k“0

Urt ´ 1, ksVrk, js.
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Thus, the weights Urt´ 1, :s are tied for any parameter W̃rt´ 1, js, j P t1, . . . , 3du, which are used
to adapt parameters ∆1,Bt, and Ct.

C MAMBA STABLE DYNAMICS PROOF

Recall the state-space parameters and equations for the MambaBlock; A,Bt,Ct,∆t P Rdˆd for
t P t1, . . . , T u “ rT s. Given an input sequence u1, . . . ,uT P Rd, the following linear mapping
through latent states x1, . . . ,xT P Rd is used to produce the output y1, . . . ,yT P Rd:

xt “ Ātxt´1 ` B̄tut (5)

yt “ C̄txt,

where ∆̄t “ softpluspLinearp∆tqq P Rě0
dˆd, Āt “ exp p∆̄tAq, B̄t “ A´1pĀ´ IqBt, and

Rě0 is the set of non-negative real numbers. In practice, A,Bt,Ct and ∆t are diagonal matrices.

Furthermore, recall the following definitions:

xt “ Fθpxt´1,utq

where θ denotes the aforementioned time-varying parameters. For input sequence ut, . . . ,uT and
initial latent state value x0, we thus write

xT “ FθpFθp. . . Fθpx0,u1qqq – FT´1
θ px0,u1q.

We first prove that, given two scalar ε-close inputs to a MambaBlock, their deviations do not grow
exponentially as the number of recurrences increases (Lemma 1). The main result in the paper is
subsequently proved.

Lemma 1. For input px0,u1q to a MambaBlock, small changes px0`ε,u1`εq produce deviations
which are exponentially non-increasing over discrete-time. That is, max |FN

θ px0,u1q ´ FN
θ px0 `

ε,u1 ` εq| P Opε exp pNζqq, for some scalar ζ ď 0.

Proof. Firstly, we note that within the MambaBlock, A is stored in log-space followed by a negative
exponentiation prior to use. Thus, A P Rď0

dˆd, where Rď0 is the set of non-positive real numbers.

Recall that for the maximum deviation, we have:

max |FN
θ px0,u1q ´ FN

θ px0 ` ε,u1 ` εq| P Opε exp pNλmaxqq.

where the maximal Lyapunov exponent λmax is defined as:

λmax – lim
TÑ8

1

T
log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

,

and ∥∥2 denotes the spectral norm for matrices.

Thus, to complete the proof, it suffices to show that λmax ď 0. Recall that A and ∆̄t are diagonal.
From Equation 5, we thus have

λmax “ lim
TÑ8

1

T
log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

“ lim
TÑ8

1

T
log

∥∥∥∥∥ T
ź

t“0

exp p∆̄tAq

∥∥∥∥∥
2

“ lim
TÑ8

1

T
log

∥∥∥∥∥exp T
ÿ

t“0

p∆̄tAq

∥∥∥∥∥
2
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Let i be the dimension which corresponds to the output of the spectral norm, i.e., i “

argmaxj“1,...,dtexp
řT

t“0p∆̄trj, jsArj, jsqu. We thus have

λmax “ lim
TÑ8

1

T
log

∥∥∥∥∥exp T
ÿ

t“0

p∆̄tAq

∥∥∥∥∥
2

“ lim
TÑ8

1

T
log exp

T
ÿ

t“0

p∆̄tri, isAri, isq

“ Ari, is lim
TÑ8

1

T

T
ÿ

t“0

∆̄tri, is

Ari, is is non-positive and limTÑ8
1
T

řT
t“0 ∆̄tri, is ě 0, since ∆̄tri, is P Rě0 @t. Thus, λmax ď

0.

Theorem 2. Let pxt´1,utq be the latent state and input at an arbitrary time t P r1, T s within a
MambaBlock. Then small changes pxt´1 ` ε,ut ` εq produce deviations which are exponentially
decreasing over discrete-time, i.e., max |FN

θ px0,u1q ´ FN
θ px0 ` ε,u1 ` εq| P Opε exp pNζqq, for

some scalar ζ ď 0.

Proof. Let τptq be a function that maps time values such that τptq P r1, T ´ ts and τptq “ 1, τpt `

1q “ 2, . . . , τpt ` T q “ T ´ t. Then Bτptq,Cτptq,∆τptq define a new MambaBlock with inputs
uτptq, . . . ,uτpt`T q and subsequent recurrent states xτptq, . . . ,xτpt`T q. Applying Lemma 1 to this
MambaBlock with pxτptq´1,uτptqq completes the proof.

D MAMBA STABLE OUTPUTS PROOF

Theorem 3. Assume pxt´1 ` ε,ut ` εq produce deviations which are exponentially non-increasing
over discrete-time. Then small changes to the output yt are also exponentially non-increasing over
discrete time.

Proof. Recall that xT “ FT
θ px0,u1q. Furthermore, recall from Equations 1 and 2, yt “ Ctxt,

where Ct is diagonal.

Let

yT “ GT
θ px0,u1q “ CTxT “ CTF

T
θ px0,u1q.

Consider ε-close inputs pxt´1,utq and pxt´1 ` ε,ut ` εq, and their respective outputs yt and
y1
t. Assume pxt´1 ` ε,ut ` εq produce deviations which are exponentially non-increasing over

discrete-time. That is, max |FN
θ pxt´1,utq ´ FN

θ pxt´1 ` ε,ut ` εq| P Opε exp pNζqq, for some
scalar ζ ď 0.

We thus have

max |yt ´ y1
t| “ max |GN

θ pxt´1,utq ´ GN
θ pxt´1 ` ε,ut ` εq|

“ max |CNFN
θ pxt´1,utq ´ CNFN

θ pxt´1 ` ε,ut ` εq|

9max |FN
θ pxt´1,utq ´ FN

θ pxt´1 ` ε,ut ` εq|,

where proportionality follows due to the diagonality of CN and the vector-absolute value. Thus,

max |GN
θ pxt´1,utq ´ GN

θ pxt´1 ` ε,ut ` εq| P Opε exp pNζqq

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL DETAILS

All model checkpoints were evaluated on all benchmarks and few-shot settings using the LM
evaluation harness from Eleuther AI (Gao et al., 2023), version 0.4.2. Pythia and Mamba
Huggingface checkpoints were used for all inference and fine-tuning experiments, e.g.,
EleutherAI/pythia-160m and state-spaces/mamba-130m-hf for the smallest respec-
tive models. All fine-tuning experiments were run using package versions Transformers
4.40.0.dev0, Accelerate 0.28.0, TRL 0.8.1, PyTorch 2.2.1+cu121, and PEFT
0.10.0. All Mamba-2 models were run using mamba-ssm v2.2.2 using Huggingface
checkpoints, e.g., state-spaces/mamba-130m for the smallest model.

For MPFT, Flash Attention 2.0 (Dao et al., 2022) via flash_attn 2.5.7 was used
for Pythia models. For FP16 and BF16 inference results, Flash Attention 2.0 was used for both
Pythia and OLMo models. For OLMo results, the 336B-token checkpoint was used by specifying
revision=step80000-tokens336B.

All Alpaca and OpenHermes fine-tuning experiments used the following training recipe (adapted from
(Tunstall et al., 2023)): AdamW_torch optimizer, cosine annealing schedule, no gradient
accumulation, maximum norm of 1.0 for gradient clipping, and no warmup steps. Training epochs
used for all Alpaca and OpenHermes experiments were three and one, respectively. For both Pythia
and Mamba models, the learning rate and LoRA dimension r were scaled to improve performance of
smaller models (per-model values listed in Table 3).

For SLL LoRA, targeted Mamba layers were {x_proj, embeddings, in_proj, out_proj};
x_proj is the large MambaBlock memory buffer which, when targeted
by LoRA, regularizes the majority of SSM parameters during fine-tuning
through weight tying (Theorem 3). Pythia targeted SLL LoRA layers were
{dense, embed_in, query_key_value, dense_h_to_4h,dense_4h_to_h},
chosen to balance performance across model sizes.

All experiments were run using a single-GPU Nvidia A10G (24 GB total memory). For Pythia,
Mamba, and Mamba-2 ALL LoRA experiments in Figure 3, all models followed the same training
and PEFT recipes, save for Mamba-2 2.7B which required a LoRA r dimension of 64 to fit in A10G
memory.

Table 3: Learning rate and LoRA dimension r values
Mamba size Mamba-2 size Pythia size learning rate Mamba/Pythia LoRA r Mamba-2 LoRA r

130M 130M 160M 1.0e-5 8 8
370M 370M 410M 5.0e-5 16 16
790M 780M 1B 1.0e-6 32 32
1.4B 1.3B 1.4B 5.0e-6 64 64
2.8B 2.7B 2.8B 5.0e-7 128 64

The Alpaca dataset is freely available for download at https://huggingface.co/
datasets/tatsu-lab/alpaca under open-source license CC-by-NC 4.0. The Open-
Hermes dataset is freely available for download at https://huggingface.co/datasets/
teknium/OpenHermes-2.5 under open-source license MIT, Apache 2.0, CC.

F MAMBA-2 MIXED-PRECISION INFERENCE PRETRAINED LLM
PERFORMANCE TABLES
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Table 4: Mean full-precision (FP32) divergence in MMLU performance for mixed-precision infer-
ence. Divergence is averaged over {0, 1, 3, 5}-shot performance. Pretrained checkpoints are used for
Mamba (M), Mamba-2 (M2), Pythia (P), OLMo (Groeneveld et al., 2024) (O), and Phi-1.5 (Li et al.,
2023) (Phi) models.

Model M M2 P M M2 P M M2 P O M M2 P Phi M M2 P

Size 130m 130m 160m 370m 370m 410m 790m 780m 1b 1.4b 1.3b 1.4b 1.5b 2.8b 2.7b 2.8b

FP16 µ 0.03 0.07 0.35 0.05 0.05 0.06 0.21 0.12 0.05 0.04 0.04 0.04 0.07 0.03 0.15 0.26 0.12
BF16 µ 0.05 0.67 1.45 0.20 0.52 0.20 0.66 0.29 0.16 0.13 0.31 0.40 0.13 1.05 1.17 1.02 0.11

G ADAPTED PEFT-LAYER EFFECTS ON MAMBA-2 ZERO-SHOT PERFORMANCE

19
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Table 5: Pretrained model performance. Model checkpoints were evaluated on all benchmarks and
few-shot settings using the LM evaluation harness from Eleuther AI (Gao et al., 2023). LAMBADA
zero-shot is more effective for the model sizes considered (further discussed in (Xie et al., 2021;
Brown et al., 2020)) and thus excluded from few-shot performance averages. Highlighted in bold is
the top-performing few-shot learner per benchmark and model grouping.

Model N -shot LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande 0-shot incr.
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò Mean % Ò

Mamba
130M

0 16.0 44.3 35.2 64.7 48.0 24.3 52.6 –
1 19.3 38.2 35.1 64.6 47.0 23.5 50.8 -1.9
3 23.1 35.2 35.0 65.1 49.1 24.0 51.0 -0.4
5 24.4 36.2 34.9 64.9 49.1 23.7 50.0 -1.2

Mamba-2
130M

0 16.8 43.9 35.3 64.9 47.4 24.2 52.6 –
1 20.6 37.9 34.9 64.1 46.9 23.1 51.3 -2.0
3 24.3 35.1 34.9 64.4 49.0 24.7 52.9 0.9
5 26.5 34.9 34.6 64.4 48.6 24.8 51.7 0.2

Pythia
160M

0 38.2 32.7 30.2 61.8 43.4 23.8 51.0 –
1 47.2 28.2 30.6 62.2 43.4 23.7 49.3 -0.4
3 63.7 24.7 30.5 61.9 44.8 22.9 51.3 0.1
5 66.3 25.3 30.4 62.6 43.4 23.1 50.8 -0.2

Mamba
370M

0 8.1 55.6 46.5 69.5 54.9 27.8 55.3 –
1 9.7 49.8 45.9 69.3 57.4 26.5 54.7 -0.5
3 10.9 48.4 46.2 69.5 58.8 28.4 53.8 1.2
5 11.4 48.6 46.2 69.4 58.3 28.0 55.9 1.5

Mamba-2
370M

0 8.0 55.9 46.9 70.5 54.8 26.7 55.4 –
1 9.8 50.3 46.4 70.5 56.5 26.8 54.2 0.0
3 11.3 48.5 46.6 70.2 59.0 26.9 54.3 1.0
5 12.5 46.6 46.7 70.3 58.5 28.2 53.3 1.5

Pythia
410M

0 10.8 51.5 40.6 66.9 52.0 24.1 53.4 –
1 12.3 47.1 40.5 68.0 53.8 25.6 52.4 1.8
3 14.4 43.2 40.9 67.9 55.1 26.9 54.0 4.2
5 14.6 44.1 40.8 68.1 54.6 26.6 53.4 3.5

Mamba
790M

0 6.0 61.4 55.1 72.3 61.2 29.5 55.9 –
1 7.1 55.9 54.5 72.4 63.0 30.2 56.9 1.3
3 8.1 54.5 54.2 72.3 63.5 31.4 57.1 2.2
5 8.8 52.9 54.6 72.6 64.4 31.9 57.2 3.1

Mamba-2
780M

0 5.9 61.7 54.9 72.0 61.0 28.5 60.2 –
1 7.1 55.5 54.7 72.4 62.3 32.1 57.1 1.9
3 8.6 53.3 54.7 72.5 62.8 32.3 57.8 2.5
5 9.9 51.4 55.2 72.1 62.8 32.2 56.8 2.2

Pythia
1B

0 7.9 56.3 47.2 70.7 57.0 27.0 53.4 –
1 8.0 51.8 47.3 70.7 57.1 28.2 53.4 1.0
3 10.5 48.2 47.5 71.2 59.2 28.0 54.3 2.2
5 10.9 48.4 47.3 71.4 58.7 28.4 53.1 1.9

Mamba
1.4B

0 5.0 64.9 59.2 74.1 65.5 32.9 61.3 –
1 5.8 60.6 58.2 74.7 64.5 33.0 60.9 -0.5
3 6.6 58.9 58.9 73.6 66.1 34.5 60.9 0.7
5 7.0 58.3 59.0 74.1 66.4 35.5 60.4 1.5

Mamba-2
1.3B

0 5.0 65.6 60.0 73.2 64.2 33.1 61.1 –
1 6.0 60.1 59.4 73.1 65.6 35.3 59.4 1.0
3 6.7 58.6 60.1 73.4 66.5 35.4 61.9 2.5
5 7.0 58.6 60.2 73.7 66.5 35.9 61.4 2.7

Pythia
1.4B

0 6.1 61.7 52.1 70.9 60.5 28.5 57.4 –
1 7.0 56.3 52.1 71.4 62.0 29.5 57.5 1.4
3 7.9 54.4 52.6 70.9 63.9 31.1 56.8 2.9
5 8.0 54.4 52.8 71.0 63.2 31.3 57.8 3.3

Mamba
2.8B

0 4.2 69.1 66.1 75.2 69.6 36.4 63.3 –
1 5.0 63.7 65.6 75.6 69.9 37.1 63.9 0.6
3 5.5 62.8 65.5 75.3 70.8 38.1 65.1 1.7
5 5.7 62.5 66.1 76.1 70.9 38.1 64.6 2.0

Mamba-2
2.7B

0 4.1 69.6 66.6 76.4 69.5 36.3 63.9 –
1 4.8 65.1 65.9 75.1 70.0 38.6 65.1 1.3
3 5.3 63.9 66.8 75.2 71.9 41.0 64.1 3.1
5 5.7 62.3 67.1 75.3 70.7 41.2 65.9 3.6

Pythia
2.8B

0 5.0 64.7 59.3 73.9 64.2 32.9 59.8 –
1 5.7 60.9 59.4 73.8 66.8 34.8 59.0 1.7
3 6.2 59.1 59.9 74.7 67.4 34.9 60.8 2.9
5 6.5 59.1 60.2 74.5 67.1 35.0 61.3 3.1
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Table 6: Instruction tuned model performance. Model checkpoints were evaluated on all bench-
marks and few-shot settings using the LM evaluation harness from Eleuther AI (Gao et al., 2023).
LAMBADA zero-shot is more effective for the model sizes considered (further discussed in (Xie
et al., 2021; Brown et al., 2020)) and thus excluded from few-shot performance averages. Highlighted
in bold is the top-performing few-shot learner per benchmark and model grouping.

Model N -shot LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande 0-shot incr.
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò Mean % Ò

Mamba
130M

0 12.9 46.5 35.1 64.2 48.7 25.5 51.7 –
1 17.8 38.1 35.0 64.2 48.6 24.9 52.2 -0.4
3 22.3 35.3 34.8 64.2 50.2 24.5 50.6 -0.8
5 23.6 35.9 34.7 64.7 49.8 24.6 50.2 -0.9

Mamba-2
130M

0 15.2 44.5 35.1 64.5 47.2 24.7 52.2 –
1 21.9 36.1 34.5 64.3 46.8 24.0 50.8 -1.7
3 26.9 33.3 34.7 65.1 48.5 25.2 51.5 0.6
5 29.0 33.8 34.5 64.8 48.7 25.1 51.3 0.4

Pythia
160M

0 30.2 36.1 30.0 62.2 44.7 23.6 50.3 –
1 44.5 29.1 30.4 62.0 44.0 23.6 50.5 -0.0
3 66.7 25.5 30.3 62.8 45.2 22.8 49.8 -0.3
5 70.4 25.3 30.5 62.9 44.1 23.4 50.8 0.3

Mamba
370M

0 7.2 56.0 46.3 69.2 55.3 27.7 56.0 –
1 9.3 49.9 45.7 68.7 57.1 28.3 55.4 0.5
3 10.4 49.4 45.7 68.9 58.7 29.7 54.1 1.6
5 11.0 48.3 45.7 70.1 59.3 29.1 54.5 1.9

Mamba-2
370M

0 7.6 54.7 46.8 69.3 52.2 27.0 56.0 –
1 9.9 48.3 46.0 69.6 55.7 28.8 55.2 2.1
3 11.8 46.3 46.3 70.1 59.0 29.1 54.5 3.6
5 12.6 45.5 46.3 70.8 59.6 29.5 53.0 3.8

Pythia
410M

0 13.3 46.4 40.9 67.4 52.7 25.4 53.4 –
1 17.2 40.4 40.5 68.4 53.6 25.7 53.0 0.5
3 21.1 37.4 40.9 67.7 55.7 27.1 52.6 2.3
5 21.5 38.2 40.7 67.8 55.7 27.3 53.8 2.8

Mamba
790M

0 5.2 62.8 55.6 72.8 62.4 30.6 56.2 –
1 6.3 56.6 54.9 72.7 64.6 31.7 56.3 1.2
3 7.0 55.6 54.7 72.4 65.3 33.2 57.5 2.7
5 7.5 54.6 54.9 72.9 65.6 33.8 57.2 3.2

Mamba-2
780M

0 4.9 63.4 55.8 71.7 61.1 30.6 59.2 –
1 6.6 55.2 54.4 72.7 64.2 34.0 57.6 2.5
3 7.8 52.7 54.9 73.5 65.0 34.6 57.8 3.6
5 8.6 52.8 54.8 73.4 64.6 34.0 58.0 3.1

Pythia
1B

0 7.7 56.6 47.3 70.8 57.1 26.7 53.4 –
1 8.8 52.0 47.4 70.7 57.5 28.8 53.6 1.8
3 10.2 48.7 47.5 71.4 59.0 28.5 54.4 2.6
5 10.6 48.8 47.4 71.5 58.9 28.4 53.0 2.0

Mamba
1.4B

0 4.6 64.8 59.3 74.3 65.2 35.1 62.3 –
1 5.4 60.3 58.2 74.3 66.7 35.7 62.8 0.6
3 6.1 59.3 58.4 74.1 67.4 36.6 61.8 1.0
5 6.3 58.8 58.8 74.5 68.3 37.0 59.9 1.1

Mamba-2
1.3B

0 4.9 63.0 60.1 73.8 64.0 34.8 61.3 –
1 6.1 58.2 59.2 74.2 67.0 35.0 60.1 0.5
3 7.0 56.6 59.4 73.7 67.8 36.6 59.9 1.5
5 7.2 56.5 59.9 73.5 68.5 36.7 60.7 2.2

Pythia
1.4B

0 5.2 63.6 52.9 71.1 61.2 30.3 58.2 –
1 6.2 57.4 52.7 71.7 62.2 30.6 56.9 0.2
3 7.0 56.1 53.1 71.1 64.5 32.8 56.8 2.3
5 7.1 55.5 53.3 71.2 63.8 33.5 57.5 2.9

Mamba
2.8B

0 4.0 67.7 66.4 75.6 68.4 36.6 64.2 –
1 4.8 63.3 65.9 76.2 70.9 39.4 64.6 2.4
3 5.3 62.1 65.7 75.8 71.3 39.1 65.4 2.4
5 5.4 61.9 66.2 77.2 71.4 40.4 66.1 3.9

Mamba-2
2.7B

0 3.8 68.4 67.5 76.0 69.5 38.3 65.3 –
1 4.5 63.8 66.7 76.0 71.8 41.5 67.1 2.6
3 5.0 62.3 67.3 76.2 73.3 44.4 66.0 4.5
5 5.3 61.8 67.4 76.4 72.4 44.5 65.0 4.1

Pythia
2.8B

0 5.0 64.7 59.3 74.0 64.7 33.3 59.2 –
1 5.6 60.8 59.5 74.0 66.7 34.9 59.3 1.7
3 6.1 59.2 59.9 75.0 67.5 34.9 60.9 2.9
5 6.5 59.0 60.4 74.5 67.0 35.1 61.2 3.0
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Table 7: Zero-shot performance for instruction tuned Mamba-2 models. ✓ denotes only W was
targeted for LoRA adaptation within the MambaBlock, and ✗ thus denotes both linear layers within
each MambaBlock were adapted. The top-performance for each task per model is highlighted in
bold.

Model Only W targeted? LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò

Mamba-2
1.3B

✓ 4.54 65.73 60.88 73.67 66.16 34.56 61.80
✗ 4.94 62.95 60.06 73.78 64.02 34.81 61.33

Mamba-2
2.7B

✓ 4.05 69.63 66.73 76.50 69.95 36.77 64.56
✗ 3.77 68.39 67.51 75.95 69.53 38.31 65.35

H INSTRUCTION TUNING ROBUSTNESS

We show that Mamba is robust to the choice of PEFT hyperparemters. We conduct an extensive
hyperparameter search across the learning rate, LoRA dimension, and number of warmup steps. From
the Cartesian-product of these three parameters, 150 hyperparameter configurations were sampled
and used to fine-tune Mamba 370M over the Openhermes dataset. For comparison, Pythia 410M
is similarly fine-tuned using the same set of 150 hyperparameter configurations.
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(a) Mamba 370M
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Figure 5: Fine-tuning hyperparameter search for OpenHermes. Each point is a different hyperpa-
rameter configuration. SLL LoRA was used for both models. The x-axis is the learning rate, the
y-axis is resulting MMLU 5-shot performance, bubble size is the LoRA dimension, and the color is
the number of warmup steps P t0, 1k, 2ku.

The MMLU 5-shot performance for each of the 150 Mamba and Pythia fine-tuned models is displayed
in Figure 5. Pythia 410M is capable of higher performance than Mamba 370M, where the average
accuracy for the former and the latter are 26.5% and 24.8%, respectively. However, Mamba 370M is
much more robust to the choice of hyperparameters, with a difference of 1.5% between the minimum
(23.3%) and maximum (24.8%). In contrast, Pythia 410M fine-tuned models display a large
performance difference of 4.7% between the minimum (22.9%) and maximum (27.6%).

I EXPANDED DIVERGENCE RESULTS: ALPACA AND LIMA FINE-TUNING,
MMLU AND WINOGRANDE BENCHMARKS, MEAN AND STANDARD
DEVIAATION DIVERGENCES

We extend the non-divergent Mamba fine-tuning results from Section 4. Recall that the following
MPFT and PEFT configurations are considered to fine-tune each considered LLM:

1. Full fine-tuning in FP32

2. Full fine-tuning in FP16

3. Full fine-tuning in BF16

4. ALL LoRAfine-tuning in FP32

5. ALL LoRAfine-tuning in FP16

6. ALL LoRAfine-tuning in BF16
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7. SLL LoRAfine-tuning in FP32
8. SLL LoRAfine-tuning in FP16
9. SLL LoRAfine-tuning in BF16

In addition to the Alpaca dataset (Taori et al., 2023), we also fine-tune all models using the LIMA
dataset (Zhou et al., 2024). Models are trained using LIMA for 5 epochs, while all other settings
follow the fine-tuning recipe used for Alpaca (described in Appendix E).

For natural language benchmarks, in addition to MMLU, we evaluate each fine-tuned model using
Winogrande (Sakaguchi et al., 2021). Recall that, for each benchmark, divergence between a mixed-
precision fine-tuned model is measured between its full-precision counterpart and averaged over
{0, 1, 3, 5}-shot performance. In addition to the average divergence, we also include the standard
deviation of divergence. Thus, in total, 72 new LLMs were fine-tuned, while 360 new MMLU and
720 new Winogrande evaluations were conducted, respectively.

Figure I displays results for Alpaca and MMLU, Figure I displays results for Alpaca and Wino-
grande, Figure I displays results for LIMA and MMLU, Figure I displays results for LIMA and
Winogrande. Summary statistics for all experiments are presented in Table I. While OpenELM
exhibits large deviation spikes for both Alpaca benchmark evaluations–and Pythia exhibits large
deviation spikes for all four evaluations–Mamba does not exhibit a single large deviation spike on
any benchmark for all considered model sizes and MPFT/PEFT configurations (i.e., 18 total
configurations excluding the full-precision baselines). Furthermore, Mamba models are significantly
more stable for MPFT/PEFT compared to Transformer-based LLMs. E.g., for MMLU evaluations,
Alpaca fine-tuning with Mamba models is an average 2.6 times smaller in mean divergence
than both Pythia and OpenELM models, while LIMA fine-tuning with Mamba models is an
average 7 and 3.25 times smaller in mean divergence than Pythia and OpenELM models,
respectively.

Table 8: Summary of divergence results for Alpaca and LIMA fine-tuning datasets, MMLU and
Winogrande benchmarks, and Mamba, OpenELM, and Pythia models. For each deviation summary
statistic per fine-tuning dataset and benchmark, the lowest deviation is highlighted in bold.

(Fine-tuning dataset), Benchmark Architecture Large deviation spikes Ó Avg mean divergence Ó Std mean divergence Ó

(Alpaca, MMLU)
Pythia 1 0.37 0.41

OpenELM 1 0.37 0.32
Mamba 0 0.14 0.08

(Alpaca, Winogrande)
Pythia 4 0.72 0.58

OpenELM 3 0.59 0.37
Mamba 0 0.25 0.09

(LIMA, MMLU)
Pythia 1 0.28 0.34

OpenELM 0 0.13 0.15
Mamba 0 0.04 0.03

(LIMA, Winogrande)
Pythia 3 0.45 0.45

OpenELM 0 0.36 0.18
Mamba 0 0.11 0.12
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(a) Mean full-precision (FP32) divergence in MMLU performance.
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(b) Standard deviation (std) full-precision (FP32) divergence in MMLU performance.

Figure 6: Alpaca fine-tuning, MMLU evaluation. Mamba, Pythia, and OpenELM models are fine-
tuned over the Alpaca dataset using different combinations of MPFT and PEFT. Full fine-tuning
(i.e., no PEFT adapters) is denoted as Full.
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(a) Mean full-precision (FP32) divergence in Winogrande performance.
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(b) Standard deviation (std) full-precision (FP32) divergence in Winogrande performance.

Figure 7: Alpaca fine-tuning, Winogrande evaluation. Mamba, Pythia, and OpenELM models
are fine-tuned over the Alpaca dataset using different combinations of MPFT and PEFT. Full
fine-tuning (i.e., no PEFT adapters) is denoted as Full.
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(b) Standard deviation (std) full-precision (FP32) divergence in MMLU performance.

Figure 8: LIMA fine-tuning, MMLU evaluation. Mamba, Pythia, and OpenELM models are
fine-tuned over the LIMA dataset using different combinations of MPFT and PEFT. Full fine-tuning
(i.e., no PEFT adapters) is denoted as Full.
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(a) Mean full-precision (FP32) divergence in Winogrande performance.
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Figure 9: LIMA fine-tuning, Winogrande evaluation. Mamba, Pythia, and OpenELM models are
fine-tuned over the LIMA dataset using different combinations of MPFT and PEFT. Full fine-tuning
(i.e., no PEFT adapters) is denoted as Full.
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